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Abstract

We prove the existence and uniqueness for a semilinear elliptic problem with memory, both in the
weak and the classical setting. This problem describes the effective behaviour of a biological tissue
under the injection of an electrical current in the radiofrequency range.

1 Introduction

Let Ω be an open bounded subset of RN with regular boundary and let T > 0. We study the existence,
uniqueness and regularity for the solution of the semilinear problem{

−div
(
A(x)∇xu +

∫ t

0
B(x, t− τ)∇xu(x, τ) dτ

)
= g(x, t, u) in Ω× (0, T ) ,

u = f in ∂Ω× (0, T ) ,
(1.1)

where A(x) is a simmetric and positive definite matrix, B(x, t) is a simmetric matrix, g : Ω×(0, T )×R →
R and f : Ω× (0, T ) → R are given functions. More precisely, in Section 2 we prove the well-posedness
of problem (1.1) in a weak sense, by using a fixed point technique:

Theorem 1.1 Let A ∈ L∞(Ω;RN2
) be such that λ|ξ|2 ≤ A(x)ξ ·ξ ≤ Λ|ξ|2, for suitable 0 < λ < Λ < +∞,

for almost every x ∈ Ω and every ξ ∈ RN ; let B ∈ L2(0, T ;L∞(Ω;RN2
)), and let f ∈ L2(0, T ;H1(Ω)).

Assume that g : Ω × (0, T )×R → R is a Carathéodory function such that

(G1) g(·, ·, 0) ∈ L2(0, T ;H−1(Ω))
(G2) |g(x, t, s)− g(x, t, s′)| ≤ L|s− s′| for a.e. (x, t) ∈ Ω × (0, T ), and every s, s′ ∈ R ,

where L ≤ λ
3C , if C is the best constant in the classical Poincaré inequality on Ω.

Then, there exists a unique function u ∈ L2(0, T ;H1(Ω)) satisfying in the sense of distributions
problem (1.1).

In Section 3 we prove that, under further regularity assumptions on the data, existence and uniqueness
of classical solutions of (1.1) hold true, by using a delay technique. This regularity is instrumental in
applications (see [2]).
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Theorem 1.2 Let m ≥ 0 be any fixed integer and let also 0 < α < 1. Let A ∈ C1+α(Ω;RN2
) satisfy the

assumption of Theorem 1.1 and B ∈ C0([0, T ];C1+α(Ω;RN2
)) be such that B′ ∈ L2(0, T ;W 1,∞(Ω;RN2

)).
Assume that g ∈ C0([0, T ];Cm+α(Ω×R)) satisfies (G2) of Theorem 1.1, with γL < 1, where γ is a struc-
tural constant depending only on λ, Λ, N, Ω, β, A,B, and that there exists L0 > 0 such that

(G3) |g(x, t, s)|, |∇xg(x, t, s)|, |gt(x, t, s)| ≤ L|s|+ L0 .

Let f ∈ C0([0, T ];Cm+2+α(Ω)), with ft ∈ L∞(0, T ;Cm+2+α(Ω)). Then there exists a unique function
u ∈ C0([0, T ];C1+α(Ω)) ∩ L∞(0, T ;Cm+2+α(Ω)) solving (1.1) in the classical sense.

In the linear case, our problem can be compared to the ones studied in the context of linear elasticity
in [4, 5], where (1.1) is reduced to a Volterra equation and solved, under suitable hypotheses, by means
of the spectral theory in C0([0, T ];C2+α(Ω)). Problem (1.1), again in the linear case, is also studied
in [3], in the context of weak solvability. There, the Fourier trasform technique is applied, under some
assumptions on the asymptotic behaviour of the kernel B, in order to obtain the existence in the space
L2(−∞,+∞;H2(Ω)).

From the physical point of view, problem (1.1) describes the effective behaviour of a biological tissue
under the injection of an electrical current in the radiofrequency range ([1, 2]). Here, the unknown u

represents the electrical potential and the driven electrical current −A(x)∇xu−
∫ t

0
B(x, t−τ)∇xu(x, τ) dτ

depends on the history of the electrical field −∇xu, therefore it is non local in time.

2 Proof of Theorem 1.1

We note that, possibly replacing u with v = u− f and g with

g̃(x, t, u) = g(x, t, u)− div
(
A(x)∇xf +

∫ t

0

B(x, t− τ)∇xf(x, τ) dτ
)

,

there is no loss of generality in assuming f ≡ 0. Consider the Banach space X = L2(0, T1;H1
o (Ω)) ,

endowed with the usual norm

‖u‖L2(0,T1;H1
o(Ω)) :=

(∫ T1

0

∫
Ω

|∇xu|2 dx dt

)1/2

,

where T1 will be chosen later. Let us introduce an operator H acting on X by means of H(u) = w, where
w is the solution of

−div
(
A(x)∇xw

)
= div

(∫ t

0

B(x, t− τ)∇xu(x, τ) dτ
)

+ g(x, t, u) ,

with null trace on ∂Ω, and t fixed almost everywhere in (0, T ). Clearly, the operator H is well defined;
moreover, multiplying the previous equation by w and integrating by parts, we obtain that H(X) ⊂ X.

Given u1, u2 ∈ X, we have that w = H(u1)−H(u2) has null trace on the boundary ∂Ω and solves

−div
(
A(x)∇xw

)
= div

(∫ t

0

B(x, t− τ)∇xu(x, τ) dτ
)

+ g(x, t, u1)− g(x, t, u2) ,

where u = u1 − u2. Again multiplying the previous equation by w and integrating by parts, it follows

‖w‖2L2(0,T1;H1
o(Ω)) = ‖H(u1)−H(u2)‖2L2(0,T1;H1

o(Ω))

≤ γ
δ T1‖u‖2L2(0,T1;H1

o(Ω)) + γ δ‖w‖2L2(0,T1;H1
o(Ω))

+CL
2λ ‖u‖

2
L2(0,T1;H1

o(Ω)) + CL
2λ ‖w‖

2
L2(0,T1;H1

o(Ω)) ,
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where γ depends only on λ and B. Now, recalling that L ≤ λ
3C and choosing δ = 1

6γ and T1 < 1
36γ2 , we

can absorb the second and the fourth term of the last inequality into the left hand side, obtaining that H
is a contraction. So, it admits a unique fixed point, i.e., a solution of (1.1) exists in X. Noting that the
width T1 of the time interval is independent of the iteration step, we may conclude the proof by iterating
this argument over (0, T ).

3 Proof of Theorem 1.2

We will prove that the unique weak solution found in Theorem 1.1 actually belongs to C0([0, T ];C1+α(Ω))∩
L∞(0, T ;Cm+2+α(Ω)).

Assume m = 0 and set
‖u‖t

(2+α) := ess sup
0≤τ≤t

‖u(·, τ)‖(2+α) , (3.1)

where ‖·‖(m+α) is the norm in Cm+α(Ω). Analogously, if we indicate with ‖·‖2,q and ‖·‖∞ the norms in
W 2,q(Ω) and L∞(Ω), respectively, we can consider the corresponding norms ‖·‖t

2,q and ‖·‖t
∞ in the sense

of (3.1).
Let us introduce a sequence of approximating problems

−div
(
A(x)∇xuh

)
= div

( ∫ th

0
B(x, t− τ)∇xuh(x, τ) dτ

)
+ g(x, t, uh(x, th)) in Ω × (0, T )

uh(x, t) = f(x, t) on ∂Ω × (0, T )
(3.2)

where th = max(0, t−h), for 0 < t < T and any fixed h > 0, and uh(x, 0) =: u0(x) is given by the unique
solution of the standard elliptic nonlinear equation

−div
(
A(x)∇u0(x)

)
= g(x, 0, u0(x))

which coincides with f(·, 0) on the boundary ∂Ω.
Existence of a solution uh ∈ C0([0, T ] × Ω × R) ∩ L∞(0, T ;C2+α(Ω)) is elementary, moreover, by

standard elliptic estimates, using also (G3), we have that, for every t ∈ [0, T ],

‖uh‖t
2+α ≤ γ

(∫ th

0

‖uh‖τ
2+α dτ + L‖uh‖t

2+α + ‖∇xg(uh)‖t
∞ + ‖g(uh)‖t

∞ + ‖f‖t
2+α

)
≤ γ

(∫ t

0

‖uh‖τ
2+α dτ + 3L‖uh‖t

2+α + 2L0 + ‖f‖T
2+α

)
,

(3.3)

where γ is a structural constant depending on λ, Λ, N, Ω, β, A,B. Taking into account that L is small
and using Gronwall’s Lemma, it follows that ‖uh‖T

2+α ≤ γ , where γ now depends also on L,L0, ‖f‖T
2+α.

Now let us consider the following problem

−div
(
A(x)∇xu′h

)
= div

(
B(x, h)

∂th
∂t
∇xuh(x, t) +

∫ th

0

B′(x, t− τ)∇xuh(x, τ) dτ
)

+gs(x, t, uh(x, th))u′h(x, th)
∂th
∂t

+ gt(x, t, uh(x, th)) ,

(3.4)

with u′h = ft on the boundary ∂Ω and u′ stands for the temporal derivative of u.
This is a standard linear elliptic problem in u′h (where uh and u′h(x, th) are regarded as known

functions), with a non zero source term. Hence (see e.g. [6], Chp. 9) for every q ≥ 2, we have existence
and uniqueness of a solution u′h ∈ L∞(0, T ;W 2,q(Ω)); moreover,

‖u′h‖t
2,q ≤ γ

(
‖uh‖t

2,q + L‖u′h‖
th

Lq + ‖gt(uh)‖t
∞ + ‖ft‖t

2,q

)
.
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Therefore, since L is sufficiently small, using again (G3), we obtain

‖u′h‖T
2,q ≤ γ(‖uh‖T

2,q + L0 + ‖ft‖T
2,q) ≤ γ . (3.5)

By (3.5) and taking into account that (3.3) implies ‖uh‖T
2+α ≤ γ, it follows that

uh, (uh)xi
, (uh)xixj

∈ L∞(ΩT )
(uh)t, (uh)txi

, (uh)txixj
∈ Lq(ΩT )

uniformly with respect to h, where ΩT = Ω × (0, T ). This implies that, if we choose q > N sufficiently
large, the sequences {uh}, {(uh)xi} are compactly embedded in C0(ΩT ), being uniformly Hölder contin-
uous with exponent α. Now, up to a subsequence, we can pass to the limit for h → 0+ in the weak
formulation of (3.2), obtaining that uh → u ∈ C0([0, T ];C1+α(Ω)), where u is a solution of (1.1). More-
over, u ∈ L∞(0, T ;C2+α(Ω)), as follows by applying the calculations in (3.3) to the original problem
solved by u.

Now let m ∈ N . By classical elliptic estimates, it follows

‖u(·, t)‖(m+2+α) ≤ γ1‖g(u)‖t
(m+α) + γ1‖f‖t

(m+2+α) + γ2

∫ t

0

‖u(·, τ)‖(m+2+α) dτ

where g(u) = g(x, t, u(x, t)). After an application of Gronwall’s lemma, we obtain

‖u‖T
(m+2+α) ≤ γ1‖g(u)‖T

(m+α) + γ1‖f‖T
(m+2+α) . (3.6)

Hence, u ∈ L∞(0, T ;Cm+2+α(Ω)), whenever ‖g(u)‖T
(m+α) is bounded. If m = 1, by the first part of the

proof we have that ‖g(u)‖T
(1+α) is bounded, which implies that u actually belongs to L∞(0, T ;C3+α(Ω)).

The proof is then concluded by induction over m in (3.6).
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