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Abstract. Nonnegative measure-valued solutions of the continu-
ity equation are uniquely determined by their initial condition, if
the characteristic ODE associated to the velocity field has a unique
solution. In this paper we give a partial extension of this result
to signed measure-valued solutions, under a quantitative two-sided
Osgood condition on the velocity field. Our results extend those
obtained for log-Lipschitz vector fields in [6].

1. Introduction

Let T > 0 and let

V (t, x) : (0, T )× Rd −→ Rd

be a Borel vectorfield. We associate to V the equations

(ODE) γ̇(t) = V (t, γ(t))

and (with the notation Vt(x) = V (t, x))

(PDE) ∂tµt + div(Vtµt) = 0.

A solution of (ODE) is an absolutely continuous curve γ(t) such that
γ̇(t) = V (t, γ(t)) almost everywhere on [0, T ]. We shall also con-
sider generalized solutions in the sense of Filippov, see more details
below. The so-called continuity or Liouville equation (PDE) is con-
sidered in the sense of distributions. We shall work with solutions in
the class of measures. We denote by M(Rd) the set of signed Borel
measures with finite total variation on Rd, by M+(Rd) the subset of
non-negative finite measures, and by |µ| ∈ M+(Rd) the total variation
of a measure µ ∈ M(Rd). We shall consider only solutions µt sat-
isfying |µt|(Rd) ∈ L∞(0, T ); this is not a very restrictive assumption,
because many approximation schemes do provide solutions µt with this
property. We shall also assume that

(I)

∫ T

0

∫
Rd

‖Vt‖d|µt|dt < ∞,
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a property surely satisfied if ‖V ‖ is uniformly bounded. Under these
assumptions the notion of distributional solution is well defined, and it
is equivalent to the requirement that, for all φ ∈ C1

c (Rd), t 7→
∫

φ dµt

belongs to the Sobolev space W 1,1(0, T ), with distributional derivative
given by ∫

Rd

〈Vt(x),∇φ(x)〉 dµt(x).

Using this fact, and the uniform continuity properties of Sobolev func-
tions on the real line, it is easy to check (see for instance [4, Proposi-
tion 8.1.7]) that we can restrict ourselves (possibly modifying µt in a
negligible set of times) to weakly continuous solutions t 7→ µt, in the
duality with Cc(Rd). Moreover, the initial condition µ0 for (PDE) is
defined in a weak sense:

lim
t↓0

∫
Rd

φ dµt =

∫
Rd

φ dµ0 ∀φ ∈ Cc(Rd).

So, from now on only weakly continuous solutions µt will be considered.
Reversing the time variable, also the final condition µT is well defined,
still in the weak sense.

Our goal in the present paper is to study the relations between
uniqueness for (ODE) and uniqueness for (PDE). It is known that
uniqueness for (ODE) implies, via the so-called superposition princi-
ple, that nonnegative solutions of (PDE) are uniquely determined by
the initial condition µ0, see [4, 2, 3, 10, 5]. The question turns out to
be much more subtle if we work in the class of signed measures. Of
course, if µt is a solution, we can write it as the difference of the two
non-negative measures µ+

t and µ−t . However, these measures need not
solve the equation. This remark is reminiscent of the notion of renor-
malized solutions, see [7, 1]: we may call renormalized a solution µt

such that µ+
t and µ−t are both solutions (or equivalently such that |µt|

is a solution). It is clear that there is uniqueness if all distributional
solutions are renormalized, and if there is uniqueness for (ODE), but
renormalized solutions have been studied only under weak differentia-
bility assumptions on Vt, and only in the class of absolutely continuous
measures µt (see [2] for a survey on this topic). In this paper, we leave
aside the question of the general relations between (ODE) uniqueness
and (PDE) uniqueness, and we focus on a particular class of vector-
fields for which (ODE) uniqueness is well-known, and derive some con-
sequences at the (PDE) level (and, in particular, that all solutions are
renormalized).

We recall that a modulus of continuity is a continuous non-decreasing
function ρ : [0, 1) −→ [0,∞), such that ρ(0) = 0. A modulus of
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continuity ρ is said to be Osgood if∫ 1

0

1

ρ(s)
ds = +∞.

We will always extend the moduli of continuity to [1,∞) by ρ = ∞.
Typical examples of Osgood moduli of continuity are ρ(s) = s and
ρ(s) = s(1 − ln(s)). Note that the moduli ρ(s) = sα, α ∈ (0, 1), are
not Osgood.

It is known that uniqueness holds for (ODE) if there exist a Osgood
modulus of continuity ρ and C ∈ L1(0, T ) such that

(O) |〈V (t, x)− V (t, y), x− y〉| 6 C(t)‖x− y‖ρ(‖x− y‖)

for all x, y ∈ Rd, and all t ∈ (0, T ). Condition (O) does not seem
to imply continuity of Vt: in the case when the modulus ρ is linear,
(O) implies that the symmetric part of the distributional derivative
is bounded, hence Korn’s inequality gives that Vt is equivalent, up to
Lebesgue negligible sets, to a continuous function. Since we consider
measures µt that are possibly singular, even in the case when ρ is
linear we can not apply this result to reduce ourselves to a continuous
vector field; therefore we will not investigate the continuity question
here (also because adding the continuity assumption would not lead to
a great simplification of the uniqueness proof).

In order to prevent blow-up of solutions, the following bound is use-
ful:

(B) |V (t, x)| 6 D(t) ∀x ∈ Rd, ∀t ∈ (0, T ), for some D ∈ L1(0, T ).

The equation (ODE) is well understood under (O) and (B): There
exists a unique flow map

X : [0, T ]× [0, T ]× Rd 7−→ Rd

which is such that X(s, t, ·) is a homeomorphism of Rd for each s and
t; X(t, t, ·) = Id for each t. In addition

t 7→ X(s, t, x)

is a generalized solution of (ODE) in the sense of Filippov (the def-
inition is recalled below) for each s and x. In the case when Vt is
continuous, then generalized solutions in the sense of Filippov are just
ordinary solutions of (ODE). Uniqueness implies that X satisfies the
semigroup property

(1) X(t3, t2, X(t1, t3, x)) = X(t1, t2, x) ∀x ∈ Rd, ∀t1, t2, t3 ∈ [0, T ].

The main result of this paper is the following uniqueness result:
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Theorem 1. If the vectorfield V satisfies (O) and (B), then there is
uniqueness for (PDE) in the class of bounded signed measures. More
precisely, if µt is a solution of (PDE) such that |µt|(Rd) ∈ L∞(0, T )
then

(2) µt = X(0, t, ·)#µ0 for all t ∈ (0, T ).

In the particular case when Vt is continuous, (2) defines a solution
of (PDE) with initial condition µ0, so that Theorem 1 can also be read
as an existence result.

The same proof would give uniqueness in the larger class of measures
µt satisfying |µt|(Rd) ∈ L1(0, T ) if conditions (O) and (B) are given in
a stronger form with C ∈ L∞(0, T ), we leave the (easy) details to the
reader.

If ρ(s) = s, the result is well-known. It has been proved by Bahouri
and Chemin in [6] in the case ρ(s) = s(1 − ln(s)) (see also [10] for
related results), under the additional assumption that V has zero di-
vergence. The proof in [6] uses Fourier analysis and Littlewood-Paley
decompositions, and it is not clear to us whether it can be adapted to
our more general statement.

It might be tempting to think that uniqueness for (PDE) holds in
the presence of a flow of homeomorphisms solving (ODE), but we do
not know whether such a result is true without an explicit bound like
(O).

Let us now return to the definition of the flow X associated to V .
Since V is possibly discontinuous, we consider its Filippov regulariza-
tion (actually a multivalued function), namely

V(t, x) :=
⋂
r>0

co ({V (t, y) : ‖y − x‖ < r}) ,

where co denotes closed convex hull. By definition, a generalized so-
lution of (ODE) in the sense of Filippov is an absolutely continuous
curve X(t) such that the inclusion Ẋ(t) ∈ V(t,X(t)) holds for almost
every t. Since x 7→ V(t, x) is upper semicontinuous (i.e. xn → x,
vn ∈ V(t, xn) and vn → v imply v ∈ V(t, x)), and V(t, x) 6= ∅, by
Filippov’s theorem, see [8] or [9, Theorem 1.4.1], for all t1 ∈ [0, T ] and
x ∈ Rd there exists a Filippov solution X(t) : [0, T ] −→ Rd satisfying
X(t1) = x. Furthermore, V inherits (O) in the form
(3)
|〈v − w, x− y〉| 6 C(t)‖x− y‖ρ(‖x− y‖) ∀v ∈ V(t, x), ∀w ∈ V(t, y)

and this can be used to show, by the standard argument, that X is
unique. The flow X(s, t, x) can now be defined by requiring that t 7→
X(s, t, x) is the only Filippov solution which satisfies X(s) = x.
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The following strong form of uniqueness is essential for the proof :

Lemma 2. Let V (t, x) be a vector-field satisfying (O) and (B). Let
γ(s) = (t(s), x(s)) : [0, L] −→ [0, T ]×Rd be a Lipschitz curve such that

ẋ(s) = ṫ(s)V (t(s), x(s))

for almost every s. If
∫ L

0
|ṫ(s)|C(t(s))ds < ∞, where C(t) is the func-

tion appearing in (O), then

x(s) = X(t(0), t(s), x(0)).

Proof. Let us notice that the curve y(s) := X(t(0), t(s), x(0)) satisfies
ẏ(s) ∈ ṫ(s)V(t(s), y(s)) for almost all s, and therefore (3) gives

|〈ẏ(s)− ṫ(s)V (t(s), x), y(s)−x〉| 6 |ṫ(s)|C(t(s))‖y(s)−x‖ρ(‖y(s)−x‖)

for all x ∈ Rd. In particular, we have

|〈ẏ(s)− ẋ(s), y(s)−x(s)〉| 6 |ṫ(s)|C(t(s))‖y(s)−x(s)‖ρ(‖y(s)−x(s)‖).

Denoting by d the quantity d(s) = ‖x(s) − y(s)‖, we get (taking into

account that ḋ(s) = 0 a.e. on {d = 0})

|ḋ(s)| 6 |ṫ(s)|C(t(s))ρ(d(s)) for a.e. s ∈ [0, L].

Since the function |ṫ(s)|C(t(s)) is integrable, and since d(0) = 0, we
conclude that d(s) = 0 for all s.

The proof of the Theorem is now based on Smirnov’s decomposition
of normal currents, see [11]. We expose this theory in Section 2, and
then conclude the proof of Theorem 1 in Section 3.

2. Decomposition of vector fields

Let us consider the metric space L := Lip([0, 1]; Rk) of Lipschitz
curves γ : [0, 1] −→ Rk, endowed with the uniform distance and the
associated Borel σ-algebra. Note that the set L is a Borel subset of
C([0, 1]; Rk), being a countable union of compact sets. To each curve

γ ∈ L, we associate its length Lγ =
∫ 1

0
‖γ̇(s)‖ds and the Rk-valued

measure T γ = (T γ
1 , . . . , T γ

k ) on Rk defined by∫
gdT γ

i =

∫ 1

0

g(γ(s))γ̇i(s)ds i = 1, . . . , k

for each bounded Borel function g : Rk → R. Making the supremum
among all Borel functions with ‖g‖ 6 1 we get

(4) |T γ|(Rk) 6 Lγ.
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Furthermore, it is easy to check that, if γ is simple, equality in (4)
holds and |T γ| is the image of ‖γ̇‖ds under γ.

Let now T = (T1, . . . , Tk) ∈ [M(Rk)]k. By polar decomposition we
can write T = Wη, with W : Rk → Rk Borel unit vectorfield and
η ∈M+(Rk) (η is the total variation of T and W is the orienting vec-
torfield, uniquely determined up to η-negligible sets); we also assume
that div(T ) is (representable by) a measure θ ∈M(Rk), namely∫

〈W,∇φ〉dη = −
∫

φdθ ∀φ ∈ C1
c (Rk).

Notice that this assumption is fulfilled by T γ, and

div(T γ) = δγ(1) − δγ(0).

We say that a measure ν ∈ M+(L) is a decomposition of T = Wη
by simple curves if:

(i) We have

(5) T =

∫
L

T γdν(γ),

which explicitly means that∫
〈W, f〉 dη =

∫
L

(∫ 1

0

〈f(γ(s)), γ̇(s)〉ds

)
dν(γ)

for each bounded Borel function f : Rk −→ Rk.
(ii) We have

(6) η =

∫
L
|T γ|dν(γ)

and

(7) |θ| =
∫
L

(
δγ(1) + δγ(0)

)
dν(γ).

(iii) ν-almost every curve γ(t) is simple.

Notice that condition (6) can be interpreted by saying that no can-
cellation occurs in (5). Analogously, by applying (5) to a gradient
vectorfield f , we get

(8) θ = div(Wη) =

∫
L

div(T γ)dν(γ) =

∫
L

(
δγ(1) − δγ(0)

)
dν(γ).

So, also (7) implies that no cancellation occurs in the integrals in (8).

Proposition 3. Let ν ∈ M+(L) be a decomposition of Wη by simple
curves. Then, for ν-a.e. curve γ, we have |T γ| = γ#(‖γ̇‖ds) and

(9) γ̇(s) = ‖γ̇(s)‖W (γ(s)) for a.e. s ∈ [0, 1].
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Proof. The equality |T γ| = γ#(‖γ̇‖ds) follows from the fact that
ν-almost every curve is simple. Inserting f = W in (5) and taking (6)
into account we get∫

L

(
|T γ|(Rk)−

∫ 1

0

〈W (γ(s)), γ̇(s)〉ds

)
dν(γ) = 0.

Since ν-almost every curve is simple, we have equality in (4), and we
get ∫

L

(
Lγ −

∫ 1

0

〈W (γ(s)), γ̇(s)〉ds

)
dν(γ) = 0,

so that ∫
L

(∫ 1

0

‖γ̇(s)‖ − 〈W (γ(s)), γ̇(s)〉ds

)
dν(γ) = 0.

The integrand being nonnegative, we get (9).

We can now state Theorem C of [11]:

Theorem 4. Any T = Wη as above can be decomposed as η = η0 + η̃,
where div(Wη0) = 0 and Wη̃ admits a decomposition ν ∈ M+(L) by
simple curves.

It turns out that also the divergence-free part Wη0 admits a decom-
position in “elementary” vector fields T γ, but the underlying curves γ
need not be in L: in order to obtain the decomposition, also curves as-
sociated to Bohr quasiperiodic maps γ : R → Rk should be considered,
see [11] for a precise discussion.

3. Proof of Theorem 1

Let µt be a solution of (PDE) with initial condition µ0 and let S ∈
(0, T ]. We want to prove that µS = X(0, S, .)]µ0.

Let σ(t, x) : (0, T ) × Rd −→ {−1, 1} be the sign of µt. By this we
mean a Borel map such that σµ = |µ|. Note that we really consider here
a functions σ defined at each point, and not only a class of functions
up to |µ|-almost everywhere equality. There is not a unique choice for
the function σ, but we pick one once and for all. Let us define the
vectorfield

W (t, x) =
σ(t, x)

‖(1, V (t, x))‖
(1, V (t, x))

and the Borel non-negative measure

η(t, x) = χ(0,S)×Rd‖(1, V (t, x))‖(dt⊗ |µt|)
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on Rd+1 = R×Rd. Note that (PDE) with initial condition µ0 at t = 0
and final condition µS at t = S can be rephrased as

div(Wη) = θ

in the sense of distributions in Rd+1, where θ = δS ⊗ µS − δ0 ⊗ µ0.
Let now η = η0 + η̃ be the decomposition provided by Theorem 4,

and let ν ∈ M+(L) be a decomposition of Wη̃, with k = 1 + d. By
Proposition 3, ν-a.e. curve γ = (t, x) satisfies the ODE

ṫ(s) = ‖γ̇(s)‖ σ(t(s), x(s))

‖(1, V (t(s), x(s)))‖
(10)

ẋ(s) = ‖γ̇(s)‖ σ(t(s), x(s))

‖(1, V (t(s), x(s)))‖
V (t(s), x(s)).(11)

Let us prove that for ν-a.e. curve γ = (t, x) the integrability property∫ 1

0

|ṫ(s)||C(t(s))|ds < ∞

holds. Indeed, take f(t, x) = C(t)/‖(1, V (t, x))‖ and observe that (6)
gives∫

L

∫ 1

0

|ṫ(s)||C(t(s))|dsdν(γ) =

∫
L

∫
fd|T γ|dν(γ) =

∫
fdη̃

6
∫

fdη =

∫ T

0

C(t)|µt|(Rd)dt < ∞.

As a consequence, the estimate
∫ 1

0
|ṫ(s)||C(t(s))|ds < ∞ is satisfied by

ν-almost every curve (t, x) in L. In view of Lemma 2, we conclude that
ν-almost every curve (t, x) in L satisfies

(12) x(s) = X(t(0), t(s), x(0)).

Since ν-almost every curve is one to one, we conclude that t(s) is one
to one for ν-almost every curve. By (7) we know that t(0) ∈ {0, S} and
t(1) ∈ {0, S} for ν-almost every curve γ = (t, x), and therefore, either
t(0) = 0 and t(1) = S, or t(0) = S and t(1) = 0.

Denoting by L+ the Borel subset of L formed by curves γ = (t, x)
such that t is increasing on [0, 1] and satisfies t(0) = 0 and t(1) = S,
and by L− the Borel subset of L formed by curves γ = (t, x) such that
t is decreasing on [0, 1] and satisfies t(0) = S and t(1) = 0, we conclude
that ν(L+∪L−) = 1. We denote by ν± the restrictions of ν to L±. The
measures ν± are mutually singular, non-negative, and ν = ν++ν−. Let

Bi : L+ ∪ L− −→ Rd
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be the Borel map defined by Bi(γ) = x(0) if γ ∈ L+ and Bi(γ) = x(1)
if γ ∈ L−. Similarly, we define

Bf : L+ ∪ L− −→ Rd

by Bi(γ) = x(0) if γ ∈ L− and Bi(γ) = x(1) if γ ∈ L+. Note that

Bf = Bi ◦X(0, S, ·)

ν-almost everywhere by (12). Since θ = δS ⊗ µS − δ0 ⊗ µ0, it follows
from (8) that µ0 = (Bi)](ν

− − ν+) and µS = (Bf )](ν
− − ν+). As a

consequence, we have

µS = X(0, S, ·)]µ0.

References

[1] L.Ambrosio : Transport equation and Cauchy problem for BV vector fields.
Invent. Math. 158 (2004), no. 2, 227–260.

[2] L. Ambrosio : Transport equation and Cauchy problem for non-smooth vector
fields. Lecture Notes in Mathematics “Calculus of Variations and Non-Linear
Partial Differential Equations” (CIME Series, Cetraro, 2005) 1927, B. Da-
corogna, P. Marcellini eds., 2–41, 2008.

[3] L. Ambrosio, G. Crippa : Existence, uniqueness, stability and differentiability
properties of the flow associated to weakly differentiable vector fields. UMI
Lecture Notes, Springer, in press.
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Patrick Bernard, Université Paris-Dauphine, et CEREMADE, UMR CNRS
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