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Abstract. We establish existence of solutions to the Monge problem in n with a norm cost function,
assuming absolute continuity of the initial measure.

The loss in strict convexity of the unit ball implies that transport is possible along several directions.
As in [4], we single out particular solutions to the Kantorovich relaxation with a secondary variational
problem, which involves a strictly convex norm. We then define a map rearranging the mass within the
rays, by a Sudakov-type argument with the disintegration technique in [8, 10, 17].

In the secondary variational problem the cost is also infinite valued and in general there is no Kan-
torovich potential. However, all the optimal transport plans share the same maximal transport rays.
We derive also an expression for the transport density associated to these optimal plans.
Remark: The construction presently given in the preprint needs the further technical assumption that,
with the notation of Section 3.4, the set of points x ∈ Ts whose secondary transport ray belongs to the
relative border of the convex envelope of {y : φ(x) − φ(y) = ‖y − x‖} is µ-negligible.
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1. Introduction

Topic of this paper is the existence of solutions to the Monge problem in n when the cost function is
given by a norm ‖·‖, possibly asymmetric: given two Borel probability measures µ, ν ∈ P( n), we study
the minimization of the functional

IM (t) =

∫

n

‖t(x)− x‖ dµ(x) (MP1)
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where t varies among the Borel maps t : n → n whose image measure of µ is ν. We exhibit a particular
class of minimizers, selecting them with the additional optimality conditions in [4], under the natural
assumption that µ is absolutely continuous w.r.t. the Lebesgue measure Ln. This assumption is necessary,
as shown in Section 8 of [5]. Roughly, the strategy is a reduction argument to a one dimensional transport
problem, proving a regularity of disintegration along rays with the technique in [8, 10], and then [17].

Remark 1.1. The construction presently given in the preprint needs the further technical assumption
that, with the notation of Section 3.4, the set of points x ∈ Ts whose secondary transport ray belongs to
the relative border of the convex envelope of {y : φ(x) − φ(y) = ‖y − x‖} is µ-negligible.

Before describing the work, we present a brief review of the literature, referring to [39] for a broad
overview.

1.1. An account on the literature. The original Monge problem arose in 1781 for continuous masses
µ, ν supported on compact, disjoint sets in dimension 2, 3 and with the cost defined by the Euclidean
norm ([31]). Monge himself conjectured important features of the transport, such as, with the Euclidean
norm, the facts that two transport rays may intersect only at endpoints and that the directions of the
transported particles form a family of normals to some family of surfaces.
Investigated first in [6, 21], the problem was left apart for a long period.

A fundamental improvement in the understanding came with the relaxation of the problem in the
space of probability measures ([26, 27]), consisting in the Kantorovich formulation. Instead of looking at
maps in n, ones considers the following minimization problem in the space Π(µ, ν) of couplings between
µ and ν: one deals with the minimization of the linear functional

IK(π) =

∫

n× n

‖y − x‖ dπ(x, y) (KP1)

among the transport plans π in the convex, w∗-compact set

Π(µ, ν) = {π ∈M+ : px
! π = µ, py

!π = ν},

where px, py are respectively the projections on the first and on the second factor space of n × n.
In particular, minimizers to (KP1) always exist by the direct method of Calculus of Variations. However,
the formulation (KP1) is indeed a generalization of the model, allowing that mass at some point can be
split to more destinations. Therefore, a priori the minimum value in (MP1) is higher than the one in
(KP1), and the minimizers of the latter are not suitable for the former.

A standard approach to (MP1) consists in showing that at least one of the optimizers to (KP1) is
concentrated on the graph of a function.
This is plainly effective when the cost is given by the squared Euclidean distance instead of ‖y − x‖: by
the uniform convexity there exists a unique optimizer π to (KP1) of the form π = (Id, Id−∇φ)!µ for a
quasiconvex function φ, the Kantorovich potential. Therefore, when µ ' Ln and ν ' Ln, the optimal
map is µ-a.e. defined by x (→ x −∇φ(x) and it is one-to-one ([13, 14, 28] are the first results, extended
to uniformly convex functions of the distance e.g. in [33, 30, 25, 16]).

However, even in the case of the Euclidean norm, it is well known that this approach presents difficul-
ties: at Ln-a.e. point the Kantorovich potential fixes the direction of the transport, but not the precise
point where the mass goes to. This is a feature of the problem, also in dimension one (see the example in
Figure 1a). The data are not sufficient to determine a single transport map, since there is no uniqueness.
Uniqueness can be recovered with the further requirement of monotonicity along transport rays ([24]).

The situation becomes even more complicated with a generic norm cost function, instead of the Eu-
clidean one. The symmetry of the norm plays no role, but the loss in strict convexity of the unit ball is
relevant, since the transport may not occur along lines and the direction of the transport can vary (see
the example in Figure 1b).

The Euclidean case, and thus the one proposed by Monge, has been rigorously solved only around
2000 in [22, 38, 5, 15].
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(a) One dimensional example. Let µ be the Lebesgue
measure on I1 ∪ I2 ⊂ and ν the Lebesgue measure on
I2 ∪ I3. Both the maps t1 translating I1 to I2, I2 to
I3 and the map t2 translating I1 to I3 and leaving I2
fixed are optimal. Moreover, any convex combination
of the two transport plans induced by t1, t2 is again a
minimizer for (KP1), but clearly it is not induced by a
map.

{‖x‖ ≤ 1}

Q1 Q2
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(b) Two dimensional example. The unit ball of ‖·‖ is
given by the rhombus. Let µ be the Lebesgue measure
Q0 ∪Q1 ⊂ 2 and ν the Lebesgue measure on Q2 ∪Q3.
Both the maps t1, t2 translating one of the first two
squares to one of the second to squares are optimal, and
they transport mass in different directions.

Figure 1: Examples of non uniqueness of optimal transport maps with a generic norm.

Roughly, the approaches in the last three papers is at least partially based on a decomposition of the
domain into one dimensional invariant regions for the transport, called transport rays. Due to the strict
convexity of the unit ball, these regions are 1-dimensional convex sets. Due to regularity assumptions on
the unit ball and a clever countable partition of the ambient space, it is moreover possible to reduce to
the case where the directions of these segments is Lipschitz continuous. This, by Area or Coarea formula,
allows to disintegrate the Lebesgue measure w.r.t. the partition in transport rays, obtaining absolutely
continuous conditional probabilities on the one dimensional rays. In turn, this suffices to perform a
reduction argument, that we also use in the present paper, which yields the thesis: indeed, one can
fix within each ray an optimal transport map, uniquely defined imposing monotonicity within each ray.
However, as in [10, 17, 18], we do not rely on any Lipschitz regularity of the vector field of directions.
This kind of approach was introduced already in 1976 by Sudakov ([37]), in the more generality of a
possibly asymmetric norm — which actually is the case we are considering. However, its argument remains
incomplete: a regularity property of the disintegration of the Lebesgue measure w.r.t. decompositions of
the space into affine regions was not proved correctly, and, actually, stated in a form which does not hold
([2]). Indeed, there exists a compact subset of the unit square having measure 1 and made of disjoint
segments, with Borel direction, such that the disintegration of the Lebesgue measure w.r.t. the partition
in segments has atomic conditional measures ([29, 1]). The reduction argument described above requires
instead absolutely continuous conditional measures, in order to solve then the one dimensional transport
problems, and therefore a regularity of the partition in transport rays must be proved.
In the case of a strictly convex norm, where the affine regions reduce to lines, Sudakov argument was
completed in [17]. In this paper we choose an alternative one dimensional decomposition selected by the
additional variational principles, instead of the affine one considered by Sudakov.
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The method in [22] is based on PDEs and they introduce the concept of transport density, widely
studied since there — the very first works are [23, 2, 12, 24], in [34] one finds more references. Given
a Kantorovich potential u for the transport problem between two absolutely continuous measures with
compactly supported and smooth densities f+, f−, they define as transport density a nonnegative function
a supported on the family of transport rays and satisfying

− div(a∇u) = f+ − f−

in distributional sense. The above equation was present already in [7] with different motivation. It allows
a generalization to measures, and an alternative definition introduced first in [11] for ρ := aLn is given
by the Radon measure defined on A ∈ B( n) as

(1.1) ρ(A) :=

∫

n× n

H1 (A ∩ !x, y") dπ(x, y),

where π is an optimal transport plan.
When the unit ball in not strictly convex, the results available are in the two-dimensional case, which

is completely solved, and for crystalline norms ([4]). The strategy is to fix both the direction of the
transport and the transport map by imposing additional optimality conditions, and then to carry out a
Sudakov-type argument on the selected transports.

We follow the same strategy, and the disintegration technique available from [10], whose adaptation
however is not really straightforward, allows to find the result for a generic norm.

A different proof of existence for general norms, which does not rely on disintegration of measures
and is more concerned with the regularity of the transport density, is contemporary presented in [20],
improving their argument for strictly convex norms in [19].

1.2. Overview of the paper. We present below an overview of the paper, where we establish existence
of minimizers to the Monge problem in n with a norm cost function. We follow the selection argument
in [4] in order to perform a one dimensional Sudakov-type decomposition of the space. We deal with
the key difficulty of disintegrating the Lebesgue measure w.r.t. this decomposition, arising because of the
more general norm, following the technique introduced in [8, 10] and then in [17] for this setting.

We state the problems and introduce some notations before summarizing the results.

Primary Transport Problem. Consider the Monge-Kantorovich optimal transport problem

(1.2) min
π∈Π(µ,ν)

IK(π),

where

IK(π) :=

∫

‖y − x‖ dπ(x, y)

between two positive Radon measures µ, ν with the same total variation. We assume that µ ' Ln and,
in order to avoid triviality, we suppose moreover that there exists a transport plan with finite cost.

Let the optimal primary transport plans be the family Op ⊂ Π(µ, ν) of minimizers to the primary
problem. Let moreover φ be a Kantorovich potential, which is a function n → such that

φ(x) − φ(y) ≤ ‖y − x‖ ∀(x, y) ∈ n × n(1.3a)

φ(x) − φ(y) = ‖y − x‖ for π-a.e. (x, y) ∀π ∈ Op.(1.3b)

Define Γp as the ‖·‖-subdifferential of φ, which is the set ∂−φ = {(x, y) : φ(x) − φ(y) = ‖y − x‖}.

Secondary Transport Problem. Consider a strictly convex norm | · |. Study

(1.4) min
π∈Op

∫

|y − x| dπ(x, y) = min
π∈Π(µ,ν)

Is
K

where

Is
K(π) :=

∫

cs(x, y) dπ(x, y)



AN EXISTENCE RESULT FOR THE MONGE PROBLEM IN n WITH NORM COST FUNCTIONS 5

and where the secondary cost function cs is defined by

cs(x, y) := |y − x| Γp
(x, y).

Let the optimal secondary transport plans be the family Os ⊂ Π(µ, ν) of minimizers to (1.4).

We establish the following theorem concerning the existence of optimal transport maps for the sec-
ondary transport problem, and thus for the primary one. The proof will be given in Section 2.

Theorem. The following statements concerning the primary and secondary transport problems hold.
1: Monge Problem.

There exists a unique optimal secondary transport plan πs ∈ Os induced by a map t monotone along rays.
More precisely, it is induced by a Borel map t such that

- for all x ∈ n the outgoing ray r+(x) := ∪n∈ !x, tn(x)" is a segment;
- for all x ∈ n the map t !r+(x) is monotone;
- the graph of t is σ-compact.

Then, the graph of r+, of the secondary transport rays r := r+∪(r+)−1 and of the vector field d vanishing
where t(x) = x and pointing otherwise towards t(x)− x are σ-compact.
The optimal map t provides a solution to the primary Monge problem which may change with | · |.

2. Secondary Transport Problem.
Every optimal secondary transport plan πs ∈ Os is concentrated on the cs-monotone set Graph(r+).
In particular, there exists a σ-compact subset Q of countably many hyperplanes such that the family of
non trivial oriented segments defined by {rq := r (q)}q∈Q has the following properties:

- t(x) .= x for all x in Ts := ∪q∈Qrq which is not a terminal point of some rq;
- t(x) = x for all x in F = n \ Ts;
- (µ + ν)-a.e. fixed points of t are fixed points for every πs ∈ Os;
- for Hn−1-a.e. q ∈ Q, rq is an invariant sets for every πs ∈ Os.

3. Secondary Transport Density.
The transport density (1.1) associated to any optimal secondary transport plan πs ∈ Os is the unique
solution ρ = aLn, a ∈ L1

loc(
n), to the transport equations, for Z ∈ B(Q) arbitrary open sets,

div( r (Z)d ρ) = r (Z)(µ− ν) ρ ∈M+
loc

whose density vanishes moving on the rays towards initial points, and out of Ts. It may vary with | · |.

We give in (2.12) two formulas for the transport density, in terms of either the disintegrations of µ
and ν or the map t, following Section 8 of [10]. It satisfies a divergence formula on ‘regular’ subsets of
r (Z), for Z ∈ B(Q).

The above theorem is derived as a corollary of the regularity of the disintegration w.r.t. transport rays,
stated below, and of the dimensional reduction arguments present in the literature.

The basic idea is the following. If we had two regions invariant for the transport, and it were possible
to define an optimal transport map for the restricted measures within each region, then we would trivially
get an optimal transport map solving our problem.
The same reasoning is applied to the continuous family of invariant sets {rq}q∈Q by means of the dis-
integration theorem. In order to solve the transport problem on each segment, one needs the absolute
continuity of the initial measure to be transported on the segment. If that holds, the one dimensional
solution is know and one shows that the maps on each segment provide together an optimal transport
plan.

The issue of the following disintegration theorem is indeed to show that disintegrating the Lebesgue
measure on the secondary transport set Ts = ∪q∈Qrq one obtains conditional measures absolutely contin-
uous w.r.t. the Lebesgue measure on the segments.

We state here below the Disintegration Theorem by itself, starting from a cs-monotone set Γ and
defining the transport rays related to Γ. In view of the application to the transport problem, we directly
assume w.l.o.g. Γ σ-compact and contained in {cs < +∞}. Indeed, one obtains the statement of the
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theorem above choosing Γs as the graph of the multivalued function x → r+Γ (x) in Definition 2.2, whenever
Γ is chosen as a cs-monotone, σ-compact carriage for any optimal secondary transport plan π ∈ Os

contained in {cs < +∞}.
The following construction of the transport rays is similar to the one in [4], and it is present in

several other papers in terms of the Kantorovich potential of the transport problem. The definition of
disintegration is recalled in Definition 2.10, while the one of cs-monotone set in Definition 2.1.

Definition 1.2. Given a set Γ ⊂ n × n, define the multivalued map r : n → n having graph
{

(x, y) : ∃(x′, y′) ∈ Γs such that !x, y" ⊆ !x′, y′"

}

.

and the following equivalence relation in Graph(r ):

(x, w)
s∼(y, z) ⇐⇒ r (x) ∩ r (w) = r (y) ∩ r (z).

The possible r.h.s. identify the equivalence classes, denote the family of those ones which are not singletons
as the family {rq}q∈Q of transport rays relative to Γ.
The relative transport set is the union of the transport rays: Ts = ∪q∈Qrq.
Define d as the multivalued vector field giving at each point x ∈ Ts the unit direction from x to any point
in r (x), and vanishing elsewhere.

Theorem. Let Γ be a σ-compact, cs-monotone subset of {cs < +∞}. Define the relative σ-compact
transport set Ts and its covering by secondary transport rays {rq}q∈Q and d as in Definition 1.2.

Then, the following strongly consistent disintegration w.r.t. the covering {rq}q∈Q holds:

(1.5) Ln Ts =

∫

Q

(

γ H1
rq

)

dHn−1(q)

where γ : n → + \ 0 is a Borel function and Q is a σ-compact subset of countably many hyperplanes.
In particular, the set of endpoints E of the secondary transport rays {rq}q∈Q is Ln-negligible and there-

fore {rq}q∈Q is a partition of Ts, removing an Ln-negligible set.
Moreover, a Green-Gauss-type divergence formula holds on special subsets of the transport set for the

vector field of secondary rays directions d .

The proof of the theorem will be given in Section 3, following [8, 10, 17].
A difficulty consists in the fact that in this approach the disintegration technique naturally involves a
Hopf-Lax formula with a Kantorovich potential for the secondary transport problem, in order to define
a more regular vector field of directions approximating the directions of the secondary transport rays —
for which in our case no regularity is known more than Borel measurability.
However, since cs is ∞-valued and only lower semicontinuous, in general there is no function φs such that
Γs is the cs-subdifferential of φs, which would correspond to a Kantorovich potential for the secondary
transport problem — see Example 3.14.

The disintegration strategy consists basically in the following. One reduces the Lebesgue measure to
special sets made of secondary rays transversal to an hyperplane H0, by a countable partition. Let Ht

denote an hyperplane at distance t from H0, on the side where terminal points of secondary rays lye if
t > 0, on the other otherwise. The special sets Z have to be chosen so that the following approximation
holds: if we consider the subset Z ′ of those secondary rays intersecting an hyperplane Ht, the restriction
of d to Z ′∩Ht is Hn−1-a.e. the pointwise limit of a sequence of vector fields each pointing towards finitely
many points of a dense sequence in Z ′ ∩ Hs, for any Hs different from Ht which is transversal to the
rays in Z ′ (see Figure 2). This approximation by cones provides quantitative estimates of the Hausdorff
(n−1)-dimensional measure of the intersection Z ∩Ht between the hyperplane Ht parallel to H0 and the
secondary rays of Z. The transversality of the hyperplanes ensures that the membership to a secondary
transport ray establishes a bijective correspondence between the points of these parallel sections. The
estimates on the Hausdorff measure of Z ∩Ht yields that the Hn−1-measure on each section is absolutely
continuous w.r.t. the push forward measure, by the map above defined by the membership to a same
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Figure 2: Cone approximation.

secondary transport ray, of the Hausdorff measure on a fixed intermediate section, say Z0 := Z ∩ H0.
This leads to a justification of the following steps, with the notation of measure disintegrations

Ln(x) Z =

∫

(Hn−1(x) Zt) dt by Fubini-Tonelli, where Zt = Z ∩Ht

x∈Zt↔q∈Z0=

∫
{

α(t, q)Hn−1(q) Z0

}

dt by the push forward estimates on the sections

=

∫

Z0

(α(t, q)H1(t)) dHn−1(q) by Fubini-Tonelli, since α is regular enough

x=q+td (x)
=

∫

Z0

(γ(x)H1(x) rq) dHn−1(q).

The new part of the construction, in Section 3, amounts thus in exhibiting a countable partition of the
secondary transport set into model sets where one can prove the estimate on the push forward measure.

We first provide a secondary potential φs for a suitable restriction of the plan. Then, looking e.g. at
the sections Z0, Zt, we choose the following approximating vector field of directions restricted to Zt: the
vector field defined by the correspondence

y (→ argmin
x∈Z0

[

φ(x) + εφs(x)
]

+
[

‖y − x‖ + ε|y − x|
]

.

It substitutes the cone approximation described above, due to the fact that it is almost a potential w.r.t. a
strictly convex norm and therefore it can in turn be approximated by cone functions.
The secondary potential is exhibited on subsets of Ts such that, when partitioned into invariant sets for
the primary transport problem, any two points can be connected by a coordinate cycle with finite cost,
we will be more precise in Subsection 3.4.

The second effort is in order to provide a countable partition of Ts which reduces the disintegration
problem to the model sets, and which is based on a partition of T into invariant sets for the primary
problem — useful for the construction of the ‘local’ secondary potential φs. We partition first a subset
of Ts, and we show then that the set left apart with the partition has zero Lebesgue measure.

2. The Secondary Transport Problem

The secondary transport problem is a Monge-Kantorovich problem

min
π∈Π(µ,ν)

∫

cs(x, y) dπ(x, y)
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w.r.t. the secondary function

cs(x, y) = |y − x|χ{(x,y): φ(x)−φ(y)=|y−x|}(x, y).

This problem on one hand is more difficult than the primary one, since the secondary cost function is
not continuous and takes the value +∞. The advantage is that the strict convexity on regions which are
invariant sets for the primary problem implies the known fact that any secondary optimal transport plan
moves mass along rays.

We remind the following definition.

Definition 2.1. Given a cost function c : n × n → +, a subset Γ of n × n is c-monotone if for all
finite number of points {(xi, yi)}i=1,...,M belonging to Γ one has the following inequality:

c(x0, y0) + · · · + c(xM , yM ) ≤ c(x0, y1) + · · · + c(xM−1, yM ) + c(xM , y0).

Any optimal plan π for a Monge-Kantorovich problem in Polish spaces with a positive, analytic cost
function c, and such that

∫

c dπ < ∞, is concentrated on a c-monotone set (Lemma 5.2 in [9]). When
the cost c is continuous, one is moreover allowed to take as this set the support of π. As a consequence,
there exists a closed set Γ ⊂ {c < +∞} such that every optimal transport plan is supported on Γ: for
any dense sequence {πk}k∈ in the convex, w∗-closed set of optimal transport plans and one can take as
Γ the support of the secondary optimal transport plan

∑

k∈ πk/2−k.
This is no more true when the cost function is not continuous and possibly +∞-valued, since the

closure of a c-monotone set in general is not c-monotone. However, all the secondary optimal transport
plans for cs are concentrated on a common cs-monotone set, and therefore they share the same transport
rays (Lemma 2.11).

2.1. A universal family of secondary transport rays. In the present subsection we associate to a
cs-monotone set Γ ⊂ {cs < ∞} the secondary transport rays and relative initial and terminal points, the
secondary rays directions, the secondary transport set and the secondary fixed set.

The construction has the following meaning in terms of the secondary transport problem.
Consider any optimal secondary transport plan πs ∈ Os, that we assume to have finite cost, and a cs-
monotone carriage Γs ⊂ {cs < +∞} (which is possible by Theorem 3.2 in [5]). Let πs =

∫

n πx
s dµ(x) be

the strongly consistent disintegration of πs w.r.t. the projection on the first variable px : (x, y) → x.
The conditional measure πx

s describes the transport taking place with πs from the point x. Since πx
s is

concentrated on Γs ∩ ({x} × n), then in order to describe the transport it is natural to associate the
points in py(Γs ∩ ({x} × n)) to x, which are the possible destinations of the mass at x with πs.
However, a generic other plan π′

s ∈ Os in general is not concentrated on the above Γs, as discussed in
the next subsection; therefore, if we want to associate to x all the possible destinations, not only with πs,
but with every transport plan π′

s ∈ Os, it is natural to associate to x more points, precisely the set rΓ(x)
in Definition 2.2. The universality of this sets will be prove in Lemma 2.11 of the next subsection.

Definitions and claims analogous to the ones in the present sections, also in terms of a cs-monotone
function containing Γs in its subdifferential, are already present for example in [37], [22], [15], [4], [10],
[17]. Having in mind the application to the secondary transport problem, and since, at this point, a
secondary Kantorovich potential is not available, in the definitions below we are forced to start from
cs-monotone sets as in [4].

Let Γ be a cs-monotone subset of {(x, y) : cs(x, y) < +∞}.

Definition 2.2. The multivalued map n 5 x (→ r+Γ (x) ⊂ n which gives the union of secondary transport

rays outgoing from x is defined by the formula Graph(r+Γ ) := GΓ with

(2.1) GΓ :=

{

(x, y) : ∃m, ∃{(x′
i, y

′
i)}m

i=1 ⊂ Γs such that !x, y" 6
⋃

i=1,...,m

!x′
i, y

′
i"

}

.



AN EXISTENCE RESULT FOR THE MONGE PROBLEM IN n WITH NORM COST FUNCTIONS 9

The map r giving the secondary transport rays through x identified by the formula Graph(r ) = GΓ∪(GΓ)T ,
where (GΓ)T is the transpose of GΓ.
When specifying otherwise which is a set Γ defining GΓ, we will denote rΓ simply as r .

Remark 2.3. As quickly discussed above, the ones of Definition 2.2 should be called more properly the
maximal secondary transport rays associated to Γ, while the secondary transport rays r ′+Γ , r ′Γ associated
to Γ should be similarly defined from

(2.2) G′
Γ :=

{

(x, y) : ∃(x′, y′) ∈ Γs such that !x, y" 6 !x′, y′"

}

.

Since we are mainly interested in the maximal secondary transport rays, we put them in evidence and
we define the ones from (2.2) as the Γ-secondary transport rays.
Notice that r+Γ (x) = ∪i∈ (r ′+)i(x), which is the set ∪i∈ Ki with K0 := {x} and Ki := ∪r ′+Γ (Ki−1).

Definition 2.4. We define the following equivalence relation in Graph(r ) (see Lemma 2.9 below):

(2.3) (x, w)
s∼(y, z) ⇐⇒ r (x) ∩ r (w) = r (y) ∩ r (z).

The r.h.s. of (2.3) identifies the equivalence classes.
Secondary transport rays . A (nontrivial) secondary transport rays is each element in the r.h.s. above
which do not reduce to a single point. We denote the family of secondary rays with {rq}Q.
Endpoints . The endpoints of a ray rq are the points in its relative border. Let E be the set of endpoints
of secondary transport rays.
Initial and terminal points . The terminal and initial points of a ray rq are, when they exist, those a, b ∈ rq
such that, respectively, r+(b) = {b} and (r+)−1(a) = {a}. Denote with E− the set of initial points and
with E+ the set of terminal points of secondary transport rays.
Secondary transport set . The secondary transport set is the union of secondary transport rays:

Ts =
⋃

q∈Q

rq = px(Graph(rΓ)).

Fixed set . The fixed set is the complementary of the transport set.
Rays direction. The direction of a ray rq is the unit vector pointing from the initial to the terminal point
of rq. The multivalued vector field d : n → Sn−1 of rays directions gives at each point x ∈ Ts the
direction of the rays through x and vanishes elsewhere.

Remark 2.5. The equivalence classes of (2.3) which do not reduce to point are of the form

rq × rq = (rq × n) ∩Graph(r ),

where one should remove the two points {(e, e)} for initial or terminal points e of rq which belong also
to other secondary transport rays. Therefore, the partition induced on ((Ts \ E) × n) ∩Graph(r !Ts

) is
precisely

{

(rq × n) ∩Graph(r )
}

q∈Q
.

Remark 2.6. Suppose Γ is compact. Then also the set in (2.2) must be compact: indeed, for every
sequence (xk, yk) ∈ Graph(r ′Γ), (x′

k, y′
k) ∈ Γ with !xk, yk" ⊆ !x′

k, y′
k", by compactness of Γ up to subse-

quences {(x′
k, y′

k)}k∈ converges to some point (x′, y′) ∈ Γ; therefore, {(xk, yk)}k∈ must converge, up to
subsequences, to a point (x, y): !x, y" ⊆ !x′, y′", thus belonging to Graph(r ′Γ).
In particular, the set in (2.1) must be σ-compact, by Remark 2.3.

Clearly, a σ-compact Γ defines then σ-compacts GΓ, G′
Γ.

As a consequence, when Γ is σ-compact the multivalued functions r , d and the function associating
to each point in Ts the initial and terminal points of the relative secondary transport rays, in the com-
pactification of n with points at ∞, are Borel. As well, the secondary transport set, the set of initial
points the set of terminal points are Borel. For detailed proofs see Lemma 2.2, Lemma 2.9 in [17] (taken
from [10]).
In particular, in this case also the projection map q : Ts → Q has a σ-compact graph, by the explicit
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construction that we will give of the quotient space, intersecting branches of rays with a transversal
hyperplane.

Lemma 2.7. Let (x, y) be such that cs(x, y) < ∞. Then cs(x′, y′) < ∞ for all !x′, y′" ! !x, y".
Moreover, if (z, w) is such that cs(z, w) < ∞ and !x, y"∩ !z, w" .= ∅, then cs(x′, y′) < ∞ for all !x′, y′" !

!x, y" ∪ !z, w".

Proof. This is an immediate consequence of the inequality φ(x) − φ(y) ≤ ‖y − x‖ for all (x, y):

φ(x) − φ(x′) + φ(x′)− φ(y′) + φ(y′)− φ(y) = φ(x)− φ(y) = ‖x′ − x‖+ ‖y′ − x′‖+ ‖y − y′‖

implies φ(x) − φ(x′) = ‖x′ − x‖, φ(x′)− φ(y′) = ‖y′ − x′‖, φ(y′)− φ(y) = ‖y − y′‖.
The second claim is instead a consequence of the convexity of the norm: if x′ ∈ !x, y" ∪ !z, w"

φ(x) − φ(w) = φ(x) − φ(x′) + φ(x′)− φ(w) = ‖x′ − x‖ + ‖w − x′‖ ≤ ‖w − x‖,

and therefore, since the opposite inequality holds for all (x, w), equality yields cs(x, w) < ∞. Since
!x, y" ∪ !z, w" is or !x, y", or !z, w", or !x, w", the first claim proves the second one. "

Lemma 2.8. For any two points (x′, y′), (x′′, y′′) ∈ Γ and any x such that !x′, y′"∩ !x′′, y′′" 5 x, then or
x = x′ = x′′ or x = y′ = y′′ or the two segments !x′, y′", !x′′, y′′" are aligned.

Proof. Consider any x and any two points (x′, y′), (x′′, y′′) ∈ Γ such that !x′, y′"∩ !x′′, y′′" 5 x. Then we
have

(2.4) |y′ − x′| + |y′′ − x′′| = |y′ − x| + |x− x′| + |y′′ − x| + |x− x′′|.

On the other hand, the cs-monotonicity inequality

|y′ − x′| + |y′′ − x′′| = cs(x
′, y′) + cs(x

′′, y′′) ≤ cs(x
′′, y′) + cs(x

′, y′′)

together with the strict convexity inequalities

cs(x
′′, y′) ≤ cs(x

′′, x) + cs(x, y′) = |x− x′′| + |y′ − x|
cs(x

′, y′′) ≤ cs(x
′, x) + cs(x, y′′) = |x− x′| + |y′′ − x|

(2.5)

implies

(2.6) cs(x
′, y′) + cs(x

′′, y′′) ≤ cs(x
′′, x) + cs(x, y′) + cs(x

′, x) + cs(x, y′′).

Since equality must old by (2.4), equality must hold also in (2.5): by the strict convexity of | · | defining
cs, if the segments #x′, y′$ and #x′′, y′′$ are not parallel then either x = x′ = x′′ or x = y′ = y′′. "

Lemma 2.9. Let Γ be a cs-monotone subset of {cs < ∞}.
Then, the set Graph(r+) is a cs-monotone subset of {cs < ∞} and (2.3) is a partition of it.
Each set r (x) is either a segment or a union of segments having x as a common either initial, or terminal
point.

Proof. We separate the three claims in the statement.

Claim 1: Finite cost . By the first claim in Lemma 2.7, cs(x, y) < +∞ for all (x, y) ∈ Graph(r ′) in (2.2).
Moreover, since r+(x) = ∪i∈ (r ′+)i(x), the second claim in Lemma 2.7 proves that also Graph(r+) is
contained in cs < ∞
Claim 2: Cyclical monotonicity. Consider any M points {(x′

i, y
′
i)}i ∈ Graph(r ′+) in order to test the

definition of cs-monotonicity. Let {(x′
i, y

′
i)}i be points of Γ such that #xi, yi$ 6 #x′

i, y
′
i$. Then, since Γ is

cs-monotone
∑

|y′
i − x′

i| ≤
∑

cs(x
′
i+1, y

′
i),

where x′
M+1 = x′

1, and we set also xM+1 = x1. The triangular inequality yields

cs(x
′
i+1, y

′
i) ≤ |y′

i − yi| + cs(xi+1, yi) + |xi+1 − x′
i+1|.



AN EXISTENCE RESULT FOR THE MONGE PROBLEM IN n WITH NORM COST FUNCTIONS 11

Moreover, being x′
i, xi, yi, y′

i all aligned, for fixed i ∈ {1, . . . , M},
|y′

i − yi| + |yi − xi| + |xi − x′
i| = |y′

i − x′
i|;

substituting the last two expressions in the one above, after cancellations one has
∑

|yi − xi| ≤
∑

cs(xi+1, yi).

Claim 3: Structure of the partition. It is almost immediate that (2.3) is an equivalence relation. Indeed,
for every (x, w), (y, z), (p, r) ∈ Graph(r )

- (x, w)
s∼(x, w), being trivially r (x) ∩ r (w) = r (x) ∩ r (w);

- (x, w)
s∼(y, z) implies (y, z)

s∼(x, w), since r (x) ∩ r (w) = r (y) ∩ r (z) implies trivially r (y) ∩ r (z) =
r (x) ∩ r (w);

- if (x, w)
s∼(y, z) and (y, z)

s∼(p, r), then (x, w)
s∼(p, r), by r (x) ∩ r (w) = r (y) ∩ r (z) = r (p) ∩ r (r).

By definition r ′(x) is the union of those segments !x′, y′" containing x and such that (x′, y′) ∈ Γ. By
Lemma 2.8, therefore, whenever r ′(x) .= {x}, then r ′(x), and thus r ′+, is either a segment, or union of
segments intersecting at the common endpoint x.
For every y ∈ r ′(x) the set r ′(x)∪ r ′(y) must again be a line or union of lines intersecting at the common
endpoint x. Indeed, by definition of r ′ there exist (x′, y′) ∈ Γ such that !x, y" ⊂ !x′, y′" and moreover,
again by Lemma 2.8, for all (x′′, y′′) ∈ Γ such that y ∈ !x′′, y′′", the segment !x′′, y′′" must elongate
!x′, y′" ⊂ r ′(x).
Therefore, r (x) is just constructed elongating the lines already present in r ′(x), showing the thesis. "

2.2. Statement of the disintegration w.r.t. secondary transport rays. For the rest of Section 2
we temporarily assume some regularity of the disintegration of the Lebesgue measure on Ts w.r.t. the
covering by secondary transport rays: in the next subsections we will present some applications.

We remind first the definition of disintegration.

Definition 2.10. A disintegration of a measure λ ∈ M+
loc(X) on a Polish space X consistent with a

partition, up to λ-negligible sets, {Xα}α∈A of X : it is a family {λα}α∈A of probability measures on X
and a measure m on A such that

1. ∀E ∈ Σ, α (→ λα(E) is m-measurable;(2.7a)

2. λ =

∫

λα dm, i.e.

λ(E ∩ p−1(F )) =

∫

F
λα(E) dm(α), ∀E ∈ Σ, F m-measurable.(2.7b)

The disintegration is unique if the measures λα are uniquely determined for m-a.e. α ∈ A.
The disintegration is strongly consistent if λα(X\Xα) = 0 for m-a.e. α ∈ A.
The measures λα are also called conditional measures of λ w.r.t. m.

With an abuse of notation, we denote as disintegration λ =
∫

λα dm also any family with the properties
in (2.7) even w.r.t. a covering {Xα}α∈A of X which is not a partition.

Existence and uniqueness results are classical, a presentation is in [9]. The issue in the present work
is a regularity property of the disintegration of the Lebesgue measure w.r.t. the partition into transport
rays: in Section 3, Theorem 2.13, we will prove the following statement.

Theorem. Let Γ be a σ-compact, cs-monotone subset of {cs < +∞}. Define the relative σ-compact
transport set Ts and its covering by secondary transport rays {rq}q∈Q as in Definition 2.4.

Then, the following disintegration holds:

(2.8) Ln Ts =

∫

Q

(

γ H1
rq

)

dHn−1(q)

where γ : n → + \ 0 is a Borel function and Q is a σ-compact subset of countably many hyperplanes.
In particular, the set of endpoints E of the secondary transport rays {rq}q∈Q is Ln-negligible.
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2.3. Solutions to the Monge secondary transport problem. We present here the main application
of the regularity of the disintegration developed the next section.

We show that for any optimal secondary transport plan π ∈ Os with finite cost and for any cs-monotone
set Γs which carries πs, the set GΓs

= Graph(r+Γs
) defined in Section 2.1 must carry all the optimal sec-

ondary transport plans. This is basically the fact that every optimal secondary transport plan must
move the mass within the same (maximal) transport rays, and there exists a maximal transport set. The
transport set in unique, up to µ-negligible sets.
We solve then the secondary transport problem, and thus the primary one, by a reduction argument to
dimension one, reducing more precisely to transport problems on the secondary transport rays (Theo-
rem 2.13).

Lemma 2.11. Let f : n → be a Borel function such that µ = fLn.
Fix any optimal secondary transport plan π ∈ Os and a cs-monotone carriage Γ for π.

Claim 1 . The disintegration (2.8) induces the following disintegration of µ Ts, ν Ts w.r.t. the Ln-
partition of Ts into secondary transport rays {rq}q∈Q of Definition 2.4

(2.9a) µ Ts =

∫

Q

(fγH1
rq) dHn−1(q) ν Ts =

∫

Q

νq dHn−1(q)

where

- ν (Ts \ E) =
∫

Q
νq (Ts \ E) dHn−1(q) is a disintegration of ν w.r.t. the partition {rq \ E}q∈Q;

- when b is a terminal point of a secondary transport ray rq, then νq({b}) = µq(rq)− νq(ri(rq));
- when a is an initial point of any secondary transport ray rq, then νq({a}) = 0.

Claim 2 . For every π̂ ∈ Os, the disintegration (2.8) induces the following disintegration of π̂ (Ts × Ts)
w.r.t. the (Ln × ν)-partition {rq × n}q∈Q introduced in (2.3):

(2.9b) π̂ (Ts × n) =

∫

Q

π̂q dHn−1(q)

with π̂q ∈ Π(µq = fγH1
rq, νq) optimal transport plan w.r.t. c(x, y) = |y − x|.

Claim 3 . Each plan π̂ ∈ Os leaves each point of F fixed.

Claim 4 . Every π̂ ∈ Os is concentrated on the cs-monotone set GΓ = Graph(r+) in (2.2).

Remark 2.12. Every map π ∈ Os leaves µ-a.e. point of F fixed. However, if (µ ∧ ν) Ts .= 0 it may leave
other points, belonging to the transport set Ts, fixed (consider the previous example in Figure 1a).

Proof. By the inner regularity of Radon measures, and since we are assuming that
∫

cs dπ < +∞, we can
directly fix w.l.o.g. that Γ is a σ-compact subset of {cs < ∞}. Indeed, shrinking Γ the thesis becomes
stronger.

Step 1: Disintegration of µ. It is an immediate consequence of (2.8) and µ = fν.

Step 2: Disintegration of π. Since µ is the first marginal of π and the partition is of the form {(px)−1(rq)}q∈Q,
we can endow the quotient space, which is still Q, with the same Borel σ-algebra and the same measure
Hn−1, obtaining then the strongly consistent disintegration

π =

∫

Q

π̃q Hn−1(q).

For all A ∈ B(Ts) and B ∈ B(Q), denoting with q : Ts → Q the quotient projection,
∫

A
µq(B) dHn−1(q) = µ(B ∩ q−1(A)) = π((B ∩ q−1(A)) × n) =

∫

A
π̃q(B × n) dHn−1(q).

Then, for Hn−1-a.e. q we have that px
! (π̃q) = µq.
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Step 3: Disintegration of ν. Let ν̃q := pyπ̃q. Since for all A ∈ B(Ts) and B ∈ B(Q)

ν(B ∩ p−1(A)) = π( n × (B ∩ p−1(A))) =

∫

A
π̃q(

n ×B) dHn−1(q) =

∫

A
ν̃q(B) dHn−1(q),

we have that
∫

Q
ν̃q dHn(q) is a disintegration of ν Ts w.r.t. the covering {rq}q∈Q.

In particular, ν (Ts \ E) =
∫

Q
ν̃q (Ts \ E) dHn−1(q) must be a disintegration of ν (Ts \ E) w.r.t. the

partition of Ts \ E into {rq}q∈Q.
Moreover, having an absolutely continuous first marginal no mass can arrive to initial points. Indeed,

whenever (x, a) ∈ Γ necessarily x = a and therefore
∫

Q

ν̃q(E−) dHn(q) = ν(E−) = π( n × E−) ≤ π({(a, a)}a∈E−) ≤ µ(E−) = 0,

which yields ν̃q(E−) = 0 for Hn−1-a.e. q.
Finally, the mass which arrives to a terminal point is the source mass on the rays ending there which

has not been delivered to points within the rays. Indeed, for every compact K ⊂ E , denoting with
p : Ts → Q the multivalued projection onto the quotient,

µ(r (K)) = π(r (K)× r (K)) = π(r (K)× (r (K) \ K)) + π(r (K)×K) = ν(r (K) \ K) + ν(K),

which implies
∫

Q

νq(K) dHn−1(q) = ν(K) = µ(r (K))− ν(r (K)) =

∫

Q

(νq(r (K))− µq(r (K))) dHn−1(q).

By the strong consistency, moreover, the first and the last side of the above equation can be rewritten as
∫

Q∩p(K)
ν̃q(bq) dHn−1(q) =

∫

Q∩p(K)
(νq(rq)− µq(rq)) dHn−1(q),

which proves that for Hn−1-a.e. q we have ν̃q(bq) = νq(rq)− µq(rq) for the terminal point bq of rq.

Step 4: Optimality of the 1-dimensional transports {πq}q∈Q and normalization. By strong consistency of
the disintegration, for Hn−1-a.e. q ∈ Q the transport π̃q ∈ Π(µq, ν̃q) is concentrated on Γ ∩ (rq × rq) — in
particular it is | · |-monotone. Since c(x, y) = |y − x| is a continuous and real cost function, then π must
be optimal ([32], [35]).
One can then adjust the disintegration suitably replacing those π̃q, ν̃q which do not satisfy the properties
in the statement without affecting the disintegration, since the exchange is made on a Hn−1-negligible
set of q.

Step 5: A universal cs-monotone carriage. Let π1 ∈ Os and let Γ1 be any cs-monotone carriage of π1. We
want to show that any other secondary optimal transport plan π2 is concentrated on GΓ1

, where GΓ1
is

the graph of a multivalued function r+1 in Definition 2.2. By the arbitrariness of π1, π2 in Os, this shows
that the family of transport rays associated to any secondary optimal transport plan is universal, and
that there exists a universal cs-monotone carriage for all optimal secondary transport plans.
Substep 5.1: Reduction to dimension 1. Suppose the plan π considered above is the secondary optimal
transport plan π := (π1 + π2)/2. In particular, we have π1(Γc) = π2(Γc) ≤ π(Γc) = 0 and then π1 and
π2 must be concentrated on Γ. Taking the intersection with Γ we directly assume w.l.o.g. that Γ1 is a
σ-compact subset of Γ: the set GraphΓ1

(r 1) becomes possibly smaller.
By the previous steps we can disintegrate π1 and π2 w.r.t. the common carriage Γ:

µ =

∫

Q

µq dHn−1(q), ν =

∫

Q

νq dHn−1(q), π1 =

∫

Q

π1
q dHn−1(q), π2 =

∫

Q

π2
q dHn−1(q),

finding that π1
q , π

2
q ∈ Π(µq, νq) are optimal transports on rq w.r.t. c(x, y) = |y − x|.

The thesis reduces thus in showing that π1
q , π

2
q have basically the same family of transport rays. More

precisely, we show that π2
q (rq × n) is concentrated on Graph(r 1+ !rq) = GraphΓ1∩(rq× n)(r

1+
q ): this
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implies

π2(GΓ1
) =

∫

Q

π2
q (GΓ1

) dHn−1(q) =

∫

Q

π2
q (Graph(r 1+q )) dHn−1(q) =

∫

Q

|π2
q | dHn−1(q) = |π2|.

We are therefore left with showing the thesis when the transports π1, π2 are 1-dimensional.
Substep 5.2: Solution of the 1-dimensional problem. Fix any two transport rays r 1(x) ⊂ r(x) and assume
w.l.o.g. that π transports mass on r(x) from left to right. By Lemma 2.9 this is possible and also π1, π2

must transport mass from/to points of r in the same direction. Denote these two particular rays just as
r
1, r . The thesis amounts in showing that π2 (r 1 × n) is concentrated on r 1 × r 1.

Define ,−, ,+ as the connected components of \ r 1, respectively on the left and on the right of r 1.
Observe that, again by the fact that rays, in this case of r 1, may intersect only at points that are for both
either terminal or initial (Lemma 2.9), ,−, r and ,+ are invariant sets for π1:

µ ,+ = px
! (π1 (,+ × ,+)) py

! (π1 (,+ × ,+)) = ν ,− |µ ,+| = |ν ,−|
µ r

1 = px
! (π1 (r 1 × r 1)) py

! (π1 (r 1 × r 1)) =: ν
r 1

|µ r
1| = |νr 1 |

µ ,− = px
! (π1 (,− × ,−) py

! (π1 (,− × clos(,−))) =: ν& |µ ,−| = |ν&|.

The plan π2 can’t transport mass neither from ,+ to (,+)c, nor from r to ,−, because this would contradict
the direction of the transport on r . Therefore, the mass ν ,− can arrive only from ,− itself, and therefore
necessarily π2 transports µ ,− to ν ,+. As a consequence, the mass νr 1 can arrive only from r 1:
therefore π2 (r 1 × n) ∈ Π(µ r

1, νr 1) and it is concentrated on r 1 × r 1.
We have incidentally shown that the transport set is an invariant set for all optimal secondary transport

plans, being so each single secondary transport ray. Therefore, also the set of fixed points F is fixed for
all secondary transport plans. Since the transport (Id, Id)!(µ F) has zero cost, µ-a.e. point of F must
be fixed for all optimal secondary transport plan.

Step 6: Disintegration of a generic π̂ ∈ Os. Consider now any other π̂ ∈ Os. In Step 5 we have shown that
π̂(GΓ) = 1, for the Γ in the statement. As a consequence, we can disintegrate π̂ exactly as we did in Step
2 for π and the disintegration will then enjoy the consequent marginal and optimality properties. "

A second corollary of Lemma 2.11 is the solution to the secondary transport problem.

Theorem 2.13. There exists a transport map solving the secondary problem.
Each optimal secondary transport plan moves mass along the same lines, since there exists a cs-monotone
set Γ such that πs(Γ) = 1 for all πs ∈ Os.
If we require that the transport is monotone along each ray, then the optimal transport map t is uniquely
defined up to an Ln-negligible set.

Proof. By Lemma 2.11, each optimal transport plan π ∈ Os is of the form

π =

∫

Q

πq dHn−1(q) + (Id, Id)!(µ F)

with πq ∈ Π(fγH1
rq), νq) optimal transport plan w.r.t. the cost function c(x, y) = |y − x|.

We are left with 1-dimensional transport problems with absolutely continuous initial measure, on the
secondary transport rays. Then, there exists a unique optimal monotone map tq solving this 1-dimensional
transport problem. A global map can be obtained placing these map side by side:

t !rq := tq.

To be more precise, tq is uniquely defined only out of countably many points while t is not well defined
at the common initial points of multiple secondary rays, but this is irrelevant since the set is µ-negligible.
The Lebesgue measurability can be found in the analogue Th. 3.4 of [17], and it is based on the change
of the change of variables which leads to the disintegration.
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By the disintegration and the optimality of both πs and each tq, the secondary cost of the transport
with ts is the optimal one:

∫

2n

cs(x, y) dπs(x, y) =

∫

Q

{
∫

rq× n

cs(x, y) dπq(x, y)

}

dHn−1(q)

=

∫

Q

{
∫

rq

cs(x, t(x))f(x) dλq(x)

}

dHn−1(q) =

∫

n

|t(x) − x| dµ.

"

Definition 2.14. We call t−1 the surjective multivalued function, monotone along each ray, whose graph
contains the transpose of the graph of t. The Borel measurability can be deduced by observing that in
Theorem 2.13 one can choose a representative of t with σ-compact graph, by the inner regularity of the
Radon measure (Id, t)!(µ).
Let t̃−1 be the single valued function whose graph is contained in the graph of t−1 and which is left
continuous (and monotone nondeacreasing) on secondary transport rays.
Then ν(#a (x), x$) = µ(#a (x), t̃−1(x)$) and ν(#a (x), x") = µ(#a (x), t−1(x)$), where a (x) denotes formally
the first endpoint of r (x).

As explained in [5], [4], the above uniqueness theorem of the cs-monotone and monotone along rays
solution to (KP1) implies the following stability result.

The requirement of monotonicity along secondary transport rays in Theorem 2.13 is equivalent to
impose the third additional optimality condition

(2.10) (Id, t)!µ = argmin
π∈Os

∫ |y − x|2

1 + |y − x| dπ(x, y),

and the theorem states that (Id, t)!µ is the unique minimizer.
One can approximate (KP1) with the Monge-Kantorovich problem of the optimal transportation be-

tween µ, ν with the cost function

cε(x, y) := ‖y − x‖+ ε|x− y| + ε2 |y − x|2
1 + |y − x| .

By the strict convexity of cε, there exists a unique optimal transport plan πε and moreover it is induced
by a transport map tε. As ε → 0, by the general theory of Γ-convergence applied to the Kantorovich
relaxation of the Monge functionals, the optimal plans πε = (Id, tε)!µ weakly converge to the solution of
(KP1) defined in 2.10. As a consequence, one finds that tε → t in measure.

2.4. Determination of the transport density. As a further application of the disintegration theorem,
we derive the expression of the transport density relative to optimal secondary transport plans πs in terms
of the conditional measures of µ, ν on Ts w.r.t. the Ln-partition of Ts into secondary transport rays. In
particular, one can see its absolute continuity. Moreover, even in this non-smooth setting, the density
function w.r.t. Ln Ts vanishes approaching initial points along secondary transport rays. As know, the
same property does not hold for the terminal points — see Example 2.17 below taken from [24]. Notice
that the transport density depends on the choice of | · | — see Example 2.18.

Theorem 2.15. Fix the notations in the statement of Lemma 2.11: let Ts be a universal transport set,
let f, γ : n → be Borel functions and let

µ Ts =

∫

Q

µq dHn−1(q) =

∫

Q

(fγH1
rq) dHn−1(q) ν Ts =

∫

Q

νq dHn−1(q).

Denote formally the ray r (x) as #a (x), b (x)$, where a , b are Hn-a.e. uniquely defined on Ts and possibly
at infinity and let q : Ts → Q be the Borel multivalued projection onto the quotient. Set d = 0 where d is
multivalued.
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Then, a particular solution ρ ∈M+
loc(

n) to the transport equation

(2.11) div(d ρ) = µ− ν

is given by the transport density associated to any optimal secondary transport plan πs ∈ Os.
Considering the Borel map t̃−1 : Ts → Ts in Definition 2.14, this transport density can be written as

(2.12) ρ(x) =
(µq(x) − νq(x))(#a (x), x$)

γ(x)
Ln(x) Ts =

(

Ts
(x)

γ(x)

∫

!t̃−1(x),x"
fγ dH1

)

Ln(x).

Proof. The basic reasoning follows Section 8 in [10].

Step 1: Construction. Consider any measure λ ∈ Mloc( n). Since in (2.11) there is the coefficient d
vanishing out of Ts, we directly normalize λ requiring λ( n \ Ts) = 0.

Equation (2.11) implies the absolute continuity of λ w.r.t. µ− ν: for any S ∈ B( n) with Ln(S) = 0
one has

∫

S′

∇ϕ · d dλ = 0 ∀S′ ∈ B(S), ∀ϕ ∈ C∞
c ( n);

however, one can partition S′ into countably many sets {S′
j}j such that there exists ϕj such that∇ϕj ·d >

0 on S′
j , contradicting the above equality.

As a consequence, one can fix the disintegration λ =
∫

Q
λq dHn−1(q) of λ w.r.t. the covering {rq}q∈Q of Ts

into universal secondary transport rays.
If one applies the disintegration w.r.t. {rq}q∈Q to the integral form of the transport equation

(2.13) −
∫

Ts

∇ϕ(x) · d (x) dλ(x) =

∫

Ts

ϕ(x) d[µ(x) − ν(x)] ∀ϕ ∈ C∞
c ( n),

one can see that if the following equality holds for Hn−1-a.e. q in Q,

(2.14) −
∫

rq

(∇ϕ · d ) dλq =

∫

rq

ϕd[µq − νq] ∀ϕ ∈ C∞
c ( n)

then λ must be a solution to the transport equation (2.11). This condition is equivalent to require that
λ solves the transport equations

div( r (Z)d ρ) = r (Z)(µ− ν) ∀open set Z ∈ B(Q)

Notice that the function ∇ϕ · d is the derivative of ϕ in the direction of rq and moreover, if we consider
the line ,q containing rq being ϕ ∈ C∞

c ( n), all the test functions ϕ ∈ C∞
c (,q) are allowed. Equation (2.14)

is than equivalent to the fact that the measure (µq− νq) on ,q is the distributional derivative of λq on ,q:
therefore, since µq and νq have the same mass, λq is absolutely continuous w.r.t. H1

rq with a BVloc(rq)
density function given by

c−(q) + (µq − νq)(#a (x), x$)

where q (→ c−(q) must satisfy div(c−(q(x)d (x)Ln(x)) = 0. The constant c−(q) is the limit value, on rq,
of the density of λq towards the initial point of the ray rq. In particular, the expression of such a λ is

λ(x) =

∫

q

{

(

c−(q) + (µq − νq)(#a (x), x$)
)

H1(x) rq

}

dHn−1(q).

It makes no difference if we choose above (µq − νq)(!a (x), x"), since µq is absolutely continuous and one
can have νq({x}) > 0 only for countably many points {x}; therefore, differing on a H1-negligible set, the
two functions identify the same measure λq.
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Step 2: Existence. Consider the map

g(x) =
(µq(x) − νq(x))(#a (x), x$)

γ(x)
Ts

(x) =

∫

fγ dH1 #t̃−1(x), x$

γ(x)
,

which is pointwise unambiguously defined when x is not an endpoint of a secondary ray, therefore, as
shown in Corollary 3.18 as a consequence of the disintegration in the next section, at Ln-a.e. x.

Define the multivalued function , : x → !x, t(x)", which has σ-compact graph.
By the disintegration theorem stated in Section 2.2, a disintegration of (µ ⊗ Ln) Graph(,) w.r.t. the
(µ⊗ Ln)-partition given by {(rq, y)}q∈Q,y∈ n is provided by

(µ⊗ Ln(x, y)) Graph(,) =

∫

Q

dHn−1(q)

{

f(x)γ(x) (dH1 ⊗ Ln(x, y)) (Graph(, !rq))

}

=

∫

Q

dHn−1(q)

∫

n

dLn(y)

{

fγ dH1 (rq ∩ ,−1(y)

}

.

Therefore, we get the (Hn−1 ⊗ Ln)-measurability of

u : (q, y) (→
∫

&−1(y)
fγ dHn−1

rq.

Since g is just a rewriting of the composite map

x (→ (q(x), x) (→
∫

&−1(x)
fγ dHn−1

rq(x) (→
∫

&−1(x) fγ dHn−1
rq(x)

γ(x)
,

we proved the Lebesgue measurability of g.
Define the nonnegative measure ρ := gLn. The classical Disintegration Theorem yields the disintegra-

tion

ρ = gLn =

∫

Q

{

(µq(x) − νq(x))(#a (x), x$)H1(x) rq

}

dHn(q).

Therefore, one can see that the nonnegative function g is locally integrable and the fact that ρ is indeed
a distributional solution of (2.11) follows from Step 1.

Step 3: Identification with the transport density. We show now that the measure ρ in (2.12) is precisely
the transport density relative to any optimal secondary transport plan πs ∈ Os. Indeed,

ρ(A) :=

∫

n× n

H1 (A ∩ !x, y") dπs(x, y)

=

∫

Γs

H1 (A ∩ !x, y") dπs(x, y)

=

∫

Q

{
∫

rq×rq

H1 (A ∩ !x, y") dπq(x, y)

}

dHn−1(q).

The inner integral can be rewritten as
∫

rq×rq×rq
A(w) #x,y$(w) dH1(w)⊗ πq(x, y)

=

∫

rq×rq×rq
A(w) (#a(w),w$×#w,b(x)$)(x, y) dH1(w) ⊗ πq(x, y)

=

∫

rq∩A
πq((!a(w), w" × !w, b(w)")) dH1(w)

=

∫

rq∩A

(

µq − νq
)

(!a(w), w") dH1(w).
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Therefore, continuing from above we get

ρ(A) =

∫

Q

{
∫

rq×rq

H1 (A ∩ !x, y") dπq(x, y)

}

dHn−1(q)

=

∫

Q

{
∫

rq∩A

(

µq − νq
)

(!a(w), w") dH1(w)

}

dHn−1(q)

=

∫

Ts∩A

(

µq − νq
)

(!a(x), x")

γ(x)
dLn(x).

"

Remark 2.16. We anticipate from the next section that condition (2.14) is equivalent to the requirement
that the divergence formula (3.11) holds for all K suitable in Corollary 3.19.

Example 2.17 (Taken from [24]). Consider in 2 the measures µ = 2L2 B1 and ν = 1
2|x|3/2L2B1, where

| · | here denotes the Euclidean norm. A Kantorovich potential is provided by |x|. The transport density
is ρ = (|x|− 1

2 − |x|)L2 B1. While vanishing towards ∂B1, the density of ρ blows up towards the origin.
Concentrating ν at the origin, the density would be instead ρ = −|x|2 B1.

Example 2.18. Consider in 2 the norm ‖(x, y)‖ = |x| + |y| and the measures µ = L2 ((Q + (1, 1)) ∪
(Q + (−1,−1)), ν = L2 ((Q + (−1, 1)) ∪ (Q + (1,−1)), where Q is the square with diameter 1. The
maps translating the squares horizontally and vertically have different transport density and they can be
selected choosing different strictly convex norms | · |.

3. The Disintegration w.r.t. Secondary Transport Rays

In the present section we focus on the secondary transport set Ts associated to a cs-monotone set Γs

lying in the ‖·‖-subdifferential of the primary potential φ. We set

Ts =
{

z ∈ !x, y" : (x, y) ∈ Γs

}

, cs(x, y) = |y − x|χ{φ(x)−φ(y)=‖y−x‖}(x, y).

We want to determine the disintegration of Ln Ts w.r.t. the covering by secondary rays {rq}q∈Q defined in
Section 2.1. We are directly supposing, by Lemma 2.9 w.l.o.g. ,that Γs coincides with GΓs

in Definition 2.2,
so that maximal transport rays (2.1) and transport rays (2.2) coincide.

We have recalled in Lemma 2.9 that each rq is a convex 1-dimensional set, since the strict triangular
inequality holds for the cost cs, and we defined from Γs the multivalued function r which associates to
x ∈ Ts the union of those rays rq containing x — see Definition 2.4.

We will follow basically the disintegration strategy presented in [10]. Before adapting the problem-
dependent steps of the technique to this setting, we explain that strategy. We skip some technical
computations, referring to the precise statements in [17].

Preliminary simplification of the setting . Since our aim is to derive a disintegration of the Lebesgue
measure on Ts, w.l.o.g. we can directly make the following assumptions.
1: Remove an Ln-negligible set . Cut off from Ts itself a Lebesgue negligible set, in particular the Borel
set of points where the Lipschitz primary potential φ is not differentiable.
Since whenever the primary potential φ is differentiable at two points belonging to a same primary ray,
then φ is differentiable also on their convex combinations (see Lemma 3.8), this corresponds to shortening
the rays {rq}q∈Q and neglecting some of them, but without affecting the Lebesgue measure on their union
Ts.
2: Restrict to a compact set . Restrict the attention to each element of a countable covering of compact
transport sets {T j

s }j∈ such that Ln T j
s increases to the original Ln

s Ts. Again, each secondary ray of
the transport sets constituting the partition is part of a secondary ray of the original transpor set, and
we can require that two distinct secondary ray of T j

s come from distinct rays of Ts.
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3: Notation. We are allowed to think such new compact T ′
s defined by the new compact set

Γ′
s = {(x, y) ∈ T ′

s × T ′
s : x

s∼ y} = Graph(r ) ∩ T ′
s × T ′

s .

In the following, we directly rename Γ′
s, T ′

s and the new r ′, {r ′q′∈Q′} corresponding to Γ′
s as Γs, Ts, r ,

{rq}q∈Q.

Study on model sets. 1: Definition. Consider first the problem of disintegrating the Lebesgue measure
on a model set Z made of secondary rays transversal to a fixed hyperplane and intersecting it in a point
in their relative interior. If we fix, up to an affine change of variables, the hyperplane H0 = {x · e = 0},
then

Z =
⋃

{

rq : 0 ∈ ri(π〈e〉(rq))
}

.

We call sets of this kind sheaf sets.
2: Parameterization providing the isomorphism. The rays constituting Z can be parameterized by their
intersection with H0, denote this set by Z0 := Z ∩H0. More generally, each point x ∈ Z is determined
by its projection t = x · e on e and by any point z ∈ Z0 where any secondary ray through x intersects
H0; if x is not an endpoint, then z is uniquely determined.
As a consequence, the set Z is the image of the map (t, z) (→ σ(t, z) which moves the point z within its
ray up to the point with projection t on e,

σ(t, z) = z + td (z) = r (z) ∩Ht where Ht := {x · e = t},

and which is defined on the compact subset of n

Z =

{

(t, z) : z ∈ Z0, t ∈ π〈e〉(r (z))

}

.

As a consequence of the area estimate below, we will derive as an essential step toward the disintegration
the fact that σ provides an isomorphism between (Z, L (Z)) and (Z, L (Z)).
3: Area estimate. Suppose one can control the push forward of the Hausdorff measure on the sections
orthogonal to e with the estimates

Hn−1(σ(t, S)) ≤
(

t− h−

s− h−

)n−1

Hn−1(σ(s, S)) for h− < s ≤ t ≤ h+: [h−e, h+e] + S ⊂ Z(3.1a)

Hn−1(σ(s, S)) ≤
(

h+ − t

h+ − s

)n−1

Hn−1(σ(t, S)) for h− ≤ s ≤ t < h+: [h−e, h+e] + S ⊂ Z.(3.1b)

Notice that these, with equality, are the estimates one would have if the secondary rays were rays of a
cone with center on Hh− for (3.1a) and on Hh+ for (3.1b); this is the key of their derivation, that we
discuss later.
4: Density function. Then, considering either s or t equal to 0, (3.1a) or (3.1b) depending on whether t is
positive or negative ensures that the measure Hn σ(t, Z0) is absolutely continuous w.r.t. σt

!(Hn Z0):
let

β(t, z) : Z → +

be the function which at each time t gives the Radon-Nicodym derivative β(t, ·) of Hn σ(t, Z0) w.r.t.
σt

!(Hn Z0). Considering also the other estimate in (3.1) one finds that β(t, z) is strictly positive and
admits a representative which is Lipschitz continuous w.r.t. t, measurable in (t, z) and, together, one
finds also estimates on β and ∂tβ/β, which are locally integrable (see Corollary 2.19 in [17]).
5: Disintegration. As a consequence of the above absolute continuity estimate on the sections, the measure
Ln Z is absolutely continuous w.r.t. the push forward measure σ!(Ln Z) and the Radon-Nicodym
derivative is precisely β(t, z). Indeed, extending β as 0 on (〈e〉 + Z0) \ Z, for each function ϕ : Z →
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either positive or integrable one has
∫

Z
ϕ(x) dHn(x) =

∫ +∞

−∞

{
∫

σ(t,Z0)
ϕ(y) dHn−1(y)

}

dt by Fubini, slicing with {Ht}t∈

=

∫ +∞

−∞

{
∫

Z0

ϕ(σ(t, z))β(t, z) dHn−1(z)

}

dt by definition of β.

Since β(t, x) > 0 whenever σ(t, z) ∈ Z, if ϕ is the indicator function of a Ln-negligible set N ⊂ Z the
equality above vanishes and tells that Hn−1(σ(t, N ∩H0)) = 0 for H1-a.e. t.

Therefore, σ carries Lebesgue measurable functions on Z back to Lebesgue measurable functions on
Z: σ is an isomorphism between the measure spaces (Z, L (Z)) and (Z, L (Z)).

The last integral is then the integral of the function (t, z) (→ ϕ(σ(t, z))β(t, z) on the product space:
∫

〈e〉+Z0

ϕ(σ(t, z))β(t, z) dt⊗ dHn−1(z).

One can finally apply Fubini-Tonelli theorem in order to get the disintegration of Ln Z w.r.t. the
covering defined by the membership to secondary rays: defining out of the endpoints the density function
γ(x) = β(σ−1(x)) Z (x)

∫

Z
ϕ(x) dHn(x) =

∫

Z

ϕ(σ(t, z))β(t, z) dt⊗ dHn−1(z)

=

∫

Z0

{
∫

r (z)
ϕ(x)β(x · e, z)dH1(x)

}

dHn−1(z)

=

∫

Z0

{
∫

r (z)
ϕ(x)γ(x) dH1(x)

}

dHn−1(z).

Global result . 1: Disintegration. Come back now to the original set Ts, which is the increasing union
of the compacts {T m

s }m∈ , up to an Ln-negligible set that we suppose w.l.o.g. to be empty.
One covers Ts with a countable family of sheaf sets {Z&}&∈ whose elements possibly overlap on a set

having H1-negligible intersection with every secondary ray, i.e. we require

H1
rq(N) = 0 for all q ∈ Q and all i .= j

for N = ∪i,=jZi ∩ Zj (the construction is similar to Lemma 2.6 in [17]). Since we have an increasing
sequence of transport sets, we can choose the covering in such a way that {Zm

& := Z& ∩ T m
s }m∈ is a

sequence of compact sheaf sets increasing with m. Clearly, {Zm
& }&∈ covers T m

s .
By construction then there exists an hyperplane H& orthogonal to e& and transversal to the relative
interior of secondary rays in Zm

& , for all m. Let Z& := H& ∩ Z&. By Lemma 2.9 the family {Z&}&∈ is
disjoint family in bijective correspondence with {rq}q∈Q. We identify then Q with ∪&Z&.

We show now that, if one achieves the disintegration on each Zm
& , one obtains then a disintegration

of Ln Ts. Indeed, if γm
& is the density function relative to Zm

& defined above, and extended as 0 when
x /∈ Z&, by subadditivity of the measures

Ln T m
s ≤

∑

&∈

Ln Zm
& =

∑

&∈

∫

Z!

(

γm
& H1

rq

)

dHn−1(q)

=

∫

Q=∪!∈ Z!

(

∑

&∈

γm
& H1

rq

)

dHn−1(q).

(3.2)

However, being γm
& H1

rq(N) = 0 for all ,, by the disintegration on Zm
& one has Ln Zm

& (N) = 0 for all
, and therefore the inequality in (3.2) is indeed an equality.
By the monotone convergence theorem, already use to exchange integral and series in the last step, we
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can take the limit as m increases obtaining

Ln Ts(x) =

∫

Q=∪!∈ Z!

(

γ(x)H1
rq(x)

)

dHn−1(q),

where γ = limm→∞
∑

& γ
m
& = supm,& γ

m
& . This proves the disintegration in secondary transport rays.

What is left is therefore to exhibit a covering of Ts, up to an Ln-negligible set, into countably many
sheaf sets {Z&}&∈ containing distinct secondary rays and such that (3.1) holds, and this is the problem-
dependent part of the technique. This is what we outline here and we develop in the present section.

Actual reduction to the model case. 1: Derivation of the estimate (3.1). This is a difficulty of this
problem, since the natural way from [10] is to prove (3.1) on any sheaf set by a Hopf-Lax formula involving
the Kantorovich potential for the secondary transport problem. However, this point requires care, being
the secondary cost also infinite valued.
2: Construction of a partition in model sets. We avoid the problem choosing a partition into special sheaf
sets W where we are able to exhibit a secondary Kantorovich potential. This relies both on a partition
of T into invariant sets and the requirement the within each invariant set Γs ∩ W × n two points are
connected by a cycle with finite secondary cost, as already considered in [9].

Outline of the section . The plan of the present section is the following:

• Subsection 3.1: we partition Ts into sheaf sets {W&}&, and a residual set N .
• Subsection 3.3: we partition each model set W into invariant sets for the transport.
• Subsection 3.4: we construct a secondary Kantorovich potential on each model set W .
• Subsection 3.5: we disintegrate Ln W w.r.t. the membership to secondary transport rays.
• Subsection 3.2: we prove that the residual set N is Ln-negligible.

3.1. Partition of the secondary transport set into model sets. In this section we define sets where
we will construct a secondary potential. We give then a partition of the secondary transport set Ts into
model sets, up to a residual set N which will turn out to be Ln-negligible (see Subsection 3.2).

Definition 3.1 (Model Set Wk). Let V k be a k-dimensional vector space of n, q ∈ n and ρ > 0. Define
the model set

Wk
q+Bρ,V k =

⋃

x

r (x)

where x varies among the points in Ts with the following properties:

• r (x) ∩ (q + Bρ) .= ∅;
• dim(convR(x)) = k;
• πV k(q + Bρ) ⊂ πV k(R(x)).

Definition 3.2. Let N be the set of points x ∈ Ts whose secondary transport ray r (x) belongs to the
relative border of the convex envelope of R(x).

We recall from Section 2 that
s∼ is indeed an equivalence relation on Ts out of the endpoints and the

Borel regularity of T , Ts and of the maps r (x), d (x), related to the secondary transport set, and R(x),
D(x), of primary rays and directions.

Lemma 3.3. The functions r , R, D are Borel multivalued functions. The functions d are Borel. The
primary and secondary transport sets T , Ts and the set of endpoints E−, E+ are Borel. The function
associating the initial and terminal points of the relative rays are also Bore.

Proof. One can see that the graphs of R and D are σ-compact exactly as in Lemma 2.2 of [17] (taken
from [10]). A similar argument holds for r , since Γs is σ-compact, and for d . For a , b one can therefore
repeat the construction for Lemma 2.9 in [17]. "
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Lemma 3.4. Each model set is Borel. Moreover, there is a partition of Ts \ N into countably many
model sets {Wk

q+Bρ,V k}q,ρ,V k .

Proof. One can identify k regions T k in T , according to the dimension of the convex envelope of R(x).
It is not difficult to see that the family of points x such that the orthogonal projection of conv(R(x)) on
a fixed k-plane contains a ball is closed. Moreover, if conv(R(x)) is k-dimensional, and {V&}& is a dense
sequence in G(k, n), then the projection of conv(R(x)) on some {V&}& must contain a ball. Therefore,
one can see that each one of these regions is Borel.
The first condition defining the model set Wk

q+Bρ,V correspond in selecting those x which belong to

r
−1(q + Bρ): this set is Borel, since so is r (Lemma 3.3).

The third condition instead selects those x in the intersection of R−1(π−1
V (qk)) when qk varies in a

sequence dense in q + ∂Bρ: this set is Borel, since so is R (Lemma 3.3).
This proves that each model set is Borel.

Consider now a sequence {qh}h dense in n, {ρi}i dense in {ρ > 0} and {V k
j }j dense in G(k, n). Then

the sequence {Wk
qh+Bρi ,V k

j
}hijk is a countable covering of Ts \ N . Indeed, suppose the relative interior

of a secondary transport ray r (x) belongs to the relative interior of conv(R(x)), which we assume to be
k-dimensional; let V k

j be such that Lk(πV k
j

(conv(R(x)))) > 0. There is a ball qh + Bρi of n containing

x and whose intersection with conv(R(x)) lies in the relative interior of conv(R(x)) itself: this implies
that x ∈ Wqh+Bρi ,V k

j
.

One can finally refine this covering and extract a countable partition, in a standard way. "

3.2. Negligibility of border points. In this section we show by a density argument that the set N
left apart by the partition of Subsection 3.1 is Ln-negligible.
The basic idea is that when moving points from N to suitable primary direction, one falls in the comple-
mentary of N , because of how N is defined. Therefore, showing an upper bound for those point moved
in the complementary of N , one ends in finding that N itself must be negligible.

In order to find those directions, let us focus on the structure of N\E ; indeed, proving the disintegration
theorem we will show that Hn(E) = 0. Since at each point x ∈ N \ E there exists a primary ray going
through x, the convexity of the norm implies that whenever dim(convR(x)) = k then there is a convex
k-dimensional subset of R(x) itself which contains x in the relative border. Notice that we are left with
the case k > 1.

As a consequence, arguing as in Lemma 3.4 one can cover N by countably many Borel subsets Ak
q+Bρ,V k

where

- dim(convR(x)) = k
- πV k(x + q + Bρ) ⊂ πV k(R(x))
- infd∈D(x)‖πV k(d)‖ ≥ 1/

√
2

with parameters q ∈ n, ρ > 0, V k ∈ G(k, n) varying in a dense, countable family.
Therefore, by subadditivity of the measures and performing an affine change of variables, the thesis
reduces w.l.o.g. to show that Ln(A) = 0 for the Borel set A of those x ∈ N satisfying

dim(convR(x)) = k(3.3a)

πV (x + 2e + B1) ⊂ πV (R(x))(3.3b)

inf
d∈D(x)

‖πV (d)‖ ≥ 1/
√

2(3.3c)

Lemma 3.5. The set A is Lebesgue negligible.

Proof. Let us assume Ln(A) > 0, contradicting the thesis, and consider a Lebesgue point of A, suppose
w.l.o.g. the origin.
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Fix any ε > 0 small enough. Since 0 is a density point, for every 0 < r < r̄(ε) < 1 there exists a set
T ⊂ [0, re] with H1(T ) > (1− ε)r and such that

(3.4) Hn−1
(

A ∩ π−1
〈e〉(t) ∩ [0, r]n

)

≥ (1− ε)rn−1 for all t ∈ T .

One can then choose two points t ∈ T , s := t + λre ∈ T with 0 ≤ λ ≤ ε.
Define the possibly multivalued map

x (→ τhe(x) := x + h(〈D(x)〉 ∩ π−1
V (e))

which moves each point x ∈ A along primary transport rays having projects on V parallel to e.
By condition (3.3b), for all 0 ≤ h ≤ 3 and x ∈ A this map is well defined and moreover τhe(x) belongs
to the relative interior of a k-dimensional convex subset of R(x), which implies, as dim(conv(R(x)) = k
by (3.3a), that τhe(x) belongs to the relative interior of conv(R(τhe(x))) itself.
Then, by Definition 3.2 of N for all 0 < h ≤ 3 the set τhe(A) is in the complementary of N .

Moreover, for all 0 ≤ h ≤ 3 we now prove the push forward estimate

(3.5) Hn−1
(

τhe
(

S
))

≥
(

3− h

3

)n−k

Hn−1
(

S
)

∀S ⊂ A∩ π−1
〈e〉(t).

Slicing with the (n − k + 1)-planes parallel to π−1
V (〈e〉), by Fubini theorem it is enough to prove the

inequality for S ⊂ A ∩ π−1
V (t) and for the outer measure Hn−k.

Choose now dense sequence of points {bj}j∈ ⊂ τ3e(S) and consider the cones defining

φi(x) = min
j=1,...,i

{

φ(bj) + ‖x− bj‖
}

;

they establish a correspondence between x ∈ S and those bj such that

φi(x) = φ(bj) + ‖x− bj‖.

Where more {bj} correspond to an x, associate to x the first yī in our ordering {yi} and neglect the rays
from the other yi different from yī. Define the possibly multivalued function D i associating to each x ∈ S
the directions, normalized by the requirement that they have projection on V equal to e, towards the
relative bj . Being the union of finitely many cone directions whose overlapping has been removed, and

therefore are disjoint, one has the estimate on the approximation Hn−k
(

τhD i
(

S
))

≥
(

3−h
3

)n−kHn−1
(

S
)

,
and by the u.s.c. of the Haudorff measure on compact sets one can pass to the limit as in Lemma 3.16,
as the limit of D i(S) is contained in D(S).

In particular, (3.5) implies that

(3.6) Hn−1

(

τλre(A ∩ π−1
V (t) ∩ [0, r]n

)

≥
(

3− λ

3

)n−k

Hn−1

(

A ∩ π−1
V (t) ∩ [0, r]n

)

.

Furthermore, condition (3.3c) implies that ‖x + 2εre − τ t+2εre(x)‖≤ λr for each x ∈ A. Moving
points from π−1

V (t) ∩ [0, r]n by means of the map τ t+λre , they can therefore reach only the square
π−1

V (s) ∩ [−λr, (1 + λ)r]n. Notice that for ε small, since our proof is needed for n ≥ 3 and k ≥ 1,

Hn−k([−λr, (1 + λ)r]n) \ [0, r]n) = (1 + 2λ)n−krn−k − rn−k ≤ 2(n− k)λrn−k + o(λ) < n2nεrn−k.

As a consequence, the portion which exceeds π−1
V (s) ∩ [0, r]n can be estimated as follows:

Hn−k
(

τλre
(

A ∩ π−1
V (t) ∩ [0, r]n

)

∩ [0, r]n
)

≥Hn−k
(

τλre
(

A∩ π−1
V (t) ∩ [0, r]n

))

− n2nεrn−k

(3.6)
≥

(

3− λ

3

)n−k

Hn−1

(

A∩ π−1
V (t) ∩ [0, r]n

)

− n2nεrn−k.

As the argument of the l.h.s. is in the complementary of A, being in τλre(A), the last inequality shows
the impossibility that both t and s = t + λre belong to T , providing the absurd. "



AN EXISTENCE RESULT FOR THE MONGE PROBLEM IN n WITH NORM COST FUNCTIONS 24

3.3. Partition of the primary transport set into invariant sets. In this subsection we focus on
some properties of the primary transport set T , neglecting the singular points S of the primary potential
φ. We partition T \ S into invariant sets for the transport, meaning that every transport plan moves the
mass from any point x to other points which must belong to the same class as x, if not to S. With a
strictly convex norm, this would be the familiar partition in transport rays.

Lemma 3.6. The following relation holds in T \ S: −∇φ(x) ∈
⋂

d∈D(x) δ
∗(d).

Proof. By assumption, at each x ∈ T \S there is at least a direction d ∈ D(x) where φ decreases linearly.
Therefore, the derivative of φ along d must be in −δ(d): from the Lipschitz condition, for small t > 0

∀, : ‖,‖ = 1 φ(x)− φ(x + t,) ≤ t + o(t) ⇐⇒ −∇φ(x) · , ≤ 1,

and moreover
φ(x) − φ(x + td) = t + o(t) ⇐⇒ −∇φ(x) · d = 1.

By definition this means that −∇φ(x) ∈ δ∗(d).
In the same way, one can see that −∂+φ(x) ⊆ δ∗(d) if d is an outgoing direction from x, while −∂−φ(y) ⊆
δ∗(d) if d is an incoming direction to y. "

Corollary 3.7. Associate at each point of T \ S the face F(x) = δ(−∇φ(x)). Then D(x) ⊂ F(x).

In general, D(x) is smaller than F(x). Moreover,
⋂

d∈D(x) δ
∗(d) in general is not single valued. Nev-

ertheless, given two points of differentiability on a same ray, the gradient of φ must coincide.

Lemma 3.8. Consider x, y ∈ T such that φ(x) − φ(y) = ‖y − x‖. Then

∂−φ(y) ⊆ ∂−φ(x) and ∂+φ(y) ⊇ ∂+φ(x).

In particular, if x, y ∈ T \ S then ∇φ(x) = ∇φ(y) and the whole segment !x, y" is contained in T \ S.

Proof. Denote with v any direction with ‖v‖ = 1. Then, for all ,∗ ∈ ∂−φ(y) and small t > 0

o(t) ≥ φ(y + tv)− φ(y)− t,∗ · v since ,∗ ∈ ∂−φ(y)

≥ φ(x + tv)− ‖x− y‖ − φ(y)− t,∗ · v 1-Lipschitz condition

= φ(x + tv)− φ(x) − t,∗ · v since y ∈ R(x)

By the arbitrariness of v, this means exactly that ,∗ ∈ ∂−φ(x). The inverse inclusion for ∂+φ is similar.
Therefore, if both ∂−φ(x) = ∂+φ(x) and ∂−φ(y) = ∂+φ(x), they must coincide. Finally, for every
w ∈ #x, y$ the inclusions ∂−φ(y) ⊆ ∂−φ(w) ⊆ ∂−φ(x) and ∂+φ(x) ⊆ ∂+φ(w) ⊆ ∂+φ(y) show the
differentiability at w. "

Consider the following partition of the transport set T \ S. Two points x, y are equivalent, x ∼ y, if

(3.7)

{

y ∈ x + 〈F(x)〉, φ(y) = φ(x) +∇φ(x) · (y − x), ∇φ(y) = ∇φ(x)

}

where F(x) denotes the face δ(−∇φ(x)) and 〈·〉 denotes the linear span.

Lemma 3.9. Equation 3.7 defines a partition of T \ S.

Proof. Clearly x ∼ x. Suppose x ∼ y. Then ∇φ(y) = ∇φ(x), therefore F(y) = δ(−∇φ(y)) =
δ(−∇φ(x)) = F(x). As a consequence,

x ∈ y − 〈F(y)〉 = y + 〈F(y)〉, φ(x) = φ(y)−∇φ(x) · (y − x) = φ(y) +∇φ(x) · (x− y).

Therefore y ∼ x. Consider now x ∼ y, y ∼ z. Then, as above one has ∇φ(x) = ∇φ(y) = ∇φ(z), thus
F(x) = F(y) = F(z) and, by linearity,

z ∈ y + 〈F (y)〉 = x + 〈F (x)〉, φ(z) = φ(y) +∇φ(y) · (z − y) = φ(x) +∇φ(x) · (z − x).

Therefore x ∼ z. "
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The quotient space can be parameterized by a subset of ∂B∗ × × A(N), where A(N) denotes the
family of affine subspaces of n; the distance between two affine subspaces is the distance of the relative
orthogonal projection onto them, as linear operators. The quotient map is given by

p : x −→ , = −∇φ(x), α = φ(x) + , · x, A = x + 〈δ
(

,
)

〉.

In particular, it is a subset of a Polish space.

Lemma 3.10. The graph of the projection p onto the quotient is Borel measurable.

Proof. Consider the sub-differential of the convex function φ. In particular, it is an upper semicontinuous
function (Theorem 1.1, [3]). Therefore, the counterimage of the σ-compact set of , such that dim δ(,) = k
is a σ-compact set, for k = 1, . . . , N . Remove the set S of points where the Lipschitz potential φ is not
differentiable, Ln-negligible and Borel, and consider the remaining part of one of these sets where dimF(x)
is constant. Here, the sub-differential is exactly the differential.

Consider a sequence zn → z, with zn, z belonging to it. Then −,n := ∇φ(zn) → ∇φ(z) =: −,,
and therefore also αn := φ(zn) − , · zn → φ(z) − , · z =: α. Finally, by upper semicontinuity, 〈δ(,)〉 ⊂
limn〈δ(,n)〉 — but equality holds since we fixed a set where they have the same dimension. Therefore,
A(zn) := zn + 〈δ(,n)〉 → z + 〈δ(,)〉 =: A(z). This proves the continuity of p on each of these sets. "

Lemma 3.11. Each primary ray lies in at most one equivalence class.

Proof. The classes partition T \ S. Suppose than there is a ray from x to y, with x, y ∈ T \ S: by
definition φ(x) = φ(y) + ‖y − x‖. In Lemma 3.8 we have shown that ∇φ(x) = ∇φ(y). Therefore, by
definition F(x) = F(y). Since y − x ∈ 〈F(x)〉 (Corollary 3.7), this shows that x ∼ y, being ‖y − x‖ =
∇φ(x) · (y − x). "

Assume that both the measures are absolutely continuous. Then Lemma 3.11 ensures that we have a
partition in invariant sets. When ν is singular, instead, some mass can be transported to S. We chose
to remove it for the following reason: consider a point x of non differentiability which belongs to two
primary rays. In general, each of these rays can have points, different from x where φ differentiable.
However, in general the points of the two rays do not belong to the same equivalence class, and therefore
x would belong to two classes.

Remark 3.12. The primary potential φ is affine on each equivalence class. Indeed, consider x ∼ y, with
projection q = (,, α, A). If A is k-dimensional, then y = x+ t1d1 + · · ·+ tkdk with di ∈ δ(,). The equality
φ(y) + , · y = α = φ(x) + , · x implies

(3.8) φ(x) = φ(y) + , ·
(

y − x
)

= φ(y) + t1 + · · · + tk.

For x, y ∈ T \ S, one has

φ(x) = φ(y) + ‖y − x‖ ⇐⇒ x ∼ y, y − x ∈ +F(x),(3.9)

where F(x) = δ(,), if p(x) = (,, α, A) = q.
Implication ⇐ is a direct consequence of (3.8), let us show converse. Since φ is differentiable at both x,
y by assumption, the existence of a primary ray from x to y implies ∇φ(x) = ∇φ(y) = −, (Lemma 3.8),
y − x ∈ δ(,) (Corollary 3.7) and x ∼ y (Lemma 3.11).

3.4. Construction of a local secondary potential. In this subsection we give a function φs such that
Γs ∩W2 is in the cs-subdifferential of φs, where W is a model set as in Definition 3.1,

cs(x, y) =

{

|y − x| if φ(x) − φ(y) = ‖y − x‖
+∞ if φ(x) − φ(y) < ‖y − x‖

and Γs is a compact, cs monotone subset of {cs < ∞} such that whenever (x, y) ∈ Γs, then φ is differen-
tiable at both x and y.
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Before the proof, we sketch the construction.
The restriction of Γs to each invariant class, Γs∩(p−1(q)×p−1(q)) is cq-monotone w.r.t. the cost function

cq(x, y) =

{

|y − x| y − x ∈ +δ(,)

+∞ otherwise
where q = (,, α, A).

This is basically a consequence of Remark 3.12.
If we restrict moreover to points on the model set, and we eventually add to Γs the points which are in
relation by the membership to a secondary ray, then each two points in Γs∩ (W∩p−1(q))× (W∩p−1(q))
are joined by a coordinate cycle with finite cq-cost, meaning that for each two points (x, y), (x′, y′) in
Graph(r ) ∩ ((W ∩ p−1(q)) × (W ∩ p−1(q))) there exists a finite number of points (xi, yi) ∈ Graph(r ) ∩
((W ∩ p−1(q))× (W ∩ p−1(q))), two of which coinciding with (x, y), (x′, y′), such that

M
∑

i=1

cs(xi+1, yi) < ∞.

Therefore we show that for each q there exists a function φq, − diam(Γ) ≤ φq ≤ 0, whose cq-subdifferential
contains the cq-monotone set Γs ∩ (W ∩ p−1(q))2.
Finally, the crosswise structure

Γs ∩ p−1(q)2 = Γs ∩ (p−1(q)× n) = Γs ∩ ( n × p−1(q))

ensures that the analytic function φ : px(Γs) ∪ py(Γs) → − defined by

φs = inf
q

{

φq χΓs∩W2∩p−1(q)2

}

contains in its cs-subdifferential precisely the cq-subdifferentials of the functions φq, and thus Γs∩W×W.

In the proof of Lemma 3.13 below, the above argument is presented in a single step, giving directly φs.
We show before the easy fact that enlarging Γs in order to contain the points in relation by the membership
to secondary rays we obtain still a cs-monotone set. We recall that the graph of the multivalued function
r is a cs-monotone subsets of 2n, and that cs-monotonicity is not affected by the union of points on the
diagonal.

Lemma 3.13. Consider a model set W as in Definition 3.1. Then, the function

(3.10) φW
s (x) := inf

M
inf

xi,yi∈W
yi∈r

+(xi), xM+1:=x

{ M
∑

i=1

[

cs(xi+1, yi)− |yi − xi|
]

}

is analytic and − diam(Γs) ≤ φs ≤ 0. Its cs-subdifferential contains Graph(r ) ∩ (W ×W).

Proof. The coAnalyticity follows by the general theory of analytic functions ([36], Chap. 4).
An upper bound for φs is quite trivial: for each x ∈ W , by choosing x1 = y1 = x we estimate from

above φs(x) ≤ 0. The lower bound is more involved, and is achieved on each single class.
Consider any admissible choice of M points (xi, yi) for evaluating φ(x). We can assume that cs(xi+1, yi)
is finite, since we are interested in the infimum. Therefore, being

φ(xi+1) = φ(yi) + ‖yi − xi+1‖,
Remark 3.12 ensures that xi+1 ∼ yi: since moreover xi ∼ yi, we deduce that all the points xi, yi must
belong to the same class as x. By definition of the model set (Definition 3.1), one can choose a point
y in B and on the secondary ray from x: we will have, again by Definition 3.1 and Corollary 3.7, that
y − x1 ∈ δ(−∇φ(x1)). Moreover, y ∼ x ∼ x1: Remark 3.12 ensures then that cs(x1, y) < ∞. Since
Graph(r+) is cs-monotone, the cs-monotonicity of {(x1, y1), . . . , (xn, yn), (x, y)} (Lemma 2.9) implies

M
∑

i=1

[

cs(xi+1, yi)− |yi − xi|
]

+ cs(x1, y)− |y − x| ≥ 0,
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from which one deduces the lower bound φ(x) ≥ |y − x| − diam(Γs).
We want to establish now that φs is really a secondary potential. Evaluate φs(x) with paths arriving

at y, and extended with the other point (y, y): taking the infimum among these paths

φs(x) ≤ φs(y) + cs(x, y).

Finally, consider (x, y) ∈ Graph(r )∩W2. Evaluating φs(y) with paths having as the last point (xM , yM ) =
(x, y), and taking the infimum among these paths, one finds

φs(y) ≤ φs(x) − |y − x| ⇐⇒ φs(x)− φs(y) ≥ |y − x|.
This shows that φs(x) − φs(y) = |y − x| whenever there is a secondary ray from x ∈ W to y ∈ W . "

The following example shows that the above definition of secondary potential does not work on a whole
class: therefore it was important to reduce the construction on special sets.

Example 3.14. Consider the optimal transport problem in 2 with the cost function given by

(x, y) = ((x1, y1), (x2, y2)) (→ c(x, y) = |y − x| {y2≥y1,x2≥x1}

and between the finite measures (see Figure 3)

µ =
∞
∑

i=1

4/hi
∑

j=0

L2 Bhi/12(wij) + L2 B1/24(w∞) ν =
∞
∑

i=1

4/hi
∑

j=0

L2 Bhi/12(zij) + L2 B1/24(z∞)

where hi = 2−i−1, w∞ = (−1.5, 0), z∞ = (−1.5, 1) and










w10 = (0, 0)

wi0 = (−
∑i−1

k=1 2hk, 0)

wij = wi0 + (−hi, jhi/4) j = 0, . . . , 4/hi

{

zi0 = wi0 + (0, 1)

zij = wij + (hi/2, 0) j = 0, . . . , 4/hi.

The only plan π with finite cost translates each wik to zik, and therefore it is the optimal one.
However, no c-monotone carriage Γ of π is contained in the c-subdifferential of a c-monotone function φ,
which by definition would satisfy

φ(x) − φ(y) ≤ c(x, y) ∀(x, y) ∈ n and φ(x) − φ(y) = c(x, y) ∀(x, y) ∈ Γ.

Indeed, suppose the contrary. Then, applying repeatedly the maximal growth equality and the Lips-
chitz inequality, we find

φ(w(i+1)0) ≤ φ(wi0)− 1 +
hi

2
+

hi

2

(

√
5

2
− 1

)

· 4

hi
+

3hi

2

= φ(wi0) +
√

5− 3 + 2hi.

We find therefore that φ(w(i+1)0) → −∞ for i →∞, as well as every other φ(w(i+1)j). This implies that
every potential φ which is finite on Bh1/12(w10) must be −∞ on B1/24(w∞): for all i, j

φ(w∞) ≤ φ(w(i+1)j) + |φ(w(i+1)j)− φ(w∞)|,
which implies φ(w∞) = −∞.

Remark 3.15 (Figure 3b). Consider 2 and let the square with endpoints at the points {(±1,±1)} be
the unit ball of ‖·‖. Then Example 3.14 above can be modified in order to show that there exists no
secondary Kantorovich potential, for every choice (that will be unique up to constants) of the primary
potential φ.
Indeed, replace as follows the old regions with new ones, on which we put a suitable multiple of the
Lebesgue measure for leaving the total mass of µ ν constant after each replacement:

- the ball at wi,0, for i ∈ , with the rectangle Ri0 having edges

(−
∑i−1

k=1 2hk, 0), (−
∑i−1

k=1 2hk, hi/12), (−
∑i−1

k=1 2hk − hi/2, 0), (−
∑i−1

k=1 2hk − hi/2, hi/12),
- the ball at zi,0, for i ∈ , with Ri0 + (0, 1− hi/12),
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1/2 1

1

h1h1h2 h2

h1/2h2/2

α α

(a) Example 3.14: Comparing the values on the balls on
the path above, one finds that the secondary potential
must be −∞ on the two balls on the left side.

1/2 1

1

h1h1h2 h2

h1/2h2/2

(b) Remark 3.15: this example is almost the same as
in Example 3.14, but groups of balls are replaced with
rectangles so that the primary Kantorovich potential is
unique up to constants on the support of µ and ν.

Figure 3: Counterexample to the existence of a Kantorovich potential for the secondary transport problem

- all the ones at {wij}4/hi

j=1 with a single rectangle Ri with edges

(−
∑i−1

k=1 2hk − hi, 0), (−
∑i−1

k=1 2hk − hi, 1), (−
∑i−1

k=1 2hk − hi/2, 0), (−
∑i−1

k=1 2hk − hi/2, 1),

- all the ones at {zij}4/hi

j=1 with Ri + (hi/2, 0),
- the ball at w∞ with the rectangle R∞ with edges (−3/2, 0), (−1, 0), (−1, 1/24), (−3/2, 1/24),
- the ball at z∞ with R∞ + (0, 1− 1/24).

The support of µ + ν now is as in Figure 3b, and restricted to there the Kantorovich primary potentials
must be of the form ‖x− (−3/2, 0)‖ − κ, with κ ∈ . The computation in Example 3.14 show the non
existence of a function φs such that

φs(x) − φs(y) ≤ |y − x| ∀x, y ∈ R

φs(x) − φs(y) = |y − x| ∀(x, y) ∈ Γs

where Γs is the support of the unique optimal transport plan between µ and ν and | · | is the Euclidean
norm.

One can generalize it to higher dimension.

3.5. Approximation lemma and disintegration. In order to disintegrate the Lebesgue measure on
model sets W of Definition 3.1, we adopt the strategy in [10]. A difference is that here the vector field
of secondary rays directions d is chosen according to a different selection principle, since it must solve a
transport problem: it is selected by a secondary variational problem as in [4].

As described at the introduction to Section 3, the last step of the disintegration technique consists in
proving the fundamental regularity estimate (3.1). In particular, we are left with a subset of a model set

W which has the form K = σ[h−,h+](S) for any S ⊂ Z, h−, h+ such that [h−e, h+e] + S ⊂ Z; in a more
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explicit way,

K =
{

σt(z) : z ∈ S, t ∈ [h−, h+]
}

, σt(z) = z + t
d (z)

d (z) · e
where S is a subset of {x · e = 0} such that r (z) · e ⊃ [h−, h+].
We have to show the push forward inequality

Hn−1(σt(S)) ≤
(

t− h−

s− h−

)n−1

Hn−1(σs(S)) for h− < s ≤ t ≤ h+.

The estimate corresponding to the above one in [10] is proven is proven in Lemma 4.7, for the strictly
convex case, and then in Lemma 5.7 for the general case. We follow here a similar limiting argument,
providing on σs(S) a suitable approximation by vector fields dε which satisfy the regularity estimate and
converge pointwise to d !σs(S). Due to the different limit, the vector field approximating d should be
chosen differently from [10].
Here comes the role of the secondary potential: it detects the secondary rays through a Hopf-Lax for-
mula, and it consequently allows to view the vector field of secondary directions as pointwise limit of
approximating directions which satisfy the regularity estimate.

The approximation lemma is the following.

Lemma 3.16. Fix h− < s ≤ t ≤ h+. Then there exist a sequence of vector fields {dε}ε on Zt =
K ∩ {x · e = t} such that

- they converge pointwise to d on Zt;
- they satisfy the push forward regularity estimate: for all compact St ⊂ Zt

Hn−1(St) ≤
(

t− h−

s− h−

)N−1

Hn−1(σs−t
dε

St).

In a symmetric way, there exists a similar vector field on Zs = K ∩ {x · e = s}, if h− ≤ s ≤ t < h+.

Proof. For y in Zt denote by x(y) the points on Zh− = K ∩ {x · e1 = h−} belonging to the secondary
ray through y; in particular, if y is an endpoint, then x can be multivalued. Let φs be the secondary
potential constructed in 3.13, which is by definition continuous on secondary transport rays of K. Since
we are working up to countable partitions in compact sets, by Lusin theorem one can assume that φs is
continuous on K.

Defining the functions

f(x, y) := φ(y) − φ(x) + ‖y − x‖,

f ′(x, y) :=

{

φs(y)− φs(x) + |y − x| if φ(x) − φ(y) = ‖y − x‖
+∞ otherwise

then
x(y) = arg min

x̃∈Zh−

f ′(x̃, y) ⊂ arg min
x̃∈Zh−

f(x̃, y),

Consider moreover the functionals

fε(x, y) := φ(y)− φ(x) + ‖y − x‖ + ε
[

φs(y)− φs(x) + |y − x|
]

,

f ′
ε(x, y) :=

φ(y) + ‖y − x‖ − φ(x)

ε
+ φs(y)− φs(x) + |y − x|,

and define an approximating vector field of unit directions {dε}ε from y to xε(y) by the formula

xε(y) := argmin
x̃∈clos(Zh− )

fε(x̃, y).

Being on a bounded set, it is not difficult to observe that for all fixed y ∈ Zt

f(·, y) = Γ− lim
ε→0

fε(·, y) f ′(·, y) = Γ− lim
ε→0

f ′
ε(·, y).
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Indeed, fε(x, y)− f(x, y) = ε(φs(y)− φs(x) + |y − x|) is uniformly bounded by 2 diam(Γs), while f ′
ε(·, y)

increases pointwise to the continuous function f ′(·, y).
Then, from basic facts about Γ-convergence (see precisely recalls in Section 4 of [5]),

lim sup
ε→0

xε(y) = lim sup
ε→0

arg min
x̃∈Zh−

fε(x̃, y) ⊆ argmin
x̃∈Zh−

f ′(x̃, y) = x(y).

This proves that on Zh− any pointwise limit of the vector field {dε(y)}ε belongs d (y).
Call φε(y) := φ(y) + εφs(y), and ‖·‖ε := ‖·‖+ ε| · |. Notice that ‖·‖ε is a strictly convex norm, and

xε(y) = arg min (φε(y)− φε(x) + ‖y − x‖ε).

Then the approximation with countably many disjoint cones of Example 2.12 of [17] (already present
in [10]) shows that dε !K satisfies the push forward regularity estimate, following the argument of
Lemma 2.13 itself, and by compactness of the sections one can pass to the limit, up to subsequences, by
the upper semicontinuity of the Hausdorff measure.

In a symmetric way, replace minimums with maximums and subtract, instead of adding, the norms to
the potentials. One finds then a vector field {dε(x)} on Zs converging to d (x) as ε → 0, satisfying

Hn−1(Ss) ≤
(

s− h−

t− h−

)n−1

Hn−1(σt−s
dε

Ss) for all compact St ⊂ Zt. "

With the new approximation provided by Lemma 3.16, one can now follow the strategy explained in
the introduction of the section, at Page 18, and the accurate analogous computations are given from
Lemma 2.13 to Lemma 2.21 in [17].

One arrives then at the following disintegration result.

Theorem 3.17. The following disintegration of Ln Ts strongly consistent with the covering {rq}q∈Q
holds:

Ln Ts =

∫

Q

(γ dH1
rq) dHn−1(q)

where γ : n → is strictly positive and Q is identified with a σ-compact subset of countably many
hyperplanes. Moreover, γ !r q is locally Lipschitz continuous.

Corollary 3.18. The set of endpoints E is Ln-negligible.

Proof. If one applies the disintegration formula to the Borel set E , it is an immediate consequence of
H1(rq ∩ E) = H1(rb(rq)) = 0. "

The Disintegration Theorm 3.17 and the estimates in Lemma 3.16 yield moreover a regularity property
for the divergence of the vector field of rays directions, as stated in Corollary 3.19 below.
One can find different proofs in Section 2.4 of [17] and Section 5.1 of [18]. The first argument was
presented in [10].

Corollary 3.19. Consider the notations defined in the introduction to the present section, Pages 18-21,

and define de = d (z)
d (z)·ei

on the sets {Zi}i∈ of a covering of the secondary transport set.

The divergence of the vector field dei of rays direction is a series of Radon measures. On sets K of the
form

K =
{

σt(z) : z ∈ Si, t ∈ [h−, h+]
}

where σt(z) = z + tdei(z)

the following divergence formula holds: for every ϕ ∈ C1
c ( n)

〈div dei , ϕ〉 =

∫

K
ϕ(x)(div dei)a.c.(x) dLn(x) −

∫

dK
ϕ(x) dei(x) · n̂(x) dHn−1(x),(3.11)
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where dK, the border of K transversal to dei , is defined as K∩Hh+ ∪K∩Hh− , n̂(x) is the vector field of
unit directions normal to Hh+ ∪Hh− in the outer direction and

(div dei)a.c.(x) =
∂tβ(t = π〈ei〉(x), x − x · ei dei(x))

β(π〈ei〉(x), x − x · ei dei(x))
.

4. Notations

We group here some symbols one can find in the text. Standard ones are on the left, on the right the ones we
defined.

‖·‖ a norm on n

| · | a norm on n whose unit ball is strictly convex
Br(x) {x ∈ n : |x| ≤ r}
#a, b$ the segment from a to b without endpoints
!a, b" the segment from a to b without endpoints
rb(,) the relative boundary of a segment , consists in

the endpoints
ri(,) the relative interior of a segment , is , \ rb(,)
⊆ the set inclusion
6 the inclusion preserving the orientation
X any subset of n

(X)c the complementary of X
clos(X) the closure of X in n

px the map px : n × n 5 (x, y) (→ x ∈ n

py the map px : n × n 5 (x, y) (→ y ∈ n

χX χX(x) = 1 if x ∈ X , +∞ otherwise

X X(x) = 1 if x ∈ X , 0 otherwise
B(X) Borel σ-algebra of X
L (X) Lebesgue σ-algebra of X
M+

loc(X) positive and finite Radon measures on X
M+(X) measures in M+

loc(X) with finite total variation
P(X) Borel probability measures on X
Ln(X) Lebesgue (outer) measure of X
Hk(X) k-dimensional Hausdorff (outer) measure of X
η ' ξ if η, ξ ∈ M+

loc(X), η is absolutely continuous
w.r.t. ξ if ∀S ∈ B(X) ξ(S) = 0 implies η(S) = 0

g! push forward with a map g
∂− subdifferential
∂+ superdifferential
∂−

c ϕ {(x, y) : ϕ(x) − ϕ(y) = c(x, y)}

µ, ν µ, ν ∈M+( n) fixed, with µ ' Ln

Π(µ, ν) {π ∈M+( n × n) : px
! (π) = µ, py

! (π) = ν}
Op see Page 4
Os see Page 4
φ primary Kantorovich potential, (1.3)
T primary transport set:

∪{!x, y" : φ(x) − φ(y) = ‖y − x‖}
cs secondary cost function:

cs(x, y) = |y − x| {φ(x)−φ(y)=‖y−x‖}(x, y)
GΓ see Definition 2.2 at Page 8
r
+
Γ see Definition 2.2 at Page 8
rΓ see Definition 2.2 at Page 8
G′

Γ see (2.2) at Page 9
r
′+
Γ see (2.2) at Page 9
r
′
Γ see Remark 2.3
rq, q, Q see Definition 2.4, Section 2.2, Lemma 2.11
d see Definition 2.4, Section 2.2, Lemma 2.11
Ts see Definition 2.4, Section 2.2, Lemma 2.11
E− see Definition 2.4, Section 2.2
E+ see Definition 2.4, Section 2.2
E see Definition 2.4, Section 2.2
F see Definition 2.4, Lemma 2.11
Γs a cs-monotone set, usually σ-compact and con-

tained in {cs < +∞}
φs local secondary potential (Subsection 3.4)
Z see Page 19
Z see Page 19
α, β, γ see Page 19, 19
W see Section 3.1
ρ transport density, see (2.12)
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