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1 Introduction

We study the behaviour of solutions u = uδ,ε of oscillating Dirichlet boundary
problems involving two small parameters ε and δ, of the form




−div a

(x

ε
,Du

)
= h

u = 0 on ∂Ωδ,

(1.1)

where Ω is a fixed bounded open subset of Rn (for simplicity we consider the case
n ≥ 3 only) and Ωδ is the periodically perforated domain defined as follows. For
all xδ

i = δi (i ∈ Zn) let Bδ
i be the ball of center xδ

i and radius δn/(n−2); the set Ωδ

is defined by
Ωδ = Ω \

⋃

i∈Zn

Bδ
i . (1.2)

The operators we consider satisfy standard growth and monotonicity assumption,
and, for the sake of simplicity, we take h ∈ L2(Ω).

The case when a does not depend on x possesses a very interesting and simple
limit description. In the simplest case when a is the identity then it is well known
that the solutions uδ of {−4u = h

u = 0 on ∂Ωδ,
(1.3)

converge as δ → 0 to the solution of the problem
{−4u + Cu = h

u = 0 on ∂Ω,
(1.4)

where the constant C is given by the capacitary formula

C = cap(B1) = inf
{∫

Rn

|Du|2 dx : u ∈ H1(Rn), u = 1 on B1(0)
}

(1.5)
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(see Marchenko Khrushlov [15], Cioranescu Murat [8], etc). A similar result applies
in the case of a general a independent of x (see e.g. Casado Diaz and Garroni [6],
where also systems are treated).

When a depends on x and we consider problems (1.1), or even problems of
the general form {−div aε(x, Du) = h

u = 0 on ∂Ωδ,
(1.6)

(for the sake of clarity in the exposition we consider only the case of aε linear and
symmetric) then a recent compactness result by Dal Maso and Murat [11] ensures
that, for a fixed choice of δ = δ(ε), upon possibly extracting a subsequence, the
solutions uε converge to that of a limit problem of the form

{
−div

(
a0(x,Du)

)
+ ϕu = h

u = 0 on ∂Ω,
(1.7)

where the operator A0 = −div a0(x, Du) is the G-limit of the sequence of operators
−div aε(x,Du) (see e.g. [18], [16], [2], [19], [7], [17]). The G-limit operator is well
defined by a compactness argument; in particular, if aε is as in (1.1) then the
G-limit (homogenized) operator Ahom = −div ahom(Du) is independent from the
subsequence and does not depend on x. The determination of the function ϕ ∈ L∞

is a subtler problem and involves a complex capacitary computation.

In this paper we address the problem of the effective computation of ϕ in
(1.7) when aε(x, z) = a(x/ε, z) in (1.6) with a 1-periodic, and we highlight various
regimes, at which problems (1.1) behave differently (again, for the sake of simplicity
here we describe the results in the case when the function a is linear, continuous
and symmetric, and n ≥ 3 only):

(i) (separation of scales) if ε << δn/(n−2) or ε >> δ then the whole family
uε,δ converges to the solution u of a problem of the form

{
−div

(
ahom(Du)

)
+ Cu = h

u = 0 on ∂Ω;
(1.8)

i.e., ϕ = C. In the case ε << δn/(n−2) the constant C is given by the homogenized
capacitary problem

C = caphom(B1) = inf
{∫

Rn

〈ahom(Du), Du〉 dx : u ∈ H1(Rn), u = 1 on B1(0)
}

.

(1.9)
In a sense, we may first let ε → 0 and then δ → 0. In the case ε >> δ, conversely,
we may let first act ε as a parameter. As a consequence the dependence on x/ε
in (1.1) can be ‘frozen’ and we are led to consider the parameterized capacitary
problems

capy(B1) = inf
{∫

Rn

〈a(y, Du), Du〉 dx : u ∈ H1(Rn), u = 1 on B1(0)
}

. (1.10)
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The overall effect of letting ε → 0 is then obtained by averaging, and we get

C =
∫

(0,1)n

capy(B1) dy. (1.11)

(ii) (almost-periodic effects) in the remaining cases, the two periods ε and δ
present in (1.1) interact. As a consequence in general the family of solutions uε,δ

does not converge. The problems satisfied by converging subsequences may be of
the form (1.8) with C described by a single problem (periodic behaviour) of the
form

cap0(B1) = inf
{∫

Rn

〈b(x,Du), Du〉 dx : u ∈ H1(Rn), u = 1 on B1(0)
}

, (1.12)

with b a suitable scaled operator (in some cases independent of x), or by a formula
of the type (1.11) (almost-periodic behaviour) with capy substituted by a suitable
scaled and localized problem, but may even give rise to a problem of the form (1.7)
with non-constant ϕ (finely-tuned interplay between δ and ε).

We deal with the variational case only, in which all the results above may be
easily derived from the corresponding description of the Γ-limits (see [12], [10], [4],
[3]) of the functionals Fε,δ of the form

Fε,δ(u) =





∫

Ω

f
(x

ε
,Du

)
dx if u = 0 on

⋃
i∈Zn Bδ

i

+∞ otherwise

(1.13)

for suitable f (see Remark 2.1(ii)). We show that the Γ-limits of converging sub-
sequences of these functionals as ε → 0 and δ → 0 are of the form

F (u) =
∫

Ω

fhom(Du) dx +
∫

Ω

ϕ|u|2 dx, (1.14)

where fhom is the homogenized energy density of f (see e.g. [4]) and ϕ is described
above. Note that in the cases ε << δn/(n−2) and δ << ε then ϕ is constant and
does not depend on the subsequence.

We propose a direct proof of all these results based on the use of a ‘joining
lemma on varying domains’ (for a proof of this result in a general context see
[1]) which allows to consider only sequences of functions which are constant on
suitable annuli close to the points xδ

i , so that a scaling argument immediately
yields the estimates of the limit function ϕ by suitable capacities. This technique
is explained in a general framework in Section 3. Note that we do not make use of
integral representation techniques such as those in [9].

We only treat the case when f is positively homogeneous of degree 2 in the
second variable and n ≥ 3; the same method with minor changes applies for n = 2
or to p-homogeneous f and 1 < p ≤ n (for changes in the statements see e.g [8],
[6]). For the changes for general f and the case of vector-valued u see [1].
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2 Setting of the problem

In all that follows Ω is a bounded open subset of Rn, n ≥ 3. If E ⊂ Rn is a
Lebesgue-measurable set then Ln(E) is its Lebesgue measure. Bρ(x) is the open
ball of centre x and radius ρ. We use standard notation for Lebesgue and Sobolev
spaces. The letter c denotes a generic fixed strictly positive constant and ω a generic
fixed modulus of continuity; i.e., a function ω : [0,+∞) → [0,+∞) continuous in
0 and with ω(0) = 0.

We recall the definition of Γ-convergence of a sequence of functionals Fj

defined on H1
0 (Ω) (with respect to the L2(Ω)-convergence). We say that (Fj) Γ-

converges to F0 on H1
0 (Ω) if for all u ∈ H1

0 (Ω)
(i) (Γ-liminf inequality) for all (uj) sequences of functions in H1

0 (Ω) converg-
ing to u in L2(Ω) we have

F0(u) ≤ lim inf
j

Fj(uj);

(ii) (Γ-limsup inequality) for all η > 0 there exists a sequence (uj) of functions
in H1

0 (Ω) converging to u in L2(Ω) such that

F0(u) ≥ lim sup
j

Fj(uj)− η.

We will say that a family (Fε) Γ-converges to F0 if for all sequences (εj) of
positive numbers converging to 0 (i) and (ii) above are satisfied with Fεj in place
of Fj .

The functionals we consider are defined as follows. Let f : Rn×Rn → [0, +∞)
be a Borel function satisfying

(H1) (periodicity) f(·, z) is 1-periodic for all z ∈ Rn;
(H2) (positive homogeneity) f(x, ·) is positively homogeneous of degree 2 for

all x ∈ Rn;
(H3) (growth conditions) there exist two constants c1, c2 > 0 such that

c1|z|2 ≤ f(x, z) ≤ c2|z|2 for all x, z.
It is well known (see e.g. [4] Chapter 14) that the Γ-limit G0 of the functionals

(Gε) defined by

Gε(u) =
∫

Ω

f
(x

ε
, Du

)
dx (2.1)

on H1
0 (Ω) exists and can be represented as

G0(u) =
∫

Ω

fhom(Du) dx, (2.2)

where

fhom(z) = inf
{∫

(0,1)n

f(y, Du + z) dy : u ∈ H1
loc(Rn) 1-periodic

}
(2.3)
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for z ∈ Rn defines a convex function positively homogeneous of degree 2.
For all δ > 0 we will consider the lattice δZn whose points will be denoted

xδ
i = δi (i ∈ Zn). Moreover, for all i ∈ Zn

Bδ
i = Bδn/(n−2)(xδ

i ).

For all ε, δ > 0 we consider Fε,δ : H1
0 (Ω) → [0,+∞] defined by

Fε,δ(u) =





∫

Ω

f
(x

ε
,Du

)
dx if u = 0 on

⋃
i∈Zn Bδ

i

+∞ otherwise.

(2.4)

With fixed δ = δ(ε) we will study the Γ-limits of sequences (Fj) with

Fj = Fεj ,δ(εj). (2.5)

We will separately consider the following cases:
(1) (Section 4.1) ε << δn/(n−2). In this case the Γ-limit does not depend on

(εj) and can be written in the form

F0(u) =
∫

Ω

fhom(Du) dx + C

∫

Ω

|u|2 dx (2.6)

on the whole H1
0 (Ω). The characterization of C is described in Theorem 4.2;

(2) (Section 4.2) ε >> δ. The same conclusion of (1) above holds with a
different characterization of C (see Theorem 4.3);

(3) (Section 5) In the remaining cases in general the Γ-limit does not exist,
but we may have converging sequences (Fj) both to functionals of the form (2.6)
with different C or to functionals of the form

F0(u) =
∫

Ω

fhom(Du) dx +
∫

Ω

ϕ|u|2 dx (2.7)

for some strictly positive ϕ ∈ L∞(Ω).

Remark 2.1 (i) Since the functionals we consider are weakly equi-coercive on
H1

0 (Ω) (more precisely, if supj(Fj(uj)) < +∞ and (uj) is bounded in L2(Ω) then it
is weakly pre-compact in H1

0 (Ω)) in the Γ-liminf inequality above we may consider
only sequences (uj) weakly converging in H1

0 (Ω);
(ii) if H is a continuous functional on L2(Ω) then Fj + H Γ-converge to

F0 + H. By the well-known property of convergence of minima of Γ-limits (see
e.g. [4] Theorem 7.2) we deduce for instance in case (1) above that for all fixed
h ∈ L2(Ω) the values

mε = inf
{∫

Ωδ(ε)

f
(x

ε
,Du

)
dx−

∫

Ωδ(ε)

hu dx : u = 0 on ∂Ωδ(ε)

}
,
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where Ωδ denotes the δ-periodically perforated set

Ωδ = Ω \ (Bδn/(n−2)(0) + Zn) = Ω \
⋃

i∈Zn

Bδ
i , (2.8)

converge to

m = min
{∫

Ω

(
fhom(Du) + C|u|2 − hu

)
dx : u = 0 on ∂Ω

}

as ε → 0.
Furthermore, if f is convex in the second variable, for each ε a solution uε

of mε exists, the family (uε) (extended to 0 on Ω \Ωδ(ε)) is weakly precompact in
H1

0 (Ω) and every its limit is a solution for m. If f(x, z) = 〈a(x, z), z〉 (a linear) we
may then restate this Γ-convergence result in terms of convergence of solutions of
elliptic PDE as in the Introduction.

3 A general Γ-convergence approach

In this section we describe a general procedure to compute the Γ-limit of func-
tionals defined on perforated domains. In the following sections we specialize this
approach to the cases (1)–(3) highlighted in the previous section.

Let fj : Rn ×Rn → [0,+∞) be Borel functions satisfying the positive homo-
geneity condition (H2) and the growth conditions (H3) uniformly in j. We suppose
that the sequence of functionals (Gj) defined on H1

0 (Ω) by

Gj(u) =
∫

Ω

fj(x,Du) dx (3.1)

Γ-converges to a functional G0 of the form

G0(u) =
∫

Ω

f0(x, Du) dx. (3.2)

In our case fj(x, z) = f(x/εj , z) and f0 = fhom.
Let (δj) be a sequence of positive numbers converging to 0 and let (Fj) be

defined on H1
0 (Ω) by

Fj(u) =





Gj(u) if u = 0 on
⋃

i∈Zn Bδ
i

+∞ otherwise.
(3.3)

Note that sometimes we use the notation δ = δj not to overburden notation.
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3.1 The Γ-liminf inequality

Let (uj) converge weakly to u in H1
0 (Ω). We can suppose that supj Fj(uj) < +∞.

We wish to separate the contribution due to Duj ‘near the balls Bδ
i ’ and ‘far from

them’. The latter will be estimated simply by G0(u), while the former will be
described by a limit capacitary formula.

The way to discriminate between ‘near’ and ‘far’ contribution is formalized by
the following lemma, whose proof, together with a slightly more general statement
can be found in [1].

Lemma 3.1 Let uj be a sequence weakly converging to u in H1
0 (Ω) as above, and

let N, k ∈ N. Let (δj) be a sequence of positive numbers converging to 0 and let

Zj = {i ∈ Zn : dist (xδ
i ,Rn \ Ω) > δj}.

For all i ∈ Zj there exists ki ∈ {0, . . . , k − 1} such that, having set

Cj
i =

{
x ∈ Ω : 2−ki−1Nδ

n/(n−2)
j < |x− xδ

i | < 2−kiNδ
n/(n−2)
j

}
, (3.4)

ui
j = |Cj

i |−1

∫

Cj
i

uj dx (the mean value of uj on Cj
i ), (3.5)

and
ρi

j =
3
4
2−kiNδ

n/(n−2)
j (the middle radius of Cj

i ), (3.6)

there exists a sequence (wj), with wj ⇀ u in H1
0 (Ω) such that

wj = uj on Ω \
⋃

i∈Zj

Cj
i (3.7)

wj(x) = ui
j if |x− xδ

i | = ρi
j (3.8)

and ∣∣∣
∫

Ω

(fj(x,Dwj)− fj(x,Duj)) dx
∣∣∣ ≤ c

1
k

. (3.9)

Moreover if uj = vj with |Dvj |2 equi-integrable, setting

Cj
i =

{
x ∈ Ω :

1
2
Nδ

n/(n−2)
j < |x− xδ

i | <
3
2
Nδ

n/(n−2)
j

}
, (3.10)

vi
j = |Cj

i |−1

∫

Cj
i

vj dx (the mean value of vj on Cj
i ), (3.11)

and
ρj = Nδ

n/(n−2)
j (the middle radius of Cj

i ), (3.12)

we get the same conclusions above.
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By this lemma we can use the sequence (wj) to estimate the Γ-liminf inequal-
ity for (Fj). We first deal with the contribution of the part of Duj ‘external’ to
the annuli Cj

i ; i.e., outside the set

Ej =
⋃

i∈Zj

Bj
i , where Bj

i = Bρi
j
(xδ

i ) (3.13)

for all i ∈ Zj .
Let k, N be fixed, let ui

j be constructed as in (3.5). We define

ψj =
∑

i∈Zj

|ui
j |2χQδ

i
, (3.14)

where
Qδ

i = xδ
i +

(
−δj

2
,
δj

2

)n

.

The following lemma describes the asymptotic behaviour of ψj .

Lemma 3.2 The sequence ψj converges to |u|2 strongly in L1(Ω).

Proof. By the Poincaré inequality
∫

Qδ
i

|uj − ui
j |2 dx ≤ c(ki) δ2

j

∫

Qδ
i

|Duj |2 dx,

where c(l) depends only on l ∈ {0, . . . , k − 1}; since k ∈ N is fixed we get
∑

i∈Zj

∫

Qδ
i

|uj − ui
j |2 dx ≤ c δ2

j

∫

Ω

|Duj |2 dx, (3.15)

where c := maxki=0,...,k−1 c(ki). Since
⋃

i∈Zj
Qδ

i invades Ω and uj → u in L2(Ω)
as j → +∞, by (3.15) we have that

lim sup
j→+∞

∫

Ω

ψj dx ≤ lim sup
j→+∞

2
(∑

i∈Zj

∫

Qδ
i

|ui
j − uj |2 +

∫

Ω

|uj |2 dx
)

= 2
∫

Ω

|u|2 dx , (3.16)

and, by (3.16), (3.15) and Hölder’s inequality

lim sup
j→+∞

∫

Ω

|ψj − |u|2| dx ≤ c lim sup
j→+∞

(∑

i∈Zj

∫

Qδ
i

|ui
j − uj |2 dx

)1/2

× lim sup
j→+∞

(∫

Ω

(ψj + |uj |2) dx
)1/2

≤ c
(∫

Ω

|u|2 dx
)1/2

lim
j→+∞

δj

(∫

Ω

|Duj |2 dx
)1/2

= 0

as desired.
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Proposition 3.3 Let (uj) be as above. Let k, N ∈ N and let (wj) be given by
Lemma 3.1. Then we have

lim inf
j→+∞

∫

Ω

fj(x,Duj) dx ≥
∫

Ω

f0(x, Du) dx+lim inf
j→+∞

∫

Ej

fj(x,Dwj) dx− c

k
. (3.17)

Proof. We define

vk,N
j =

{
ui

j on Bj
i , i ∈ Zj

wj otherwise .

The sequence (vk,N
j )j is bounded in H1

0 (Ω); hence, it is pre-compact in L2(Ω).
Since Ln({vk,N

j − wj}) → 0 and wj → u in L2(Ω) as j → +∞, vk,N
j converges

strongly to u in L2(Ω).
By Lemma 3.1 and condition (H2)

Fj(uj) + c
1
k

≥ Fj(wj) =
∫

Ω\Ej

fj(x,Dwj) dx +
∫

Ej

fj(x,Dwj) dx

=
∫

Ω

fj(x,Dvk,N
j ) dx +

∫

Ej

fj(x,Dwj) dx

= Gj(v
k,N
j ) +

∫

Ej

fj(x,Dwj) dx . (3.18)

By the Γ-liminf inequality of the functionals Gj (3.1)

lim inf
j→+∞

Gj(v
k,N
j ) ≥

∫

Ω

f0(x,Du) dx (3.19)

and (3.17) follows immediately.

We now turn to the estimate of the contribution due to Duj on Ej . From now
on, we suppose that N > 2k so that the construction of wj in Lemma 3.1 keeps
wj = uj on Bδ

i . With fixed j ∈ N and i ∈ Zj such that ui
j 6= 0 let ζ : BN (0) → R

be defined by

ζ(y) =





1
ui

j

(
ui

j − wj

(
xδ

i − δ
n/(n−2)
j y

))
y ∈ B 3

42−ki N (0)

0 otherwise .

If ui
j = 0 we simply set ζ = 0. Note that

ζ ∈ H1
0 (BN (0)) and ζ = 1 on B1(0). (3.20)

By a change of variables we obtain
∫

Bj
i

fj(x,Dwj) dx = δn
j |ui

j |2
∫

BN (0)

fj(xδ
i − δ

n/(n−2)
j x,Dζ) dx; (3.21)
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hence, if we set

ϕN,j(x) = inf
{∫

BN (0)

fj(x−δ
n/(n−2)
j y,Dζ) dy : ζ ∈ H1

0 (BN (0)), ζ = 1 on B1(0)
}

(3.22)
the computation of the liminf on the right hand side of (3.17) is translated into
computing the limit

lim inf
j→+∞

∑

i∈Zj

δn
j |ui

j |2ϕN,j(xδ
i ). (3.23)

By considering the functions ψj and ϕN
j defined by (3.14) and by

ϕN
j =

∑

i∈Zj

ϕN,j(xδ
i )χQδ

i
, (3.24)

respectively, the limit (3.23) is translated into

lim inf
j→+∞

∫

Ω

ϕN
j ψj dx. (3.25)

By Lemma 3.2 it is sufficient to compute the weak∗ limit ϕN in L∞(Ω) of
the functions ϕN

j as j → +∞. For our problem this will be done differently in the
cases (1)–(3) described in Section 2. We then have

lim inf
j→+∞

∫

Ej

fj(x,Dwj) dx ≥
∫

Ω

ϕN |u|2 dx, (3.26)

and a Γ-liminf inequality is achieved by taking the supremum in N .

3.2 The Γ-limsup inequality

The Γ-limsup inequality is obtained by suitably modifying a recovery sequence
for the Γ-limit of Gj . Let u ∈ H1

0 (Ω) and let (vj) be a sequence converging to u
weakly in H1

0 (Ω) such that limj Gj(vj) = G0(u). Let

Ω(δj) = {x ∈ Ω : dist (x, ∂Ω) > δj};
we may assume that spt vj ⊂ Ω(δj) (see e.g. [4] Proposition 11.7) and that |Dvj |2
is equi-integrable (see e.g. [4] Appendix D, [13]).

By Lemma 3.1, taking the equi-integrability of |Dvj |2 into account, we may
also suppose that vj equals a constant vi

j on ∂Bρj (x
δ
i ), where

ρj = Nδ
n/(n−2)
j .

The construction of a recovery sequence will be then obtained easily if, fixed η, we
construct functions ζi

j in H1
0 (BN (0)) with ζi

j = 1 on B1(0) such that, setting

uj(x) =





vj(x) on Ω \⋃
i∈Zj

Bρj (x
δ
i )

vi
j

(
1− ζi

j

(
x−xδ

i

δ
n/(n−2)
j

))
on Bρj (x

δ
i ),

(3.27)
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we have
lim sup

j

∫
⋃

i
Bρj

(xδ
i
)

fj(x,Duj) dx ≤
∫

Ω

ϕ|u|2 dx + η,

where ϕ = supN ϕN is suggested by the liminf inequality. Indeed, with this choice
of (uj), we obtain

lim sup
j→+∞

∫

Ω

fj(x,Duj) dx ≤
∫

Ω

f0(x,Du) dx + lim sup
j→+∞

∫
⋃

i
Bρj

(xδ
i
)

fj(x,Duj) dx

≤
∫

Ω

f0(x,Du) dx +
∫

Ω

ϕ|u|2 dx + η , (3.28)

and the Γ-limsup inequality is verified.

4 Separation of Scales

In this section we study the extreme cases ε << δn/(n−2) and ε >> δ. In both
cases the Γ-limit of the whole family (Fε,δ) exists and it is described by an extra
term of the form C

∫
Ω
|u|2 dx, whose computation highlights a separation of scales

effect.

4.1 Highly-oscillating energies in perforated domains

We treat the case ε << δn/(n−2) first. In this case the limit is computed as if by
first letting ε → 0, thus obtaining a homogenized functional, and then applying
the theory of perforated domains for a fixed functional.

Remark 4.1 We define

caphom(B1) = inf
{∫

Rn

fhom(Dζ) dz : ζ ∈ H1(Rn), ζ = 1 on B1(0)
}

.

It can be easily checked that

caphom(B1) = lim
N→+∞

min
{∫

B
N+ 1

N
(0)

fhom(Dζ) dz : ζ ∈ H1(BN+ 1
N

(0))

ζ = 1 on ∂BN+ 1
N

(0) ζ = 0 on B1− 1
N

(0)
}

= lim
N→+∞

min
{∫

B
N− 1

N
(0)

fhom(Dζ) dz : ζ ∈ H1(BN− 1
N

(0))

ζ = 1 on ∂BN− 1
N

(0) ζ = 0 on B1+ 1
N

(0)
}

.
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Theorem 4.2 Let f satisfy (H1)–(H3) and let Fε,δ be given by (2.4). Let δ :
(0, +∞) → (0, +∞) be such that

lim
ε→0

δ(ε) = 0 lim
ε→0

δn/n−2(ε)
ε

= +∞;

then there exists the Γ-limit

Γ- lim
ε→0

Fε,δ(ε)(u) =
∫

Ω

fhom(Du) dx + caphom(B1)
∫

Ω

|u|2 dx

for all u ∈ H1
0 (Ω).

Proof. We fix a sequence (εj) of positive numbers converging to 0 and let
δj = δ(εj). Let Fj = Fεj ,δj

. Note that we sometime simply write δ in place of δj .
We first deal with the Γ-liminf inequality. Let uj be weakly converging to u

in H1
0 (Ω), such that supj Fj(uj) < ∞. Let k ∈ N and N > 2k, and let wj be as

in Lemma 3.1; by Proposition 3.3 to compute the Γ-liminf inequality we have to
study the contribution on the set Ej given by (3.13).

For all i ∈ Zn let yε
i = εj [

xδ
i

εj
], so that xδ

i ∈ yε
i + [0, εj)n. Taking into account

that εj << δ
n/(n−2)
j , we deduce the following inclusions

B
(1− 1

N )δ
n

n−2
j

(yε
i ) ⊂ Bδ

i (4.1)

and
Bj

i ⊂ Bρj (x
δ
i ) ⊂ B

(N+ 1
N )δ

n/n−2
j

(yε
i ) (4.2)

for j large enough. There follows that wj can be extended outside Bj
i as

wj,i =

{
wj on Bj

i

ui
j on B

(N+ 1
N )δ

n/n−2
j

(yε
i ) \Bj

i . (4.3)

Let ui
j 6= 0. By (4.3) and conditions (H1) and (H2), by a change of variables, we

get
∫

Bj
i

f
( x

εj
, Dwj

)
dx =

∫

B
(N+ 1

N
)δ

n/n−2
j

(yε
i
)

f
( x

εj
, Dwj,i

)
dx

= δn
j |ui

j |2
∫

B(N+ 1
N

)(0)

f
(
z
δ

n/n−2
j

εj
, Dζi

j

)
dz, (4.4)

where
ζi
j(z) = wj,i(zδ

n/n−2
j + yε

i )/ui
j .

Note that by (4.1) and (4.2) ζi
j(z) = 1 on ∂B(N+ 1

N )(0) and ζi
j = 0 on B1(0).
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If we denote ηj = εj/δ
n/n−2
j , by (4.4) we have

∫
⋃

i
Bj

i

f
( x

εj
, Dwj

)
dx

≥
∑

i∈Zj

δn
j |ui

j |2 min
{∫

B(N+ 1
N

)(0)

f
( z

ηj
, Dζ(z)

)
dz : ζ ∈ H1(BN+ 1

N
(0))

ζ = 1 on ∂B(N+ 1
N )(0) ζ = 0 on B(1− 1

N )(0)
}

; (4.5)

hence, by (4.5), Lemma 3.2 and the Γ-convergence of the functionals (2.1) to that
in (2.2), we have

lim inf
j→+∞

∫
⋃

i
Bj

i

f
( x

εj
, Dwj

)
dx

≥ min
{∫

B(N+ 1
N

)(0)

fhom(Dζ(z)) dz : ζ ∈ H1(BN+ 1
N

(0))

ζ = 1 on ∂B(N+ 1
N )(0) ζ = 0 on B(1− 1

N )(0)
} ∫

Ω

|u|2 dx .

Passing to the limit in the inequality given by Proposition 3.3 first as N and then
as k tend to +∞, by Remark 4.1 we have that

lim inf
j→+∞

Fj(uj) ≥
∫

Ω

fhom(Du) dx + caphom(B1)
∫

Ω

|u|2 dx

as desired. By the arbitrariness of uj the Γ-liminf inequality is proved.
Now we pass to compute the Γ-limsup inequality. Given u ∈ H1

0 (Ω) we want
to construct a recovery sequence (uj) for the Γ-limit of Fj . Following the approach
of Section 3.2, it remains to define uj on Bρj (x

δ
i ).

We denote

mN
η = min

{∫

B(N− 1
N

)(0)

f
(z

η
,Dζ(z)

)
dz : ζ ∈ H1(BN− 1

N
(0))

ζ = 1 on ∂B(N− 1
N )(0) ζ = 0 on B(1+ 1

N )(0)
}

and

mN = min
{∫

B(N− 1
N

)(0)

fhom(Dζ(z)) dz : ζ ∈ H1(BN− 1
N

(0))

ζ = 1 on ∂B(N− 1
N )(0) ζ = 0 on B(1+ 1

N )(0)
}

,

and fix M ∈ N; by Remark 4.1 and for N large enough

mN ≤ caphom(B1) +
1
M

.
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By the Γ-convergence of the functionals (2.1) to that in (2.2), we have that mN
η

converges to mN as η tends to 0 (see [4] Theorem 7.2). Considering ηj = εj/δ
n/n−2
j ,

from the convergence of minima we deduce that there exists a sequence ζj ∈
H1(BN− 1

N
(0)) with ζj = 1 on ∂B(N− 1

N )(0) and ζj = 0 on B(1+ 1
N )(0) such that

lim
j→+∞

∫

B(N− 1
N

)(0)

f
( z

ηj
, Dζj(z)

)
dz ≤ caphom(B1) +

1
M

. (4.6)

By a change of variables we get
∫

B(N− 1
N

)(0)

f
( z

ηj
, Dζj(z)

)
dz =

1
δn
j

∫

B
(N− 1

N
)δ

n/n−2
j

(yε
i
)

f
( x

εj
, Dζ̃i

j(x)
)

dx, (4.7)

where
ζ̃i
j(x) = ζj

( x− yε
i

δ
n/n−2
j

)
.

Reasoning as for the Γ-liminf inequality we may suppose that

Bδ
i ⊂ B

(1+ 1
N )δ

n/n−2
j

(yε
i ) and B

(N− 1
N )δ

n/n−2
j

(yε
i ) ⊂ Bρj (x

δ
i ) . (4.8)

Since ζ̃i
j(x) = 1 on ∂B

(N− 1
N )δ

n/n−2
j

(yε
i ) and ζ̃i

j(x) = 0 on B
(1+ 1

N )δ
n/n−2
j

(yε
i ), by

(4.8) we can define

ζi
j(x) =





ζ̃i
j on B

(N− 1
N )δ

n/n−2
j

(yε
i )

1 on Bρj (x
δ
i ) \B

(N− 1
N )δ

n/n−2
j

(yε
i )

so that ζi
j = 1 on ∂Bρj (x

δ
i ) and ζi

j = 0 on Bδ
i . By (4.7) and condition (H2), we get

∫

B(N− 1
N

)(0)

f
( z

ηj
, Dζj(z)

)
dz =

1
δn
j

∫

Bρj
(xδ

i
)

f
( x

εj
, Dζi

j(x)
)

dx . (4.9)

Now we can construct the recovery sequence uj by setting

uj =





vj on Ω \⋃
i Bρj (x

δ
i )

vi
j ζi

j(x) on Bρj (x
δ
i ),

(4.10)

and prove that it converges weakly to u in H1(Ω). In fact (uj) is bounded in H1(Ω)
and vj − uj tends to 0 in measure. Since vj → u in L2(Ω), then also uj → u in
L2(Ω) and hence weakly in H1(Ω).
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By (3.28), (4.10), (4.9), Lemma 3.2 and (4.6) we have

lim sup
j→+∞

Fj(uj) ≤
∫

Ω

fhom(Du) dx

+ lim sup
j→+∞

∑

i∈Zj

δn
j |vi

j |2
∫

B(N− 1
N

)(0)

f
( z

ηj
, Dζj(z)

)
dz

≤
∫

Ω

fhom(Du) dx +
(
caphom(B1) +

1
M

) ∫

Ω

|u|2 dx .

By the arbitrariness of M we conclude the Γ-limsup inequality; hence, the Γ-
convergence of the functionals Fε,δ(ε) as ε → 0.

4.2 Slowly-oscillating energies in perforated domains

Now we treat the case ε >> δ. In this case the limit is computed as if first apply-
ing the limit process to functionals in which x/ε acts as a parameter, and then
averaging the outcome.

We consider for the sake of simplicity the case of continuous f :
(H4) (continuity) f(·, z) is continuous for all z ∈ Rn.

This condition can be easily dropped, at the expense of a much heavier notation.

Theorem 4.3 Let f satisfy (H1)–(H4) and let Fε,δ be given by (2.4). Let δ :
(0, +∞) → (0, +∞) be such that

lim
ε→0

δ(ε)
ε

= 0 .

There exists the Γ-limit

Γ- lim
ε→0

Fε,δ(ε)(u) =
∫

Ω

fhom(Du) dx +
∫

(0,1)n

a(x) dx

∫

Ω

|u|2 dx

for all u ∈ H1
0 (Ω), where

a(x) = inf
{∫

Rn

f(x,Dζ) dy : ζ ∈ H1(Rn), ζ = 1 on B1(0)
}

. (4.11)

Before proving Theorem 4.3 we make some general observations from which
the Γ-limsup inequality will easily follow, and that will be used also in the next
sections.

Remark 4.4 In this Section and in the next one, we will consider several cases
for which the Γ-limsup inequality will be obtained by considering the recovery
sequence (3.27) introduced in Section 3.2, but the functions ζi

j will be constructed
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in a different way with respect to the previous section. In this case the function
ϕN,j defined as in (3.22) takes the form

ϕN,j(x) = inf
{∫

BN (0)

f
(
x− δ

n/(n−2)
j

εj
y, Dζ

)
dy :

ζ ∈ H1
0 (BN (0)), ζ = 1 on B1(0)

}
. (4.12)

With fixed j ∈ N and i ∈ Zj we take ζi
j in H1

0 (BN (0)) with ζi
j = 1 on B1(0) such

that ∫

BN (0)

f
(xδ

i

εj
− δ

n/(n−2)
j

εj
y, Dζi

j

)
dy ≤ ϕN,j

(xδ
i

εj

)
+

1
j

. (4.13)

By a change of variables we obtain

1
δn
j

∫

Bρj
(xδ

i
)

f
( x

εj
, Dζi

j

( x− xδ
i

δ
n/(n−2)
j

))
dx ≤ ϕN,j

(xδ
i

εj

)
+

1
j

and
∫
⋃

i
Bρj

(xδ
i
)

f
( x

εj
, D

(
vi

j

(
1− ζi

j

( x− xδ
i

δ
n/(n−2)
j

))))
dx ≤

∑

i∈Zj

δn
j |vi

j |2ϕN,j

(xδ
i

εj

)
+

1
j

.

Hence, if we define

ϕN
j =

∑

i∈Zj

ϕN,j

(xδ
i

εj

)
χQδ

i
, (4.14)

where ϕN,j is given by (4.12), and

ψj =
∑

i∈Zj

vi
jχQδ

i
(4.15)

with vi
j given by (3.11), we have

lim sup
j→+∞

∫
⋃

i
Bρj

(xδ
i
)

f
( x

εj
, Duj

)
dx

= lim sup
j→+∞

∫
⋃

i
Bρj

(xδ
i
)

f
( x

εj
, D

(
vi

j

(
1− ζi

j

( x− xδ
i

δ
n/(n−2)
j

))))
dx

≤ lim sup
j→+∞

∑

i∈Zj

δn
j |vi

j |2ϕN,j

(xδ
i

εj

)
= lim sup

j→+∞

∫

Ω

ψjϕ
N
j dx . (4.16)

Proof of Theorem 4.3. We fix a sequence (εj) of positive numbers con-
verging to 0 and let δj = δ(εj). We have already shown in Section 3.2 that to
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get the Γ-liminf inequality we have to study (in the notation of that section) the
weak∗ convergence in L∞(Ω) of the functions ϕN

j to ϕN , as j → +∞. In our case
ϕN

j is given by (4.14).
If we define

aN (x) = inf
{∫

BN (0)

f(x,Dζ) dy : ζ ∈ H1
0 (BN (0)), ζ = 1 on B1(0)

}
(4.17)

by hypothesis (H4), we have that

‖ϕN,j − aN‖∞ ≤ ω
(
N

δ
n/(n−2)
j

εj

)
(4.18)

and ∣∣∣aN

(xδ
i

εj
)− aN (

y

εj

)∣∣∣ ≤ ω
(δj

εj

)
(4.19)

for all y ∈ Qδ
i . Hence, if we define

aN
j =

∑

i∈Zj

aN

(xδ
i

εj

)
χQδ

i
and āN =

∫

(0,1)n

aN (y) dy

since aN is 1-periodic, we have aN ( ·εj
) ⇀∗ āN in L∞ and by (4.19) also aN

j ⇀∗ āN

as j → +∞. By (4.18) ϕN
j ⇀∗ ϕN = āN and hence

lim
N→+∞

ϕN =
∫

(0,1)n

a(x) dx . (4.20)

By Proposition 3.3, (3.26), Lemma 3.2 and (4.20) we get the Γ-liminf inequality.
The Γ-limsup inequality is obtained by considering the recovery sequence

(3.27) with ζi
j constructed by (4.13), and recalling (4.16) and Lemma 3.2.

5 Interaction between homogenization processes

In this section we treat the remaining cases when ε is between the scales δn/n−2

and δ. We will suppose that (δj) and (εj) are such that

lim
j→∞

δ
n/(n−2)
j

εj
= q ∈ [0, +∞) lim

j→∞
εj

δj
< +∞ (5.1)

hold. We define the localized capacitary formula

aq(x) = inf
{∫

Rn

f(x− qy, Dζ) dy : ζ ∈ H1(Rn), ζ = 1 on B1(0)
}

. (5.2)

Note that when q = 0, a0 coincides with the function a defined in (4.11).
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Theorem 5.1 (Periodic interaction of scales) Let f satisfy (H1)–(H4) and let
Fj = Fεj ,δj

with Fε,δ as in (2.4). Let εj → 0 and let δj → 0 be such that (5.1)
holds. Suppose that δj = kj

M εj with kj ∈ N prime with M ∈ N. Then there exists
the Γ-limit

Γ- lim
j→+∞

Fj(u) =
∫

Ω

fhom(Du) dx + C

∫

Ω

|u|2 dx,

on H1
0 (Ω), where

C =
1

Mn

∑

h∈{0,...,M−1}n

aq
( h

M

)
. (5.3)

Proof. Let ϕN,j be the 1-periodic function defined as in (4.12), and let

aq
N (x) = inf

{∫

BN (0)

f(x− qy, Dζ) dy : ζ ∈ H1
0 (BN (0)), ζ = 1 on B1(0)

}
. (5.4)

As δj = kj

M εj then

xδ
i

εj
= i

kj

M
= k +

h

M
k ∈ Zn, h ∈ {0, ...,M − 1}n . (5.5)

By (5.5) and the periodicity of ϕN,j

∑

i∈Zj

δn
j |ui

j |2ϕN,j

(xδ
i

εj

)
=

∑

h∈{0,...,M−1}n

(∑

i∈Ih

δn
j |ui

j |2
)
ϕN,j

( h

M

)
=

∫

Ω

ψjϕ
N
j dx ,

(5.6)
where

Ih =
h

M
+ Zn ∩ Zj

and ψj , ϕ
N
j are defined in (3.14) (4.14), respectively. Note that

ϕN
j (x) =

∑

h∈{0,...,M−1}n

∑

i∈Ih

ϕN,j

( h

M

)
χQδ

i
(x)

and ‖ϕN,j − aq
N‖∞ → 0 as j → +∞; hence,

ϕN
j ⇀∗ ϕN =

∑

h∈{0,...,M−1}n

1
Mn

aq
N

( h

M

)

and
lim

N→+∞
ϕN =

∑

h∈{0,...,M−1}n

1
Mn

aq
( h

M

)
.

Recalling Lemma 3.2 we obtain the Γ-liminf inequality.
In order to obtain the Γ-limsup inequality, by (4.16) it is sufficient to use the

scheme of Section 3.2 with ζi
j as in (4.13).
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Remark 5.2 In the particular case when δj/εj ∈ N (i.e., M = 1) the constant C
is given by the single problem defining aq(0).

Theorem 5.3 (Almost-periodic interaction of scales) Let f satisfy (H1)–(H4) and
let Fj = Fεj ,δj

with Fε,δ as in (2.4). Let εj → 0 and let δj → 0 be such that (5.1)
holds. Suppose that δj = (kj + r)εj with kj ∈ N and r /∈ Q. Then there exists the
Γ-limit

Γ- lim
j→+∞

Fj(uj) =
∫

Ω

fhom(Du) dx + C

∫

Ω

|u|2 dx

on H1
0 (Ω), where

C =
∫

(0,1)n

aq(x) dx . (5.7)

Proof. The sequence ϕN
j defined in (4.14) is bounded in L∞(Ω); hence, up

to subsequences, there exists ϕN ∈ L∞(Ω) such that ϕN
j ⇀∗ ϕN in L∞(Ω) as

j → +∞. In order to identify the limit ϕN , it suffices to test it against characteristic
functions of n-cubes. Hence, if we prove that

∫

A

ϕN
j dx → Ln(A)C (5.8)

for every n-cube A, we have ϕN = C.
We define

ϕ̃N
j =

∑

i∈Zj

δn
j

Mn

εn
j

ϕN,j(
xδ

i

εj
)χQ ε

M
(xδ

i
)+Zn ,

where
Q ε

M
(xδ

i ) = xδ
i +

(
− εj

M
,
εj

M

)n

.

Note that also ϕ̃N
j ⇀∗ ϕN in L∞(Ω). By the continuity of ϕN,j

∣∣∣ϕN,j

(xδ
i

εj

)
− ϕN,j

( x

εj

)∣∣∣ ≤ ω
( 1

M

)

if x ∈ Q ε
M

(xδ
i ) + Zn; hence, we study the weak∗ convergence of

x 7→
∑

i∈Zj

δn
j

Mn

εn
j

ϕN,j

( x

εj

)
χQ ε

M
(xδ

i
)+Zn(x) .

Let A be an n-cube with edges parallel to the coordinate axes and of side length
l, we compute

∫

A

∑

i∈Zj

δn
j

Mn

εn
j

ϕN,j

( x

εj

)
χ

Q 1
M

(
xδ

i
εj

)+Zn

( x

εj

)
dx
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= εn
j

∫
1

εj
A

∑

i∈Zj

δn
j

Mn

εn
j

ϕN,j(z)χQ 1
M

( x
εj

)+Zn(z) dz

= [(l/εj)− 1]nεn
j

∫

(0,1)n

ϕN,j(z)
∑

i∈Zj

δn
j

Mn

εn
j

χ
Q 1

M
(

xδ
i

εj
)+Zn

(z) dz

+εn
j

∫

Rj

ϕN,j(z)
∑

i∈Zj

δn
j

Mn

εn
j

χ
Q 1

M
(

xδ
i

εj
)+Zn

(z) dz, (5.9)

where we have decomposed (1/εj)A as the union of [(l/εj) − 1]n unit cubes and
of a set Rj , with Ln(Rj) ≤ 2n(l/εj)n−1.

By an application of Birkhoff’s Theorem (see e.g. [14]) as in [5] Appendix A
and (5.9) we deduce

lim
j→+∞

∫

A

∑

i∈Zj

δn
j

Mn

εn
j

ϕN,j

( x

εj

)
χQ εj

M

(xδ
i
)+Zn(x) dx

= Ln(A)
∫

(0,1)n

aq
N (z) dz

∫

(0,1)n

χQ 1
M

(z)Mn dz = Ln(A)
∫

(0,1)n

aq
N (z) dz,

where aq
N is defined by (5.4). By (5.8) we have

ϕN =
∫

(0,1)n

aq
N (z) dz;

hence, by Lemma 3.2

lim
j

∫

Ω

ϕN
j ψj dx = ϕN

∫

Ω

|u|2 dx, (5.10)

where ψj is defined as in (3.14), and

lim
N→+∞

ϕN =
∫

(0,1)n

aq(x) dx . (5.11)

By (3.26)

lim inf
j→+∞

∫

Ej

f
( x

εj
, Dwj

)
dx ≥

∫

(0,1)n

aq(x) dx

∫

Ω

|u|2 dx (5.12)

and we obtain the Γ-liminf inequality.
Recalling (4.16), we choose ζi

j as in (4.13), and by (5.10), (5.11) we get the
Γ-limsup inequality.

Corollary 5.4 (Non-existence) If δ : (0,+∞) → (0,+∞) is a continuous function
such that

lim
ε→0

δ(ε) = lim
ε→0

ε

δ(ε)
= 0, and lim

ε→0

δn/(n−2)(ε)
ε

= q ∈ [0, +∞),

then the Γ-limit of the functionals Fε,δ(ε) as ε → 0 does not exist.

20



Remark 5.5 The case δj = εj (more generally, δj = sεj with fixed s > 0) is cov-
ered by Theorem 5.1 and Theorem 5.3. Note that the condition limj→+∞ δj/εj = 1
does not allow to conclude the existence of the Γ-limit of Fj as shown by Example
5.6 below.

Example 5.6 (Finely-tuned interplay between scales) We finally give an example
when the extra term in the limit is not described by a constant: if δj = εj + ε2

j

then
Γ- lim

j→+∞
Fj(u) =

∫

Ω

fhom(Du) dx +
∫

Ω

a(x)|u(x)|2 dx .

In fact, by the periodicity of ϕN,j defined as in (4.12)

∑

i∈Zj

δn
j |ui

j |2ϕN,j

(xδ
i

εj

)
=

∑

i∈Zj

δn
j |ui

j |2ϕN,j(iεj)

If we consider the function aN defined by (4.17), by condition (H4)

∣∣∣aN

(xδ
i

εj

)
− aN (xδ

i )
∣∣∣ ≤ ω(ε2

j ); (5.13)

hence, by (4.18) and (5.13), we have that

lim
j→+∞

∑

i∈Zj

δn
j |ui

j |2ϕN,j

(xδ
i

εj

)
= lim

j→+∞

∑

i∈Zj

δn
j |ui

j |2aN (xδ
i )

=
∫

Ω

aN (x)|u(x)|2 dx (5.14)

and
lim

N→+∞

∫

Ω

aN (x)|u(x)|2 dx =
∫

Ω

a(x)|u(x)|2 dx . (5.15)

Reasoning as in the proof of Theorems 5.1 and 5.3 we get the Γ-liminf and the
Γ-limsup inequalities.
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[5] A. Braides, V. Chiadò Piat and A. Defranceschi. Homogenization of almost
periodic monotone operators. Ann. Inst. H. Poincaré, Anal. Non Linéaire 9
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