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Abstract

In this paper we consider the quasi-static irreversible evolution of a connected network re-
lated to an average distance functional minimization problem. Our main goal is to extend some
geometric properties of optimal sets to the coercive Lp measure case, and determine whether a
branches is exhibited during the a minimizing movement evolution, thus changing the topology.
We would give a sufficient condition for the latter. Tools belonging to minimizing movements
and optimal transportation theory with free Dirichlet regions will be used extensively. Finally,
we will apply our results to find an upper bound for the branching time for a particular class of
configurations.
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1 Introduction

In 1993 De Giorgi in the work [11] introduced the concept of minimizing movement to study gen-
eral evolution problems endowed with some kind of variational structure. In this paper we will
consider the general quasi-static, rate independent, evolution for connected networks related to an
average distance functional.

Let Ω be a compact subset of R2, S ⊂ Ω a connected set with dimHS = 1 and given Hausdorff
measure, and a generic measure f ≥ 0; we define the main functional of this paper:

Ff (S) :=

∫
Ω

dist(x, S)df.

Compared to the Lebesgue measure, with copes superbly in relating measure theory quantities with
geometrical ones, the generic f measure losses most, if not all, of this capability. So in the paper one

∗Scuola Normale Superiore di Pisa, PhD student in Mathematics, e-mail: x.lu@sns.it

1



important point is to determine “how far” we can go, i.e. the minimum constraints for f required if
results were to hold.

Given a domain Ω and l ≥ 0, these sets will be used in all the paper:

Al :=
{
X ⊆ Ω : X compact, connected andH1(X ) ≤ l

}
, A :=

⋃
j≥0

Aj . (1.1)

While a priori both Al and A depend on the domain, to simplify notations, when the domain
is clear (e.g. in a statement in which the domain is given in the hypothesis) and there is no risk of
confusion we will omit this dependence.

Let us introduce a first result on the monotonicity of Ff :

Proposition 1.1. Given a domain Ω, a measure f ≥ 0, for any S1, S2 ∈ A, with S1 ⊆ S2, we have
Ff (S1) ≥ Ff (S2).

Proof. The proof is easy: as S1 ⊆ S2, for any x ∈ Ω we have

dist(x, S1) ≥ dist(x, S2)

and integrating on Ω ∫
Ω

dist(x, S1)df ≥
∫

Ω
dist(x, S2)df

which concludes the proof.

Moreover we see from the proof of Proposition 1.1 that if there exists Ω′ ⊆ Ω with f(Ω′) > 0 and
dist(x, S1) > dist(x, S2) for any x ∈ Ω′, then Ff (S1) > Ff (S2).

This result says that prescribing the maximum length is the same as prescribing the length, i.e.
for any measure f ≥ 0, for any h > 0

min
X∈Ah

Ff (X ) = min
H1(X ′)=h

Ff (X ′)

and
argminAh

Ff = argminAh\
⋃

0≤h′<h Ah′
Ff .

So in the paper, we can use these two constraints indifferently.

We aim to extend some results concerning geometric properties of optimal sets (for instance
see [6], [7] and [8]) to the more general measures, and investigate the topological behavior of the
minimizing movement evolution process, thus extending results in [12] to this more general case.

We will work with a particular class of measures:

Definition 1.2. A non negative measure f is “coercive” if there exists cf ≥ 0 (the “coercivity constant”)
such that f ≥ cfL2.

This paper will be structured as follows:

• in Section 2 we will present some results concerning the geometric properties of optimal sets
(see [6], [7] and [8]), and extend them;
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• in Section 3 we will introduce the minimizing movement theory, and analyze whether a
branching behavior can happen;

• in Section 4 we will apply results from Section 3 to a particular class of configurations, thus
giving the branching time estimate in this case.

Notations

The most used in this paper will be:

• Ω to denote the domain,

• f to denote a coercive measure with f << L2

• Σ to denote the minimizing movement function,

• ε, δ, r, ρ to denote small positive number,

• l to denote generic positive number,

• pwill be used most to denote the summability class of measures, and q the conjugate exponent
of p,

• S to denote generic connected compact sets in the domain,

• S0 to denote the initial datum of an Euler scheme/minimizing movement,

• w(k, ·), w(k) (k ∈ N) to denote the (k + 1)-th set of an Euler scheme.

To avoid using excessive number of different notations, some symbols will be used in more sit-
uations: unless explicitly specified, if a notation is used in two different Definitions/ Propositions/
Lemma/ Theorems, there is no connection between them, so there is no risk of confusion. (E.g. for
the measure, we are not going to use f1 in one statement, f2 in another, f3 in another too ... , but
we will use f in all of them and it is implicitly assumed that there is no connection between them
unless explicitly specified.)

The only notable exceptions are

• Al (with l ≥ 0), and A: if there is a given domain Ω, they always denote the sets defined in
(1.1),

• Ff which stands for the average distance functional (with dependence on the measure f ),

• F will denote the average distance functional with Lebesgue measure,

• V (·) which stands for the Voronoi cell of the point.

We will work only domains which are closure of bounded, connected, open sets. Moreover,
when we will write F (X1 ∪ X2) (where X1,X2 ∈ A), we will assume implicitly that X1 ∪ S2 ∈ A
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2 Geometric properties

In this section we present some results concerning the geometrical properties of optimal sets, found
in [6], [7] and [8], and extend them to more general measures.

In most cases we will first recall the proof in the Lebesgue measure case, then try to generalize
it to more general non negative measures. The following definition may prove useful:

Definition 2.1. Given a domain Ω, S ∈ A a generic element, a non endpoint P ∈ S is “smooth” if there
exists r > 0 such that:

(1) there exists an homeomorphism φ : B(P, r) ∩ S −→ (0, 1);

(2) there exists an unique direction θ such that for any sequence Pn −→ P in B(P, r) the directions of the
line L(Pn, P ) converge to θ.

A subset of S is smooth is all its non endpoints are smooth.

First we present a lower bound for the gain in energy:

Proposition 2.2. Given a domain Ω, let be S ⊂ Ω be a connected set, if we add a segment λε to a smooth non
endpoint of S (withH1(λε) = ε), then the “gain” F (S)−F (Sε) is comparable with ε3/2, where Sε := S∪λε.

Fig. 1: All points in the shaded parabola Π, whose area is comparable with ε1/2, gain something in path.

Proof. Upon rescaling, the configuration can be brought to the following in figure, so all the compu-
tations can be done here.
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Fig. 2: For graphical purposes the borders are a bit larger, but the considered domain is [−1, 1]× [0, 1];

notice that X,Y , W,Z are not on the border, but they are the midpoints between the y axis
and the intersections of the border with y = ε and y = 1 respectively.

Adding such a segment to S, the gain is on the shaded region; if a point (x, y) can choose a
shorter path, then it must satisfy

dist((x, y), S ∪ λε) < dist((x, y), S)

thus
(x2 + (y − ε)2)1/2 < |y|,

which leads to

y >
x2

2ε
+
ε

2
.

Now we have to estimate its area: as we are doing our computation in the rectangle [−1, 1]× [0, 1] ⊂
R2, the parabola has boundaries defined by the last inequality and [−1, 1] × {1}. The intersections

between {(x, y) : y =
x2

2ε
+
ε

2
} and [−1, 1]× {1} are

x± := ±
√

2ε− ε2.

So the area of the shaded region is

2
√

2ε− ε2 −
∫ x+

x−
(
t2

2ε
+
ε

2
)dt =

2

3

√
2ε− ε2(2− ε).

The parabola contains the trapezium XYWZ, and H1(XY ) = ε, H1(WZ) =
√

2ε− ε2 and the
height is 1 − ε. The gain in path here is at least ε/2 (this minimum is attained on points X and Y ),
so the gain for the energy functional is at least

ε

2

1− ε
2

(ε+
√

2ε− ε2) ≥ ε3/2

8
,

so the choice K = 1/8 is acceptable.
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From the proof above we can see that given any h > 0, if we rescale all the configuration with
the transformation

x 7−→ xh, y 7−→ yh

then the same argument gives that the lower bound for the gain in energy scales by the factor h2.
All this is done under the Lebesgue measure. Now we study what happens with a more general

f measure:

Proposition 2.3. Given a domain Ω, let be S ∈ A, and a coercive measure f . Then there exists a non endpoint
such that adding a segment λε (withH1(λε) = ε small) here will cause a “gain” Ff (S)−Ff (Sε) = O(ε3/2),
where Sε := S ∪ λε.

Proof. The proof is very similar to the previous: as the trapezium XYWZ in Figure 2 has Lebesgue
measure O(ε1/2), the coercivity condition on f gives f(XYWZ) ≥ cf |XYWZ| = O(ε1/2), with cf
the coercivity constant. Then we follow the proof of the Lebesgue measure case.

The following results are similar to those found in [6], [7] and [8], extended to more general
measures.

Proposition 2.4. Let be Ω a given domain, l > 0 a fixed quantity, f a coercive measure, and Σopt ∈
argminAl

Ff . Then Σopt cannot contain a loop (a subset homeomorphic to S1).

Fig. 3: This is a simple representation of what happens if we remove the portion Λε.

Proof. Suppose that Σopt contains as subset E homeomorphic to S1. If we remove the portion Λε
from E (H1(Λε) = ε > 0), setting Eε := E\Λε we have that all the “loss” is concentrated on Γε
(the shaded region in Figure 1, which has Lebesgue measure no larger than εdiam(Ω)), as points
belonging to the rest will not change their distance to Σε. For the points in Γε their path can be
longer, but it is clear from triangle inequality

dist(x,Eε) ≤ dist(x,E) +H1(Λε)

so we have ∫
Ω

dist(x,Σε)df ≤
∫

Ω
dist(x,Σ)df + εf(Γε).

Now we have to estimate a lower bound for f(Γε): from Hölder inequality

f(Γε) ≤ ||f ||1/pLp(Γε)|Γε|
1/q
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and analyzing the infinitesimal orders,

f(Γε) ≤ o(1)O(ε1/q).

So imposing q ≤ 2, or equivalently p ≥ 2, will conclude the proof as Proposition 2.3 states that
adding such segment elsewhere the gain has order O(ε3/2).

But we want to analyze what happens if we go beyond L2: suppose that f is coercive. For each
portion Λε ⊂ E, the loss is concentrated on Γε = Γε(Λε), and if Λε ⊂ E, Λ′ε ⊂ E are similar portions
with empty intersection, their associated Γε are disjoint too. So we choice points {Xi}N1=1 ⊂ E such

that distE(Xk, Xk+1) = ε (distE is the geodesic distance on E) (it is clear that N =

[
H1(E)

ε

]
+ 1 is

enough), let be Lk the shortest portion ofE betweenXk andXk+1, andGk := {x ∈ Gk : dist(x,E) <
dist(x,E\Gk)}. As f does not charge Hausdorff one-dimensional sets, if all the cut loci Gj ∩ Gj+1

are f -negligible for any j, we have that

N∑
k=1

f(Gk) = f(

N⋃
k=1

Gk) = f(V (E))

so

min
1≤k≤N

f(Gk) ≤
f(V (E))

N
.

But N =

[
H1(E)

ε

]
+ 1, so

min
1≤k≤N

f(Gk) = O(ε)

and the loss (for Ff ) can be as low as comparable with ε2. Again Proposition 2.3 concludes the proof.

Proposition 2.5. Let Ω be a given domain, l > 0 a fixed quantity, f ∈ L
4
3 a coercive measure and let be

Σopt ∈ argminAl
Ff . Then Σopt cannot contain a cross (a subset homeomorphic to {x2 + y2 ≤ 1 : xy = 0}).

Fig. 4: Σε is obtained from Σopt by replacing the infinitesimal cross Λε with a slightly shorter Steiner graph.

Proof. Suppose that Σopt contains as cross Λε (H1(Λε) = ε > 0). If we remove the portion Λε from
Σopt, and replacing it with a Steiner graph Zε (a direct computation yields the existence of k > 0
such that H1(Zε) < kε) in order to keep the connection property, setting Σε := Σopt\Λε we have
that all the “loss” is concentrated on Γε (the shaded region in Figure 2, which has Lebesgue measure
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4
πε2), as points belonging to the rest will not change their distance to Σε. For the points in Γε their

path can be longer, but it is clear from triangle inequality

dist(x,Σε) ≤ dist(x,Σopt) +H1(Λε)

so we have ∫
Ω

dist(x,Σε)df ≤
∫

Ω
dist(x,Σopt)df + εf(Γε)

and applying Hölder inequality,
f(Γε) ≤ ||f ||1/pLp(Γε)|Γε|

1/q;

analyzing the orders we have

f(Γε) ≤ ||f ||1/pLp(Γε)O(ε
2
p ),

so hypothesis f ∈ Lp, p >
4

3
guarantees q < 4 and the “loss” in energy after removing Λε has

order ε1+2/q = o(ε3/2). Again, Proposition 2.3, which estimates from below the “gain” in energy
by adding such a portion δε whose length is H1(Λε) − H1(Zε) = O(ε) to Σopt, will conclude the
proof.

3 Evolution and branching

In this section we will present the branching problem for a quasi static irreversible minimizing
movement evolution, and conditions sufficient to force it at some time. First we recall the general
theory. A branching behavior is when some points (of the evolving set) increase its own multiplicity.

3.1 Minimizing movements

Let us start recalling briefly some notions about minimizing movements, in the abstract case.
Let be X a set, endowed with a convergence structure. Let be F a functional

F : [0, T ]×X ×X −→ R ∪ {±∞};

let us present the Euler scheme in the abstract case: given ε > 0 and X0 ∈ an initial datum, let be{
w(0) = X0

w(n+ 1) ∈ argmin F((n+ 1)ε, ·, w(n))

and let us consider the function uε : [0, T ] −→ X obtained by setting

uε(t) = w

([
t

ε

])
, (3.1)

with [·] denoting the integer part mapping.
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In our case, we are working with the space X = A endowed with the Hausdorff distance metric,
and our kinetic term is (with a given measure f )

F(t,X1,X2) :=

{
Ff (X1) if X2 ⊆ X1 and X1 ∈ At+H1(Σ0)

∞ otherwise
,

where Σ0 ∈ A is the initial datum.
So, given a positive time step η > 0 and an initial datum S0 ∈ A, our Euler scheme is{

w(0) = S0

w(n+ 1) ∈ argminH1(X )≤H1(S0)+(n+1)η,w(n)⊆XFf (X )
.

Let us continue with the general abstract case:

Definition 3.1. Given T > 0, the function u : [0, T ] −→ X is a minimizing movement associated with
initial datum u0 and kinetic term F , and we will write u ∈ MM(F , X, u0) if there exists a sequence εn ↓ 0
for which

∀t ∈ [0, T ] uεn(t)→ u(t).

In the following, when it is clear who are F , X, u0, we will say “u is a MM” instead of u ∈
MM(F , X, u0). Expression “rate independent” will be used to denote this case too.

It is not difficult to generalize the above procedure by dividing [0, T ] in finitely many arbitrary

non overlapping intervals. Namely, given a partitionB of [0, T ] (i.e. [0, T ] =

h⋃
i=0

[ti, ti+1]) we consider

the Euler scheme (with preassigned F , X, u0){
w(0) = u0

w(ti+1) ∈ argminF(ti+1, ·, w(ti))

and the function
uB(t) = w(ti) ∀t ∈ [ti, ti+1).

Definition 3.2. Given a time T > 0 the function u : [0, T ] −→ X is a general minimizing movement
associated with initial datum u0 and energy F , and we will write u ∈ GMM(F , X, u0) if there exists a
family of finite partition {Bn}∞n=0, with Bn becoming finer for n → ∞ (i.e. for any ε > 0 there exists n(ε)

such that for any i, n > n(ε) t
(n)
i+1 − t

(n)
i < ε, where Bn := {[t(n)

i , t
(n)
i+1]}h(n)

i=0 with 0 = t
(n)
0 < t

(n)
1 < · · · <

t
(n)
h(n)+1 = T ), such that

∀t ∈ [0, T ] uBn(t)→ u(t).

Back to our case, the first problem to deal with is the existence of limit functions, i.e. solutions of
the rate-independent problem. Firstly, notice that given a domain Ω, for any l > 0 the metric space
(Al, dH) (with Al defined in (1.1)) satisfies the following conditions:

• the convergence in (Al, dH) is sequentially compact;

• the irreversibility condition is compatible with the convergence;
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• every nondecreasing function ψ : R −→ (Al, dH) is continuous up to countably many points.

The first two conditions are easy to verify, while the third arises from the following argument:
consider a generic nondecreasing function ψ : R −→ (Al, dH), and suppose that it has discontinuity
points {xi}i∈I , with xi < xj when i < j. As ψ is nondecreasing, we can write

ψ(x1) ⊂ ψ(x2) ⊂ · · ·ψ(xi) ⊂ ψ(xi+1) ⊂ · · · ⊂ ψ(sup
i∈I

xi),

and passing to theH1 measures,

H1(ψ(x1)) < H1(ψ(x2)) < · · ·H1(ψ(xi)) < H1(ψ(xi+1)) < · · · < H1(ψ(sup
i∈I

xi)) <∞,

which is possible only if I is finite or countable at most.
Then the following result holds (we refer to [4] for further details about the proof):

Proposition 3.3. Under these three assumptions, every sequence {uεn}∞n=0 (as defined in (3.1)) of Euler
schemes has an accumulation point which is a MM (or GMM, depending on the context).

Similar to the Lebesgue measure case, for any measure f ≥ 0, any minimizing movement
Σ : [0, T ] −→ A, obtained as limit of of a sequence of Euler schemes Σεn : [0, T ] −→ A, verifies
Ff (Σ(t)) ≥ Ff (Σεn(t))−O(εn) for any t ∈ [0, T ].

3.2 Estimates

The next result is a lower bound estimate when adding length at an endpoint: we present first the
Lebesgue measure case, then we look for conditions on the measure f :

Proposition 3.4. Given a domain Ω, let S ∈ A be a smooth set, and let it have an endpointO which satisfies:

(∗′) there exist ρ, θ > 0 and a triangle T ′ with a vertex in O and sides ρ, ρ, ρ
√

2(1− 2 cos θ) (the order is
not relevant) that does not intersect S.

Then there exists ε0 such for any ε < ε0 adding a segment λε at O, with H1(λε) = ε in O is more
convenient that adding any connected set with same length at any non endpoint (i.e. the energy F gains more
in the former case).

Fig. 5: the presence of the shaded triangle T ′ makes adding at an endpoint more convenient than at a non endpoint
at least when the added portion has sufficient small length.
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Proof. Adding λε at a smooth non endpoint, as stated in Proposition 2.3, will decrease the energy
by a quantity comparable with ε3/2, and from the proof of Proposition 2.3, bounded by ε3/2diam Ω.
But adding it at O and in the shaded triangle, with ε small enough, will cause:

F (Sε)− F (S) ≤
∫

Ω
dist(x, Sε)dx−

∫
Ω

dist(x, S)dx ≤ −CεL2(T ).

Now we estimate a lower bound value forC: if we add the segment λε atO, along the bisector of the
marked angle in Figure 5 (whose value is θ), then all points on JKK ′J ′ (where J ′,K ′ are midpoints
of segment OJ and OK) will have a gain in path to S at least

ρ

2
−
√
ρ2

4
− ερ

2
cos

θ

2
≈ ε cos

θ

2
−O(ε2) (3.2)

as this is the gain of points on OJ and OK , and points inside gain even more. Notice that

ε cos
θ

2
−O(ε2) >

ε

2
cos

θ

2

for any ε <
ρ

2
cos

θ

2
, the total gain in energy is not less than

ε

2
cos

θ

2
multiplied by the area of trapez-

ium JKK ′J ′, i.e.
3

8
ε cos

θ

2
L2(T ′).

So for ε such that
3

8
ε cos

θ

2
L2(T ′) > ε3/2diam Ω, i.e.

ε <

3 cos
θ

2
L2(T ′)

8diam Ω


2∧(

ρ

2
cos

θ

2

)

we have that adding λε to O is more convenient than adding it at an non endpoint.

Notice that in the entire proof few points relies on the fact that we are working with the Lebesgue
measure:

• The first point is when we state that the gain by adding at a non endpoint is comparable
with ε3/2: for the general case, as we are considering measures f ∈ Lp coercive, we have that
the lower bound estimate holds without problem. For the upper bound, recalling the proof of
Proposition 2.3, the gainO(ε3/2) is due to the fact that the gain in path isO(ε) and the parabola
on which this gain is concentrated has Lebesgue measure O(ε1/2). So in the general case, with
coercive measure f ∈ Lp, Hölder inequality yields (for any f -measurable set Y )

f(Y ) ≤ ||f ||1/pLp(Y )L
2(Y )1/q.

So applying this result to the parabola Π (found in the proof of Proposition 2.3) on which the
gain is concentrated, we have
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f(Π) ≤ ||f ||1/pLp(Π)L
2(Π)1/q,

and analyzing the orders,
f(Π) ≤ ||f ||1/pLp(Π)O(ε

3
2q ).

Then the gain for Ff has order O(ε
1+ 3

2q )||f ||1/pLp(Π), so for any q <∞ (thus p > 1) we have

O(ε
1+ 3

2q )||f ||1/pLp(Π) = o(ε).

• The second point is when we estimate the gain by adding length at an endpoint satisfying
condition (∗′), and precisely when we compute the area of the trapezium JKK ′J ′: as the gain
in path is not dependent on the measure, and we are considering coercive measures f , we
have that the estimate O(ε) for the gain in energy now becomes a lower bound estimate.

So combining the above two points, we have:

Proposition 3.5. Given a domain Ω, let S ∈ A be a smooth set, f ∈ Lp a coercive measure with p ∈ (1,∞],
and let it have an endpoint O which satisfies:

(∗) there exist ρ, θ > 0 and a triangle T ′ with a vertex in O and sides ρ, ρ, ρ
√

2(1− 2 cos θ) (the order is
not relevant) that does not intersect S.

Then there exists ε0 such for any ε < ε0 adding a segment λε at O, with H1(λε) = ε in O is more
convenient that adding any connected set with same length at any non endpoint (i.e. the energy Ff gains
more in the former case).

This result provides a range of configurations in which adding at endpoints is better than adding
elsewhere, thus discouraging branching behaviors. But as we will see in the following section, there
are situations not satisfying these hypothesis, and definitely branching behaviors may appear.

3.3 Changing topology

Now we investigate all the situations that may appear during the evolution. Given an initial datum
S0 ∈ A, Σ : [0, T ] −→ A a minimizing movement function, a time T0 ∈ [0, T ], the following behaviors
are possible:

(1) Σ evolves by adding length at endpoints, i.e. there exists δ > 0 such that given t ∈ (T0, T0 + δ),
any simple point of Σ(T0) is simple in Σ(t) too, any triple point of Σ(T0) is triple in Σ(t) too,
etc...;

(2) Σ evolves by adding length at a non endpoint, i.e. there exists a point of Σ(T0) which does not
verify the condition stated in choice (1) for any Σ(t), t > T0.
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In order to provide an upper bound to the branching time, we need to establish when choice (2)
(which corresponds to a new branching appearing) becomes necessary preferable to choice (1).

We try to estimating the required “free space” (i.e. the minimum value for Voronoi cells of its
endpoints) to evolve without changing topology.

Proposition 2.3 provides an estimate which is too weak, as the gain obtained in that way scales
like ε3/2 for ε small enough, and it is not sufficient to force a branching behavior. Something stronger
is required.

The following definition is useful:

Definition 3.6. Given a domain Ω, S ∈ A a generic element, a non endpoint P ∈ S is “angular” if there
exists r > 0 such that:

(1) there exists an homeomorphism ϕ : B(P, r) ∩ S −→ (0, 1);

(2) there exists exactly two unitary vectors θ1, θ2 such that for any sequence Pn −→ P in B(P, r),
calling v(PnP ) the vector starting in Pn and pointing toward P , the accumulation points of set{

v(PnP )

||v(PnP )||

}∞
n=0

are in {θ1, θ2}, and there exist sequences
{
P

(1)
n

}∞
n=0

,
{
P

(2)
n

}∞
n=0

such that{
v(P

(1)
n P )

||v(P
(1)
n P )||

}
−→ θ1 and

{
v(P

(2)
n P )

||v(P
(2)
n P )||

}
−→ θ2.

Notice that geometrically, a point P is angular if the tangent vectors are not collinear here (see
Figure 6).

Lemma 3.7. Given a domain Ω, let S ∈ A be an arbitrary element, and suppose there exists Q ∈ S angular
and let be δ > 0 such that B(Q, δ) ∩ S is homeomorphic to (0, 1). Then the Voronoi cell V (Q) contains a
triangle TQ with sides ρQ > 0 and angle Q̂ > 0.

Fig. 6: All the points in the shaded area belong to V (Q), and it contains a triangle.
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For the proof we refer to [12].
The next result is a condition on the branching behaviors for Euler schemes.

Proposition 3.8. Given a domain Ω, a coercive measure f , let S(1)
0 ∈ A be a generic element, T a positive

time and ε > 0 a (small) positive time step, let us consider the Euler scheme{
w(0) := S

(1)
0

w(k) ∈ argminH1(X ′)≤H1(S
(1)
0 )+kε, w(k−1)⊆X ′Ff (X ′)

in the time interval [0, T ].
Suppose that there exist P0 ∈ S(1)

0 angular and η > 0 such that B(P0, η) ∩ (w(k)\w(0)) = ∅ for any k.
Then there is an upper bound T εmax such that T > T εmax forces a branching behavior.

Proof. As P0 is angular, Lemma 3.7 gives the existence of a similar TP0 which verifies condition (∗)
of Proposition 3.5 for some positive ρ, θ. So from the estimate of Proposition 3.5 there is a constant
K(P0) > 0 (depending only on ρ, θ and the coercivity constant of f but not on ε) such that for any j

min
H1(X ′)≤H1(w(j−1))+vε, w(j−1)⊆X ′

Ff (X ′) ≤ Ff (w(j − 1))−K(P0)ε,

as this gain is achieved by simple adding a segment Segε ⊂ TP (H1(Segε) = ε) along the bisector of
P̂0, which would create a branching behavior.

In order to avoid this, for any d w(d) must be obtained from w(d− 1) by adding length at points
of ext(w(d− 1)), and the gain in energy must be more than K(P0)ε, i.e.

Ff (w(d)) ≤ Ff (w(d− 1))−K(P0)ε ∀d = 1, · · · ,
[
T

ε

]
which leads to

Ff (w(d)) ≤ Ff (w(0))− dK(P0)ε ∀d = 1, · · · ,
[
T

ε

]
and finally, for d =

[
T

ε

]
,

Ff (

[
T

ε

]
) ≤ Ff (w(0))−

[
T

ε

]
K(P0)ε.

As
T

ε
− 1 ≤

[
T

ε

]
≤ T

ε
, this leads to

0 ≤ Ff (

[
T

ε

]
) ≤ Ff (w(0))− (T − ε)K(P0),

which forces

T ≤ ε+
Ff (S

(1)
0 )

K(P0)

and putting T εmax := ε+
Ff (S

(1)
0 )

K(P0)
completes the proof.

14



Notice that this result holds definitely for ε > 0 small enough, and there is no difficulty in
passing to the limit ε→ 0, so it can be applied to the rate independent case:

Theorem 3.9. Given a domain Ω, a coercive measure g, let S(2)
0 ∈ A be a generic element, T a positive time,

and Σ : [0, T ] −→ A a minimizing movement obtained as limit of the Euler schemes with time step {εn} ↓ 0{
w(0, n) = w(0) = S

(2)
0

w(k, n) ∈ argminH1(X ′)≤H1(S
(2)
0 )+kεn, w(k−1,n)⊆X ′Fg(X

′)
.

Suppose that there exist P1 ∈ S(2)
0 angular and η′ > 0 such that B(P1, η) ∩ (Σ(T )\S(2)

0 ) = ∅. Then
there is an upper bound Tmax (depending only on geometrical quantities) such that T > Tmax forces a no
branching behavior.

Proof. As (Σ(T )\S(2)
0 ) ∩ B(P1, η

′) = ∅, limn→∞(w

([
T

εn

]
, n

)
\S(2)

0 ) ∩ B(P1, η
′) = ∅ so there exist n̄

such that for any n ≥ n̄

lim
n→∞

(w

([
T

εn

]
, n

)
\S(2)

0 ) ∩B(P1,
η′

2
) = ∅.

By Lemma 3.7 there exists TP1 ⊆ V (P1), and for any εk hypothesis of Proposition 3.8 are verified.
Thus there exists a constant K ′(P1) such that

Fg(w(d, n)) ≤ Fg(w(d− 1, n))−K ′(P1)ε ∀d = 1, · · · ,
[
T

εn

]
holds for any n, thus

0 ≤ Fg(
[
T

εn

]
) ≤ Fg(w(0))− (T − εn)K ′(P1)

holds for any n, and the upper bound (given by Proposition 3.8)

T εnmax = εn +
Fg(S

(2)
0 )

K ′(P1)

holds for any n; passing to the limit n −→∞, it reads

Tmax =
Fg(S

(2)
0 )

K ′(P1)

for the rate independent case, which concludes the proof.

4 Applications

In this section we give two examples of branching behavior, and two ways to estimate this.
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4.1 Energy estimate

In Theorem 3.9 we have given an upper bound estimate for the branching time under that particular
configuration: now we present an explicit example.

In order to apply this result, its hypothesis must be verified: so given a domain Ω, a coercive
measure f1, let Sini0 be the initial datum, and suppose there exist P0 ∈ Sini0 angular and ξ > 0 such
that B(P0, ξ) ∩ Sini0 is homeomorphic to (0, 1).

Moreover, we must ensure that this ball B(P0, ξ) is not visited, and one way to do this is impos-
ing that any visiting here must cause a branching behavior. So we choose a particular Sini0 .

Suppose that

• there exist P0 ∈ Sini0 angular and let be ξ > 0 such that B(P0, ξ) ∩ Sini0 is homeomorphic to
(0, 1);

• there exist a closed injective path γ : [0, 1] −→ Ω such that γ([0, 1]) ⊆ Sini0 : the domain Ω
is now divided in two regions, Ω+ and Ω− with Ω = Ω+ ∪ Ω− (they are the two connected
components of Ω\γ([0, 1]), and they correspond to the “interior” and the “exterior” part of
γ([0, 1]) – the order is not relevant – as given by the Jordan Curve Theorem);

• triangle TP0 ⊂ V (P0)∩B(P0, ξ) (whose existence is given by Lemma 3.7) verifies |TP0∩Ω+| > 0,
and ext(Sini0 ) ⊂ Ω−.

The main estimate we are going to present here is Theorem 4.2, whose proof requires a series of
preliminary lemma.

In the rest of this subsection we will suppose that Ω− is large enough (both in diameter and
in measure) so that all computations can be done without considering constraints imposed by
diam(Ω−), f ′(Ω−) (which can only lower the branching time).

Consider now a minimizing movement Σ : [0, T ] −→ A, limit of Euler schemes {Σεn}∞n=0 (with
time steps {εn}∞n=0 ↓ 0): {

w(0, n) = w(0) := Sini0

w(k, n) ∈ argminH1(X ′)≤H1(Sini
0 )+kεn

Ff1(X ′)
,

Σεn(t) := w

([
t

εn

]
, n

)
, Σ(t) = lim

n→∞
Σεn(t)∀t ∈ [0, T ].

The notations introduced (except mute counters) will have the same meaning in all this subsec-
tion.

Lemma 4.1. If there exist k, n such that (w(k, n)\Sini0 ) ∩ Ω+ 6= ∅, but (w(k − 1, n)\Sini0 ) ∩ Ω+ = ∅, this
means w(k, n) is not homeomorphic to w(k − 1, n).

For the proof we refer to [12].
Now we can present an upper bound estimate for the branching time.

Theorem 4.2. Under these hypothesis, there exists a time T̄ such that if T > T̄ , then there exists al least two
sets in {Σ(t)}t∈[0,T ] which are not homeomorphic, thus the branching time is not larger than T̄ .
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Proof. From Lemma 4.1 we see that for any k, n, w(k, n)\w(0) must be in Ω− ∪ γ([0, 1]), while TP0 ∩
Ω+ ⊆ V (P0) has positive measure, so for Theorem 3.9 we have that there exists a constant K(P0)
such that it is not possible to evolve beyond time

Ff1(Sini0 )

K(P0)

without branching.
Now we computeK(P0) from geometric quantities: let us call P1, P2 the other two vertex of TP0 ,

and cf1 teh coercivity constant of f1: by reducing the measure of the triangle we can suppose that
H1(P0P1) = H1(P0P2), and let be φ the value of P̂1P0P2:

using the same argument found in the proof of Proposition 3.5 ( the computation about the lower
bound estimate) the choice

K(P0) := cf1
1

8
|TP0 | cos

φ

2

is acceptable, so the upper bound estimate for the branching time is in this case

T̄ :=
8F (Sini0 )

cf1 |TP0 | cos φ2
.

The above methods relies on the fact that in this configuration there is a lower bound for the
gain (for the functional Ff1) at each step in each Euler scheme, and as this bound is uniform, we are
able to pass to the limit εn → 0 and obtain an estimate for the rate independent case.

4.2 Geometric-energy estimate

Now we present a sharper upper bound estimate for the branching time, based on geometrical
arguments and energy considerations. The notations used in the previous subsection are null here.

Lemma 4.3. Given a domain Ω, a measure f2 ≥ cf2L2 (cf2 > 0), an element S1 ∈ A, and suppose that there
exists Q ∈ Ω and R > 0 such that the ball B(Q,R) ∩ S = ∅. Then

Ff2(S1) ≥
4cf2πR

3

27
.

Proof. The proof is easy: asB(Q,R)∩S1 = ∅, for any r < R all points x ∈ B(Q, r) verify dist(x, S1) ≥
R− r, so

Ff2(S1) =

∫
Ω

dist(x, S1)df2 ≥
∫
B(Q,r)

dist(x, S1)df2 ≥ cf2(R− r)πr2.

Differentiating the expression cf2(R − r)πr2, its maximum value is attained by r =
2

3
R, which

corresponds to

Ff2(S1) ≥
4πcf2

27
R3

and the proof is complete.
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Lemma 4.4. Given a domain Ω, an element S2 ∈ A, a pointQ′ ∈ S2 and suppose that its Voronoi cell V (Q′)
has |V (Q′)| > 0. Then there exists Q̄ ∈ Ω and R̄ > 0 such that B(Q̄, R̄) ∩ S2 = ∅.

For the proof we refer to [12].
We recall here that given S′ ∈ A (in a given domain Ω), ε > 0 and Hε ∈ Aε\

⋃
0≤ε′<ε

Aε′ , adding

Hε to a generic point U ∈ S′ the gain in energy is (upon higher order terms)

F (S′ ∪Hε) ≥ F (S′)− ε|V (U)|. (4.1)

Now we consider a configuration similar to the one in the previous subsection:
given a domain Ω, a coercive measure f ′ ≥ c′L2 with c′ > 0, let Sdat0 be the initial datum, and

there exist

• P ′0 ∈ Sdat0 angular and let be ξ′ > 0 such that B(P ′0, ξ
′) ∩ Sdat0 is homeomorphic to (0, 1);

• a closed injective path γ∗ : [0, 1] −→ Ω such that γ∗([0, 1]) ⊆ Sdat0 : the domain Ω is now divided
in two regions, Ω+ and Ω− with Ω = Ω+ ∪ Ω− (they are the two connected components of
Ω\γ∗([0, 1]), and they correspond to the “interior” and the “exterior” part of γ∗([0, 1]) – the
order is not relevant – given by the Jordan Curve Theorem);

• triangle TP ′0 ⊂ V (P ′0) ∩ B(P ′0, ξ
′) (its existence is given by Lemma 3.7) verifies |TP ′0 ∩ Ω+| > 0,

and ext(Sdat0 ) ⊂ Ω−.

Notice that Sdat0 is very similar to Sini0 , and results as Lemma 4.1 holds.
In the rest of this subsection we will suppose that Ω− is large enough (both in diameter and

in measure) so that all computations can be done without considering constraints imposed by
diam(Ω−), f ′(Ω−).

Given a positive time T , consider a minimizing movement Σ : [0, T ] −→ A obtained as limit of
Euler schemes {Σε′n}

∞
n=0 : [0, T ] −→ A (with time steps {ε′n}∞n=0 ↓ 0):{

w(0, n) = w(0) := Sdat0

w(k, n) ∈ argminH1(S′′)≤H1(Sdat
0 )+kε′n

Ff ′(S
′′)

,

Σε′n(t) := w

([
t

ε′n

]
, n

)
, Σ(t) = lim

n→∞
Σε′n(t)∀t ∈ [0, T ].

The main estimate here is Theorem 4.5.
The notations introduced (except mute counters like k and n) will have the same meaning in the

following of this subsection.
Applying the estimate of Proposition 3.5, we have a positive constant K(P ′0) such that for any

n, k
min

H1(X ′′)≤w(k−1,n)+kε′n, w(k−1,n)⊂X ′′
Ff ′(X ′′) ≤ Ff ′(w(k − 1, n))−K(P ′0)ε′n

thus
Ff ′(w(k, n)) ≤ Ff ′(w(0))− kK(P ′0)ε′n (4.2)
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i.e. ∀t ∈ [0, T ]

Ff ′(Σε′n(t)) := Ff ′(w(

[
t

ε′n

]
, n)) ≤ Ff ′(Sdat0 )−

[
t

ε′n

]
K(P ′0)ε′n ≤ Ff ′(Sdat0 )− (

t

ε′n
+ 1)K(P ′0)ε′n.

Passing to the limit n −→∞, this reads

Ff ′(Σ(t)) := Ff ′(S
dat
0 )− lim

n→∞
Ff ′(w(

[
t

ε′n

]
, n)) ≤ Ff ′(Sdat0 )− lim

n→∞

[
t

ε′n

]
K(P ′0)ε′n

≤ Ff ′(Sdat0 )− lim
n→∞

(
t

ε′n
+ 1)K(P ′0)ε′n = Ff ′(S

dat
0 )− tK(P ′0)

.

To avoid a branching behavior, there exists an endpoint P ∗ of Σ(t) with |V (P ∗)| ≥ K(P ′0), then
for Lemma 4.4 there exists a point X ∈ Ω− such that the ball

B(X, v) ∩ Σ(t) = ∅, v =

√
K(P ′0)

π
,

and Lemma 4.3 gives

Ff ′(Σ(t)) ≥ 4c′

27

√
K(P ′0)3

π
.

But we must have

Ff ′(Σ(t)) ≤ Ff ′(Sdat0 )− tK(P ′0)

and combining the above inequalities,

Ff ′(S
dat
0 )− tK(P ′0) ≥ 4c′

27

√
K(P ′0)3

π

which gives t ≤
Ff ′(S

dat
0 )

K(P ′0)
− 4c′

27

√
K(P ′0)3

π
. So we have proved the following result:

Theorem 4.5. For this configuration, with the above notations, an upper bound for the branching time is
given by

Tmax :=
Ff ′(S

dat
0 )

K(P ′0)
− 4c′

27

√
K(P ′0)3

π
.

Notice that the partition Ω+ ∪ Ω− is crucial as Lemma 4.1 makes impossible passing from one
region to another without changing topology, so it prevents Σ(t) from ever visit T (P ′0)∩Ω+ without
branching behaviors.
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