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Abstract

We study the sequence un, which is solution of −div(a(x,∇un)) +
Φ′′(|un|) un = fn + gn in Ω an open bounded set of RN and un = 0
on ∂Ω, when fn tends to a measure concentrated on a set of null
Orlicz-capacity. We considere the relation between this capacity and
the N -function Φ, and prove a non-existence result.

1 Introduction

Let Ω be a bounded open subset of RN , N > 2, we study the non-existence
of a solution for the following nonlinear elliptic problem (that is our model
problem) 

−∆u+ |u|q−1 u = µ in Ω,

u = 0 on ∂Ω,
(1.1)

in the following sense : let fn be a sequence of smooth functions that tends
to a measure µ in a sense that we will precise. Let un be the sequence of
solutions of 

−∆un + |un|q−1 un = fn in Ω,

un = 0 on ∂Ω,
(1.2)

we will consider the case, with respect to the measure µ and the value of q,
where un converge to a function u that does not satisfy (1.1).

1Dipartimento di Costruzioni e Metodi Matematici in Architettura, Università di
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Let us, first, recall the following result due to H. Brezis (see [9]). Let Ω
be a bounded open subset of RN , N > 2, with 0 ∈ Ω, let f be a function in
L1(Ω), and let fn be a sequence of L∞(Ω) functions such that

lim
n→+∞

∫
Ω\Bρ(0)

|fn − f | dx = 0 , ∀ρ > 0 .(1.3)

Let un be the sequence of solutions of (1.2) with q ≥ N
N−2

. Then un converges
to the unique solution u of the equation −∆u+ |u|q−1 u = f .

If f = 0, an example of functions fn satisfying condition (1.3)
is that of a sequence of nonnegative L∞(Ω) functions converging in the

weak∗ topology of measures to δ0, the Dirac mass concentrated at the origin.
In this case, un converges to zero. The result of [9] is strongly connected with
a theorem by P. Bénilan and H. Brezis (see [9]), which states that the problem
−∆u+ |u|q−1 u = δ0 has no distributional solution if q ≥ N

N−2
. On the other

hand (see [7] and [9]), if q < N
N−2

, then there exists a unique solution of
−∆u+ |u|q−1 u = δ0 in Ω,

u = 0 on ∂Ω.
(1.4)

Thus the preceding theorem can be seen as a nonexistence result for this
problem, in the sense that if one looks for solutions obtained for approxima-
tion of (1.4), then one does not find a “reasonable” solution.

The “dividing range” N
N−2

basically depends on two facts: the linearity
of the laplacian operator (i.e., the dependence of order 1 with respect to
the gradient of u), and the fact that the Dirac δ0 is a measure which is
concentrated on a point: a set of zero N -capacity. In the case q ≥ N

N−2
, which

is equivalent to 2q′ ≤ N , δ0 is not “absolutely continuous” with respect to
the N -capacity and hence also to the 2q′-capacity and there is no solution
of (1.4). If q < N

N−2
, which is equivalent to 2q′ > N , δ0 is “absolutely

continuous” with respect to the 2q′-capacity and there is a solution of (1.4).

This fact is strictly related to the result of [14], where a necessary and
sufficient condition for the existence of a solution is given. More precisely,
the equation 

−∆u+ |u|q−1 u = µ in Ω,

u = 0 on ∂Ω,
(1.5)
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has a solution if and only if µ belongs to L1(Ω)+W−2,q(Ω). If µ is a measure
that is “absolutely continuous” with respect to the (2, q′)-capacity, which is
defined in Definition 2.4, then µ belongs to L1(Ω) +W−2,q(Ω) and (1.5) has
a solution. Moreover in [5], the singularities for (1.5) are removable if and
only if µ is “absolutely continuous” with respect to the (2, q′)-capacity.

In order to point out the relations between these results and capacities,
we recall that we have (according to Gagliardo-Nirenberg inequalities)

cap2,q′(E) = 0 =⇒ cap1,2q′(E) = 0 ,

and that, by [1], Theorem 5.5.1, we have, for every set E,

cap1,2q′+ε(E) = 0 =⇒ cap2,q′(E) = 0 , ∀ε > 0 .

The result of [9] has been extended to nonlinear operators of Leray-Lions
type and measure concentrated on sets of null r-capacities in [20] :

Theorem 1.1 Let p < r ≤ N , and let λ = λ+ − λ− be a bounded Radon
measure concentrated on a set E of zero r-capacity. Let fn = f⊕n − f	n (with
f⊕n and f	n nonnegative funtions) be a sequence of L∞(Ω) functions that
converges to λ in the sense

lim
n→+∞

∫
Ω
f⊕n ϕdx =

∫
Ω
ϕdλ+ , lim

n→+∞

∫
Ω
f	n ϕdx =

∫
Ω
ϕdλ− ,

for every function ϕ which is continuous and bounded on Ω. Let g be
a function in L1(Ω), and let gn be a sequence of L∞(Ω) functions which
converges to g weakly in L1(Ω). Let

q >
r(p− 1)

r − p
,

and let un be the solution in W 1,p
0 (Ω) of the problem

−div(a(x,∇un)) + |un|q−1 un = fn + gn in Ω,

un = 0 on ∂Ω.
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Then, as n tends to infinity, |∇un|p−1 converges strongly to |∇u|p−1 in Lσ(Ω),
for every σ < pq

(q+1)(p−1)
, where u is the unique entropy solution of

−div(a(x,∇u)) + |u|q−1 u = g in Ω,

u = 0 on ∂Ω.
(1.6)

Moreover,

lim
n→+∞

∫
Ω
|un|q−1 un ϕdx =

∫
Ω
|u|q−1 uϕ dx+

∫
Ω
ϕdλ , ∀ϕ ∈ C0

c (Ω) .

Remark 1.2 Since this theorem deals with rather general operators and
measures, the concept of solution in the sense of distributions of problems
like (1.6) may not be convenient in order to have uniqueness of solutions.
Hence the notion of entropy solutions (see Definition 2.8) has been used.

In order to avoid the loss between q ≥ N
N−2

(see [9]) and q > N
N−2

(see
Theorem 1.1 with p = 2 and r = N) and between the 2q′-capacity and the
(2, q′)-capacity, we will extend the result of [20] to low order terms more
general that |u|q−1u in the context of Orlicz spaces. The best approach for
this new context will involve also the notion of Orlicz capacity. Such a notion
has been already introduced in literature (see [4]). In spite of this, we will
adopt a new equivalent definition (see Definition 2.5), which is closer to the
classical one used with Sobolev spaces.

2 The main results

2.1 Definitions

First let be the various definitions useful for understanding the results.

Definition 2.1 An N -function is a function Φ continuous on [0,∞[, strictly
increasing, convex, and such that limx→0 Φ(x)/x = 0, limx→∞ Φ(x)/x = +∞.
For our purposes we will assume also that Φ ∈ C1([0,∞[), Φ′ strictly
increasing, and

c1 min(sq1−1, sq2−1)Φ′(t) ≤ Φ′(st) ≤ c2 max(sq1−1, sq2−1)Φ′(t)(2.1)

Condition (2.1) means that the growth of Φ “lies between” that one of the
powers tq1 , tq2 (see Section 4).
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Definition 2.2 The N -function Φ belongs to ∆2 if there exist c > 0 and
t0 ≥ 0 such that

Φ(2t) ≤ cΦ(t) ∀t ≥ t0.

Definition 2.3 The complementary function of Φ, denoted by Φ̃, is defined
by

Φ̃(t) = sup
s≥0

[st− Φ(t)] ∀t ≥ 0

It can be proved that if Φ is an N -function, also Φ̃ is an N -function. If Φ′ is
strictly increasing, (Φ̃)′(t) = (Φ′)−1(t)∀t ≥ 0.

Let us recall that Ω is an open bounded set of RN . Let Φ satisfying
Definition 2.1. The Orlicz class LΦ(Ω) is defined by

LΦ(Ω) =
{
f ∈ L1

loc(Ω) :
∫
Ω

Φ(|f |)dx < +∞
}

The Orlicz class LΦ(Ω), equipped with the norm

‖f‖
Φ

= inf

{
k > 0 :

∫
Ω

Φ

(
|f |
k

)
dx ≤ 1

}

becomes the so-called Orlicz space, which is a reflexive Banach space whose

dual is LΦ̃(Ω). In the following we will assume that the reader is familiar
with the Orlicz space theory, deeply studied (for instance) in [17, 19, 22].

One can also define the Orlicz-Marcinkiewicz spaces by

MΦ(Ω) =
{
f ∈ L1

loc(Ω) : meas {f > t}Φ(t) is bounded
}

Definition 2.4 Let 0 < α < N and let r be a real number, with r > 1.
Let K be a compact subset of Ω. The (α, r)-capacity of K with respect to Ω
is defined as:

capα,r(K) = inf
{
‖u‖r

W α,r
0 (Ω)

: u ∈ C∞c (Ω), u ≥ χK

}
,

where χK is the characteristic function of K; we will use the convention
that inf ∅ = +∞. The (α, r)-capacity of any open subset U of Ω is then
defined by:

capα,r(U) = sup
{
capα,r(K), K compact, K ⊂ U

}
,
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and the (α, r)-capacity of any set E ⊂ Ω by

capα,r(E) = inf
{
capα,r(U), U open, E ⊂ U

}
.

We introduce now the following definition, which represents a generaliza-
tion of the previous one. We will see in Section 4 that this formulation is
equivalent to that one appearing in [4].

Definition 2.5 Let K be a compact subset of Ω. Let A satisfying Defini-
tion 2.1. The A-capacity of K with respect to Ω is defined as:

cap1,A(K) = inf
{
‖∇u‖

A
: u ∈ C∞c (Ω), u ≥ χK

}
,

where χK is the characteristic function of K; we will use the convention
that inf ∅ = +∞. The A-capacity of any open subset U of Ω is then defined
by:

cap1,A(U) = sup
{
cap1,A(K), K compact, K ⊂ U

}
,

and the A-capacity of any set E ⊂ Ω by

cap1,A(B) = inf
{
cap1,A(U), U open, E ⊂ U

}
.

Let p be a real number, with 1 < p < N , and let p′ be its conjugate Hölder
exponent (i.e., 1/p + 1/p′ = 1). Let a : Ω ×RN → RN be a Carathéodory
function (i.e., a(·, ξ) is measurable on Ω for every ξ in RN , and a(x, ·) is
continuous on RN for almost every x in Ω), such that the following holds:

a(x, ξ) · ξ ≥ α |ξ|p ,(2.2)

|a(x, ξ)| ≤ β [b(x) + |ξ|p−1] ,(2.3)

[a(x, ξ)− a(x, η)] · (ξ − η) > 0 ,(2.4)

for almost every x in Ω, for every ξ, η in RN , with ξ 6= η, where α and β are
two positive constants, and b is a nonnegative function in Lp′(Ω).

Under assumptions (2.2), (2.3) and (2.4), u 7→ −div(a(x,∇u)) is a uni-
formly elliptic, coercive and pseudomonotone operator acting from W 1,p

0 (Ω)
to its dual W−1,p′(Ω), and so it is surjective (see [18]).

Let us denote C(Ω) the space of the real valued continuous functions on
Ω, equipped with the topology of uniform convergence on compact subsets
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of Ω. If K is compact, C(K) is usually normed with the supremum norm,
‖ · ‖

L∞(K)
. Cc(Ω) is the subset of C(Ω) consisting of functions with compact

support contained in Ω. The dual of the space Cc(Ω) is denoted by M(Ω),
the bounded measures on Ω. The set of positive measures on Ω, is denoted
by M+(Ω). For K compact, the symbol M+(K) has analogous meaning;
such space will be used mainly in some intermediate auxiliary statements in
Section 4.

Let λ be a bounded measure on Ω. We say that λ is concentrated on
a set E if λ(B) = λ(B ∩ E) for every Borelian subset B of Ω. Thanks to
the Hahn decomposition theorem, given a signed Radon measure λ on Ω,
we can decompose it as the difference of two nonnegative, mutually singular,
measures:

λ = λ+ − λ− .

If λ is concentrated on a set E, as a consequence of the fact that λ+ and λ−

are mutually singular, we have that λ+ is concentrated on a set E+, λ− is
concentrated on a set E−, and E+ ∩ E− = ∅.

Definition 2.6 Let λ be a measure, decomposed as λ+ − λ−, and let be
approximations fn of λ made in the following way: fn = f⊕n − f	n , where
{f⊕n } and {f	n } are sequences of nonnegative L∞(Ω) functions such that

lim
n→+∞

∫
Ω
f⊕n ϕdx =

∫
Ω
ϕdλ+ , lim

n→+∞

∫
Ω
f	n ϕdx =

∫
Ω
ϕdλ− ,(2.5)

for every function ϕ which is continuous and bounded on Ω.

We explicitly remark that f⊕n and f	n may not be the positive and negative
parts of fn (that is to say, their supports may not be disjoint). Observe that
choosing ϕ ≡ 1 in (2.5) we obtain

‖f⊕n ‖L1(Ω)
≤ c , ‖f	n ‖L1(Ω)

≤ c .(2.6)

Since we will deal with right hand side which are some measures, the
solution may not be in L1

loc(Ω), thus there distributional gradient may not
be defined. Thus we will use the following definition of “gradient”.

Before this, we define, for k > 0,

Tk(s) = max(−k,min(k, s)) , ∀s ∈ R ,

the truncature at levels ±k.
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Definition 2.7 Let u be a measurable function on Ω such that Tk(u) belongs
to W 1,p

0 (Ω) for every k > 0. Then (see [6], Lemma 2.1) there exists a unique
measurable function v : Ω → RN such that

∇Tk(u) = v χ{|u|≤k} , almost everywhere in Ω, for every k > 0.

We will define the gradient of u as the function v, and we will denote it by
v = ∇u. If u belongs to W 1,1

0 (Ω), then this gradient coincides with the usual
gradient in distributional sense.

For right hand side which are some measures or L1(Ω) function, there is
no uniqueness of distributional solutions of nonlinear elliptic equations thus
we will use the following notion of entropy solution (see [6]).

Definition 2.8 Let g be a function in L1(Ω) and let Φ be an N -function. A
measurable function u such that Tk(u) belongs to W 1,p

0 (Ω) for every k > 0 is
an entropy solution of the equation

−div(a(x,∇u)) + Φ′′(|u|)u = g in Ω,

u = 0 on ∂Ω,
(2.7)

if Φ′′(|u|)|u| belongs to L1(Ω), and∫
Ω
a(x,∇u) · ∇Tk(u− ϕ) dx+

∫
Ω

Φ′′(|u|)uTk(u− ϕ) dx ≤
∫
Ω
g Tk(u− ϕ) dx ,

for every ϕ in W 1,p
0 (Ω) ∩ L∞(Ω), and for every k > 0.

We recall the following result (see [6], Theorem 6.1, Theorem 5.1 and
Corollary 4.3).

Theorem 2.9 Let g be a function in L1(Ω). Then there exists a unique
entropy solution of (2.7). Moreover this solution is also a solution of (2.7) in
the sense of distribution.
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2.2 Nonlinear problem

The first main result (proved in Section 3) of the paper is the following

Theorem 2.10 Let A be an N -function satisying the assumptions of Defini-
tion 2.1, with q1 = p, q2 = N , and let λ be a bounded measure concentrated
on a set E of zero A-capacity. Let fn be a sequence of functions converging
to λ in the sense of Definition 2.6. Let g be a function in L1(Ω), and let gn

be a sequence of L∞(Ω) functions which converges to g weakly in L1(Ω). Let
Φ ∈ C2([0,∞[) be an N -function such that

Φ′(t) ≤ tΦ′′(t) ∀t ≥ 0(2.8)

∫ +∞ (Ã)′(t) Φ−1(tp
′
)

tp′
dt < +∞ ,(2.9)

and let un be the solution in W 1,p
0 (Ω) of the problem

−div(a(x,∇un)) + Φ′′(|un|)un = fn + gn in Ω,

un = 0 on ∂Ω.
(2.10)

Then, as n tends to infinity, |∇un|p−1 converges strongly to |∇u|p−1 in LΘ(Ω),
for every N -function Θ ∈ ∆2 such that∫ +∞ Θ′(t) Φ−1(tp

′
)

tp′
dt < +∞ ,(2.11)

where u is the unique entropy solution of
−div(a(x,∇u)) + Φ′′(|u|)u = g in Ω,

u = 0 on ∂Ω.
(2.12)

Moreover,

lim
n→+∞

∫
Ω

Φ′′(un)un ϕdx =
∫
Ω

Φ′′(u)uϕ dx+
∫
Ω
ϕdλ , ∀ϕ ∈ C0

c (Ω) .(2.13)

Remark 2.11 According to Theorem 2.9, Theorem 2.10 is also true with
solutions in the distributional sense (but there is no uniqueness result).
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Remark 2.12 Assumption (2.8) implies that the growth of the nonlinear
part of the equation is superlinear (recall that Φ′(t)/t is increasing because
of the convexity of Φ).

Remark 2.13 Let us now consider the Theorem 2.10 in the case Φ(t) = tq+1.
The condition (2.9) can be reformulated as follows:

∫ +∞ (Ã)′(s)

s
p′q
q+1

ds < +∞ .(2.14)

Remark 2.14 Set Φ(t) = tq+1 and A(t) = tr (thus (Ã)′(t) = c t1/(r−1)), then
(2.9) (or (2.14)) becomes :∫ +∞

t
1

r−1
+ p′

q+1
−p′dt < +∞ .

This condition can be true only if r > p. In this case, this condition is
equivalent to

q >
r(p− 1)

r − p
.

Remark 2.15 Set Φ(t) = tq+1 and A(t) = tr logr−1+ε(e+ t) for some ε > 0.
There exist some constants c1,. . . , c

′
3, such that one has

c1 t
r−1 logr−1+ε(e+ t) ≤ A′(t) ≤ c2 t

r−1 logr−1+ε(e+ t), ∀t > c3

and therefore (see Definition 2.3)

c′1 t
1

r−1 log−
r−1+ε

r−1 (e+ t) ≤ (Ã)′(t) ≤ c′2 t
1

r−1 log−
r−1+ε

r−1 (e+ t), ∀t > c′3

thus (2.9) (or (2.14)) becomes∫ +∞
t

1
r−1

+ p′
q+1

−p′ log−
r−1+ε

r−1 (e+ t)dt < +∞ .

If r > p, this is equivalent to

q ≥ r(p− 1)

r − p
.
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Remark 2.16 Let p < r ≤ N , and A(t) = tr. Then (2.10) has not solutions
(in the sense of Theorem 2.10) for any Φ such that∫ +∞ Φ−1(tp

′
)

tp′−r′+1
dt < +∞ .(2.15)

We give here some examples of functions Φ for which (2.9) or (2.15) apply:

Φ1(t) = tq+1 ∀q > r(p− 1)

r − p
;

Φ2(t) = t
r(p−1)

r−p
+1[log(e+ t)]k+1 ∀k > r(p− 1)

r − p
;

Φ3(t) = t
r(p−1)

r−p
+1[log(e+ t)]

r(p−1)
r−p

+1[log(e+ log(e+ t))]k+1 ∀k > r(p− 1)

r − p
;

Φ4(t) = et − t− 1;

Φ5(t) = eet−1 − t− 1 .

Remark 2.17 If A(t)/tp is non-increasing, then (2.9) has no solution in Φ.
On the other hand, when A(t) = tr, the above condition means r ≤ p, and in
this case we have existence for 2.16, see Remark 1.10 of [20]. This motivates
the bound q1 = p in Theorem 2.10. Notice also that q2 cannot be bigger than
N because there is not set of r-capacity null for r > N .

According to Remark 2.14, one can compare Theorem 2.10 and the result
of [20].

Remark 2.18 Set A(t) = tr and Φ(t) = tq+1, then the problem studied is
−div(a(x,∇u)) + |u|q−1 u = µ in Ω,

u = 0 on ∂Ω.
(2.16)

and the condition (2.9) (or (2.14)) is equivalent to

q >
r(p− 1)

r − p
,(2.17)

i.e. the same condition found in [20], therefore our Theorem 2.10 is a
generalization of Theorem 1.6 of [20].
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2.3 Linear problem

Let now study the linear case (where p = 2) with still Φ(t) = tq+1 :
−∆u+ |u|q−1 u = µ in Ω,

u = 0 on ∂Ω.
(2.18)

If A(t) = tr, according to Remark 2.14, (2.9) becomes q > r
r−2

(or
r > 2q′). When r = N , one can see that Theorem 2.10 is thus weaker
than the one of [9], where the condition is q ≥ N

N−2
. However if we set

Ar(t) = tr logr−1+ε(e+ t), according to Remark 2.15, (2.9) becomes q ≥ r
r−2

.
Therefore the capacities cap1,Ar

give us the possibility to allow also the case
q = r

r−2
in Theorem 2.10.

The second main result of the paper is the following one, obtained by
extending in the Orlicz setting the nonlinear potential techniques of [1] (see
Section 4):

Theorem 2.19 Let s > 1, 0 < βs < N , β ∈ N. If∫ 1

0
(Ã)′(t1−βs) dt <∞(2.19)

then
cap1,A(E) = 0 ⇒ capβ,s(E) = 0

Setting β = 2 and s = q′ in Theorem 2.19, we get the following : If∫
0
(Ã)′(t1−2q′)dt <∞(2.20)

then
cap1,A(E) = 0 ⇒ cap2,q′(E) = 0 .

As a consequence of the previous Theorem, taking particular cases of the
parameters involved, we get the following (already known) remark (see [20]):
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Remark 2.20 Set A(t) = tr. If q > r
r−2

(or equivalently r > 2q′, (2.9),
(2.14) or (2.20)) in the Theorem 2.19, then we have

cap1,r(E) = 0 ⇒ cap2,q′(E) = 0.

Moreover if λ is a measure concentrated on a set E of null (1, r)-capacity
then λ is not absolutely continuous with respect to the (2, q′)-capacity.

Let us go further studying the relation between these capacities :

Lemma 2.21 Let A(t) = tr logr−1+ε(e + t) for some ε > 0 and q such that
2q′ < N . If q ≥ r

r−2
that is (2.9) or (2.20), one has according to Theorem

2.19,
cap1,tr logr−1+ε(e+t)(E) = 0 ⇒ cap2,q′(E) = 0 .(2.21)

If q < r
r−2

one has

cap2,q′(E) = 0 ⇒ cap1,2q′(E) = 0 ⇒ cap1,tr logr−1+ε(e+t)(E) = 0 .(2.22)

Proof. If q ≥ r
r−2

, using Theorem 2.19 whith β = 2 and s = q′, and

A(t) = tr logr−1+ε(e + t), one get (2.21). If q < r
r−2

that is equivalent to

r < 2q′, one has A(t) ≤ t2q′ near infinity thus

cap1,tr logr−1+ε(e+t)(E) ≤ c cap1,2q′(E) ,

and according to Adams-Hedberg [1], Theorem 5.5.1, p. 148, one has

cap1,2q′(E) ≤ c cap2,q′(E) .

The relation between Theorem 2.10 and our results about capacities is
given by the following

Remark 2.22 Let us consider (2.18), A(t) = tr logr−1+ε(e + t) for some
ε > 0. If q is such that (2.9) is true, that is q ≥ r/(r−2), and λ concentrated
on a set of null (1, tr logr−1+ε(e + t))-capacity (and moreover of null (2, q′)-
capacity according to Lemma 2.21), then (2.18) has no solution in the sense
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of Theorem 2.10. If now q is such that (2.9) is false, that is q < r/(r − 2),
and that λ is concentrated on a set of null (1, tr logr−1+ε(e+ t))-capacity but
absolutely continuous with respect to the (1, t2q′)-capacity (this is possible
since r < 2q′) and thus also to the (2, q′)-capacity (according to Lemma 2.21),
then there exist solutions of (2.18) (see Gallouët and Morel [14]).

3 Proof of the nonexistence result

Before giving the proof of Theorem 2.10, we need to construct, as in [11], a
sequence of suitable cut-off functions, built after λ and E (the proof of [20]
works also for Sobolev-Orlicz spaces).

Lemma 3.1 Let λ = λ+ − λ− be a Radon measure concentrated on a set
E of zero r-capacity, with 1 < r ≤ N . Then for every δ > 0 there exist two
C∞c (Ω) function ψ+

δ and ψ−δ such that

0 ≤ ψ+
δ ≤ 1 , 0 ≤ ψ−δ ≤ 1 , ‖∇ψ+

δ ‖A ≤ δ , ‖∇ψ−δ ‖A ≤ δ ,(3.1)

0 ≤
∫
Ω

(1− ψ+
δ ) dλ+ ≤ δ , 0 ≤

∫
Ω

(1− ψ−δ ) dλ− ≤ δ ,(3.2)

0 ≤
∫
Ω
ψ−δ dλ

+ ≤ δ , 0 ≤
∫
Ω
ψ+

δ dλ
− ≤ δ .(3.3)

Lemma 3.2 Let ρ > 0, and let {vn} be a sequence of functions bounded in
MΦ′(Ω). Suppose that, for every k > 0, we have∫

Ω
|∇Tk(vn)|p dx ≤ c k ,

for some positive constant c. Then {|∇vn|p−1} is bounded in MΨ(Ω), with

Ψ(s) =
sp′

Φ−1(sp′)
.

Proof. We follow the lines of the proof of [6], Lemma 4.2. Let σ be a fixed
positive real number. We have, for every k > 0,

meas {|∇vn| > σ}= meas

{
|∇vn| > σ

|vn| ≤ k

}
+ meas

{
|∇vn| > σ

|vn| > k

}

≤meas

{
|∇vn| > σ

|vn| ≤ k

}
+ meas {|vn| > k} .

(3.4)
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Moreover,

meas

{
|∇vn| > σ

|vn| ≤ k

}
≤ 1

σp

∫
Ω
|∇Tk(vn)|p dx ≤ c

k

σp
.

Since by the assumptions on vn there exists a positive constant c such that

meas {|vn| > k} ≤ c

Φ′(k)
,

(3.4) then implies

meas {|∇vn| > σ} ≤ c
k

σp
+

c

Φ′(k)
,

and this latter inequality holds for every k > 0. Minimizing on k, we get
c kΦ′(k) = σp (recall that kΦ′(k) ≥ Φ(k) and Φ−1(ck) ≤ cΦ−1(k), for all
c > 1, thanks to the convexity of Φ)

meas {|∇vn| > σ} ≤ cΦ−1(σp)

σp
,

thus

meas {|∇vn|p−1 > σ} ≤ cΦ−1(σp′)

σp′
,

which is the desired result.

Lemma 3.3 Let Ψ and Θ be N -functions. If moreover∫ +∞ Θ′(t)

Ψ(t)
dt < +∞

then one has
MΨ(Ω) ⊂ LΘ(Ω).

and for any s > 0 the following inequality hold:

∫
Ω

Θ(|v|) dx ≤ meas (Ω) Θ(s) +

(
sup
t>0

Ψ(t) meas {|v| > t}
)∫ +∞

s

Θ′(t)

Ψ(t)
dt
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Proof. Let v be a function in MΨ(Ω). One has, for all s > 0,∫
Ω

Θ(|v|) dx =
∫ +∞

0
Θ′(t) meas {|v| > t}dt

≤ meas (Ω) Θ(s) +
∫ +∞

s

Θ′(t)

Ψ(t)
Ψ(t) meas {|v| > t}dt

from which the assertion follows.

Lemma 3.4 Let {vn} be a sequence of W 1,p
0 (Ω) functions such that∫

Ω
|∇Tk(vn)|p dx ≤ c k ,

for some positive constant c. Then there exists a subsequence, still denoted
by vn, and a measurable function v, such that vn converges to v almost
everywhere in Ω.

Proof. See [6], Proof of Theorem 6.1, Step 2.

Proof of Theorem 2.10.
We will follow [20] which has used some of the ideas contained in [11]

when dealing with nonlinear elliptic equations with measure data.

Then, since the operator is monotone, there exists a unique solution u in
W 1,p

0 (Ω) of the following nonlinear elliptic problem (this result is well known
and is a consequence of [18] ; it is, for example, proved in Theorem 2.9)

−div(a(x,∇u)) + Φ′′(|u|)u = f in Ω,

u = 0 on ∂Ω,
(3.5)

in the sense that∫
Ω
a(x,∇u) · ∇ϕdx+

∫
Ω

Φ′′(|u|)uϕ dx =
∫
Ω
f ϕ dx ,(3.6)

for every ϕ in W 1,p
0 (Ω)∩L∞(Ω) and for ϕ = u, so that Φ(|u|) (and Φ′′(|u|)u2)

belongs to L1(Ω).

We define ω(n,m, δ) any quantity (depending on n, m and δ) such that

lim
δ→0+

lim
m→+∞

lim
n→+∞

|ω(n,m, δ)| = 0 .
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Similarly, if the quantity we are considering does not depend one or more of
the three parameters n, m and δ, we will omit the dependence from it in ω.
For example, ω(n, δ) is any quantity such that

lim
δ→0+

lim
n→+∞

|ω(n, δ)| = 0 .

Step 1: A priori estimates.

Since Tk(un) is inW 1,p
0 (Ω)∩L∞(Ω), we can choose it as test function in the

weak formulation of (2.10). We get, using (2.2), (2.6), and the boundedness
of {gn} in L1(Ω),

α
∫
Ω
|∇Tk(un)|p dx+

∫
Ω

Φ′′(|un|)|un| |Tk(un)| dx ≤ c k ,(3.7)

for some positive constant c. Dropping the first, nonnegative term of the left
hand side of the preceding inequality, we have

k
∫
{|un|≥k}

Φ′′(|un|)|un| dx ≤
∫
Ω

Φ′′(|un|)|un| |Tk(un)| dx ≤ c k ,

so that ∫
{|un|≥k}

Φ′′(|un|)|un| dx ≤ c .(3.8)

By (2.8) this implies

Φ′(k) meas {|un| ≥ k} ≤ kΦ′′(k) meas {|un| ≥ k} ≤ c ,

and so {un} is bounded in MΦ′(Ω). Furthermore,∫
{|un|<k}

Φ′′(|un|)|un| dx ≤ kΦ′′(k) meas (Ω) ,

and so, using (3.8),

Φ′′(|un|)un is bounded in L1(Ω).(3.9)

The boundedness of un in MΦ′(Ω), and Lemma 3.2, which can be applied
since (3.7) also implies that∫

Ω
|∇Tk(un)|p dx ≤ c k ,(3.10)
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yields

{|∇un|p−1} is bounded in MΨ(Ω), with Ψ(s) = sp′

Φ−1(sp′ )
.(3.11)

Now let Θ1 ∈ ∆2 be an N -function verifying the assumption (2.11), and
let Θ ∈ ∆2 be any N -function “well dominated” by Θ1. We formalize this
domination writing

Θ1(t) = ϕ(Θ(t)) ∀t ≥ 0

for some ϕ increasing, continuous, such that limt→∞ ϕ(t)/t = +∞. By (3.11)
and Lemma 3.3 the set {ϕ(Θ(|∇un|p−1))} is bounded in L1(Ω), therefore the
sequence

Θ(|∇un|p−1) is equiintegrable.(3.12)

On the other hand, using again (3.10), by Lemma 3.4, and up to some
subsequence still denoted by un, un converges almost everywhere to a
measurable function u, and so Tk(un) converges almost everywhere to Tk(u).
Using (3.9) and Fatou lemma, one has Φ′′(|u|)u ∈ L1(Ω).

Moreover, (3.10) implies that {Tk(un)} is bounded in W 1,p
0 (Ω), so that,

by the weak lower semicontinuity of the norm, Tk(u) belongs to W 1,p
0 (Ω) for

every k > 0, and thus u has a gradient ∇u in the sense of Definition 2.7.
As for the gradients of un, we remark that un is the solution of the

equation −div(a(x,∇un)) = f⊕n − f	n + gn − Φ′′(|un|)un, and that the right
hand side is bounded in L1(Ω) by (2.6) and (3.9). By a result in [8], this
implies that, up to subsequences,

∇un converges almost everywhere to ∇u.(3.13)

From now on, we will suppose to have already extracted from un a
subsequence (which we still denote by un), with the properties we have proved
before. By (3.13) we have also

Θ(|∇un|p−1) converges almost everywhere to Θ(|∇u|p−1).(3.14)

By (3.12) and (3.14), we can apply Vitali’s theorem, and we get |∇un|p−1 ∈
LΘ(Ω) and ∫

Ω
Θ(|∇un|p−1) dx→

∫
Ω

Θ(|∇u|p−1) dx.(3.15)

By (3.13) and (3.15), applying the Fatou lemma to the sequence of nonnega-
tive functions cΘ(Θ(|∇u|p−1)+Θ(|∇un|p−1))−Θ(||∇u|p−1−|∇un|p−1|), where
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cΘ is the constant appearing in the ∆2 condition for Θ, we get∫
Ω

Θ(||∇u|p−1 − |∇un|p−1|) dx→ 0(3.16)

from which, since Θ ∈ ∆2, we get (see e.g. Theorem 1.3 p.8 of [19])

|∇un|p−1 → |∇u|p−1 strongly in LΘ(Ω).(3.17)

Notice that we obtained (3.17) for all Θ ∈ ∆2 well dominated by some Θ1

such that (2.11) holds. Such functions Θ ∈ ∆2 verify condition (2.11), and,
on the other hand, arguing as in [17] (see Chapter II, Section 8, n.1, p.60),
it is easy to show that any ∆2 N -function satisfying the condition (2.11) is
well dominated by an N -function of the same type. The conclusion is that
we have (3.17) for all Θ verifying (2.11).

Observe that, by the assumption (2.3) on a, the argument above shows
also that

a(x,∇un) → a(x,∇u) strongly in (LΘ(Ω))N ,(3.18)

for every function Θ ∈ ∆2 such that
∫+∞ Θ′(t)

Ψ(t)
dt <∞. In particular, one can

choose Θ = Ã thanks to (2.9). Thus the last convergence is also in L1(Ω).

Step 2: Energy estimates.

Let Ψδ = ψ+
δ + ψ−δ , where ψ+

δ and ψ−δ are as in Lemma 3.1. Then∫
{un>2m}

Φ′′(un)un (1−Ψδ) dx = ω(n,m, δ) ,(3.19)

and ∫
{un<−2m}

Φ′′(|un|)|un| (1−Ψδ) dx = ω(n,m, δ) ,(3.20)

We will only prove (3.19), since the proof of (3.20) is identical. We choose
βm(un) (1 − Ψδ) as test function in the weak formulation of (2.10), where
βm(s) is defined as

βm(s) =


0 if s ≤ m,

s

m
− 1 if m < s ≤ 2m,

1 if s > 2m.

(3.21)
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We obtain, using the fact that the derivative of βm(s) is different from zero
only where m < s < 2m,

1

m

∫
{m<un<2m}

a(x,∇un) · ∇un (1−Ψδ) dx(A)

−
∫
Ω
a(x,∇un) · ∇Ψδ βm(un) dx(B)

+
∫
Ω

Φ′′(|un|)un βm(un) (1−Ψδ) dx(C)

=
∫
Ω
f⊕n βm(un) (1−Ψδ) dx(D)

−
∫
Ω
f	n βm(un) (1−Ψδ) dx(E)

+
∫
Ω
gn βm(un) (1−Ψδ) dx .(F)

We have, by (3.18), by Egorov theorem, and since βm(un) converges to βm(u)
almost everywhere in Ω and in the weak∗ topology of L∞(Ω),

−(B) =
∫
Ω
a(x,∇u) · ∇Ψδ βm(u) dx+ ω(n) = ω(n,m) ,

and the last passage is due to the fact that βm(u) converges to zero in the
weak∗ topology of L∞(Ω) as m tends to infinity. For the same reason, we
have

(F ) = ω(n,m) .

Finally, by (3.2) and (3.3),

(D)≤
∫
Ω
f⊕n (1−Ψδ) dx =

∫
Ω
f⊕n (1− ψ+

δ ) dx+
∫
Ω
f⊕n ψ−δ dx

=
∫
Ω

(1− ψ+
δ ) dλ+ +

∫
Ω
ψ−δ dλ

+ + ω(n)

=ω(n, δ) .

Since (A) and −(E) are nonnegative, and since

(C) ≥
∫
{un>2m}

Φ′′(un)un (1−Ψδ) dx ,

we get (3.19).

Step 3: Passing to the limit.
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We are now ready to conclude the proof of Theorem 2.10, showing that
u is the entropy solution of (2.12) with datum g.

Let ϕ be a function in W 1,p
0 (Ω) ∩ L∞(Ω), let M = ‖ϕ‖

L∞(Ω)
, let k > 0,

and choose Tk(un − ϕ)(1 − Ψδ) as test function in the weak formulation of
(2.10). We get ∫

Ω
a(x,∇Tk(un)) · ∇Tk(un − ϕ) (1−Ψδ) dx(A)

−
∫
Ω
a(x,∇un) · ∇Ψδ Tk(un − ϕ) dx(B)

+
∫
Ω

Φ′′(|un|)un Tk(un − ϕ) (1−Ψδ) dx(C)

=
∫
Ω
f⊕n Tk(un − ϕ) (1−Ψδ) dx(D)

−
∫
Ω
f	n Tk(un − ϕ) (1−Ψδ) dx(E)

+
∫
Ω
gn Tk(un − ϕ) (1−Ψδ) dx .(F)

Using (3.18), (2.9), Lemma 3.3, one has the convergence of a(x,∇un) to

a(x,∇u) in LÃ(Ω). Thus using (3.1), we get

−(B) =
∫
Ω
a(x,∇u) · ∇Ψδ Tk(u− ϕ) dx+ ω(n) = ω(n, δ) .

Using (3.2) and (3.3), we obtain

|(D)|+ |(E)| ≤ k
∫
Ω

(f⊕n + f	n ) (1−Ψδ) dx = ω(n, δ) .

It is then easy to see that

(F ) =
∫
Ω
g Tk(u− ϕ) dx+ ω(n, δ) ,

so that we only have to deal with (A) and (B). Let m > k+M be fixed. We
then have

(C) =
∫
{−2m≤un≤2m}

Φ′′(|un|)un Tk(un − ϕ) (1−Ψδ) dx(G)

+
∫
{un>2m}

Φ′′(un)un k (1−Ψδ) dx(H)

+
∫
{un<−2m}

Φ′′(|un|) |un| k (1−Ψδ) dx .(I)
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It is easily seen that (recall that Φ′′(|u|)u ∈ L1(Ω))

(G) =
∫
{−2m≤u≤2m}

Φ′′(|u|)uTk(u− ϕ) (1−Ψδ) dx+ ω(n)

=
∫
Ω

Φ′′(|u|)uTk(u− ϕ) (1−Ψδ) dx+ ω(n,m)

=
∫
Ω

Φ′′(|u|)uTk(u− ϕ) dx+ ω(n,m, δ) .

We then have, by (3.19),

(H) = k
∫
{un>2m}

Φ′′(un)un (1−Ψδ) dx = ω(n,m, δ) ,

and, by (3.20),

(I) = k
∫
{un<−2m}

Φ′′(|un|) |un| (1−Ψδ) dx = ω(n,m, δ) ,

so that
(C) =

∫
Ω

Φ′′(|u|)uTk(u− ϕ) dx+ ω(n, δ) .

Finally, we have

(A) =
∫
Ω

[a(x,∇un)− a(x,∇ϕ)] · ∇Tk(un − ϕ) (1−Ψδ) dx(J)

+
∫
Ω
a(x,∇ϕ) · ∇Tk(un − ϕ) (1−Ψδ) dx .(K)

Since the integrand function in (J) is nonnegative, and converges almost
everywhere in Ω to [a(x,∇u)− a(x,∇ϕ)] · ∇Tk(u− ϕ), as n tends to infinity
and then δ tends to zero, Fatou lemma implies∫

Ω
[a(x,∇u)− a(x,∇ϕ)] · ∇Tk(u− ϕ) dx ≤ lim inf

δ→0+
lim inf
n→+∞

(J) .

Moreover, since a(x,∇ϕ) belongs to (Lp′(Ω))N , we have

(K) =
∫
Ω
a(x,∇ϕ) · ∇Tk(u− ϕ) dx+ ω(n, δ) ,

so that, putting together the results for (J) and (K), we have∫
Ω
a(x,∇u) · ∇Tk(u− ϕ) dx ≤ lim inf

δ→0+
lim inf
n→+∞

(A) .
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Summing up the results we have obtained so far, we have∫
Ω
a(x,∇u) · ∇Tk(u− ϕ) dx+

∫
Ω

Φ′′(|u|)uTk(u− ϕ) dx ≤
∫
Ω
g Tk(u− ϕ) dx ,

and so u is the entropy solution of (2.12). Observe that, since the solution
u does not depend on the subsequences we have extracted, then the whole
sequence un converges to u.

To conclude the proof of the theorem, it only remains to prove (2.13). In
order to do this, we choose a test function ϕ ∈ C∞c (Ω) in the weak formulation
of (2.10). We get∫

Ω
a(x,∇un) · ∇ϕdx+

∫
Ω

Φ′′(|un|)un ϕdx =
∫
Ω

(fn + gn)ϕdx .

Thanks to (3.18), and to the assumptions on fn and gn, we have∫
Ω

Φ′′(|un|)un ϕdx = −
∫
Ω
a(x,∇u) · ∇ϕdx+

∫
Ω
g ϕ dx+

∫
Ω
ϕdλ+ ω(n) .

Since the entropy solution of (2.12) is also a distributional solution of the
same problem, we have for the same ϕ,∫

Ω
a(x,∇u) · ∇ϕdx+

∫
Ω

Φ′′(|u|)uϕ dx =
∫
Ω
g ϕ dx ,

and so we have proved that (2.13) holds for every ϕ in C∞c (Ω). Since
Φ′′(|un|)un is bounded in L1(Ω), (2.13) can then be extended by density
to the functions in C0

c (Ω).

4 Comparison between Orlicz-type capacities

We need to make some preliminary considerations about the growth of N -
functions. Let us begin with the following

The assumption (2.1) made in Definition 2.1 is a way to describe that a
certain growth is between two powers. Let us recall it for A a N -function

c1 min(sq1−1, sq2−1)A′(t) ≤ A′(st) ≤ c2 max(sq1−1, sq2−1)A′(t)

for all s, t > 0. It implies all the following inequalities:

c1 min(sq1 , sq2)A(t) ≤ A(st) ≤ c2 max(sq1 , sq2)A(t)(4.1)
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c1 min(s
q1

q1−1 , s
q2

q2−1 )Ã(t) ≤ Ã(st) ≤ c2 max(s
q1

q1−1 , s
q2

q2−1 )Ã(t)(4.2)

c1 min(s
1
q1 , s

1
q2 )A−1(t) ≤ A−1(st) ≤ c2 max(s

1
q1 , s

1
q2 )A−1(t)(4.3)

c1 min(s
q1−1

q1 , s
q2−1

q2 )Ã−1(t) ≤ Ã−1(st) ≤ c2 max(s
q1−1

q1 , s
q2−1

q2 )Ã−1(t)(4.4)

c1 min(s
1

q1−1 , s
1

q2−1 )Ã′(t) ≤ Ã′(st) ≤ c2 max(s
1

q1−1 , s
1

q2−1 )Ã′(t)(4.5)

for all s, t > 0. The constants c1, c2 need not to be the same in each line. We
remark that the inequalities stated above are not equivalent; however, with
the help of the arguments given in [21], it can be proved that 2.1 implies
them all. Remark that (4.1) implies that A ∈ ∆2.

We give now some basic definitions, and fix some notation, borrowed
mainly from the book by Adams and Hedberg [1].

If f ∈ L1, its Fourier transform is the bounded and continuous function

Ff(ξ) =
∫
RN

f(x)e−ixξdx

F can be extended by continuity to a bijection on L2 (Plancherel’s theorem).
The Bessel kernel is defined by

Gα = F−1
(
(1 + |ξ|2)

α
2

)
(α ∈ R)

It can be shown that the following integral formula holds:

Gα(x) =
1

(4π)α/2Γ(α/2)

∫ ∞

0
t(α−N)/2e−π|x|2/t−t/(4π)dt

t
(α > 0)

Moreover, Gα is positive and integrable over RN .
Let µ ∈ M+(K), and let g be an nonnegative mesurable function. The

convolution g ∗ µ is defined by

g ∗ µ(x) =
∫

K
g(x− y)dµ(y)

and the following equality holds (where ǧ(−x) = g(x)) :∫
RN

(g ∗ µ)fdx =
∫

K
(ǧ ∗ f)dµ =

∫
RN

(ǧ ∗ f)dµ(4.6)

The Hardy-Littlewood fractional maximal function of a measure µ for 0 ≤
α < N , δ > 0, is defined by

Mα,δµ(x) = sup
0<r≤δ

µ(B(x, r))

|B(x, r)|(N−α)/N
.
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In the sequel we will use the following inequality, trivial in the context of
Lebesgue spaces:

Lemma 4.1 The following inequality hold:

A(‖f‖
A
) ≤ ΨA

(∫
Ω
A(|f |)dx

)
(4.7)

where

ΨA(s) = sup
t>0

A

 t

A−1
(

A(t)
s

)
 .

Moreover, the following bounds for ΨA hold:

c1 min
(
A(s1/q1), A(s1/q2)

)
≤ ΨA(s) ≤ c2 max

(
A(s1/q1), A(s1/q2)

)
.(4.8)

Proof. By definition of ΨA we have

A

 t

A−1
(

A(t)
s

)
 ≤ ΨA(s) ∀s, t > 0

or, equivalently,

t

A−1
(

A(t)
s

) ≤ A−1(ΨA(s)) ∀s, t > 0

t

A−1(ΨA(s))
≤ A−1

(
A(t)

s

)
∀s, t > 0

A

(
t

A−1(ΨA(s))

)
≤ A(t)

s
∀s, t > 0

and therefore, replacing t by |f(x)| and s by
∫
ΩA(|f(x)|)dx and integrating

over Ω ∫
Ω
A

(
|f(x)|

A−1 (ΨA (
∫
ΩA(|f(x)|)dx))

)
≤ 1

By definition of Orlicz norm we deduce

‖f‖A ≤ A−1
(
ΨA

(∫
Ω
A(|f(x)|)dx

))
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from which the first part of the assertion follows. The two bounds for ΨA

can be proved in the same way, we will show only the upper one. By (4.1)
we have

σt ≤ c2A
−1(max(σq1 , σq2)A(t)) ∀σ, t > 0

Setting
max(σq1 , σq2) = 1/s⇔ σ = min(s−1/q1 , s−1/q2)

we have
min(s−1/q1 , s−1/q2)t ≤ c2A

−1(A(t)
s

) ∀s, t > 0

t

A−1(A(t)
s

)
≤ c2 max(s1/q1 , s1/q2) ∀s, t > 0

thus, using (4.1),

A

 t

A−1(A(t)
s

)

 ≤ c̃2 max(A(s1/q1), A(s1/q2)) ∀s, t > 0

from which the assertion follows.

Remark 4.2 Note that ΨA in (4.7) is an increasing function, such that
Ψ(0+) = 0. In the following we will use its natural extension in 0, by setting
Ψ(0) = 0.

Remark 4.3 Inequality (4.7) can be related to the inequality for Jensen
means proved in [13].

We will use in the sequel also the following Theorem, which is part of
Theorem 1 of [3]:

Theorem 4.4 Let 0 < α < N , δ > 0 and let K be compact in RN . The
there exists a positive constant c such that

‖Gα ∗ µ‖A
≤ c ‖Mα,δµ‖A

∀µ ∈M+(K)(4.9)

Let us now denote by Bn(x), n ∈ Z, the open ball with radius 2−n centered
at x, and by Bn the ball Bn(0). We will call η the characteristic function
for B0: η = χB0 so that Supp η = B0, η is nonnegative, bounded, lower
semicontinuous and η(rx) is a decreasing function of r > 0 for any x ∈ RN .
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We define ηn, n ∈ Z, by setting ηn(x) = 2nNη(2nx) so that Supp ηn = Bn,∫
ηndx =

∫
ηdx. Notice that

ηn ∗ µ(x) =
∫
RN

ηn(x− y)dµ(y) =
∫
RN

2nNη(2n(x− y))dµ(y)

=
∫

Bn(x)
2nNη(2n(x− y))dµ(y) = 2nN

∫
Bn(x)

dµ(y)

= 2nNµ(Bn(x))

(4.10)

The following lemmas state some inequalities, which can be shown
by using the standard techniques used in [1]. We will prove them by
completeness.

Lemma 4.5 Let 0 < α < N and µ ∈ M+(K), then there exists a constant
c such that

c−1Mα,1µ(x) ≤ sup
n≥0

(2−nαηn ∗ µ(x)) ≤ cMα,2µ(x).(4.11)

Proof. We have

Mα,1µ(x) = sup
0<r≤1

µ(B(x, r))

|B(x, r)|(N−α)/N
= sup

n≥0
sup

2−n−1≤r≤2−n

µ(B(x, r))

|B(x, r)|(N−α)/N

≤ sup
n≥0

µ(B(x, 2−n))

|B(x, 2−n−1)|(N−α)/N
= sup

n≥0

µ(Bn(x))

[cN(2−n−1)N ](N−α)/N

= c sup
n≥0

2n(N−α)µ(Bn(x)) = c sup
n≥0

(2−nαηn ∗ µ(x)) .

The other inequality can be proved similarly.

Lemma 4.6 If k > 0 and µ ∈M+(K), then the following inequality holds:

ηn ∗ A(kηn ∗ µ)(x) ≤ cNA(2nNkµ(Bn−1(x))(4.12)

Proof. We have

ηn ∗ A(kηn ∗ µ)(x) =
∫
RN

ηn(x− y)A(kηn ∗ µ)(y)dy

and by (4.10)

ηn ∗ A(kηn ∗ µ)(x) =
∫
RN

ηn(x− y)A(k2nNµ(Bn(y)))dy ;
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since the last integral is in fact over Bn(x) and Bn(y) ⊂ Bn−1(x)∀y ∈ Bn(x),
we get

ηn ∗ A(kηn ∗ µ)(x) ≤
∫
RN

ηn(x− y)A(k2nNµ(Bn−1(x)))dy

= A(k2nNµ(Bn−1(x)))
∫
RN

ηn(x− y)dy

and the lemma is therefore proved.

The main tool that will be used in the following is the generalization of the
so-called Wolff’s inequality (see [1], Theorem 4.5.2 p. 109) in the framework
of Orlicz spaces. Even if in fact the proof is a generalization of that one given
in [1], we show extensively the argument, because we think that in this case
the refinement of the estimations is not completely standard.

Theorem 4.7 Let 0 < α < N and µ ∈ M+(K). The following inequality
holds:

A(‖Gα ∗ µ‖A
) ≤ cΨA

(∫
RN

W µ

α,Ã
(x)dµ

)
(4.13)

where

W µ

α,Ã
(x) =

∫ 4

0
tαA′

(
µ(B(x, t))

tN−α

)
dt

t

for some constant c depending on A, α, N but independent of µ.

Proof. By (4.9) we have

A(‖Gα ∗ µ‖
A
) ≤ cA(‖Mα,1µ‖

A
)

and therefore, by (4.7),

A(‖Gα ∗ µ‖
A
) ≤ cΨA

(∫
RN

A(|Mα,1µ|)dx
)
.

Applying inequality (4.11) we get

A(‖Gα ∗ µ‖A
) ≤ cΨA

(∫
RN

A

(
| sup

n≥0
(2−nα(ηn ∗ µ)(x))|

)
dx

)
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from which

Ψ−1
A

(
c−1A(‖Gα ∗ µ‖

A
)
)
≤
∫
RN

A

(
| sup

n≥0
(2−nα(ηn ∗ µ)(x))|

)
dx

≤
∫
RN

∞∑
n=0

A(2−nα(ηn ∗ µ)(x)) dx

≤ c
∫
RN

∞∑
n=0

A′(2−nα(ηn ∗ µ)(x))2−nα(ηn ∗ µ)(x) dx.

By (4.6) and (4.12) we get

Ψ−1
A

(
c−1A(‖Gα ∗ µ‖A

)
)
≤ c

∫
RN

∞∑
n=0

2−nαηn ∗ A′(2−nα(ηn ∗ µ)(x)) dµ

≤ c
∫
RN

∞∑
n=0

2−nαA′(2n(N−α)µ(Bn−1(x))) dµ.

On the other hand, setting

W µ

α,Ã
(x) =

∫ 4

0
tαA′

(
µ(B(x, t))

tN−α

)
dt

t

we have

W µ

α,Ã
(x) =

∞∑
n=0

∫ 2−n+2

2−n+1
tαA′

(
µ(B(x, t))

tN−α

)
dt

t

≥
∞∑

n=0

∫ 2−n+2

2−n+1
2−nα+αA′

(
µ(B(x, 2−(n−1)))

2−n(N−α)+2(N−α)

)
dt

2−n+2

=
1

2

∞∑
n=0

∫ 2−n+2

2−n+1
2α · 2−nαA′

(
2−2(N−α) · 2n(N−α)µ(Bn−1(x))

) dt

2−n+1

= 2α−1
∞∑

n=0

2−nαA′
(
2−2(N−α) · 2n(N−α)µ(Bn−1(x))

)
≥ 2α−1cA′,N,α

∞∑
n=0

2−nαA′
(
2n(N−α)µ(Bn−1(x))

)
.

From the relations obtained, the assertion follows.

In order to fix some more notation, let us recall the definition of Hausdorff
measure. Let h(r) be an increasing function, defined (≤ +∞) for r ≥ 0, and
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satisfying h(0) = 0. Let E ⊂ RN , and consider coverings of E by countable
unions of (open or closed) balls {B(xi, ri)}∞i=1 with radii {ri}∞i=1. Then for

any ρ, 0 < ρ ≤ ∞, a set function Λ
(ρ)
h is defined by

Λ
(ρ)
h (E) = inf

∞∑
i=1

h(ri)

where the infimum is taken over all such coverings with supi=1 ri ≤ ρ. Clearly
Λ

(ρ)
h (E) is a decreasing function of ρ, so limρ→0 Λ

(ρ)
h (E) exists (≤ +∞), and

we can define
Λh(E) = lim

ρ→0
Λ

(ρ)
h (E).

This is the Hausdorff measure of E with respect to the function h. If
h(r) = rα, we write Λα for Λrα . The set function Λ

(∞)
h is called the Hausdorff

capacity. The following results are known from [1].

Lemma 4.8 Λ
(∞)
h (E) = 0 if and only if Λh(E) = 0

Theorem 4.9 Let h be an increasing function on [0,∞[ such that h(0) = 0,
and let K ⊂ RN be a compact set. Then

µ(K) ≤ Λ
(∞)
h (K)

for all µ ∈ M+(K) such that µ(B(x, r)) ≤ h(r) for all balls B(x, r).
Furthermore, there is a constant c > 0, depending only on N , and a
µ ∈M+(K), satisfying µ(B(x, r)) ≤ h(r) for all B(x, r), such that

Λ
(∞)
h (K) ≤ c µ(K)

Following [4], let us now give these definitions.

Definition 4.10 LetE be any measurable subset of RN.The (α,A)−capacity
of E is defined as:

Capα,A(E) = inf
{
‖f‖

A
: f ∈ LA(RN), Gα ∗ f ≥ χE

}
Definition 4.11 Let E ⊂ K be a set measurable for all µ ∈ M+(K). Let
us set

Dα,A(E) = sup
{
µ(E) : µ ∈M+(K), µ concentrated on E , ‖Gα ∗ µ‖Ã

≤ 1
}
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The following theorem (which is a particular case of Theorem 11, part 2
of [4], see also [2]) holds:

Theorem 4.12 Let K be a compact set in RN . Then

A−1(Capα,A(K)) = Dα,A(K) = sup
µ∈M+(K)

µ(K)

‖Gα ∗ µ‖Ã

This theorem represents a dual definition of the capacity Capα,A, which
generalizes an analogous result for the Capα,r capacity (see Theorem 2.2.7 of
[1], p. 21).

We have now all the background in order to prove the following

Theorem 4.13 Let 0 < α < N , h be an increasing function on [0,∞[ such
that h(0) = 0, ∫ 4

0
tα−1(Ã)′

(
h(t)

tN−α

)
dt = H <∞

and let E ⊂ RN be a set satisfying Λ
(∞)
h (E) > 0. Then there exists a constant

cA > 0, independent of h and E, such that

Λ
(∞)
h (E) ≤ Θ(cAA

−1(Capα,A(E)))

where Θ(t) is an increasing function such that Θ(0+) = 0. In particular,

Capα,A(E) = 0 ⇒ Λh(E) = 0 .

Proof. Let K be compact with Λ
(∞)
h (K) > 0, and let µ ∈M+(K) be given

by Theorem 4.9, such that

µ(B(x, t)) ≤ h(t) for all balls B(x, t)(4.14)

and

c−1Λ
(∞)
h (K) ≤ µ(K) ≤ Λ

(∞)
h (K)(4.15)

By Wolff’s inequality (Theorem 4.7)

Ã(‖Gα ∗ µ‖Ã
) ≤ cΨ

Ã

(∫
RN

W µ
α,A(x)dµ

)
= cΨ

Ã

(∫
RN

(∫ 4

0
tα−1(Ã)′

(
µ(B(x, t))

tN−α

)
dt

)
dµ

)
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and therefore, by (4.14),

Ã(‖Gα ∗ µ‖
Ã
) ≤ cΨ

Ã

(∫
RN

(∫ 4

0
tα−1(Ã)′

(
h(t)

tN−α

)
dt

)
dµ

)

= cΨ
Ã

(∫
RN

Hdµ
)

= cΨ
Ã
(Hµ(K))

thus
‖Gα ∗ µ‖Ã

≤ Ã−1(cΨ
Ã
(Hµ(K))) .(4.16)

On the other hand, by Theorem 4.12

A−1(Capα,A(K)) ≥ µ(K)

‖Gα ∗ µ‖Ã

and therefore, by (4.16),

A−1(Capα,A(K)) ≥ µ(K)

Ã−1(cΨ
Ã
(Hµ(K)))

and by (4.15) and Remark 4.2,

A−1(Capα,A(K)) ≥ c
Ã−1

Λ
(∞)
h (K)

Ã−1(Ψ
Ã
(HΛ

(∞)
h (K)))

= c
Ã−1Θ

−1(Λ
(∞)
h (K))

from which the assertion follows. The property Θ(0+) = 0 is true because
Θ−1(t) = t/Ã−1(Ψ

Ã
(Ht)) and therefore, from (4.8), we get (for t small)

t

(Ht)1/q2
≤ Θ−1(t) ≤ t

(Ht)1/q1

from which

H1/(q1−1)tq1/(q1−1) ≤ Θ(t) ≤ H1/(q2−1)tq2/(q2−1).

The last part follows from Lemma 4.8. Let us now extend the results
to a general set E, not necessarily compact. There exists E ′ countable
intersection of open sets such that E ⊂ E ′ and Λ

(∞)
h (E) = Λ

(∞)
h (E ′) and

Capα,A(E) = Capα,A(E ′) (Capα,A is an outer capacity according to [4], and
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Λ
(∞)
h is an outer measure according to [23]). Using the fact that Λ

(∞)
h satisfies

the assumptions of Choquet’s theorem (see [23] Chapter 2.7), one has

Λ
(∞)
h (E ′) = sup

{
Λ

(∞)
h (K), K compact, K ⊂ E ′

}
.

Moreover, using Theorem 9 of [4], one has also

Capα,A(E ′) = sup
{
Capα,A(K), K compact, K ⊂ E ′

}
.

Hence the results obtained for compact sets can be extend to general sets.

Remark 4.14 The proof of Theorem 4.13 follows the ideas used to prove
the Theorem 5.1.13 of [1], page 137. We remark that, with respect to the
original proof, our constant is rougher, but simpler, and the proof is slightly
shorther. In our context this (small) simplification is possible because we
don’t need finer constants.

Let us recall now the following Theorem, proved in [1] (see Theorem 5.1.9,
p. 134)

Theorem 4.15 Let s > 1 and 0 < βs < N , and let E ⊂ RN . Set
h(t) = tN−βs. Then there is c independent of E such that

Capβ,s(E)s ≤ cΛ
(1)
h (E)

and moreover
Λh(E) <∞⇒ Capβ,s(E) = 0

Let us now consider some relations between Definition 2.4, Definition 2.5
and Definition 4.10. Let us first consider the case A(t) = tr, r > 1 :
Definition 4.10 reduces to

Capα,r(E) = inf
{
‖f‖

r
: f ∈ Lr(RN), Gα ∗ f ≥ χE

}
.

Denoting by Lα,r(RN) the Bessel potential spaces

Lα,r(RN) =
{
h : h = Gα ∗ f, f ∈ Lr(RN)

}
,
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whose norm is given by ‖h‖
α,r

= ‖f‖
r
, we can write also

Capα,r(E) = inf
{
‖h‖

α,r
: h ∈ Lα,r(RN), h ≥ χE

}
.

At this point we use the result of Calderon: for α ∈ N, Wα,r(RN) =
Lα,r(RN), 1 < r < ∞, with equivalence of norms, i.e. there is a constant c
such that for all f

c−1‖f‖
α,r
≤ ‖f‖

W α,r ≤ c‖f‖
α,r

(4.17)

Hence it is clear that Capα,r is equivalent to

Cap′α,r(E,R
N) = inf

{
‖h‖

W α,r : h ∈ C∞c (RN), h ≥ χE

}
.

Similarly, one can prove, for α = 1, that the capacity defined in Defini-
tion 4.10 is equivalent to

Cap′1,A(E,RN) = inf
{
‖∇h‖

A
+ ‖h‖

A
: h ∈ C∞c (RN), h ≥ χE

}
.

This extension is possible because the proof of Calderon’s theorem can be
obtained in the context of Orlicz spaces by straightforward generalization
of that one given in [24], see Chapter V, Section 3, Theorem 3. All the
properties of Orlicz spaces needed in the proof are heredited from those
ones true for Lebesgue spaces. We briefly list them and give references for
their proofs. For separability properties (density of C∞0 (RN) in LA(RN)
and in W 1,A(RN)) we refer to Section 2 of [12]. For properties obtained by
interpolation, we refer to the paper [15]. Finally, for the boundedness of the
Riesz transforms Rj in Orlicz spaces we refer to the book by Kokilashvili and
Krbec [16], Theorem 3.1.1 page 97.

Proof of Theorem 2.19: Let E be such that cap1,A(E) = 0, we will
first prove that Cap1,A(E) ≤ c cap1,A(E) and thus Cap1,A(E) = 0. Let
us consider K a compact set, let ϕ ∈ C∞c (Ω) such that ϕ ≥ χK thus
‖∇ϕ‖A ≤ cap1,A(K) such ϕ can be use in the definition of Cap′1,A(K,RN)
thus Cap′1,A(K,RN) ≤ c cap1,A(K) so Cap1,A(K) ≤ c cap1,A(K). Using now
Theorem 2 and Theorem 9 of [4], one has for all open set U

Cap1,A(U) = sup
{
Cap1,A(K), K compact, K ⊂ U

}
,

and for all set B

Cap1,A(B) = inf
{
Cap1,A(U), U open, B ⊂ U

}
.
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Hence Cap1,A(B) ≤ c cap1,A(B), for all borelian B, thus Cap1,A(E) = 0.
According to (2.19), h(t) = tN−βs satisfies the hypotheses of Theorem 4.13

with α = 1, thus Λh(E) = 0. Using now Theorem 4.15, we get Capβ,s(E) = 0.
It remains now to prove that capβ,s(E) = 0.

Since Capβ,s(E) = 0, there exists a sequence Un of open sets in RN such
that E ⊂ Un and Capβ,s(Un) ≤ 1

n
. Since the capacity is nondecreasing, we

can suppose that Un ⊂ Ω (by replacing Un with Un ∩ Ω, recall that E ⊂ Ω).
Hence there exists hn ∈ C∞c (RN) such that h ≥ χUn and ‖hn‖Lβ,s ≤ 2

n
.

Moreover using the Calderon result, one has ‖hn‖W β,s ≤ c
n
. Let now be K̃

a compact set in Ω, and Ũ an open set such that K̃ ⊂ Ũ ⊂⊂ Ω. There
exists ξ ∈ C∞c (Ω) such that ξ ≥ χ

Ũ
. Hence ξhn ∈ C∞c (Ω), ξhn ≥ χ

Ũ∩Un

and ‖ξhn‖W β,s ≤ c ‖hn‖W β,s ≤ c
n
. Thus for all K ⊂ Ũ ∩ Un, capβ,s(K) ≤ c

n
,

hence capβ,s(Ũ ∩Un) ≤ c
n
. Finally, since E ∩ K̃ ⊂ Ũ ∩Un, capβ,s(E ∩ K̃) ≤ c

n

for all n ∈ N so
capβ,s(E ∩ K̃) = 0. Since Ω is the union of increasing compact, one has

capβ,s(E) = 0.
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