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Abstract. The existence of crack evolutions based on critical points of the energy functional
is proved, in the case of a cohesive zone model with prescribed crack path. It turns out that
evolutions of this type satisfy a maximum stress criterion for the crack initiation. With an
explicit example, it is shown that evolutions based on the absolute minimization of the energy
functional do not enjoy this property.
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1. Introduction

In this paper we present a model for the study of the fracture growth in an elastic body when
the cohesive forces acting between the lips of the crack are not negligible. We consider the case
in which the evolution is driven by a time-dependent boundary displacement on a fixed portion of
the boundary. At the moment, due to technical difficulties, we are forced to assume a priori that
the crack is contained in a prescribed region.

In order to analyze the behaviour of the system, one can follow the time evolution of absolute
minimizers of the energy. This strategy has been used by Dal Maso and Zanini in [11]. Actually,
it turns out that it is not always realistic to expect the energy to be minimized at every fixed
time. Indeed, it may happen that global minimization leads the system to change instantaneously
in a very drastic way, jumping into a very far apart configuration. Thus, it seems reasonable to
introduce a selection criterion which possibly avoids such a situation. To this aim, we will consider
evolutions of critical points of the energy, taking inspiration from [7], where a vanishing viscosity
approach is introduced in the context of plasticity with softening. The same technique was also
used in [12], for the study of rate-independent finite-dimensional systems. In the framework of
fracture mechanics, the first step in this direction has been taken by Dal Maso and Toader in
[10]. Recently, Negri and Ortner (see [17]) presented an evolution based on local minimizers in
the case of a connected crack with prescribed path. In [19], Toader and Zanini use a vanishing
viscosity approach to handle the same problem. To the best of our knowledge, in this paper the
ideas introduced in [12], [7] and [19] are applied for the first time to the case of a cohesive zone
model.

We restrict our analysis to the case of generalized antiplanar shear. More precisely, let Ω be a
bounded open set in R

N , with Lipschitz boundary. We assume that the reference configuration
is the infinite cylinder Ω×R , and that the displacement U : Ω×R → R

N+1 has the special form
U(x1, . . . , xN , xN+1) = (0, . . . , 0, u(x1, . . . , xN )), with u : Ω → R . We assume also that the crack
path in the reference configuration is contained in (Γ∩Ω)×R , where Γ ⊂ R

N is a Lipschitz closed
set such that 0 < HN−1(Γ ∩ Ω) < +∞ and Ω \ Γ = Ω+ ∪ Ω− , with Ω± disjoint open connected
sets with Lipschitz boundary. When speaking about bulk and surface energy, we will refer to a
finite portion of the cylinder, obtained by intersection with two horizontal hyperplanes separated
by a unit distance. Although the case of a planar set Ω is the most interesting from the point of
view of applications, no further relevant technicalities arise in considering an arbitrary N ≥ 2.

Let us fix a time interval [0, T ] , with T > 0. In the situation we consider, the evolution is
driven by a time dependent displacement w : [0, T ] → H1(Ω) imposed on a fixed portion ∂DΩ of
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the boundary ∂Ω. We assume that ∂DΩ is well-separated from Γ and that its intersections with
∂Ω+ and ∂Ω− have positive (N − 1)-dimensional measure.

Let us now introduce the energy functional. We suppose that the unbroken part of Ω can be
described in the context of linearized elasticity, so that the stored elastic energy associated to a
displacement u ∈ H1(Ω \ Γ) is:

1

2

∫

Ω\Γ

|∇u|2dx.

In order to express the work spent to create a fracture, we need some preliminary notations. Let
u± denote the trace on Γ of the restriction of u to Ω± , and let [u] denote the jump u+ − u− of
u across Γ. The crack is represented by the set

Ju := {x ∈ Γ : [u](x) 6= 0}.

Its contribution to the energy, according to Barenblatt’s cohesive zone model (see [4]), can be
written as

∫

Γ

g(|[u]|) dHN−1,

where g : [0,+∞) → [0,+∞) is a C1 , nondecreasing, bounded, concave function with g(0) = 0
and σ := g′(0+) ∈ (0,+∞). Here g(|[u]|) is the energy per unit area spent to create a crack
with opening |[u]| . Moreover, g′(|[u]|) gives the force per unit area acting between the lips of the
crack whose displacements are u+ and u− , respectively. Typically, this force decreases with the
distance and hence g is concave. Since in practise the cohesive interactions have finite range, we
assume g to be bounded. Therefore, the total energy associated to a displacement u ∈ H1(Ω \Γ)
is given by

E(u) :=
1

2

∫

Ω\Γ

|∇u|2dx+

∫

Γ

g(|[u]|) dHN−1. (1.1)

To keep the mathematical formulation as simple as possible we will neglect irreversibility. Never-
theless, this is the subject of the paper [5].

In order to give an idea of the vanishing viscosity approach we start by describing the strategy
in a more general setting. Given a time-dependent functional F(u, t) defined for u in a Banach
space Y and for t ∈ [0, T ] , an evolution of critical points is a function u : [0, T ] → Y which
satisfies

0 ∈ ∂uF(u(t), t) for a.e. t ∈ [0, T ], (1.2)

where ∂uF denotes the subdifferential of F with respect to u . The existence of such an evolution
is proved by a singular perturbation method. That is, for every ε > 0 one considers the ε -gradient
flow

−εu̇ε(t) ∈ ∂uF(uε(t), t) (1.3)

with initial datum uε(0) = u0 , where u0 is a critical point of F(·, 0). Under suitable regularity
assumptions, as ε→ 0 the solutions uε converge (in a sense to be specified) to a function u such
that (1.2) holds.

Let us explain in detail this approach in our case. We apply the previous scheme to Y = L2(Ω)
and

F(u, t) =

{

E(u) for u ∈ H1(Ω \ Γ) and u = w(t) on ∂DΩ,

+∞ otherwise in L2(Ω),

where E is the functional defined by (1.1). Note that in this case the functional depends on time
only through the prescribed boundary conditions.
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We start by observing that a minimizer u(t) of (1.1) at time t is a weak solution (see Propo-
sition 3.2) of







































∆u(t) = 0 in Ω \ Γ,

u(t) = w(t) on ∂DΩ,

∂νu(t) = 0 on ∂Ω \ ∂DΩ,

∂νu
+(t) = ∂νu

−(t) on Γ,

|∂νu(t)| ≤ σ on Γ \ Ju(t),

∂νu(t) = g′(|[u(t)]|) sgn[u(t)] on Ju(t),

(1.4)

where with ν we denote both the inner unit normal to Ω and to Ω+ , sgn · denotes the sign
function, and σ = g′(0+). Any function u satisfying (1.4) will be called a critical point of (1.1)
at time t .

Let now u0 be a critical point of (1.1) at time t = 0. It turns out that a solution uε of (1.3) in
the present situation is given by a weak solution uε ∈ H1((0, T );L2(Ω)) ∩ L∞((0, T );H1(Ω \ Γ))
of







































∆uε(t) = εu̇ε(t) in Ω \ Γ,

uε(t) = w(t) on ∂DΩ,

∂νu
ε(t) = 0 on ∂Ω \ ∂DΩ,

∂νu
ε(t) |Ω+= ∂νu

ε(t) |Ω− on Γ,

|∂νu
ε(t)| ≤ σ on Γ \ Juε(t),

∂νu
ε(t) = g′(|[uε(t)]|) sgn[uε(t)] on Juε(t),

(1.5)

such that uε(0) = u0 . The existence of a solution of (1.5) is proved (Theorem 4.8) by time
discretization, solving suitable incremental minimum problems. Uniqueness is shown for g ∈ C1,1

(Theorem 4.5), but it is not known for the general case g ∈ C1 . We will call variational parabolic
evolution with initial datum u0 and boundary condition w every solution of (1.5) which can be
obtained by this time discretization procedure.

We show (Theorem 4.13) that, given a family {uε}ε∈(0,1) of variational parabolic evolutions with
initial condition u0 and boundary datum w , parametrized by the viscosity parameter ε ∈ (0, 1),
there exists a bounded measurable function u : [0, T ] → H1(Ω \Γ), with u(0) = u0 , such that the
following properties hold:

• approximability: for every t ∈ [0, T ] there exists a sequence εn(t) → 0+ such that

uεn(t)(t) ⇀ u(t) weakly in H1(Ω \ Γ); (1.6)

• stationarity: for a.e. t ∈ [0, T ] the function u(t) is a critical point for E at time t ;
• energy inequality: for every t ∈ [0, T ]

E(u(t)) ≤ E(u(0)) +

∫ t

0

∫

Ω\Γ

∇u(s) · ∇ẇ(s) dx ds. (1.7)

We will call any such function u an approximable quasistatic evolution with initial condition u0

and boundary datum w .
In the second part of the paper we study the properties of such evolutions.

In Theorem 4.14 we show that under monotone loadings, when Γ is contained in a hyperplane
and Ω is symmetric with respect to Γ, the function t 7→ |[u(t)](x)| is nondecreasing for HN−1 -
a.e. x ∈ Γ. This result can be interpreted as some kind of irreversibility for the crack growth in
particular situations.

The second property we consider is the fracturing time. To this aim, we introduce the elastic
evolution z : [0, T ] → H1(Ω), defined as the solution of











∆z(t) = 0 in Ω \ Γ,

z(t) = w(t) on ∂DΩ,

∂νz(t) = 0 on ∂Ω \ ∂DΩ,
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for every t ∈ [0, T ] . It turns out that z(t) is a critical point of (1.1) at time t if and only if
‖∂νz(t)‖L∞(Γ) ≤ σ .

We are able to provide a crack initiation criterion, showing that σ = g′(0+) represents the
maximum sustainable stress along Γ.

More precisely, we prove that if t∗ ∈ (0, T ] is such that supt∈[0,t∗] ‖∂νz(t)‖L∞(Γ) < σ , then every

approximable quasistatic evolution with initial datum u0 = z(0) coincides with z for t ∈ [0, t∗]
(Theorem 4.15).

This result agrees with physical experience. Indeed, it is very well known in the engineering
literature that cracks appear just when the stress reaches the value σ = g′(0+). The proof is
obtained by studying the behaviour of absolute minimizers of the incremental minimum problems.
For this reason, we use a calibration technique for free discontinuity problems (see [1, 16]).

With an explicit example (Section 9), we show that the crack initiation criterion is not satisfied
by the evolution of absolute minimizers. The same example proves that in (1.7) strict inequality
may occur. In particular, some energy can be dissipated passing from one branch of critical points
to another one. Instead, it is known that evolutions of absolute minimizers always satisfy equality,
even in the irreversible case (see [11]).

The outline of the paper is as follows. In Section 2 we fix the notations and the setting of
the problem. Section 3 is devoted to the detailed study of the Euler-Lagrange conditions for the
functional (1.1), while in Section 4 we state the main results. Sections 5 contains the existence
and (in case g ∈ C1,1 ) uniqueness results for variational parabolic evolutions. We show the
existence of approximable quasistatic evolutions in Section 6. The irreversibility under monotone
boundary conditions is the subject of Section 7, while Section 8 contains the proof of the crack
initiation criterion. In Section 9 we provide an explicit example, in which approximable quasistatic
evolutions and absolute minimizers evolutions are compared. The most technical part of the proof
of the crack initiation criterion, in which we construct a calibration, is postponed to the Appendix.

2. Setting of the problem

In this section we give some basic definitions and we introduce the setting of the problem. We
will use the following notations:

• Lk is the Lebesgue measure in R
k, k ∈ N ;

• HN−1 is the (N − 1)-dimensional Hausdorff measure in R
N .

For every set A ⊂ R
N :

• 1A is the characteristic function of A ;
• Ac is the complement of A in R

N ;
• D′(A) is the space of distributions on A .

Through the whole chapter Ω denotes a bounded open set in R
N , N ≥ 2, with Lipschitz boundary.

Moreover, Γ ⊂ R
N is a Lipschitz closed set such that 0 < HN−1(Γ∩Ω) < +∞ and Ω\Γ = Ω+∪Ω− ,

with Ω± open connected sets with Lipschitz boundary and Ω+ ∩Ω− = ∅ . We will prescribe time
dependent boundary displacements on ∂DΩ ⊂ ∂Ω, where

∂DΩ = Λ+
D ∪ Λ−

D,

with Λ+
D and Λ−

D nonempty relatively open, connected, Lipschitz sets. We also assume that

Λ±
D ⊂⊂ (∂Ω± \ Γ), from which it follows that ∂DΩ is well-separated from Γ. With ν we denote

the inner unit normal vector to ∂Ω, defined HN−1 -a.e. in ∂Ω. We will also write ν for the inner
unit normal vector to ∂Ω+ .

Let us fix a time interval [0, T ] , with T > 0, and let w ∈ H1((0, T );H1(Ω)) be the boundary
displacement. Thus, the time derivative ẇ of w belongs to the space L2((0, T );H1(Ω)).
Let B ⊂ R

N be an open bounded set and let S ⊂ ∂B be relatively open and Lipschitz. We set

H1
0 (B,S) := {ψ ∈ H1(B) : ψ = 0 on S}.

The symbol ‖ · ‖ stands for the standard norm in L2(Ω) or L2(Ω; RN ), depending on the context.

Moreover, the brackets 〈·, ·〉 denote the dual pairing between H− 1
2 (Γ) and H

1
2 (Γ). For every
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function u ∈ H1(Ω \ Γ), we will use the notation [u] := u+ − u− and

Ju := {x ∈ Γ : [u](x) 6= 0},
where u± is the trace on Γ of the restriction of u to Ω± . For t ∈ [0, T ] , the class A(t) of
admissible displacements at time t is defined as

A(t) := {u ∈ H1(Ω \ Γ) : u = w(t) on ∂DΩ},
while the total energy associated to a deformation u ∈ A(t) at the same time t is

E(u) :=
1

2

∫

Ω\Γ

|∇u|2dx+

∫

Γ

g(|[u]|) dHN−1, (2.1)

where g : [0,+∞) → [0,+∞) is a C1 , non decreasing, bounded, concave function with g(0) = 0.
We will denote by σ := g′(0+) ∈ (0,+∞) the slope of the function g at 0. For every t ∈ [0, T ] ,
the existence of a solution to the minimum problem

min
v∈A(t)

E(v) (2.2)

is guaranteed by the direct method of the Calculus of Variations. In the next section we give
the Euler-Lagrange conditions for the problem (2.2). Note that, due to the lack of convexity, the
minimizer may not be unique, and there can be critical points that are not absolute minimizers.

3. Euler-Lagrange Conditions

In this section we study in detail the Euler-Lagrange conditions for a minimizer of problem
(2.2), giving two equivalent formulations.

Proposition 3.1. Let t ∈ [0, T ] be fixed and let u be a solution of (2.2). Then
∫

Ω\Γ

∇u · ∇ψ dx+

∫

Γ

(

[ψ] g′(|[u]|) sgn[u] 1Ju
+ σ|[ψ]|1Jc

u

)

dHN−1 ≥ 0 (3.1)

for every ψ ∈ H1
0 (Ω \ Γ, ∂DΩ) .

Proof. We start by proving that for every ψ ∈ H1
0 (Ω \ Γ, ∂DΩ)

lim
η→0+

∫

Γ

g(|[u] + η[ψ]|) − g(|[u]|)
η

dHN−1 (3.2)

=

∫

Γ

[ψ] g′(|[u]|) sgn[u] 1Ju
dHN−1 +

∫

Γ

σ|[ψ]|1Jc
u
dHN−1.

Indeed, let us fix ψ ∈ H1
0 (Ω \ Γ, ∂DΩ). Then, for HN−1 -a.e. x ∈ Jc

u ∩ Γ

lim
η→0+

g(|[u](x) + η [ψ](x)|) − g(|[u](x)|)
η

= lim
η→0+

g(η|[ψ](x)|)
η

= σ|[ψ](x)|, (3.3)

while, for HN−1 -a.e. x ∈ Ju

lim
η→0+

g(|[u](x) + η [ψ](x)|) − g(|[u](x)|)
η

= [ψ](x)g′(|[u](x)|) sgn([u](x)). (3.4)

From the fact that g is concave it follows that g′ is decreasing, so that g′ ≤ σ . Then, we have

g(|[u](x) + η[ψ](x)|) − g(|[u](x)|)
η

≤ σ |[ψ](x)| for HN−1-a.e. x ∈ Γ.

Thanks to (3.3) and (3.4) and applying the dominated convergence theorem we get (3.2). Being
u a solution of (2.2), for every ψ ∈ H1

0 (Ω \ Γ, ∂DΩ) we have that

lim
η→0+

E(u+ ηψ) − E(u)

η
≥ 0.

Using (3.2), last inequality becomes (3.1). �

Next proposition gives an equivalent formulation of the Euler-Lagrange conditions.
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Proposition 3.2. Let t ∈ [0, T ] be fixed and let u ∈ A(t) . Then (3.1) holds if and only if the
following two conditions are fulfilled:

(a) u satisfies


















∆u = 0 in D′(Ω \ Γ),

u = w(t) on H
1
2 (∂DΩ),

∂νu = 0 on H− 1
2 (∂Ω \ ∂DΩ),

∂νu
+ = ∂νu

− on H− 1
2 (Γ);

(3.5)

(b) there exists h ∈ L∞(Γ) such that














〈∂νu, [ψ]〉 =

∫

Γ

h[ψ] dHN−1 ∀ψ ∈ H1
0 (Ω \ Γ, ∂DΩ),

|h| ≤ σ HN−1-a.e. in Γ,

h = g′(|[u]|) sgn([u]) HN−1-a.e. in Ju.

(3.6)

Proof. Let us prove the two implications.

Step 1. Show that (3.1) ⇒ (a) and (b). Specifying (3.1) for ψ and −ψ , with ψ ∈ H1
0 (Ω, ∂DΩ)

arbitrary, we conclude that
∫

Ω\Γ

∇u · ∇ψ dx = 0 ∀ψ ∈ H1
0 (Ω, ∂DΩ),

that is,
∫

Ω+

∇u+ · ∇ψ+ dx +

∫

Ω−

∇u− · ∇ψ− dx = 0, (3.7)

for every ψ+ ∈ H1
0 (Ω+,Λ+

D), ψ− ∈ H1
0 (Ω−,Λ−

D) with ψ+ |Γ= ψ− |Γ . Choosing ψ− ≡ 0 (hence
ψ+ |Γ≡ 0 ) we have

∫

Ω+

∇u+ · ∇ψ+ dx = 0 ∀ψ+ ∈ H1
0 (Ω+,Λ+

D ∪ Γ),

that gives
{

∆u+ = 0 in D′(Ω+),

∂νu
+ = 0 on H− 1

2 (∂Ω+ \ (Λ+
D ∪ Γ)).

Analogous relations can be obtained for u− , by choosing ψ+ ≡ 0 in (3.7), so that (3.5)1–(3.5)3

are proved. In this way, relation (3.7) becomes (setting ψ+ |Γ= ψ− |Γ= ψ )

−〈∂νu
+, ψ〉 + 〈∂νu

−, ψ〉 = 0 ∀ψ ∈ H
1
2 (Γ),

that is (3.5)4 . Taking into account (3.5)1 , (3.5)3 and (3.5)4 , (3.1) reads as

−〈∂νu, [ψ]〉 +

∫

Γ

(

[ψ] g′(|[u]|) sgn[u] 1Ju
+ σ|[ψ]|1Jc

u

)

dHN−1 ≥ 0 (3.8)

for every [ψ] ∈ Y , where Y := { [ψ] : ψ ∈ H1
0 (Ω \ Γ, ∂DΩ)} ⊂ L1(Γ). From (3.8), since g′ ≤ σ , it

follows that
〈∂νu, z〉 ≤ σ ‖z‖L1(Γ) ∀ z ∈ Y.

Applying the previous inequality to z and −z , with z ∈ Y arbitrary, we get

|〈∂νu, z〉| ≤ σ ‖z‖L1(Γ) ∀ z ∈ Y.

This shows that the restriction ∂νu |Y of ∂νu to Y is linear and continuous with respect to the

L1 - norm. Using the fact that H
1
2 (Γ) is dense in L1(Γ) we get that Y is dense in L1(Γ). Thus,

we can extend ∂νu in a unique way to a linear and continuous application (also denoted with
∂νu) ∂νu : L1(Γ) → R with

|〈∂νu, z〉| ≤ σ ‖z‖L1(Γ) ∀ z ∈ L1(Γ).

By the representation theorem, there exists a function h ∈ L∞(Γ) such that

〈∂νu, z〉 =

∫

Γ

h z dHN−1 ∀ z ∈ L1(Γ).
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In particular, (3.6)1 holds and (3.8) becomes
∫

Γ

h [ψ] dHN−1 ≤
∫

Γ

(

[ψ] g′(|[u]|) sgn[u] 1Ju
+ σ|[ψ]|1Jc

u

)

dHN−1

for all [ψ] ∈ Y . By density, for all z ∈ L1(Γ)
∫

Γ

h z dHN−1 ≤
∫

Γ

(

z g′(|[u]|) sgn[u] 1Ju
+ σ|z|1Jc

u

)

dHN−1. (3.9)

Using the last relation we obtain that for every z ∈ L1(Γ) with z ≥ 0
∫

Γ

z
(

h− g′(|[u]|) sgn[u] 1Ju

)

dHN−1 ≤
∫

Γ

z σ 1Jc
u
dHN−1.

From this, we conclude that for HN−1 -a.e. x ∈ Γ

h(x) − g′(|[u](x)|) sgn ([u](x)) 1Ju
(x) ≤ σ 1Jc

u
(x). (3.10)

We now evaluate (3.9) in −z , with z ≥ 0 arbitrary. We get that for all z ∈ L1(Γ) with z ≥ 0
∫

Γ

z
(

h− g′(|[u]|) sgn[u] 1Ju

)

dHN−1 ≥
∫

Γ

z(−σ 1Jc
u
)dHN−1,

so that for HN−1 -a.e. x ∈ Γ

h(x) − g′(|[u](x)|) sgn ([u](x)) 1Ju
(x) ≥ −σ 1Jc

u
(x). (3.11)

Collecting (3.10) and (3.11) we have that for HN−1 -a.e. x ∈ Γ

|h(x) − g′(|[u](x)|) sgn ([u](x)) 1Ju
(x)| ≤ σ 1Jc

u
(x). (3.12)

Choosing x ∈ Ju last inequality becomes

h(x) − g′(|[u](x)|) sgn ([u](x)) = 0 HN−1-a.e. x ∈ Ju,

that is (3.6)3 . For x ∈ Jc
u ∩ Γ (3.12) gives

|h(x)| ≤ σ HN−1-a.e. x ∈ Jc
u ∩ Γ,

that together with (3.6)3 proves (3.6)2 .

Step 2. Show that (a) and (b)⇒ (3.1). Conversely, applying (3.5)1 to ψ ∈ H1
0 (Ω \ Γ, ∂DΩ)

arbitrary, integrating by parts and using relations (3.5)2 –(3.6)3 we get (3.1). �

4. Basic Definitions and Main Results

In this section we give the basic definitions and state the main results of the chapter; all the
proofs are postponed to the next sections. Proposition 3.1 motivates the following definition.

Definition 4.1. Let w ∈ H1((0, T );H1(Ω)), t ∈ [0, T ] , and let E be defined by (2.1). We say
that a function u is a critical point for E at time t if u ∈ A(t) and

∫

Ω\Γ

∇u · ∇ψ dx+

∫

Γ

(

[ψ] g′(|[u]|) sgn[u] 1Ju
+ σ|[ψ]|1Jc

u

)

dHN−1 ≥ 0 (4.1)

for every ψ ∈ H1
0 (Ω \ Γ, ∂DΩ).

Throughout the whole section we will always assume that w ∈ H1((0, T );H1(Ω)) and that u0

is a critical point for E at time t = 0. Unless otherwise stated, the hypotheses on Ω and Γ are
those listed in Section 2.
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4.1. Parabolic Evolutions. We introduce evolutions depending on a “small” viscosity parameter
ε , as made precise by the following definition.

Definition 4.2. Let ε ∈ (0, 1). A parabolic evolution with viscosity ε , boundary datum w and
initial condition u0 is a function uε : [0, T ] → H1(Ω \ Γ) such that

(i)ε uε(0) = u0 ;
(ii)ε uε(t) = w(t) on ∂DΩ for every t ∈ [0, T ] ;

(iii)ε uε ∈ H1((0, T );L2(Ω)) ∩ L∞((0, T );H1(Ω \ Γ));
(iv)ε for a.e. t ∈ [0, T ]

∫

Ω\Γ

∇uε(t) · ∇ψ dx+

∫

Ω\Γ

εu̇ε(t)ψ dx (4.2)

+

∫

Γ

(

[ψ] g′(|[uε(t)]|) sgn[uε(t)] 1Juε(t)
+ σ|[ψ]|1Jc

uε(t)

)

dHN−1 ≥ 0,

for every ψ ∈ H1
0 (Ω \ Γ, ∂DΩ).

Remark 4.3. Arguing as in the proof of Proposition 3.2, the strong formulation of conditions
(i)ε –(iv)ε is easily seen to be the following: uε(0) = u0 and for a.e. t ∈ [0, T ]







































εu̇ε(t) = ∆uε(t) in Ω \ Γ,

uε(t) = w(t) on ∂DΩ,

∂νu
ε(t) = 0 on ∂Ω \ ∂DΩ,

∂νu
ε(t) |Ω+= ∂νu

ε(t) |Ω− on Γ,

|∂νu
ε(t)| ≤ σ on Γ,

∂νu
ε(t) = g′(|[uε(t)]|) sgn([uε(t)]) on Juε(t).

As a first step, we state an existence result.

Theorem 4.4. Let ε ∈ (0, 1) . Then there exists a parabolic evolution with viscosity ε , boundary
datum w and initial condition u0 .

Next theorem shows that under slightly stronger assumptions on the function g we get also
uniqueness.

Theorem 4.5. Let ε ∈ (0, 1) and assume g ∈ C1,1 . Then there exists a unique parabolic evolution
with viscosity ε , boundary datum w and initial condition u0 .

For the general case g ∈ C1 uniqueness is not known for a function uε satisfying (i)ε –(iv)ε .
For this reason, in order to obtain the desired properties of the limit evolution as the viscosity
parameter tends to 0, we introduce a selection criterion on the parabolic evolutions. We will select
among all possible solutions of (4.2) only those obtained by a suitable approximation procedure,
based on the technique of minimizing movements introduced by De Giorgi (see [2]). Given a time
step δ ∈ (0, T ), we divide the interval [0, T ] into subintervals [iδ, (i+1)δ), for i ∈ N with iδ ≤ T .
Then, at every time iδ we solve a “static” minimum problem for the energy E , adding a term
which penalizes the L2 -distance between the approximate solutions at two consecutive times.

Definition 4.6. Let δ ∈ (0, T ) and ε ∈ (0, 1). A discrete-time evolution with time step δ ,
viscosity ε , boundary datum w and initial condition u0 is a piecewise constant function uε,δ :

[0, T ] → H1(Ω \ Γ) such that uε,δ(t) := uε,δ
i for iδ ≤ t < (i + 1)δ , where uε,δ

0 := u0 and, by

induction, uε,δ
i is a solution to the minimum problem

min
v∈A(iδ)

{

E(v) +
ε

2δ
‖v − uε,δ

i−1‖2
}

(4.3)

for every i ∈ N with iδ ≤ T . Problem (4.3) will be also denoted by (P )ε,δ
i .

We now make explicit the selection criterion for parabolic evolutions.
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Definition 4.7. Let ε ∈ (0, 1). A parabolic evolution is said to be a variational parabolic evolution
with viscosity ε , boundary datum w and initial condition u0 if there exists a family {uε,δ}δ∈(0,T )

of discrete-time evolutions with viscosity ε , boundary datum w and initial condition u0 , such
that for every t ∈ [0, T ]

uε,δn(t) ⇀ uε(t) weakly in H1(Ω \ Γ) (4.4)

for some sequence δn → 0+ as n→ +∞ .

Next theorem gives an existence result for variational parabolic evolutions.

Theorem 4.8. Let ε ∈ (0, 1) . Then there exists a variational parabolic evolution with viscosity
ε , boundary datum w and initial condition u0 .

Remark 4.9. In particular, the previous result implies Theorem 4.4.

The following proposition states an energy inequality for variational parabolic evolutions.

Proposition 4.10. Let ε ∈ (0, 1) and let uε be a variational parabolic evolution with viscosity ε ,
boundary datum w and initial condition u0 . Then, for every t ∈ [0, T ]

1

2
‖∇uε(t)‖2 +

∫

Γ

g(|[uε(t)]|) dHN−1 +
ε

2

∫ t

0

‖u̇ε(s)‖2ds (4.5)

≤ 1

2
‖∇u0‖2 +

∫

Γ

g(|[u0]|) dHN−1 +

∫ t

0

∫

Ω\Γ

∇uε(s) · ∇ẇ(s) dx ds+
ε

2

∫ t

0

‖ẇ(s)‖2ds.

4.2. Approximable Quasistatic Evolutions. We give now the definition of approximable qua-
sistatic evolution.

Definition 4.11. A bounded measurable function u : [0, T ] → H1(Ω \ Γ) is said to be an ap-
proximable quasistatic evolution with boundary datum w and initial condition u0 if there exists a
family {uε}ε∈(0,1) of variational parabolic evolutions with boundary datum w and initial condition
u0 , parametrized by the viscosity ε , such that the following three conditions are satisfied:

• approximability: for every t ∈ [0, T ] there exists a sequence εn(t) → 0+ such that

uεn(t)(t) ⇀ u(t) weakly in H1(Ω \ Γ); (4.6)

• stationarity: for a.e. t ∈ [0, T ] the function u(t) is a critical point for E at time t ;
• energy inequality: for every t ∈ [0, T ]

E(u(t)) ≤ E(u(0)) +

∫ t

0

∫

Ω\Γ

∇u(s) · ∇ẇ(s) dx ds. (4.7)

Remark 4.12. It can be seen that the stationarity is a direct consequence of the approximability
condition (4.6) (see the proof of Theorem 4.13).

We claim that the previous definition gives a good candidate for the description of the crack
evolution. First of all, we give an existence result.

Theorem 4.13. There exists an approximable quasistatic evolution with boundary datum w and
initial condition u0 .

We state now some results concerning the properties satisfied by the approximable quasistatic
evolutions. Let us introduce some notation. For every x ∈ R

N we write x = (x1, x
′), where

x1 ∈ R and x′ ∈ R
N−1 ; we also set X1 := {(x1, x

′) ∈ R
N : x1 = 0} . We say that Ω is symmetric

with respect to X1 if (x1, x
′) ∈ Ω implies (−x1, x

′) ∈ Ω and Λ+
D can be obtained from Λ−

D by

reflection, that is Λ+
D = {(x1, x

′) ∈ R
N : (−x1, x

′) ∈ Λ−
D} . A function v ∈ H1(Ω \ Γ) is said to

be odd with respect to X1 or simply odd if v(−x1, x
′) = −v(x1, x

′) for every (x1, x
′) ∈ Ω+ . Next

theorem shows that in the particular situation of monotone boundary conditions and symmetric
domain, every approximable quasistatic evolution is irreversible.

Theorem 4.14. Assume that Γ ⊂ X1 and that Ω is symmetric with respect to X1 , according to
the definition given above. Let u0 = 0 . Suppose, in addition, that the following hold:
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• w(t) is an odd function for every t ;
• the function w has constant sign on [0, T ]× Λ+

D ;

• t 7→ |w(t)|(x1, x
′) is nondecreasing for every (x1, x

′) ∈ Λ+
D .

Then, for every approximable quasistatic evolution u with initial condition u0 = 0 and boundary
datum w the function t 7→ |[u(t)]|(0, x′) is nondecreasing for HN−1 -a.e. (0, x′) ∈ Γ .

Before stating the next result we need some definitions. For every t ∈ [0, T ] we define the
elastic solution z(t) as the (unique) solution to the problem

min
v∈B(t)

{

1

2

∫

Ω

|∇v|2dx
}

, (4.8)

where

B(t) := {v ∈ H1(Ω) : v = w(t) on ∂DΩ} ⊂ A(t). (4.9)

This definition comes from the fact that when there are no cracks, problem (2.2) reduces to (4.8).
We will refer to the function z : [0, T ] → H1(Ω) as elastic evolution.

The following crack initiation criterion proves that σ := g′(0+) represents the maximum sus-
tainable stress along Γ: we prove that a crack cannot appear until the elastic solution defined by
(4.8) is a critical point satisfying condition (3.6)2 with strict inequality.

Theorem 4.15 (crack initiation criterion). Assume that u0 = z(0) , ‖w‖L∞((0,T );L∞(Ω)) < +∞
and ‖ẇ‖L∞((0,T );L∞(Ω)) < +∞ . In addition to the usual hypothesis we assume that ∂Ω is of class

C2 in a neighbourhood of Γ ∩ ∂Ω , with HN−2(∂DΩ \ ∂DΩ) < +∞ . Suppose also that there exists
t∗ ∈ (0, T ] such that supt∈[0,t∗] ‖∂νz(t)‖L∞(Γ) < σ , with z(t) defined by (4.8). Then, if u is an

approximable quasistatic evolution with boundary datum w and initial condition u0 = z(0) , there
holds u(t) = z(t) for every t ∈ [0, t∗] .

Remark 4.16. In particular, this shows the uniqueness of the approximable quasistatic evolution
for t ∈ [0, t∗] under the hypotheses of Theorem 4.15.

5. Proof of Theorem 4.8, Proposition 4.10, and Theorem 4.5

This section is devoted to the study of (variational) parabolic evolutions.

5.1. Proof of Theorem 4.8. Let us consider, for every δ ∈ (0, T ), a discrete-time evolution
uε,δ : [0, T ] → H1(Ω \ Γ) with time step δ , viscosity ε , boundary datum w and initial condition
u0 . Before giving the proof of Theorem 4.8, we need two technical lemmas.

Lemma 5.1. There exists a function ρ : (0, T ) → [0,+∞) such that ρ(δ)
δ→0+

−→ 0 and

1

2
‖∇uε,δ

j ‖2 +

∫

Γ

g(|[uε,δ
j ]|) dHN−1 +

ε

2δ

j−1
∑

h=i

‖uε,δ
h+1 − uε,δ

h ‖2

≤ 1

2
‖∇uε,δ

i ‖2 +

∫

Γ

g(|[uε,δ
i ]|) dHN−1 +

∫ jδ

iδ

∫

Ω\Γ

∇uε,δ(s) · ∇ẇ(s) dx ds

+
ε

2

∫ jδ

iδ

‖ẇ(s)‖2ds+ ρ(δ) (5.1)

for every i, j ∈ N with 0 ≤ i < j and jδ ≤ T .

Proof. Let r ∈ N be such that i ≤ r < j . Since w ∈ H1((0, T );H1(Ω)), we have that

wδ
r+1 − wδ

r =

∫ (r+1)δ

rδ

ẇ(s) ds,

where the integral is a Bochner integral for functions with values in H1(Ω) and we used the
notation w(rδ) = wδ

r . This implies that

∇wδ
r+1 −∇wδ

r =

∫ (r+1)δ

rδ

∇ẇ(s) ds,
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where the integral is now a Bochner integral for functions with values in L2(Ω; RN ). Since uε,δ
r +

wδ
r+1 − wδ

r ∈ A((r + 1)δ), by the minimality of uε,δ
r+1 we have

1

2
‖∇uε,δ

r+1‖2 +

∫

Γ

g(|[uε,δ
r+1]|) dHN−1 +

ε

2δ
‖uε,δ

r+1 − uε,δ
r ‖2

≤ 1

2
‖∇uε,δ

r + ∇wδ
r+1 −∇wδ

r‖2 +

∫

Γ

g(|[uε,δ
r ] + [wδ

r+1] − [wδ
r ]|) dHN−1 +

ε

2δ
‖wδ

r+1 − wδ
r‖2

=
1

2
‖∇uε,δ

r ‖2 +

∫

Γ

g(|[uε,δ
r ]|) dHN−1 +

∫ (r+1)δ

rδ

∫

Ω\Γ

∇uε,δ
r · ∇ẇ(s) dx ds

+
1

2
‖∇wδ

r+1 −∇wδ
r‖2 +

ε

2δ
‖wδ

r+1 − wδ
r‖2

≤ 1

2
‖∇uε,δ

r ‖2 +

∫

Γ

g(|[uε,δ
r ]|) dHN−1 +

∫ (r+1)δ

rδ

∫

Ω\Γ

∇uε,δ
r · ∇ẇ(s) dx ds

+
1

2

(

∫ (r+1)δ

rδ

‖∇ẇ(s)‖ds
)2

+
ε

2δ

(

∫ (r+1)δ

rδ

‖ẇ(s)‖ds
)2

≤ 1

2
‖∇uε,δ

r ‖2 +

∫

Γ

g(|[uε,δ
r ]|) dHN−1 +

∫ (r+1)δ

rδ

∫

Ω\Γ

∇uε,δ
r · ∇ẇ(s) dx ds

+
1

2

(

max
r

∫ (r+1)δ

rδ

‖∇ẇ(s)‖ds
)

∫ (r+1)δ

rδ

‖∇ẇ(s)‖ds+
ε

2

∫ (r+1)δ

rδ

‖ẇ(s)‖2ds.

Iterating last inequality for r = j − 1, . . . , i we get (5.1) with

ρ(δ) :=
1

2

(

max
r

∫ (r+1)δ

rδ

‖∇ẇ(s)‖ds
)
∫ T

0

‖∇ẇ(s)‖ds,

that converges to 0 as δ → 0+ by the absolute continuity of the integral. �

We define now the functions v ε,δ : [0, T ] → H1(Ω \ Γ) in the following way:

v ε,δ(t) := uε,δ
i +

t− iδ

δ
(uε,δ

i+1 − uε,δ
i ) for iδ ≤ t < (i+ 1)δ. (5.2)

The second lemma gives some a priori estimates for the families {uε,δ}δ∈(0,T ) and {vε,δ}δ∈(0,T ) .

Lemma 5.2. There exists a positive constant C = C(Ω,Γ, u0, w, T ) , such that

‖uε,δ
j ‖H1(Ω\Γ) ≤ C, ‖vε,δ(t)‖H1(Ω\Γ) ≤ C; (5.3)

ε

2

∫ jδ

0

‖v̇ε,δ(s)‖2ds =
ε

2δ

j−1
∑

h=0

‖uε,δ
h+1 − uε,δ

h ‖2 ≤ C; (5.4)

√
ε‖v̇ε,δ‖L2((0,T );L2(Ω)) ≤ C, ‖vε,δ‖H1((0,T );L2(Ω)) ≤ C

√

1 +
1

ε
; (5.5)

for every ε ∈ (0, 1) , δ ∈ (0, T ) , t ∈ [0, T ] and j ∈ N with jδ ≤ T .

Proof. Let us fix ε ∈ (0, 1), δ ∈ (0, T ), and t ∈ [0, T ] . Let j ∈ N be such that jδ ≤ t < (j + 1)δ .
Consider now inequality (5.1) with i = 0. We get

1

2
‖∇uε,δ

j ‖2 +

∫

Γ

g(|[uε,δ
j ]|) dHN−1 +

ε

2

∫ jδ

0

‖v̇ε,δ(s)‖2ds

≤ 1

2
‖∇u0‖2 +

∫

Γ

g(|[u0]|) dHN−1 +

∫ jδ

0

∫

Ω\Γ

∇uε,δ(s) · ∇ẇ(s) dx ds

+
ε

2

∫ jδ

0

‖ẇ(s)‖2ds+ ρ(δ). (5.6)
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From (5.6), using Hölder inequality we get

‖∇uε,δ(t)‖2 ≤ c+ 2

(
∫ t

0

‖∇ẇ(s)‖2ds

)

1
2
(
∫ t

0

‖∇uε,δ(s)‖2ds

)

1
2

, (5.7)

where c is a positive constant independent of δ , ε and t . By using the Gronwall Lemma [3,
Lemma 4.1.8] we deduce that for every t ∈ [0, T ]

(
∫ t

0

‖∇uε,δ(s)‖2ds

)

1
2

≤ (Tc)
1
2 + 2T ‖∇ẇ‖L2((0,T );L2(Ω)).

Last relation together with (5.7) implies that ∇uε,δ(t) is bounded in L2(Ω; RN ) uniformly with
respect to δ, ε and t . Then, using the Poincaré inequality we get immediately (5.3). Once (5.3)
is proved, (5.4) and (5.5)1 follows by (5.6). Finally, (5.3)2 and (5.5)1 imply (5.5)2 . �

We are now ready to prove Theorem 4.8.

Proof of Theorem 4.8. We want to prove that there exists a function uε satisfying conditions
(i)ε –(iv)ε of Definition 4.2 and such that (4.4) holds for some sequence of time steps δn → 0.
From (5.3)2 it follows that

vε,δ(t) ∈ BC for every δ ∈ (0, T ), t ∈ [0, T ], (5.8)

where
BC := {u ∈ H1(Ω \ Γ) : ‖u‖H1(Ω\Γ) ≤ C}, (5.9)

and C is given by Lemma 5.2. Moreover, by (5.5)1 and using Hölder inequality

‖vε,δ(t) − vε,δ(s)‖ ≤ C√
ε

√

| t− s | , for every s, t ∈ [0, T ], δ ∈ (0, T ). (5.10)

Thanks to (5.8) and (5.10), and observing that BC is compact in L2(Ω), we can apply a refined
version of Ascoli-Arzelà Theorem (see [3, Proposition 3.3.1]). Therefore, there exist a continuous
(with respect to the L2 -norm) function uε : [0, T ] → BC and a sequence δn → 0+ such that for
every t ∈ [0, T ]

vε,δn(t) → uε(t) strongly in L2(Ω). (5.11)

From (5.5)2 we get also that

vε,δn ⇀ uε weakly in H1((0, T );L2(Ω)). (5.12)

Let us prove (4.4). Let t ∈ [0, T ] be fixed and, for every n ∈ N , let ln ∈ N be such that
lnδn ≤ t < (ln + 1)δn . By (5.2) and (5.4)

‖vε,δn(t) − uε,δn(t)‖2 =

(

t− lnδn
δn

)2

‖uε,δn

ln+1 − uε,δn

ln
‖2

≤ ‖uε,δn

ln+1 − uε,δn

ln
‖2 ≤ 2δn

ε
C. (5.13)

When n→ +∞ we get
sup

t∈[0,T ]

‖vε,δn(t) − uε,δn(t)‖ → 0. (5.14)

Since uε,δn(t) ∈ BC for every n ∈ N , using (5.11) and (5.14) we deduce (4.4).
We prove now conditions (i)ε -(iv)ε . Clearly uε(0) = u0 , so that (i)ε holds. Moreover, (ii)ε

follows from the fact that, for t ∈ [0, T ] fixed, lnδn → t and consequently w(lnδn) → w(t) strongly
in H1(Ω). Using (5.12), (4.4), and the fact that uε,δn(t) ∈ BC for every t ∈ [0, T ] we have (iii)ε .
It remains to prove condition (iv)ε . Let us fix t ∈ (0, T ). Arguing as in the proof of Proposition
3.1, we obtain that for every n ∈ N

∫

Ω\Γ

∇uε,δn(t) · ∇ψ dx+

∫

Ω

εv̇ε,δn(t)ψ dx (5.15)

+

∫

Γ

(

[ψ] g′(|[uε,δn(t)]|) sgn[uε,δn(t)] 1J
uε,δn (t)

+ σ|[ψ]|1Jc

uε,δn (t)

)

dHN−1 ≥ 0
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for every ψ ∈ H1
0 (Ω \ Γ, ∂DΩ). We evaluate now the mean value of inequality (5.15) from t to

t+ η , with η > 0 such that t+ η < T :

1

η

∫ t+η

t

∫

Ω\Γ

∇uε,δn(s) · ∇ψ dxds+
1

η

∫ t+η

t

∫

Ω

εv̇ε,δn(s)ψ dxds (5.16)

≥ 1

η

∫ t+η

t

∫

Γ

fε,n(s) dHN−1ds,

where

fε,n(s) := −[ψ] g′(|[uε,δn(s)]|) sgn[uε,δn(s)] 1J
uε,δn (s)

− σ|[ψ]|1Jc

uε,δn (s)
.

Let us consider the left-hand side of (5.16). For the first term, using Hölder inequality and (5.3)1

we have that for every s ∈ (t, t+ η)
∫

Ω\Γ

∇uε,δn(s) · ∇ψ dx ≤ C‖∇ψ‖.

Hence, thanks to (4.4) and applying the Lebesgue dominated convergence Theorem

lim
n→+∞

1

η

∫ t+η

t

∫

Ω\Γ

∇uε,δn(s) · ∇ψ dxds =
1

η

∫ t+η

t

∫

Ω\Γ

∇uε(s) · ∇ψ dxds. (5.17)

In the same way, thanks to (5.5)1 and (5.12) we can apply the Lebesgue dominated convergence
Theorem to the second term:

lim
n→+∞

1

η

∫ t+η

t

∫

Ω

εv̇ε,δn(s)ψ dxds =
1

η

∫ t+η

t

∫

Ω

εu̇ε(s)ψ dxds. (5.18)

Collecting (5.17) and (5.18) we have

lim
n→+∞

(

1

η

∫ t+η

t

∫

Ω\Γ

∇uε,δn(s) · ∇ψ dxds+
1

η

∫ t+η

t

∫

Ω

εv̇ε,δn(s)ψ dxds

)

=
1

η

∫ t+η

t

∫

Ω\Γ

∇uε(s) · ∇ψ dxds+
1

η

∫ t+η

t

∫

Ω

εu̇ε(s)ψ dxds. (5.19)

Let us now consider the right-hand side of (5.16). We claim that for every s ∈ (t, t+ η)

lim inf
n→+∞

fε,n(s) ≥ −[ψ] g′(|[uε(s)]|) sgn[uε(s)] 1Juε(s)
− σ|[ψ]|1Jc

uε(s)
(5.20)

HN−1 -a.e. in Γ. To prove (5.20), let us fix s ∈ (t, t+ η). We can extract a subsequence (nk)k∈N ,
possibly depending on s , such that

lim
k→+∞

fε,nk(s) = lim inf
n→+∞

fε,n(s) HN−1-a.e. in Γ

and

lim
k→+∞

[uε,δnk (s)] = [uε(s)] HN−1-a.e. in Γ. (5.21)

Now, let us fix x ∈ Juε(s) such that the two previous equalities hold. By (5.21) it follows that for

k large enough x ∈ J
u

ε,δnk (s) and sgn([uε,δnk (s)](x)) = sgn([uε(s)](x)). Hence,

lim inf
n→+∞

fε,n(s)(x) = lim
k→+∞

−[ψ](x) g′(|[uε,δnk (s)](x)|) sgn[uε(s)](x)

= −[ψ](x) g′(|[uε(s)](x)|) sgn[uε(s)](x),

for HN−1 -a.e. x ∈ Juε(s) . On the other hand, if x ∈ Jc
uε(s) ∩ Γ we have

lim inf
n→+∞

fε,n(s)(x) ≥ −σ|[ψ](x)|,
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so that (5.20) is proved. Thus, using Fatou’s Lemma and (5.20)

lim inf
n→+∞

1

η

∫ t+η

t

∫

Γ

fε,n(s) dHN−1ds ≥ 1

η

∫ t+η

t

∫

Γ

lim inf
n→+∞

fε,n(s) dHN−1ds

≥ 1

η

∫ t+η

t

∫

Γ

(

− [ψ] g′(|[uε(s)]|) sgn[uε(s)] 1Juε(s)
− σ|[ψ]|1Jc

uε(s)

)

dHN−1ds. (5.22)

Passing to the liminf as n→ +∞ in (5.16) and taking into account (5.19) and (5.22) we obtain

1

η

∫ t+η

t

∫

Ω\Γ

∇uε(s) · ∇ψ dxds+
1

η

∫ t+η

t

∫

Ω

εu̇ε(s)ψ dxds

≥ 1

η

∫ t+η

t

∫

Γ

(

− [ψ] g′(|[uε(s)]|) sgn[uε(s)] 1Juε(s)
− σ|[ψ]|1Jc

uε(s)

)

dHN−1ds

for every ψ ∈ H1
0 (Ω \ Γ, ∂DΩ). Finally, letting η go to 0+ we get (iv)ε . �

5.2. Proof of Proposition 4.10. In this subsection we show the energy inequality (4.5) for
variational parabolic evolutions.

Proof of Proposition 4.10. Let uε be a variational parabolic evolution with viscosity ε , boundary
datum w and initial condition u0 . In particular, there exist a sequence of time step δn → 0 and a
sequence of discrete time evolutions {uε,δn}n∈N such that (4.4) holds. By repeating the arguments
used in the proof of Theorem 4.4 we obtain that relations (5.12) and (5.13) still hold true. Let
now t ∈ [0, T ] be fixed. Relation (5.13) implies that

uε,δn(t+ δn) − uε,δn(t) → 0 strongly in L2(Ω).

From last relation, (4.4) and (5.3)1 we deduce that

uε,δn(t+ δn) ⇀ uε(t) weakly in H1(Ω \ Γ). (5.23)

At this point, we extract a subsequence δnk
, possibly depending on t , such that

[uε,δnk (t+ δnk
)] → [uε(t)] HN−1-a.e. in Γ. (5.24)

For every n ∈ N , let ln ∈ N be such that lnδn ≤ t < (ln + 1)δn . Let us write relation (5.1) with
j = ln + 1 and i = 0. We obtain

1

2
‖∇uε,δn(t+ δn)‖2 +

∫

Γ

g(|[uε,δn(t+ δn)]|) dHN−1 +
ε

2

∫ (ln+1)δn

0

‖v̇ε,δn(s)‖2ds

≤ 1

2
‖∇u0‖2 +

∫

Γ

g(|[u0]|)dHN−1 +

∫ (ln+1)δn

0

∫

Ω\Γ

∇uε,δn(s) · ∇ẇ(s) dx ds

+
ε

2

∫ (ln+1)δn

0

‖ẇ(s)‖2ds+ ρ(δn). (5.25)

For the left-hand side, thanks to (5.12), (5.23) and (5.24) we have

1

2
‖∇uε(t)‖2 +

∫

Γ

g(|[uε(t)]|)dHN−1 +
ε

2

∫ t

0

‖u̇ε(s)‖2ds

≤ lim inf
k→+∞

(

1

2
‖∇uε,δnk (t+ δnk

)‖2 +

∫

Γ

g(|[uε,δnk (t+ δnk
)]|) dHN−1 +

ε

2

∫ t

0

‖v̇ε,δnk (s)‖2ds

)

≤ lim sup
n→+∞

(

1

2
‖∇uε,δn(t+ δn)‖2 +

∫

Γ

g(|[uε,δn(t+ δn)]|) dHN−1 +
ε

2

∫ (ln+1)δn

0

‖v̇ε,δn(s)‖2ds

)

.
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Passing to the limsup as n→ +∞ in (5.25) and taking into account last relation

1

2
‖∇uε(t)‖2 +

∫

Γ

g(|[uε(t)]|)dHN−1 +
ε

2

∫ t

0

‖u̇ε(s)‖2ds ≤ 1

2
‖∇u0‖2 +

∫

Γ

g(|[u0]|) dHN−1

+ lim sup
n→+∞

(
∫ (ln+1)δn

0

∫

Ω\Γ

∇uε,δn(s) · ∇ẇ(s) dx ds+
ε

2

∫ (ln+1)δn

0

‖ẇ(s)‖2ds+ ρ(δn)

)

=
1

2
‖∇u0‖2 +

∫

Γ

g(|[u0]|) dHN−1 +

∫ t

0

∫

Ω\Γ

∇uε(s) · ∇ẇ(s) dx ds+
ε

2

∫ t

0

‖ẇ(s)‖2ds.

�

We now give the proof of the uniqueness result.

5.3. Proof of Theorem 4.5. To start with, we prove the following auxiliary lemma.

Lemma 5.3. For every C1 > 0 there exists C2 > 0 such that

‖[u]‖2
L2(Γ) ≤ C2‖u‖2 + C1‖∇u‖2 for every u ∈ H1(Ω \ Γ).

Proof. By contradiction, let us assume that the thesis does not hold. Then, there exists C1 > 0
with the following property. For every n ∈ N there exists un ∈ H1(Ω \ Γ) with ‖[un]‖L2(Γ) = 1
such that

1 > n‖un‖2 + C1‖∇un‖2.

Letting n go to infinity, we have that un → 0 in L2(Ω). Since ‖∇un‖ is bounded, up to
subsequences un ⇀ 0 weakly in H1(Ω \ Γ). This implies [un] → 0 in L2(Γ), which contradicts
the fact that ‖[un]‖L2(Γ) = 1 for every n ∈ N . �

We can now prove Theorem 4.5.

Proof of Theorem 4.5. By contradiction, let us assume that there exist two different parabolic
evolutions u1, u2 with viscosity ε , boundary datum w and initial condition u0 . Specifying (4.2)
for u1 with test function ψ = u2 − u1 we obtain

∫

Ω\Γ

∇u1 · ∇(u2 − u1) dx+

∫

Ω

εu̇1(u2 − u1) dx

+

∫

Γ

(

[u2 − u1] g
′(|[u1]|) sgn[u1] 1Ju1

+ σ|[u2]|1Jc
u1

)

dHN−1 ≥ 0.

Here we omit the dependence on the time variable, fixing t ∈ [0, T ] such that (4.2) holds for both
u1(t) and u2(t). Summing up last inequality with the analogous relation obtained by exchanging
the role of u1 and u2 , we get

‖∇(u1 − u2)‖2 +
ε

2

d

dt

(

‖u1 − u2‖2
)

≤
∫

Γ

(

[u2 − u1] g
′(|[u1]|) sgn[u1] 1Ju1

+ σ|[u2]|1Jc
u1

)

dHN−1

+

∫

Γ

(

[u1 − u2] g
′(|[u2]|) sgn[u2] 1Ju2

+ σ|[u1]|1Jc
u2

)

dHN−1

=

∫

Γ

(

[u2 − u1]
(

g′(|[u1]|) sgn[u1] − g′(|[u2]|) sgn[u2]
)

1Ju1∩Ju2
dHN−1

+

∫

Γ

|[u2]|
(

σ − g′(|[u2]|)
)

1Jc
u1

∩Ju2
dHN−1

+

∫

Γ

|[u1]|
(

σ − g′(|[u1]|)
)

1Jc
u2

∩Ju1
dHN−1.
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Notice that in the right-hand side the argument of the first integral is negative if [u1][u2] < 0.
Moreover, if [u1][u2] > 0 there holds |[u2] − [u1]| = | |[u2]| − |[u1]| | , so that

‖∇(u1 − u2)‖2 +
ε

2

d

dt

(

‖u1 − u2‖2
)

≤
∫

Γ

|[u2] − [u1]| | g′(|[u1]|) − g′(|[u2]|) | 1{[u1][u2]>0} dHN−1

+

∫

Γ

|[u2]|
(

σ − g′(|[u2]|)
)

1Jc
u1

∩Ju2
dHN−1

+

∫

Γ

|[u1]|
(

σ − g′(|[u1]|)
)

1Jc
u2

∩Ju1
dHN−1

≤
∫

Γ

L|[u1 − u2]|21{[u1][u2]>0} dHN−1 +

∫

Γ

L|[u1 − u2]|21Jc
u1

∩Ju2
dHN−1

+

∫

Γ

L|[u1 − u2]|21Jc
u2

∩Ju1
dHN−1

≤ L‖[u1 − u2]‖2
L2(Γ),

where L > 0 is the Lipschitz constant of g′ . Thus, we obtained

ε

2

d

dt

(

‖u1 − u2‖2
)

≤ −‖∇(u1 − u2)‖2 + L‖[u1 − u2]‖2
L2(Γ).

Applying the previous lemma with C1 = 1
L

ε

2

d

dt

(

‖u1 − u2‖2
)

≤ −‖∇(u1 − u2)‖2 + L
(

C2‖u1 − u2‖2 +
1

L
‖∇(u1 − u2)‖2

)

.

Hence, for a.e. t ∈ [0, T ]

d

dt

(

‖u1(t) − u2(t)‖2
)

≤ 2LC2

ε
‖u1(t) − u2(t)‖2.

Using the version of the Gronwall Lemma stated in [3, Lemma 4.1.8] we get u1 = u2 . �

6. Proof of Theorem 4.13

In order to prove the theorem, we need the following result.

Lemma 6.1. Let X be a compact metric space. Let p : [0, T ] → R , pk : [0, T ] → R and
fk : [0, T ] → X be measurable functions, for every k ∈ N . For every t ∈ [0, T ] let us set

I(t) := {x ∈ X : ∃ kj → +∞ such that x = lim
j→+∞

fkj
(t) and p(t) = lim

j→∞
pkj

(t)}.

Then, the following facts hold:

• I(t) is closed for all t ∈ [0, T ] ;
• for every open set U ⊆ X the set {t ∈ [0, T ] : I(t) ∩ U 6= Ø} is measurable.

For the proof, we refer to [8].

Proof of Theorem 4.13. We want to prove that there exists u : [0, T ] → H1(Ω \ Γ) bounded and
measurable such that the three conditions of Definition 4.11 are satisfied.

Thanks to Theorem 4.8, for every ε ∈ (0, 1) we can consider a variational parabolic evolution
uε with viscosity ε , boundary datum w and initial condition u0 . In particular, there exist a
sequence of time steps δn → 0+ and a sequence {uε,δn}n∈N of discrete time evolutions such that
(4.4) and (5.5)1 hold. This implies that for every ε ∈ (0, 1)

‖u̇ε‖L2((0,T );L2(Ω)) ≤ lim inf
n→+∞

‖v̇ε,δn‖L2((0,T );L2(Ω)) ≤
C√
ε
.

Then, there exists a sequence εn → 0+ such that

εnu̇
εn(t) → 0 strongly in L2(Ω) for a.e. t ∈ [0, T ]. (6.1)
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Let Θ ⊂ [0, T ] be such that L1(Θ) = 0 and ẇ(t) is defined for every t ∈ [0, T ] \ Θ. We set for
every n ∈ N

θεn(t) :=







∫

Ω\Γ

∇uεn(t) · ∇ẇ(t) dx for t ∈ [0, T ] \ Θ,

0 for t ∈ Θ,

and for every t ∈ [0, T ]

θ(t) := lim sup
n→+∞

θεn(t).

We point out that θ , as pointwise limsup of a sequence of measurable functions, is measurable. It
turns out that θ ∈ L1(0, T ). Indeed, by (4.4) and (5.3)1 it follows that

uεn(t) ∈ BC ∀n ∈ N, t ∈ [0, T ], (6.2)

where BC is defined by (5.9). Moreover, since w ∈ H1((0, T );H1(Ω)),

∫ T

0

|θ(t)| dt ≤
∫ T

0

lim sup
n→+∞

‖∇uεn(t)‖ ‖∇ẇ(t)‖ dt ≤ CT,

for some constant C > 0. By definition of θ , for every t ∈ [0, T ] we can extract a subsequence
εnk

(t) → 0+ , possibly depending on t , such that

θ(t) = lim
k→+∞

θεnk
(t)(t).

By (6.2), for every t ∈ [0, T ] we can extract a further subsequence (not relabelled) such that

uεnk
(t)(t) ⇀ u(t) weakly in H1(Ω \ Γ), (6.3)

for some u(t) ∈ BC . This shows that the set

I(t) := {u ∈ BC : ∃ εnk
→ 0+ such that uεnk (t) ⇀ u weakly in H1(Ω \ Γ) and θεnk (t) −→ θ(t)}

is not empty for every t ∈ [0, T ] .
In the following, we will consider BC endowed with the metric compatible with the weak

topology of H1(Ω \ Γ). In this way, BC becomes a compact metric space and we can apply
Lemma 6.1. Hence, for every t ∈ [0, T ] the set I(t) is closed in BC . Moreover, for every open set
U of BC the set {t ∈ [0, T ] : I(t) ∩ U 6= Ø} is measurable. Using [6, Theorem III.6], for every
t ∈ [0, T ] we can select u(t) ∈ I(t) in such a way that t 7−→ u(t) is measurable from [0, T ] to BC .
Since t 7−→ u(t) is separably valued, we get measurability from [0, T ] to H1(Ω \Γ) endowed with
the strong topology (see [21, Chapter V, Section 4]). This shows the approximability condition
and the fact that u is measurable and bounded.

Let us prove the energy inequality. First, we notice that for every t ∈ [0, T ] \ Θ there holds

θ(t) = lim sup
n→∞

θεn(t) = lim
k→∞

θεnk
(t)(t) = lim

k→∞

∫

Ω\Γ

∇uεnk
(t)(t) · ∇ẇ(t) dx

=

∫

Ω\Γ

∇u(t) · ∇ẇ(t) dx,

since uεnk
(t) converges weakly to u(t) in H1(Ω \ Γ). Up to subsequences, we can assume that

[uεnk
(t)(t)] → [u(t)] HN−1-a.e. in Γ.
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Consider now inequality (4.5) for the functions uεnk
(t)(t). Using last relation, (6.3), and Fatou’s

Lemma we get that for every t ∈ [0, T ]

1

2
‖∇u(t)‖2 +

∫

Γ

g(|[u(t)]|)dHN−1

≤ lim inf
k→+∞

(

1

2
‖∇uεnk

(t)(t)‖2 +

∫

Γ

g(|[uεnk
(t)(t)]|)dHN−1

)

≤ lim sup
k→+∞

(

1

2
‖∇uεnk

(t)(t)‖2 +

∫

Γ

g(|[uεnk
(t)(t)]|)dHN−1

)

≤ 1

2
‖∇u0‖2 +

∫

Γ

g(|[u0]|)dHN−1 + lim sup
n→+∞

(
∫ t

0

∫

Ω\Γ

∇uεn(s) · ∇ẇ(s) dx ds

)

≤ 1

2
‖∇u0‖2 +

∫

Γ

g(|[u0]|)dHN−1 +

∫ t

0

lim sup
n→+∞

∫

Ω\Γ

∇uεn(s) · ∇ẇ(s) dx ds

=
1

2
‖∇u0‖2 +

∫

Γ

g(|[u0]|)dHN−1 +

∫ t

0

∫

Ω\Γ

∇u(s) · ∇ẇ(s) dx ds.

This shows (4.7).
It remains to prove the stationarity. For almost every t ∈ [0, T ] , we can consider inequality

(4.2) for the functions uεnk(t)(t) with an arbitrary ψ ∈ H1
0 (Ω \ Γ, ∂DΩ):

∫

Ω\Γ

∇uεnk
(t)(t) · ∇ψ dx+

∫

Ω

εnk
(t) u̇εnk

(t)(t)ψ dx (6.4)

≥ −
∫

Γ

(

[ψ] g′(|[uεnk
(t)(t)]|) sgn[uεnk

(t)(t)] 1J
u

εnk
(t)

(t)
+ σ|[ψ]|1Jc

u
εnk

(t)
(t)

)

dHN−1.

Up to a L1 -negligible set of times, we can also assume that (6.1) holds. Hence, passing to the
limit in the left-hand side of (6.4) and using (6.3)

lim
k→+∞

(

∫

Ω\Γ

∇uεnk
(t)(t) · ∇ψ dx+ εnk

(t)

∫

Ω

u̇εnk
(t)(t)ψ dx

)

=

∫

Ω\Γ

∇u(t) · ∇ψ dx. (6.5)

With the same argument used to prove (5.20) one can show that

lim inf
k→+∞

fk(t) ≥ −[ψ] g′(|[u(t)]|) sgn[u(t)] 1Ju(t)
− σ|[ψ]|1Jc

u(t)
HN−1-a.e. in Γ, (6.6)

where

fk(t) := −[ψ] g′(|[uεnk
(t)(t)]|) sgn[uεnk

(t)(t)] 1J
u

εnk
(t)

(t)
− σ|[ψ]|1Jc

u
εnk

(t)
(t)

.

Finally, taking the liminf of relation (6.4) and using (6.5), (6.6) and Fatou’s Lemma, we get (3.1).
�

7. Proof of Theorem 4.14

To fix the ideas, let us assume w(t) ≥ 0 on Λ+
D for every t ∈ [0, T ] , the other case being analogous.

We recall that for every (ε, δ) ∈ (0, 1)× (0, T ) and for every i ∈ N with iδ ≤ T the functions uε,δ
i

are introduced in Definition 4.6. We will divide the proof into three steps:

1. uε,δ
i is odd for every (ε, δ) ∈ (0, 1) × (0, T ) and for every i ∈ N with iδ ≤ T ;

2. uε,δ
i ≥ uε,δ

i−1 a.e. in Ω+ for every (ε, δ) ∈ (0, 1)× (0, T ) and for every i ∈ N with iδ ≤ T .
3. Proof of Theorem 4.14.

Step 1: uε,δ
i is odd. Let us fix (ε, δ) ∈ (0, 1) × (0, T ) and i ∈ N with iδ ≤ T . First of all, uε,δ

0 is

odd since, by definition of discrete time evolution, uε,δ
0 = u0 = 0. We will then argue by induction,
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proving that uε,δ
i is odd under the assumption that uε,δ

i−1 is odd. We set v± := uε,δ
i |Ω± . From

the results contained in Section 3 it can be inferred that v+ satisfies the following problem in Ω+ :






















∆v+ =
ε

δ
(v+ − uε,δ

i−1) in Ω+,

v+ = w(t) on Λ+
D,

∂νv
+ = 0 on ∂Ω+ \ (Λ+

D ∪ Γ),

∂νv
+ = ∂νv

− on Γ.

Let us now define the function ṽ− ∈ H1(Ω−) such that ṽ−(x1, x
′) := −v+(x1, x

′) for every

(x1, x
′) ∈ Ω− . Using the definition of ṽ− and the fact that w(t) and uε,δ

i−1 are odd, it follows that

v := ṽ− − v− satisfies the following equation in Ω− :






















∆v =
ε

δ
v in Ω−,

v = 0 on Λ−
D,

∂νv = 0 on ∂Ω− \ (Λ−
D ∪ Γ),

∂νv = 0 on Γ.

(7.1)

Since the unique solution of (7.1) is v ≡ 0, ṽ− = v− and the claim is proved.

Remark 7.1. In the same way one can show that, under the same assumptions, all the critical
points of the energy functional (2.1) are odd.

Step 2: uε,δ
i ≥ uε,δ

i−1 a.e. in Ω+ . First of all, notice that the thesis holds for i = 1, since by a

truncation argument it follows that uε,δ
j ≥ uε,δ

0 = 0 for every (ε, δ) ∈ (0, 1) × (0, T ) and j ∈ N

with jδ ≤ T . The proof is then completed by the following lemma.

Lemma 7.2. Let i ∈ N with i ≥ 2 and iδ ≤ T and assume 0 ≤ uε,δ
1 ≤ . . . ≤ uε,δ

i−1 a.e. in Ω+ .

Then uε,δ
i−1 ≤ uε,δ

i a.e. in Ω+ .

Proof. Let us fix (ε, δ) ∈ (0, 1) × (0, T ) and i ∈ N with iδ ≤ T . We want to show that

uε,δ
i ≥ uε,δ

j a.e. in Ω+ for every j = 0, 1, . . . , i− 1.

As already observed, there holds uε,δ
i ≥ uε,δ

0 = 0. By induction, let us assume uε,δ
i ≥ uε,δ

j for

j = 0, . . . , k − 1 with k integer such that k < i ; we shall show that this implies uε,δ
i ≥ uε,δ

k . Let
us define

Z := {(x1, x
′) ∈ Ω+ : uε,δ

i (x1, x
′) < uε,δ

k (x1, x
′)}.

Assume, by contradiction, that LN (Z) > 0. Define now the functional Ei : H1(Ω+) → R as

Ei(v) :=
1

2

∫

Z

|∇v|2dx+
1

2

∫

Γ∩Z

g(2|v|) dHN−1 +
ε

2δ

∫

Z

|v − uε,δ
i−1|2dx.

Let us denote with V k
i the odd function of H1(Ω \ Γ) coinciding a.e. with uε,δ

k in Z and such

that V k
i = uε,δ

i a.e. in Ω+ \ Z . Notice that V k
i = uε,δ

i on ∂DΩ, so that V k
i is a competitor for

the problem (4.3). By the minimality of uε,δ
i we get

E(uε,δ
i ) +

ε

2δ
‖uε,δ

i − uε,δ
i−1‖2 ≤ E(V k

i ) +
ε

2δ
‖V k

i − uε,δ
i−1‖2.

Since uε,δ
i = V k

i a.e. in Ω+ \Z and using the fact that uε,δ
i−1 , uε,δ

i and V k
i are odd, last inequality

implies

Ei(u
ε,δ
i ) ≤ Ei(V

k
i ) = Ei(u

ε,δ
k ). (7.2)

Moreover, 0 ≤ uε,δ
1 ≤ . . . ≤ uε,δ

i−1 a.e. in Ω+ and uε,δ
i < uε,δ

k a.e. in Z , so that

ε

2δ

∫

Z

|uε,δ
i − uε,δ

i−1|2dx >
ε

2δ

∫

Z

|uε,δ
k − uε,δ

i−1|2dx. (7.3)
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From (7.2) and (7.3) it follows

1

2

∫

Z

|∇uε,δ
i |2 +

1

2

∫

Γ∩Z

g(|[uε,δ
i ]|) dHN−1 <

1

2

∫

Z

|∇uε,δ
k |2 +

1

2

∫

Γ∩Z

g(|[uε,δ
k ]|) dHN−1, (7.4)

while from the fact that 0 ≤ uε,δ
k−1 ≤ uε,δ

i < uε,δ
k a.e. in Z we get

ε

2δ

∫

Z

|uε,δ
i − uε,δ

k−1|2dx <
ε

2δ

∫

Z

|uε,δ
k − uε,δ

k−1|2dx. (7.5)

Let us now denote with V i
k the odd function of H1(Ω \ Γ) coinciding a.e. with uε,δ

i in Z and

such that V i
k = uε,δ

k a.e. in Ω+ \ Z . Notice that V i
k is a competitor for the problem (4.3) with i

replaced by k , since V i
k = uε,δ

k on ∂DΩ. Collecting relations (7.4) and (7.5), we have

E(V i
k ) +

ε

2δ
‖V i

k − uε,δ
k−1‖2 < E(uε,δ

k ) +
ε

2δ
‖uε,δ

k − uε,δ
k−1‖2,

against the minimality of uε,δ
k .

�

Step 3: Proof of Theorem 4.14. From the previous steps it follows that for every discrete time
evolution uε,δ with time step δ , viscosity ε , boundary datum w and initial condition u0 the
function t 7→ |[uε,δ(t)]|(0, x′) is non decreasing for HN−1 -a.e. (0, x′) ∈ Γ. From this and from the
definition of approximable quasistatic evolution the conclusion follows.

8. Proof of Theorem 4.15 (Crack Initiation Criterion)

We start with the following definition.

Definition 8.1. Let δ ∈ (0, T ) and ε ∈ (0, 1). We define the elastic discrete-time evolution with
time step δ , viscosity ε , boundary datum w and initial condition u0 as the function zε,δ : [0, T ] →
H1(Ω) such that zε,δ(t) := zε,δ

i for iδ ≤ t < (i + 1)δ , where zε,δ
0 := z(0) and, by induction, zε,δ

i

is the unique solution to

min
v∈B(iδ)

{

1

2

∫

Ω

|∇v|2dx+
ε

2δ
‖v − zε,δ

i−1‖2

}

(8.1)

for i ∈ N with iδ ≤ T . Here B(iδ) is defined by (4.9).

Remark 8.2. For j ∈ N with jδ ≤ T one can define the functions αε,δ
j := zε,δ

j − zε,δ
j−1 . Setting

αε,δ
0 = 0, it turns out that αε,δ

j is the unique solution to the problem

min
v

{

1

2

∫

Ω

|∇v|2dx+
ε

2δ
‖v − αε,δ

j−1‖2

}

for every j ∈ N with jδ ≤ T , where the minimum is taken over all the functions v ∈ H1(Ω) such
that v = w(jδ) − w((j − 1)δ) on ∂DΩ. Moreover, by a truncation argument it follows that for
every j ∈ N with jδ ≤ T

‖αε,δ
j ‖L∞(Ω) ≤ max

k=1,...,j
‖w(kδ) − w((k − 1)δ)‖L∞(Ω) ≤ δ sup

t∈[0,T ]

‖ẇ(t)‖L∞(Ω). (8.2)

The proof of Theorem 4.15 relies in the following two propositions. The first one shows that
when ε and δ tend to zero the elastic discrete-time evolution zε,δ(t) converges strongly to z(t)
in H1(Ω) uniformly with respect to t ∈ [0, T ] .

Proposition 8.3. There holds

lim
ε→0+

lim
δ→0+

sup
t∈[0,T ]

‖zε,δ(t) − z(t)‖H1(Ω) = 0. (8.3)
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Proof. For t ∈ [0, T ] fixed, we will denote with iδ = iδ(t) the only integer such that iδδ ≤ t <
(iδ + 1)δ . From (4.8) and (8.1) we conclude that the function ẑε,δ(t) := z(iδδ) − zε,δ(t) satisfies:

∫

Ω

∇ẑε,δ(t) · ∇ψ dx =
ε

δ

∫

Ω

αε,δ
iδ
ψ dx ∀ψ ∈ H1

0 (Ω, ∂DΩ). (8.4)

Taking ẑε,δ(t) as a test function and using Hölder and Poincaré inequalities together with (8.2),
we get that

‖∇ẑε,δ(t)‖2 ≤ ε (LN (Ω))
1
2 sup

t∈[0,T ]

‖ẇ(t)‖L∞(Ω) ‖ẑε,δ(t)‖ ≤ εC ‖∇ẑε,δ(t)‖,

where C is a positive constant independent of δ , ε and t . Applying once again Poincaré inequality,
from the last relation it follows that

sup
δ∈(0,T )

sup
t∈[0,T ]

‖ẑε,δ(t)‖H1(Ω)
ε→0+

−→ 0. (8.5)

On the other hand, the difference z(t) − z(iδδ) satisfies
∫

Ω

∇(z(t) − z(iδδ)) · ∇ψ dx = 0 ∀ψ ∈ H1
0 (Ω, ∂DΩ).

Considering as test function z(t) − z(iδδ) − w(t) + w(iδδ) and using Hölder inequality we obtain

‖∇(z(t) − z(iδδ))‖ ≤ ‖∇(w(t) − w(iδδ))‖. (8.6)

Since w : [0, T ] → H1(Ω) is uniformly continuous, using (8.6) and Poincaré inequality we get

lim
δ→0+

sup
t∈[0,T ]

‖z(t) − z(iδδ)‖H1(Ω) = 0.

By triangular inequality the thesis follows from last relation and (8.5).
�

The following proposition, whose proof is postponed to the Appendix, shows that when ε and δ
are sufficiently small, the only possible discrete-time evolution in the time interval [0, t∗] is just
the elastic one.

Proposition 8.4. There exist ε ∈ (0, 1) and a function δ̂ : (0, ε) → (0, T ) with the following

property. Let ε ∈ (0, ε) and δ ∈ (0, δ̂(ε)) , and let uε,δ : [0, T ] → H1(Ω \ Γ) be a discrete-
time evolution with time step δ , viscosity ε , boundary datum w and initial condition u0 . Then,
uε,δ(t) = zε,δ(t) for every t ∈ [0, t∗] .

We can now give the proof of Theorem 4.15.

Proof of Theorem 4.15. Let t ∈ [0, t∗] be fixed and let u : [0, T ] → H1(Ω \Γ) be an approximable
quasistatic evolution with boundary datum w and initial condition u0 . Then, there exists a family
{uε}ε∈(0,1) of variational parabolic evolutions and a subsequence εn(t) → 0+ such that condition
(4.6) holds:

uεn(t)(t) ⇀ u(t) weakly in H1(Ω \ Γ). (8.7)

Let n ∈ N be fixed and so large that εn(t) ∈ (0, ε), where ε is given by Proposition 8.4.
By definition of variational parabolic evolution, there exists a family of discrete-time evolutions
{uεn(t),δ}δ∈(0,T ) and a sequence δk → 0+ such that condition (4.4) is satisfied:

uεn(t),δk(t) ⇀ uεn(t)(t) weakly in H1(Ω \ Γ). (8.8)

For k sufficiently large we have εn(t) ∈ (0, ε) and δk ∈ (0, δ̂(εn(t)). Hence, applying Proposition
8.4 we have uεn(t),δk(t) = zεn(t),δk(t) and relations (8.7) and (8.8) become

zεn(t),δk(t) ⇀ uεn(t)(t) and uεn(t)(t) ⇀ u(t) weakly in H1(Ω \ Γ).

Thanks to Proposition 8.3 this implies u(t) = z(t).
�
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9. An Explicit Example

In this section we provide an explicit example to show that approximable quasistatic evolutions
and evolutions based on absolute minimization of the energy functional can be quite different. In
particular, we will show that they can have different fracturing times and that for approximable
quasistatic evolutions strict inequality may occur in (4.7). In all the section we will refer to the
following setting. The function g describing the energy needed to create a crack is

g(s) =



















− s2

2R
+ s 0 ≤ s < R,

R

2
s ≥ R,

where R is a positive constant representing the range of the cohesive forces. Notice that in this
case σ = g′(0+) = 1. The set Ω is the open rectangle {(x, y) ∈ R

2 : 0 ≤ |x| < A, 0 ≤ |y| < B} ,
with Γ = {0}× [−B,B] , where A and B are positive constants and ∂DΩ = {−A,A}× (−B,B).
We consider initial condition u0 = 0. Moreover, at every time t ∈ [0, T ] , in ∂DΩ we assign the
displacement

w(t) =
t

A
x.

We want to describe the evolution of the set Ω, that represents the section of an infinite cylinder
subject to the diplacement w . To this aim, it will be convenient to define the functions u1, u2, u3 :
[0, T ] → H1(Ω \ Γ) as:

u1(t) :=
t

A
x ; u2(t) :=

1

R− 2A







(R − 2t)x+R(t−A) x > 0

(R − 2t)x−R(t−A) x < 0
; u3(t) :=







t x > 0

−t x < 0

In this setting it is possible to give an explicit expression to both approximable quasistatic evolution
and evolution of absolute minimizers. More precisely, we can state the following results.

Theorem 9.1. Let A < R
2 < T . Then, there exists a unique approximable quasistatic evolution

u , coinciding with the evolution of the absolute minimizers of the energy, that is given by:

u(t) =



















u1(t) 0 ≤ t < A

u2(t) A ≤ t <
R

2

u3(t)
R

2
≤ t ≤ T

E(u1(t))

E(u2(t))

E(u3(t))

E

RB

2AB

A R
2

tT

Figure 1. Energy graph for 0 < A < R
2 .
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Remark 9.2. When the section Ω is sufficiently small, there are no differences between approx-
imable quasistatic evolution and evolution of absolute minimizers of the energy. The section is
stretched in the time interval [0, A), where the only contribution to the energy comes from the
elastic stored energy. For t = A a crack occurs. Because of the symmetry of the problem, the
crack set consists in all Γ. In the time interval (A, R

2 ) cohesive effects are observed, and the

opening of the fracture grows from 0 to R . For t > R
2 , cohesive forces cease to act and the

opening of the crack continues to grow, without any further expense of energy. The graph of the
corresponding energy is shown in Fig. 1.

Theorem 9.3. Let R
2 < A < T . Then, there exists a unique approximable quasistatic evolution

u , that is given by:

u(t) =

{

u1(t) 0 ≤ t < A

u3(t) A ≤ t ≤ T

Moreover, the evolution uam of the absolute minimizers of the energy is uniquely determined and
is given by

uam(t) =

{

u1(t) 0 ≤ t < t

u3(t) t ≤ t ≤ T

where t :=
√

AR
2 ∈ (R

2 , A) .

Remark 9.4. When the section Ω is sufficiently large, approximable quasistatic evolution and
evolution of absolute minimizers do not coincide. One can immediately see that the maximum
stress criterion (see Theorem 4.15) is satisfied by the approximable quasistatic evolution. This is
not the case for the evolution of the absolute minimizers of the energy.

Approximable quasistatic evolution. In the time interval [0, A) the section Ω is stretched, there
are no cracks, and the energy is a quadratic function of time. At time t = A a crack occurs and
the evolution continues with Ω divided into two horizontal (i.e. parallel to the plane (x, y)) pieces
that become farther and farther, without any further expense of energy. No cohesive effects are
observed.

Absolute minimizers evolution. In this case the section breaks “too early”. Indeed, for short times
the evolution coincides with the approximable quasistatic evolution. Then, a crack appears at
time t = t < A , which corresponds to a stress u′ = t/A strictly lower than σ = 1. Hence, the
crack initiation criterion is violated. Also here no cohesive effects are observed. The beaviour of
the energy as a function of time is described by Fig. 2.

E(u1(t))

E(u2(t))

E(u3(t))

E

RB

2AB

AR
2

tTt

Figure 2. Energy graph for A > R
2 .
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Remark 9.5. The fact that, for Ω large, cohesive effects are not observed depends just on
our choice of g . Indeed, if one considers more complicated expressions of g (e.g. g cubic for
0 ≤ s < R) one can check that cohesive effects may appear.

Remark 9.6. For A > R
2 by a direct computation and using the expression of u given in

Theorem 9.3 we have that for t ∈ (A, T )

E(u(t)) = RB < 2AB = E(u(0)) + 2B

∫ t

0

∫

(−A,A)\{0}

∇u(s) · ∇ẇ(s) dx ds,

so that in relation (4.7) we have the strict inequality. As expected, for the evolution of the absolute
minimizers uam we have equality for every t ∈ [0, T ] .

Proof of Theorems 9.1 and 9.3. First of all we show that, thanks to the symmetry of the problem,
the absolute minimizers of (2.1) depend only on the variable x . Indeed, let v(x, y) be an admissible
function for the minimization. Then, we have

1

2

∫

Ω\Γ

|∇v|2 dx dy +

∫

Γ

g(|[v]|) dy

≥
∫ B

−B

{1

2

∫

(−A,A)\{0}

∣

∣

∣

∣

∂v

∂x
(x, y)

∣

∣

∣

∣

2

dx + g(|[v](y)|)
}

dy,

where the equality holds only for v such that ∂v
∂y

(x, y) ≡ 0. We define now the functional

F : H1((−A,A) \ {0}) → R as

F(v) :=
1

2

∫

(−A,A)\{0}

|v′(x)|2dx+ g
(

|v+(0) − v−(0)|
)

and consider the problem

min
v

F(v),

where v varies in H1((−A,A) \ {0}), with the boundary conditions v(±A) = ±t . Since F is
lower semicontinuous and coercive there exists a minimizer v . Thus, if v depends on y we have

1

2

∫

Ω\Γ

|∇v|2dx dy +

∫

Γ

g(|[v]|) dy >
∫ B

−B

F(v) dy = 2BF(v),

that is, minimizing F is equivalent to minimize F . Since the same argument applies to the
functional (4.3), for t fixed also the approximable quasistatic evolutions will not depend on the
variable y . Notice that Ω is symmetric with respect to the coordinate plane {(x, y) ∈ R

2 : x = 0}
and w is odd. Hence, by step 1 of the proof of Theorem 4.14 and by Remark 7.1, it follows that at
every fixed t ∈ [0, T ] both the discrete time evolutions and the evolutions of absolute minimizers
are odd. For this reason, we will restrict our analysis to the set (0, A). Now, let t ∈ [0, T ] be fixed
and let us look for the odd solutions to the Euler-Lagrange equations that do not depend on the
variable y . Equations (3.5)1 –(3.6)3 become



















u′′ = 0 in (0, A),

u(A) = t,

|u′(0)| ≤ 1 if u(0) = 0,

u′(0) = g′(2u(0)) if u(0) 6= 0,

(9.1)

where we used the fact that u is positive in (0, A). Since u is odd, for every fixed t ∈ [0, T ] the
general solution can be written as

u(t) =

{

C1(t)x+ C2(t) x > 0

C1(t)x− C2(t) x < 0

for some nonnegative constants C1(t), C2(t), depending on t . We consider now three possible
cases.
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Solution without fracture. Let us suppose that u(t) does not jump across the point x = 0, i.e.
that u(0) = 0. Then we obtain the function

u1(t) :=
t

A
x 0 ≤ t ≤ A.

Notice that u1(t) is not a solution of the Euler-Lagrange equations for t > A , because in this case
there holds u′1(0) = t

A
> 1. The energy associated to u1(t) is

E(u1(t)) =
2B

A
t2 0 ≤ t ≤ A.

When there is a crack, we have to consider condition (9.1)4 .

Solution with small jump. Let us suppose the jump 2C2(t) satisfies the relation

0 < 2C2(t) = |[u(t)]| < R. (9.2)

Then we have

C1(t) = u′(t) = g′(|[u(t)]|) = −2C2(t)

R
+ 1.

From this it follows that

C1(t) =
R− 2t

R− 2A
, C2(t) =

R(t−A)

R− 2A
.

Since in this case (9.2) must be satisfied, this choice of C1(t) and C2(t) is admissible only for
t ∈ (min(A, R

2 ),max(A, R
2 )), and the corresponding solution is u2(t). Notice that the behaviour

in time of u2(t) changes according to the size of A . If 0 < A < R
2 the solution corresponds to a

cracked configuration with jump that increases from 0 (for t = A) to R (at time t = R
2 ), while

the slope passes from 1 to 0. On the other side, for A > R
2 the section Ω starts divided into

two horizontal pieces with jump R , and ends without crack and with slope 1. In both cases the
energy is given by

E(u2(t)) =
2B

2A−R
(2t2 − 2Rt+AR).

Solution with big jump. If the jump of the solution is such that 2C2(t) = |[u(t)]| ≥ R , one easily
sees that the solution of (9.1) is u3(t) and is admissible only for t ≥ R

2 .

A < R
2 < T . In this case for every t ∈ [0, T ] there is just one admissible solution to the Euler-

Lagrange equations (9.1): we have u1(t) for t ∈ [0, A), u2(t) for t ∈ [A, R
2 ) and u3(t) when

t ∈ [R
2 , T ] .

R
2 < A < T . In this case, the evolution of the absolute minimizers of the energy can be easily

deduced from Figure 2. We have u1(t) for t ∈ [0, t) and u3(t) when t ∈ [t, T ] . Concerning
the approximable quasistatic evolution, we can apply Theorem 4.15. Then, it follows that the
approximable quasistatic evolution coincides with the elastic evolution z(t) = t

A
x = u1(t) until

t
A
< 1, that is in the time interval [0, A). For t ≥ A , the only possible solution to the Euler-

Lagrange equations is given by u3(t). Hence, the approximable quasistatic evolution coincides
with u1(t) for t ∈ [0, A) and with u3(t) for t ∈ [A, T ] . �

10. Appendix: Proof of Proposition 8.4

We will proceed by induction. To start with, we notice that the proposition holds for the initial

time t = 0. Indeed, by definition of discrete time evolution uε,δ
0 = z(0) = zε,δ

0 for every (ε, δ) ∈
(0, 1)× (0, T ). The proof is then completed by the following proposition. We recall that problem

(P )ε,δ
i is introduced in Definition 4.6.

Proposition 10.1. There exist ε ∈ (0, 1) and a function δ̂ : (0, ε) → (0, T ) with the following

property. Let ε ∈ (0, ε) , δ ∈ (0, δ̂(ε)) and i ∈ N with iδ ≤ t∗ . If i ≥ 2 , assume also that

uε,δ
j = zε,δ

j is the unique solution of problem (P )ε,δ
j for every j = 1, . . . , i− 1 . Then, the solution

uε,δ
i of problem (P )ε,δ

i is unique and there holds uε,δ
i = zε,δ

i .
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In the remaining part of the section our goal will be to show that uε,δ
i = zε,δ

i , provided that ε

and δ are sufficiently small. To prove that zε,δ
i is the unique absolute minimizer of problem (4.3),

we will use the technique of the calibration theory for free discontinuity problems. We remark

that the solution zε,δ
i can present singularities in the part of ∂Ω where the boundary conditions

change, that is in the set G := ∂DΩ \ ∂DΩ. For this reason, we will first prove the minimality

of zε,δ
i in subdomains obtained by removing from Ω a small neighbourhood of G . Then, the full

minimality will be obtained by approximation. The outline of the proof is the following:

• Statement and proof of some auxiliary results;

• Proof of the minimality of zε,δ
i in a fixed set Ωn ⊂ Ω;

• Full minimality: limit as Ωn ր Ω.

10.1. Statement and proof of some auxiliary results. In this subsection we state two lemmas
that will be useful in the sequel. Let Ω̃1 and Ω̃2 be two open connected subsets of R

N such that
Γ ⊂⊂ Ω̃1 ⊂⊂ Ω̃2 and Ω̃k ∩ ∂Ω ⊂⊂ ∂Ω \ ∂DΩ for k = 1, 2. We set Ωk := Ω̃k ∩ Ω (k = 1, 2),

Ω3 := Ω \ Ω2 and choose Ω̃2 in such a way that Ω2 has C2 boundary.
The first lemma shows some properties of the function zε,δ(t) for t ∈ [0, t∗] and ε and δ small

enough. We will prove that ‖∇zε,δ(t)‖L∞(Ω2) is bounded uniformly with respect to t and that

zε,δ(t) satisfies (3.6)2 with strict inequality. These properties will be crucial in the construction
of the calibration.

Lemma 10.2. There exist C1 > 0 , c ∈ (0, σ) , ε ∈ (0, 1) and a function δ : (0, ε) → (0, T ) such
that

sup
t∈[0,t∗]

‖∇zε,δ(t)‖L∞(Ω2) ≤ C1, (10.1)

sup
t∈[0,t∗]

‖∂νz
ε,δ(t)‖L∞(Γ) ≤ c < σ, (10.2)

for every (ε, δ) with ε ∈ (0, ε) and δ ∈ (0, δ(ε)) .

Proof. We will prove (10.2), since (10.1) can be shown by using similar arguments. For every
(ε, δ) ∈ (0, 1) × (0, T ) and t ∈ [0, T ] we define zε,δ(t) := zε,δ(t) − z(t). From Definition 8.1 it
follows that for every (ε, δ) ∈ (0, 1) × (0, T ) and t ∈ [0, T ]











∆zε,δ(t) = ε
δ
αε,δ

i in Ω,

zε,δ(t) = w(iδ) − w(t) on ∂DΩ,

∂νz
ε,δ(t) = 0 on ∂Ω \ ∂DΩ,

(10.3)

where i ∈ N is such that iδ ≤ t < (i + 1)δ and αε,δ
i is defined by Remark 8.2. Consider now a

cut off function χ ∈ C∞(Ω) such that 0 ≤ χ ≤ 1, χ ≡ 1 in Ω1 and χ ≡ 0 in Ω3 . It turns out
that the function µε,δ(t) := χzε,δ(t) satisfies the following equation in Ω2 :

{

∆µε,δ(t) = χ∆zε,δ(t) + zε,δ(t)∆χ+ 2∇zε,δ(t) · ∇χ in Ω2

∂νµ
ε,δ(t) = zε,δ(t)∂νχ on ∂Ω2.

Thanks to [20, Lemma 3.18, pag 181] we get that there exists a constant C > 0 independent of
ε , δ and t such that for every p ∈ [2,+∞)

1

C
‖µε,δ(t)‖W 2,p(Ω2) ≤ ε sup

t∈[0,T ]

‖ẇ(t)‖L∞(Ω)‖χ‖Lp(Ω2) + ‖zε,δ(t)∆χ‖Lp(Ω2) (10.4)

+ 2‖∇χ · ∇zε,δ(t)‖Lp(Ω2) + ‖zε,δ(t)∂νχ‖
W

1
p′ ,p

(∂Ω2)
+ ‖µε,δ(t)‖H1(Ω2),

where p′ = p
p−1 and we used relations (10.3) and (8.2). Notice that condition (8.3) holds also

with zε,δ(t) = zε,δ(t) − z(t) replaced by µε,δ(t), so that applying (10.4) with p = 2 we get

lim
ε→0+

lim
δ→0+

sup
t∈[0,T ]

‖µε,δ(t)‖W 2,2(Ω2) = 0. (10.5)
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If N = 2, by the Sobolev embedding theorem we get that

lim
ε→0+

lim
δ→0+

sup
t∈[0,T ]

‖µε,δ(t)‖W 1,q(Ω2) = 0, q ∈ [2,+∞),

so that, applying once again (10.4):

lim
ε→0+

lim
δ→0+

sup
t∈[0,T ]

‖µε,δ(t)‖W 2,q(Ω2) = 0, q ∈ [2,+∞).

Thus,

lim
ε→0+

lim
δ→0+

sup
t∈[0,T ]

‖µε,δ(t)‖C1,λ(Ω2) = 0 ∀λ ∈ (0, 1),

because Ω2 is of class C2 . Since µε,δ(t) = zε,δ(t) in Ω1 , this implies

lim
ε→0+

lim
δ→0+

sup
t∈[0,t∗]

‖∇zε,δ(t) −∇z(t)‖L∞(Ω1) = 0. (10.6)

If N > 2, (10.6) follows applying repeatedly the Sobolev embedding theorem and estimate (10.4)
starting from relation (10.5). Since supt∈[0,t∗] ‖∂νz(t)‖L∞(Γ) < σ by hypothesis, from (10.6) we

get (10.2). �

The second lemma gives an existence result for an eigenfunction vβ0 of the laplacian operator

in Ω, for which the ratio
|∇vβ0

|

vβ0
is nonnegative and bounded.

Lemma 10.3. There exist two positive constants β0 and C2 , and a strictly positive function
vβ0 ∈ H1(Ω) ∩ C1(Ω2) such that

{

∆vβ0 = β0v in Ω,

∂νvβ0 = 0 on ∂Ω \ ∂DΩ.
(10.7)

and

0 ≤ sup
x∈Ω2

|∇vβ0 |
vβ0

≤ C2. (10.8)

Proof. Let us fix β0 > 0 and define vβ0 as the solution to the problem










∆vβ0 = β0v in Ω,

vβ0 = 1 on ∂DΩ.

∂νvβ0 = 0 on ∂Ω \ ∂DΩ.

It turns out that vβ0 > 0 in Ω. Indeed, by the Strong Maximum Principle (see e.g. [18]) it follows
that vβ0 > 0 on Ω. To show that vβ0 > 0 on ∂Ω, fix Ω′ ⊂⊂ Ω and observe that the restriction
of vβ0 to Ω \ Ω′ is the unique solution of the problem

min
v

{

∫

Ω\Ω′

|∇v|2 dx + β0

∫

Ω\Ω′

v2 dx

}

,

where the minimum is taken among all the v ∈ H1(Ω \ Ω′) such that v = vβ0 > 0 on ∂Ω′ and
v = 1 on ∂DΩ. By a truncation argument it follows that in Ω \Ω′ vβ0 ≥ inf∂Ω′ vβ0 > 0. One can
show (10.8) with arguments similar to those used in the proof of Lemma 10.2. �

10.2. Proof of the minimality of zε,δ
i in a fixed set Ωn ⊂ Ω . From now on we will assume

ε ∈ (0, ε) and δ ∈ (0, δ(ε)), where ε and δ(ε) are given by Lemma 10.2. The main result of
this subsection is given by Proposition 10.5, where we prove that for ε and δ small enough the

function zε,δ
i is the unique absolute minimizer of problem (4.3), among all competitors coinciding

with zε,δ
i in a fixed neighbourhood of the set G = ∂DΩ \ ∂DΩ. Before stating Proposition 10.5

we need some preliminary notation and we briefly introduce the notion of absolute calibration.
We consider a decreasing sequence (Gn)n∈N of open Lipschitz sets of R

N , such that Gn ⊃⊃
Gn+1 ⊃⊃ . . . ⊃⊃ G , LN (Gn) → 0 as n → +∞ , and Ωn := Ω \Gn is Lipschitz for every n ∈ N .
We consider also a sequence of cut off functions ϕn ∈ H1(RN ) such that 0 ≤ ϕn ≤ 1, ϕn ≡ 1 in
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R
N \Gn−1 and ϕn ≡ 0 in Gn . Since HN−2(G) < +∞ , and thus its 2-capacity is zero (see [13]),

then we may choose (Gn)n∈N and (ϕn)n∈N in such a way that ϕn → 1 strongly in H1(RN ).
In the remaining part of the subsection we will assume n ∈ N fixed. Define now the sequence

of functions (rε,δ
j )j=0,1,...,i in the following way. We set rε,δ

0 := z(0) and, for j = 1, . . . , i by

induction, we choose rε,δ
j as a solution to the problem

min
v∈Cn(jδ)

{

E(v) +
ε

2δ
‖v − rε,δ

j−1‖2
}

, (10.9)

where
Cn(jδ) :=

{

v ∈ A(jδ) : v = zε,δ(jδ) in Ω ∩Gn

}

.

By definition, we have rε,δ
0 = zε,δ

0 . In case i ≥ 2 we also know, by the inductive hypothesis of

Proposition 10.1, that for j = 1, . . . , i− 1 the solution rε,δ
j to (10.9) is unique and coincides with

zε,δ
j . At this point, we want to show that the only possible choice for the function rε,δ

i is just

rε,δ
i = zε,δ

i . As already mentioned, we will construct a calibration for the function zε,δ
i in Ωn ×R .

Before stating next proposition, we adapt some definitions and results of [1] to the present

situation. An absolute calibration for zε,δ
i in Ωn × R is a bounded vector field φ = (φx, φt) :

Ωn × R → R
N × R of class C1 that satisfies the following properties (see [1, Lemma 3.7]):

(a) divφ = ∂tφ
t + divxφ

x = 0 in Ωn × R ;

(b) φt(x, t) ≥ |φ(x, t)|2
2

− ε

2δ
(t− zε,δ

i−1(x))
2 for a.e. x ∈ Ωn , for every t ∈ R ;

(c)











φx(x, zε,δ
i (x)) = ∇zε,δ

i (x)

φt(x, zε,δ
i (x)) =

|∇zε,δ
i |2
2

(x) − ε

2δ
(zε,δ

i (x) − zε,δ
i−1(x))

2
for a.e. x ∈ Ωn;

(d)

[
∫ t2

t1

φx(x, t) dt

]

· ν(x) ≤ g(t2 − t1) for HN−1 -a.e. x ∈ Γ, t1 ≤ t2 .

(e) φx(x, t) · ν(x) = 0 for LN -a.e. for a.e. (x, t) ∈
(

∂Ωn ∩ (∂Ω \ ∂DΩ)
)

× R .

By a careful inspection of the proof of [1, Lemma 3.2], we get the following result.

Theorem 10.4. Suppose that there exists an absolute calibration φ for zε,δ
i . Assume, in addition,

that condition (d) is satisfied with strict inequality for t1 6= t2 . Then zε,δ
i is the unique absolute

minimizer for the problem (10.9) with the index j replaced by i and
∫

Ωn\Γ

( 1

2
|∇zε,δ

i |2 +
ε

2δ
(zε,δ

i − zε,δ
i−1)

2
)

dx =

∫

Ωn\Γ

(

φx(x, v(x)) · ∇v(x) − φt(x, v(x))
)

dx

+

∫

Γ

(

∫ max{v+,v−}

min{v+,v−}

φx(x, t) dt

)

· ν dHN−1 (10.10)

for every v ∈ Cn(iδ) . Moreover, there holds
∫

Ωn\Γ

(

φx(x, v(x)) · ∇v(x) − φt(x, v(x))
)

dx ≤
∫

Ωn\Γ

( 1

2
|∇v|2 +

ε

2δ
(v − zε,δ

i−1)
2
)

dx (10.11)

and
∫

Γ

(

∫ max{v+,v−}

min{v+,v−}

φx(x, t) dt

)

· ν dHN−1 <

∫

Γ

g(|[v]|) dHN−1 (10.12)

for every v ∈ Cn(iδ) .

We state now the main result of this subsection.
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Proposition 10.5. There exists a function δ̂ : (0, ε) → (0, T ) , independent of n ∈ N , such that

the following holds. Let ε ∈ (0, ε) and δ ∈ (0, δ̂(ε)) . Then, there exists an absolute calibration φ

for zε,δ
i for which condition (d) is satisfied with strict inequality for t1 6= t2 . As a consequence,

φ is such that relations (10.10), (10.11) and (10.12) are satisfied.

We start now with the construction of the calibration φ , showing that conditions (a)–(e) are
satisfied for δ sufficiently small. We will take inspiration from [16], where a global calibration for
the Mumford-Shah functional is provided. In the quoted paper, the author considers the following
calibration:







φx = ∇zε,δ
i +

t−z
ε,δ
i

vβ0
∇vβ0

φt = 1
2

∣

∣

∣
∇zε,δ

i +
t−z

ε,δ
i

vβ0
∇vβ0

∣

∣

∣

2

− ε
2δ

(t− zε,δ
i )2 +

(

ε
2δ

− β0

)

(zε,δ
i − t)2,

where β0 and vβ0 are given by Lemma 10.3. In the present situation, we cannot use directly the
previous expression. Indeed, in order (d) to be satisfied we need that when x ∈ Γ and for small

values of t2 − t1 the integral
[

∫ t2

t1
φx(x, t) dt

]

· ν(x) is sublinear as a function of the difference

t2 − t1 .
For this reason, we will introduce a suitable cut off function. Let us consider a constant η > 0

to be properly chosen later and a function a : R → [0, 1] of class C∞ , with supp a ⊂ (−2η, 2η),
a ≡ 1 in [−η, η] and |ȧ| ≤ 2

η
, where with the dot we denote the derivative with respect to t .

Let us consider also a function ψ ∈ C∞(Ω) such that ψ ≡ 1 in Ω3 , ψ ≡ 0 in Ω1 . Then, for
(x, t) ∈ Ω × R we set ξ(x, t) := a(t) + (1 − a(t))ψ(x). Our assumptions in particular imply that
supt∈R

‖∇ξ(t, ·)‖L∞(Ω) ≤ C3 and

|tξ̇(x, t)| ≤ 4 and |t2ξ̇(x, t)| ≤ 8η for every (x, t) ∈ Ω × R, (10.13)

where C3 := ‖∇ψ‖L∞(Ω) . We set now C := max{C1, C2, C3} , where C1 and C2 are defined in
(10.8) and (10.1). Moreover, for every c ∈ (0, σ) we define s(c) ∈ (0,+∞) as the unique positive
real number such that g(s) = c s(c). Since g is nondecreasing, concave and has finite limit at
infinity, s(c) is well defined. We set now

φx(x, t) := ξ(x, t− zε,δ
i (x))

(

∇zε,δ
i (x) +

t− zε,δ
i (x)

vβ0(x)
∇vβ0(x)

)

(10.14)

for every (x, t) ∈ Ωn × R . Notice that φx is bounded in Ωn × R , but not in Ω × R . This is the
reason why we first prove the minimality in Ωn .

In order (c) to be satisfied, we define

φt(x, zε,δ
i (x)) :=

|∇zε,δ
i (x)|2
2

− ε

2δ
(zε,δ

i (x) − zε,δ
i−1(x))

2 (10.15)

for all x ∈ Ωn . To simplify the notation, in the following we will omit the dependence on variables

taking into account, when deriving, that ξ(x, ·) is always evaluated at t− zε,δ
i (x). To satisfy (a),

we impose

∂tφ
t = − divxφ

x = −∇xξ · ∇zε,δ
i − (t− zε,δ

i )
∇xξ · ∇vβ0

vβ0

+ ξ̇ |∇zε,δ
i |2

+ ξ̇ (t− zε,δ
i )

∇zε,δ
i · ∇vβ0

vβ0

− ε

δ
ξ (zε,δ

i − zε,δ
i−1) + ξ

∇zε,δ
i · ∇vβ0

vβ0

+ ξ
(t− zε,δ

i )|∇vβ0 |2
v2

β0

− β0 ξ (t− zε,δ
i ). (10.16)

In this way, relations (10.14), (10.15) and (10.16) together determine φx and φt everywhere. By
construction, (a), (c) and (e) hold. In the next two lemmas we show that η can be chosen in such
a way that conditions (b) and (d) are satisfied.
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Lemma 10.6. Let

0 < η < min

{

−c+
√

c2 + cCs(c)

2C
,
σ − c

3C

}

. (10.17)

Then, condition (d) is satisfied.

Proof. Let x ∈ Γ and t1, t2 ∈ R with t1 < t2 . We have
[
∫ t2

t1

φx(x, t) dt

]

· ν(x) =

∫ t2

t1

a(t− zε,δ
i (x))

(

∂νz
ε,δ
i (x) +

t− zε,δ
i (x)

vβ0(x)
∂νvβ0(x)

)

dt

≤ c

∫ t2−z
ε,δ
i (x)

t1−z
ε,δ
i (x)

a(τ) dτ + C

∫ t2−z
ε,δ
i (x)

t1−z
ε,δ
i (x)

|τ | a(τ) dτ

= c

∫ t̂2(x)−z
ε,δ
i (x)

t̂1(x)−z
ε,δ
i (x)

a(τ) dτ + C

∫ t̂2(x)−z
ε,δ
i (x)

t̂1(x)−z
ε,δ
i (x)

|τ | a(τ) dτ, (10.18)

where t̂1(x) ≥ t1 and t̂2(x) ≤ t2 are defined as

t̂1(x) :=

{

t1 for t1 − zε,δ
i (x) ∈ [−2η, 2η],

zε,δ
i (x) − 2η for t1 − zε,δ

i (x) < −2η,

and

t̂2(x) :=

{

t2 for t2 − zε,δ
i (x) ∈ [−2η, 2η],

zε,δ
i (x) + 2η for t2 − zε,δ

i (x) > +2η.

Notice that if t1 − zε,δ
i (x) > 2η or t2 − zε,δ

i (x) < −2η the left-hand side of (10.18) is zero and

then there is nothing to prove. We remark that [t̂1(x) − zε,δ
i (x), t̂2(x) − zε,δ

i (x)] ⊂ [−2η, 2η] for
every x ∈ Γ and t1, t2 ∈ R with t1 < t2 . We will consider two possible cases.

Step 1. 0 < t2 − t1 ≤ s(c) .

In this case there holds
∫ t̂2(x)−z

ε,δ
i (x)

t̂1(x)−z
ε,δ
i (x)

|τ | dτ ≤ 3η(t̂2(x) − t̂1(x)). (10.19)

Indeed, if (t̂1(x) − zε,δ
i (x))(t̂2(x) − zε,δ

i (x)) ≥ 0

∫ t̂2(x)−z
ε,δ
i (x)

t̂1(x)−z
ε,δ
i (x)

|τ | dτ ≤ 1

2

∣

∣

∣
(t̂2(x) − zε,δ

i (x))2 − (t̂1(x) − zε,δ
i (x))2

∣

∣

∣

≤ 1

2
(t̂2(x) − t̂1(x))(|t̂1(x) − zε,δ

i (x)| + |t̂2(x) − zε,δ
i (x)|) ≤ 2η(t̂2(x) − t̂1(x)),

while for (t̂1(x) − zε,δ
i (x))(t̂2(x) − zε,δ

i (x)) < 0

∫ t̂2(x)−z
ε,δ
i (x)

t̂1(x)−z
ε,δ
i (x)

|τ | dτ ≤
∫ t̂2(x)−z

ε,δ
i (x)+2η

t̂1(x)−z
ε,δ
i (x)+2η

|τ | dτ

=
1

2

(

(t̂2(x) − zε,δ
i (x) + 2η)2 − (t̂1(x) − zε,δ

i (x) + 2η)2
)

=
1

2
(t̂2(x) − t̂1(x))(t̂2(x) − zε,δ

i (x) + t̂1(x) − zε,δ
i (x) + 4η)

≤ 1

2
(t̂2(x) − t̂1(x))(t̂2(x) − zε,δ

i (x) + 4η) ≤ 3η(t̂2(x) − t̂1(x)).

Using (10.18) and (10.19), since g is nondecreasing, we get
[
∫ t2

t1

φx(x, t)dt

]

· ν(x) ≤ (c+ 3 η C)(t̂2(x) − t̂1(x)) < σ(t̂2(x) − t̂1(x))

≤ g(t̂2(x) − t̂1(x)) ≤ g(t2 − t1),
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provided

0 < η <
σ − c

3C
. (10.20)

Step 2. t1 − t2 > s(c) .

If t1 − t2 > s(c) then
[
∫ t2

t1

φx(x, t)dt

]

· ν(x) ≤ c

∫ 2η

−2η

a(τ)dτ + C

∫ 2η

−2η

|τ |dτ ≤ 4 c η + 4C η2

= c

(

4η +
4C

c
η2

)

< c s(c) = g(s(c)) ≤ g(t1 − t2),

provided

4η +
4C

c
η2 < s(c).

Last condition is certainly satisfied for

0 < η <
−c+

√

c2 + cCs(c)

2C
. (10.21)

Collecting (10.20) and (10.21) we get the thesis. �

Next lemma concludes the proof of Proposition 10.5.

Lemma 10.7. Let ε be given by Lemma 10.2. For every ε ∈ (0, ε) there exists δ̂(ε) ∈ (0, T ) ,

independent of n ∈ N , with the following property. If ε ∈ (0, ε) and δ ∈ (0, δ̂(ε)) , then there exists
η > 0 such that conditions (b) and (d) are satisfied.

Proof. Let η > 0 be fixed and such that (10.17) holds. By Lemma 10.6 it follows that condition
(d) is satisfied. We want to prove that for ε ∈ (0, ε) and δ sufficiently small there holds

φt ≥ (φx)2

2
− ε

2δ
(t− zε,δ

i−1)
2 (10.22)

for every (x, t) ∈ Ωn × R . By construction, we already know that equality holds along the graph

of zε,δ
i , that is for t = zε,δ

i (x). Hence, in order to prove the previous inequality it will be sufficient
to impose the following relations, obtained by deriving (10.22) with respect to t :

∂tφ
t ≥ φx · ∂tφ

x − ε

δ
(t− zε,δ

i−1) for t > zε,δ
i , (10.23)

∂tφ
t ≤ φx · ∂tφ

x − ε

δ
(t− zε,δ

i−1) for t < zε,δ
i . (10.24)

Let us consider inequality (10.23). Thanks to (10.14) and (10.16), we get

β0ξz
ε,δ
i +

ε

δ

(

(ξ − 1)zε,δ
i−1 − ξzε,δ

i

)

+
(ε

δ
− β0ξ

)

t

≥ ξ ξ̇ |∇zε,δ
i |2 + 2ξ ξ̇ (t− zε,δ

i )
∇zε,δ

i · ∇vβ0

vβ0

+ ξ ξ̇ (t− zε,δ
i )2

|∇vβ0 |2
v2

β0

+ ξ2
∇zε,δ

i · ∇vβ0

vβ0

+ ξ2(t− zε,δ
i )

|∇vβ0 |2
v2

β0

+ ∇ξ · ∇zε,δ
i − ξ̇ |∇zε,δ

i |2

+ (t− zε,δ
i )

∇ξ · ∇vβ0

vβ0

− ξ̇ (t− zε,δ
i )

∇zε,δ
i · ∇vβ0

vβ0

− ξ
∇zε,δ

i · ∇vβ0

vβ0

− ξ (t− zε,δ
i )

|∇vβ0 |2
v2

β0

. (10.25)

When x ∈ Ω3 or t− zε,δ
i ∈ (0, η) there holds ξ ≡ 1 and (10.25) reduces to

(ε

δ
− β0

)

(t− zε,δ
i ) ≥ 0 ⇐⇒ t ≥ zε,δ

i ,
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that certainly holds. Suppose now t − zε,δ
i > η and x ∈ Ω2 . Let us focus on the left-hand side

of (10.25), that we will denote by LHS (10.25). Assuming δ < ε
β0+C2 and using the fact that

t > η + zε,δ
i we obtain

LHS(10.25) = β0ξ(z
ε,δ
i − t) +

ε

δ
ξ (zε,δ

i−1 − zε,δ
i ) − C2(t− zε,δ

i ) +
ε

δ
(t− zε,δ

i−1) + C2(t− zε,δ
i )

>
(ε

δ
− β0ξ − C2

)

(t− zε,δ
i ) +

ε

δ
(1 − ξ)(zε,δ

i − zε,δ
i−1) + C2(t− zε,δ

i )

>
(ε

δ
− β0 − C2

)

η − ε sup
t∈[0,T ]

‖ẇ(t)‖L∞(Ω) + C2(t− zε,δ
i ), (10.26)

where in the last inequality we used (8.2). Thanks to (10.13), for the right-hand side of (10.25)
we have

RHS(10.25) = ξ̇ (ξ − 1)|∇zε,δ
i |2 + ξ̇ (t− zε,δ

i )(2ξ − 1)
∇zε,δ

i · ∇vβ0

vβ0

+ ξ ξ̇ (t− zε,δ
i )2

|∇vβ0 |2
v2

β0

+ ξ(ξ − 1)
∇zε,δ

i · ∇vβ0

vβ0

+ ∇ξ · ∇zε,δ
i

+ ξ(ξ − 1)(t− zε,δ
i )

|∇vβ0 |2
v2

β0

+ (t− zε,δ
i )

∇ξ · ∇vβ0

vβ0

≤ 2C2

η
+ 4C2 + 8ηC2 + 2C2 + C2(t− zε,δ

i ). (10.27)

Collecting (10.25), (10.26) and (10.27), we have that if the following inequality holds

(ε

δ
− β0 − C2

)

η − ε‖ẇ‖L∞ ≥ 2C2

η
+ 6C2 + 8ηC2, (10.28)

then (10.23) is satisfied. In the same way one can see that the previous relation implies (10.24).
Observe now that the right-hand side of (10.28) is constant, while the left-hand side tends to
+∞ when δ → 0+ . Hence, for δ sufficiently small relation (10.28) is satisfied and condition (b)
holds. �

10.3. Limit as n → +∞ . Let n ∈ N . By a truncation argument, it will be enough to consider

competitors in the class A(iδ) ∩ L∞(Ω). Thus, let v ∈ A(iδ) ∩ L∞(Ω) with v 6= zε,δ
i . We set

vn := ϕnv + (1 − ϕn)zε,δ
i , recalling that ϕn ≡ 1 in R

N \ Gn−1 , ϕn ≡ 0 in Gn , and ϕn → 1
strongly in H1(RN ). From the properties of ϕn there holds vn ∈ Cn(iδ) for every n ∈ N and
vn → v strongly in H1(Ω). Thanks to Proposition 10.5 and applying relations (10.10) we have

∫

Ωn\Γ

( 1

2
|∇zε,δ

i |2 +
ε

2δ
(zε,δ

i − zε,δ
i−1)

2
)

dx (10.29)

=

∫

Ωn\Γ

(

φx(x, vn(x)) · ∇vn(x) − φt(x, vn(x))
)

dx+

∫

Γ

(

∫ max{v+,v−}

min{v+,v−}

φx(x, t) dt

)

· ν dHN−1,

where we used the fact that v±n = v± . Moreover, by (10.11) and (10.12) there holds

∫

Ωn\Γ

(

φx(x, vn(x)) · ∇vn(x) − φt(x, vn(x))
)

dx ≤
∫

Ωn\Γ

( 1

2
|∇vn|2 +

ε

2δ
(vn − zε,δ

i−1)
2
)

dx (10.30)

and
∫

Γ

(

∫ max{v+,v−}

min{v+,v−}

φx(x, t) dt

)

· ν dHN−1 <

∫

Γ

g(|[v]|) dHN−1. (10.31)
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We pass now to the limit as n → +∞ in (10.29). Since vn → v strongly in H1(Ω \ Γ), taking
into account (10.30) and (10.31) we obtain
∫

Ω\Γ

( 1

2
|∇zε,δ

i |2 +
ε

2δ
(zε,δ

i − zε,δ
i−1)

2
)

dx = lim
n→+∞

∫

Ωn

(

φx(x, vn(x)) · ∇vn(x) − φt(x, vn(x))
)

dx

+

∫

Γ

(

∫ max{v+,v−}

min{v+,v−}

φx(x, t) dt

)

· ν dHN−1

<

∫

Ω\Γ

( 1

2
|∇v|2 +

ε

2δ
(v − zε,δ

i−1)
2
)

dx+

∫

Γ

g(|[v]|) dHN−1

for every v ∈ A(iδ) ∩ L∞(Ω) with v 6= zε,δ
i .
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