
Variational analysis of the asymptotics of the XY

model

R.Alicandro and M.Cicalese

Abstract

In this paper we consider the XY (N -dimensional possibly anisotropic)
spin type model and, by comparison with a Ginzburg-Landau type func-
tional, we perform a variational analysis in the limit when the number of
particles diverges. In particular we show how the appearance of vortex-like
singularities can be described by properly scaling the energy of the system
through a Γ-convergence procedure. We also address the problem in the case
of long range interactions and solve it in 2-dimensions.

1 Introduction

Phase transitions are a striking feature of many natural phenomena. They are
characterized by a strong dependence of macroscopic properties of physical sys-
tems on external parameters such as temperature or pressure. At a microscopic
scale they can be seen as a result of non-linear cooperative phenomena leading to
long-range order. Working inside this framework, we aim at giving a variational
description of some features which are peculiar of those phase-transition phenom-
ena which occur without breaking the symmetry of the system (e.g. those taking
place in films of superfluid helium, superconducting materials as well as in certain
magnetic or liquid-crystal systems). This type of phase transition has been first
studied in the seminal papers by Berezinskii [8], Kosterlitz [19] and Kosterlitz and
Thouless [20] concerning the so-called two-dimensional XY model. This model
turns out to be the easiest model that contains all the interesting features of this
class of phase transitions. It is constructed on the two dimensional square lattice
Z2 whose points i are occupied by a spin confined to a plane u(i) ∈ S1. For a given
configuration, the energy of the system is

F (u) = −
∑
n.n.

u(i)u(j), (1.1)

where n.n. means that the summation is taken over all nearest neighbors; i.e.
those sites i, j such that |i − j| equals the lattice spacing. Loosely speaking the
scenario that the Berezinskii-Kosterlitz-Thouless theory proposes is that the phase
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transition phenomenon is mediated by the formation of topological defects or vor-
tices. Above some critical temperature Tc, this vortices behave like ’topological
charges’ that remain unbounded and make the system disordered, while below
Tc they bound together in pairs which become the relevant degrees of freedom
of the system. We are interested in this low-temperature regime where the cost
of small fluctuations of the spin field around the uniform ground state is usually
conveniently calculated by coarse-graining on a scale much larger than the lat-
tice spacing. The energy of the resulting model is known as the Ginzburg-Landau
energy.

In the present paper we prove that the coarse-graining procedure of the XY
model in the thermodynamic limit can be made rigorous and that it leads to a
Ginzburg-Landau (GL) energy in the regime in which the so called GL coherence
length (here denoted by ε) is extremely small (ε → 0). In this case the GL energy
can be conveniently written as

Gε(u) =
1
2

∫
|∇u|2 +

1
ε2

(1− |u|2)2. (1.2)

The analysis of the energy in (1.2), and in particular the appearance of vortex-like
singularities associated to energy concentration phenomena, has been successfully
addressed by many authors both from the PDE and the calculus of variations
point of view (see e.g. [1], [9], [15], [16], [17]). To this end, since, to leading term,
the cost of a vortex singularity is of order | log ε|, the right energy scaling to be
taken into account is Gε(u)

| log ε| . In this regime the key idea to address the problem of
the concentration of the energy has been provided by Jerrard in [15] where it has
been shown that the relevant tool to track energy concentration is the asymptotic
analysis of the Jacobians of sequences uε equibounded in energy. The variational
analysis of the asymptotics of Gε(u)

| log ε| has been performed by Jerrard and Soner in
[16] and by Alberti, Baldo e Orlandi in [1] in the general N -dimensional case.

By relating the XY model to the GL model we may explain some geomet-
ric and topological properties of the spin-field singularities appearing in the XY
system in the thermodynamic limit by means of the same variational techniques
successfully exploited to study the GL functional. In this way we aim at interpret-
ing some of the results contained in the huge physical literature on the XY model
(and variations) (see e.g. [21], [24] and references therein) from the point of view
of calculus of variations.

To set up the general N -dimensional problem in the framework of discrete-to-
continuum variational limits (see for example [3], [4], [5], [10]) we scale the energy
in (1.1) to a fixed domain Ω ⊂ RN . Taking into account the interactions between
nearest-neighbors on the lattice εZN ∩ Ω (the lattice spacing ε will go to zero in
the continuum limit), the scaled energy reads:

Fε(u) = −
∑
n.n.

εNu(εi) · u(εj).
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Upon identifying the functions u : εZN ∩ Ω → S1 with proper piecewise-constant
interpolations, the energies can be considered as being defined on L∞(Ω) and can
be described by a Γ-limit (see [10] and [12] for basic definitions and properties)
in that framework as ε goes to 0. The bulk scaling we have chosen for Fε renders
its Γ-limit trivially the constant value −|Ω|, the only constraint being |u| ≤ 1.
Such a limit is the same even in the case of Ising-type models (u ∈ {−1,+1})
and summarizes the fact that any configuration of spins uε can slightly differ from
the uniform one on a mesoscopic scale without changing the asymptotic energy.
Such a poor description of the ground states can be improved by considering other
scalings. In particular we can select sequences that realize the minimum value with
a sharper precision; i.e.

Fε(uε) = min Fε + O(kε)

where kε → 0 as ε → 0. In the Ising case it has been proven ([3]) that the relevant
scaling is kε = ε. This scaling yields to a selection criterion of minimal-interface
type, in the sense that, on such sequences uε, the limit is an interfacial-type energy
reflecting the symmetries of the underlying lattice structure. In the present case
we show that no interface-type selection can be obtained by a surface scaling (see
Example 4.1) and focus on a different scaling, namely kε = ε2| log ε|, which implies
a selection criterion of topological nature. The sequence of scaled functionals we
consider is the following:

Eε(u) =
Fε(u)−min Fε

ε2| log ε| =
1

| log ε|
∑
n.n.

(1− u(εi) · u(εj))

=
1

2| log ε|
∑
n.n.

ε2

∣∣∣∣
u(εi)− u(εj)

ε

∣∣∣∣
2

.

By associating to any given spin field u the function v = A(u) defined as a contin-
uous piecewise-affine interpolation of u on the cells of the lattice (see (4.19)), we
have

Eε(u) ∼ 1
2| log ε|

∫

Ω

|∇v|2. (1.3)

Once we prove a key lemma (see Lemma 4.4) which asserts that the singular term
in the Ginzburg-Landau energy is controlled by Eε(u), that is

1
ε2| log ε|

∫

Ω

(|v|2 − 1)2 ≤ CEε(u),

we recognize in the right hand side of (1.3) the leading term of Gε(v)
| log ε| . This argu-

ment suggests an analogy between the two models and leads us to describe the
formation of vortex-like singularities, associated to a sequence uε equibounded in
energy, through the convergence in a ‘suitable sense’ of the Jacobians J(vε) of
vε = A(uε). Here J(vε) is meant as the 2-form dv1

ε ∧dv2
ε , dvi

ε being the differential
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Figure 1: Discrete vortices: optimizing sequences for M = δx0 (+1 charged vortex)
(left) and M = −δx0 (−1 charged vortex) (right).

ε
-¾

of the i-th component of vε. A key result to describe the structure of the vortices
is the following compactness result:

Compactness. Let (uε) be a sequence of functions such that Eε(uε) ≤ C and
let vε = A(uε). Then we can extract a subsequence (not relabeled) such that
FΩ(?J(vε)− πM) → 0, where M is an (N − 2)-dimensional integral boundary in
Ω.

In the previous statement we have denoted by ?J(vε) the (N − 2)-current,
that is a L1 map on Ω valued in (N − 2)-vectors, obtained from J(vε) by the
standard identification ? of k-covectors with (N − k)-vectors. For any current T
FΩ(T ) denotes its flat norm (see definition (2.6)) and the limit current M is a
(N − 2)-dimensional boundary in the sense that, loosely speaking, it is supported
on a (N−2)-dimensional rectifiable set which is also a boundary. This set represents
the set of the vortex-type singularities of the spin field uε as ε goes to zero.

The energy-concentration phenomenon on the set of singularities is described
by the following Γ-convergence result which we state explicitly since it does not
rigorously fit the usual formulation of that convergence:

Lower bound inequality - Let (uε) be a sequence of functions such that FΩ(?J(vε)−
πM) → 0, where M is an (N − 2)-dimensional integral boundary in Ω. Then

lim inf
ε

Eε(uε) ≥ π‖M‖;

Upper bound inequality - Let M be an (N −2)-dimensional integral boundary
in Ω. Then there exists a sequence (uε) such that FΩ(?J(vε)− πM) → 0 and

lim
ε

Eε(uε) = π‖M‖. (1.4)
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To better explain the previous results consider the case N = 2. In this case
the limit current M is a finite sum of Dirac masses, that is M =

∑n
k=1 dkδxk

,
where n ∈ N, xk ∈ Ω represent the centers of the vortices and dk ∈ Z are the
winding numbers of the spin field around each xk and are also called charges of
the topological singularity. In Figure 1 we have displayed two types of discrete
vortices, that is the microscopic configurations of the spin fields leading, in the
continuum limit, to M = +δx0 and M = −δx0 .

All the previous results are contained in Theorem 4.2 (see also Remark 4.3)
which can be considered as the discrete analogue of Theorem 1.1 in [2]. In this
sense, the Ginzburg-Landau energy can be seen as the continuous counterpart of
the XY energy within the logarithmic scaling regime. We point out that the limit
energy in (1.4) does not reflect the underlying geometry of the lattice. This is
explained by the fact that the parallel between the XY and the GL model carries
on to the characteristic length scale where energy concentrates that is much larger
than the lattice spacing ε.

We remark that the result described above in the two-dimensional case has
a number of elements in common with the result obtained by Ponsiglione [22]
about the discrete-to-continuum passage in modeling the elastic properties, in
the framework of anti-planar linear elasticity, of vertical screw dislocations in a
cylindrical crystal. The analogy between the two problems was already known, at
least formally, since the pioneering paper by Kosterlitz and Thouless [20]. Indeed
it will be proved in a forthcoming paper [6] that the Γ-convergence theorems,
independently proved for the two models, can be obtained one from the other
rigorously.

Starting from the previous analysis, we have also addressed the problem of the
variational description of the continuum limit of the XY model in the anisotropic
and in the long-range case. In the first case nearest-neighbors interactions between
spins in points i and j of the lattice are differently weighed according to the
direction of the vector i − j. In Theorem 4.7 we prove the analogue of Theorem
4.2 pointing out how the geometry of the vortex type configurations is affected by
the anisotropy of the model.

The long range case, which is the case when the interactions between all
the spins are taken into account, is much harder. In Theorem 4.8 we prove a Γ-
convergence result asserting that, in 2-dimensions, the limit energy is still of the
form (1.4). The set of hypotheses we make is quite general and includes the case in
which the interactions satisfy a decay assumption and are isotropic (see Remark
4.9). The general N -dimensional problem is open. In Theorem 4.11 we provide an
N -dimensional version of the result stated in Theorem 4.8 by assuming a more
technical hypothesis on the interactions. In the proof of these results, besides the
argument exploited in proving Theorem 4.2, a key ingredient is the idea, well
known to people working in statistical mechanics, and here used in a variational
form, of decoupling the order parameter on weakly interacting systems.

Finally we underline that many challenging problems remain open in this
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framework. Among them we mention the variational description of the XY model
in presence of an external magnetic field, the study of the vortex interaction energy
or even the dynamic of vortices (see [23] and references therein for the theory
developed in the Ginzburg-Landau case). Many of the ideas contained in this
paper will be useful to address some of the previous problems.

The paper is organized as follows:

Contents

1 Introduction 1

2 Notation and preliminary results 6
2.1 Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
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3 XY model: bulk scaling 10

4 An higher order description: vortex like singularities 11
4.1 Isotropic nearest-neighbors XY model . . . . . . . . . . . . . . . . 12
4.2 Anisotropic nearest-neighbors XY model . . . . . . . . . . . . . . 21
4.3 Long range XY model . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3.1 The 2-dimensional case . . . . . . . . . . . . . . . . . . . . 24
4.3.2 Generalization to higher dimensions . . . . . . . . . . . . . 29

5 Appendix A: an alternative proof in the 2-d case 32

6 Appendix B: technical lemmas 34

2 Notation and preliminary results

In what follows Ω ⊂ RN will be a bounded open set with LN (∂Ω) = 0. We define
as A(Ω) the class of all open bounded subsets of Ω. For all B ∈ RN we define
Zε(B) =: {i ∈ ZN : εi ∈ B}. We will also make use of the notation | · | to denote
the euclidean norm. Given A, B ∈ RN (A ∈Md×N and B ∈MN×k, respectively)
we will denote as A ·B the scalar product in RN (the row times column product,
respectively). For any ξ = (ξ1, ξ2) ∈ R2 we denote by ξ⊥ = (−ξ2, ξ1) the vector
perpendicular to ξ. We denote by S1 and B2 the unit sphere and the unit ball in
R2, respectively.
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2.1 Currents

We recall here some basic definitions about currents and forms (for more details we
refer to [13], [14]). For every h = 0, 1, . . . , N , an h-form on Ω is a map from Ω into
the space of h-covectors

∧h(RN ) while an h-current a map from Ω into the space
of h-vectors

∧
h(RN ). By the standard duality between vectors and covectors, the

space Dh(Ω) of h-currents is identified with the dual of the space Dh(Ω) of all
smooth h-forms with compact support in Ω. The boundary of an h-current is the
h− 1-current defined by the identity ∂T [ω] = T [dω] for every ω ∈ Dh−1(Ω) where
dω is the differential of ω. We call boundary any current which is also a boundary.
Moreover we say that a current T is a boundary locally in Ω if the restriction
T bΩ′ is a boundary for any Ω′ ⊂⊂ Ω. A current T is said to have (locally) finite
mass when it can be represented as a (locally) bounded Borel measure valued in∧

h(RN ). In this case we denote by |T | the variation of the measure T and by
‖T‖ = |T |(Ω) the mass of T . The restriction of T to a set E will be denoted by
T bE as for measures.

A set M in Ω is h-rectifiable if it can be covered, up to a Hh-negligible set,
by countably many h-surfaces of class C1. An orientation of M is a map which
associates to Hh-a.e. x ∈ M a simple unitary h-vector which spans Tan(M,x)
which is the tangent space to M at x defined in a measure theoretic sense. For
every given M h-rectifiable set, τM orientation and σM ∈ L1

loc(HhbM), we define
the current

T [ω] :=
∫

M

σM (ω · τM )dHh. (2.5)

We call σM the multiplicity of T and observe that, in this case, ‖T‖ =
∫

M
|σM |dHh.

A current T of the type (2.5) is said to be rectifiable if σM is integer-valued and
it is said to be integral if both T and ∂T are rectifiable. A sum of finitely many h-
currents associated, as in of (2.5), to h-dimensional simplices in RN , endowed with
constant orientations and constant real (integral) multiplicities is a real (integral)
polyhedral current in RN . Polyhedral currents in Ω are defined by restriction.

For any given linear map L : RN → Rm and β ∈ ∧h(Rm), then L#β ∈∧h(RN ) is defined by (L#β) · (v1 ∧ . . . ∧ vh) = β · (Lv1 ∧ . . . ∧ Lvh) for every
simple vector v1 ∧ . . . ∧ vh. Given an open set Ω′ ⊂ RN and a map f : Ω → Ω′ we
define the pull-back of an h-form ω on Ω′ according to f to be the h−form f#ω
on Ω defined by f#ω(x) = (Df(x))#ω(f(x)) for every x. The push-forward of an
h-current T on Ω is the h-current f#T on Ω′ defined by f#T [ω] = T [f#ω]. We
observe that if T is associated to (M, τM , σM ) as in (2.5), then f#T is the current
associated to (M ′, τM ′ , σM ′) where M ′ = f(M), σM ′(y) is the sum of σM (x) for
all x ∈ f−1(y) computed taking the orientation into account. In the rest of the
paper, given an N ×N matrix A, we will make use of the shorter notation A#T
to denote the push forward of T according to f(x) = Ax.

We define the flat norm of a current T ∈ Dh(Ω) as

FΩ(T ) := inf{‖S‖, S ∈ Dh+1(Ω) T = ∂S} (2.6)
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where the infimum is taken to be +∞ if T is not a boundary. Here we recall
an approximation result for integral boundaries by polyhedral boundaries with
respect to the flat norm (see Proposition 8.6 [2]).

Proposition 2.1 Let Ω be a bounded Lipschitz domain in RN , and let T be an
integral boundary in Ω with dimension h < N and finite mass. Then there exists a
sequence of polyhedral boundaries Tn in RN with multiplicity 1 and |Tn|(∂Ω) = 0,
such that FΩ(TnbΩ− T ) → 0 and ‖TnbΩ‖ → ‖T‖.
As a simple consequence of the previous result we also state a local version of it
which holds without requiring any regularity on Ω.

Proposition 2.2 Let Ω be a bounded domain in RN , and let T be an integral
boundary locally in Ω with dimension h < N and finite mass in Ω. Then there exists
a sequence of polyhedral boundaries Tn in RN with multiplicity 1 and spt(Tn) ⊂⊂
Ω, such that FΩ′(TnbΩ′ − T ) → 0 for any Ω′ ⊂⊂ Ω and ‖TnbΩ‖ → ‖T‖.

2.2 Jacobian of Sobolev maps as currents

For every u ∈ W 1,2(Ω;R2) we define the Jacobian of u = (u1, u2) as the 2-form
defined as

Ju := du1 ∧ du2,

where dui =
∑

j Djuidxj . Since

Ju =
1
2
d(u1du2 − u2du1), (2.7)

and the last term makes sense as a distribution even if u ∈ L∞∩W 1,1(Ω;R2), (2.7)
can be taken as a definition of Jacobian in this case. We can regard the Jacobian
as a N − 2-current using the identification between forms and currents defined
below. Given an h-form ω ∈ L1

loc(Ω), ?ω is the N − h-current on Ω defined by

?ω[ω′] =
∫

Ω

(ω′ ∧ ω) · τΩ ω′ ∈ DN−h(Ω),

where τΩ = e1 ∧ . . . ∧ eN is the standard orientation of Ω. Since

∂(?ω) = (−1)N−h ? (dω), (2.8)

by (2.7) we have that ?Ju is a boundary. Moreover ?J is a continuous operator
from W 1,1(Ω;R2) into the space of (N − 2)-dimensional boundaries endowed with
the flat norm.

In section 4.3 we will make use of the following lemma.

Lemma 2.3 Let U ⊂ RN be a bounded open set and let uε and vε be two sequences
belonging to W 1,2(U,R2). If there exists a constant C > 0 such that

(i)
∫

U

|uε − vε|2 dx ≤ Cε2| log ε|, (ii)
∫

U

|∇uε −∇vε|2 dx ≤ C| log ε|,
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then FU (?J(uε)− ?J(vε)) → 0.

Proof. Observe that for uε = (u1
ε, u

2
ε) and vε = (v1

ε , v2
ε), it holds

?J(uε)− ?J(vε) = ?J(uε − vε) + ?J(u1
ε − v1

ε , v2
ε) + ?J(v1

ε , u2
ε − v2

ε) (2.9)

where, for f = (f1, f2), we have used the notation ?J(f) or ?J(f1, f2) to denote
its Jacobian. By triangular inequality, from (2.9) if follows

FU (?J(uε)− ?J(vε)) ≤ FU (?J(uε − vε)) + FU (?J(u1
ε − v1

ε , v2
ε))

+FU (?J(v1
ε , u2

ε − v2
ε)). (2.10)

Let now gε = (g1
ε , g2

ε) be one of the functions uε−vε, (u1
ε−v1

ε , v2
ε) or (v1

ε , u2
ε−

v2
ε). Since Jgε = d(g1

εdg2
ε), by (2.8) and the definition of the flat norm we get that

FU (?Jgε) ≤ ‖ ? (g1
εdg2

ε)‖(U) ≤
N∑

i=1

∫

U

∣∣∣∣g1
ε

∂g2
ε

∂xi

∣∣∣∣ dx.

Then, thanks to Hölder inequality, by hypotheses (i) and (ii), we get that

FU (?Jgε) ≤ C

(∫

Ω

|gε|2)
) 1

2
(∫

Ω

|∇gε|2)
) 1

2

≤ Cε| log ε|. (2.11)

Hence, the conclusion follows from (2.10) and (2.11).

2.3 Ginzburg-Landau type energies

Here we recall the main result of [2] about the variational convergence of Ginzburg-
Landau type energies (see also [16]). For ε > 0 set

Gε(u) =
1

| log ε|
∫

Ω

(1
2
|∇u|2 +

1
ε2

W (u)
)

dx u ∈ W 1,2(Ω;R2), (2.12)

where W is a continuous function which vanishes on S1, it is strictly positive
elsewhere and it satisfies

lim inf
|y|→1

W (y)
(1− |y|)2 > 0 lim inf

|y|→∞
W (y)
|y|2 > 0.

Theorem 2.4 Let Ω be a bounded Lipschitz domain in RN . The following state-
ments hold.

(i) Compactness and lower-bound inequality. Let (uε) be a sequence of functions
such that Gε(uε) ≤ C. Then we can extract a subsequence (not relabeled) such
that FΩ(?J(uε) − πM) → 0 where M is an (N − 2)-dimensional integral
boundary locally in Ω. Moreover

lim inf
ε

Gε(uε) ≥ π‖M‖. (2.13)
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(ii) Upper bound inequality. Let M be an (N −2)-dimensional integral boundary
locally in Ω, there exists a sequence (uε) such that FΩ(?J(uε) − πM) → 0
and

lim
ε

Gε(uε) = π‖M‖. (2.14)

Remark 2.5 Let A be an invertible N×N matrix. If in (2.12) we replace |∇u|2 by
|∇u ·A|2 then, by a change of variables, it can be easily shown that the same results
stated in Theorem 2.4 hold with |detA|‖(A−1)#M‖ in place of ‖M‖ in (2.13) and
(2.14).

3 XY model: bulk scaling

In this section we introduce and study the asymptotics of a class of bulk scaled en-
ergies governing the XY model in the general N -dimensional, anisotropic, possibly
long range case.

Given ε > 0 and {cξ}ξ a family of positive constants labeled with ξ ∈ ZN

and such that
∑

ξ cξ < +∞, we introduce the energy

Fε(u) = −
∑

i,j∈Zε(Ω)

εNc(i−j)u(εi) · u(εj)

where u : εZN ∩ Ω → S1. It is convenient to rewrite this energy regrouping the
interactions in the same direction as follows

Fε(u) = −
∑

ξ∈ZN

∑

i, i+ξ∈Zε(Ω)

εNcξ u(εi) · u(εi + εξ).

Let

Cε(Ω) := {u : RN → S1 : u(x) = u(εi) ∀x ∈ {ε(i + Q)} ∩ Ω}, (3.15)

where
Q =

[
0, 1

)N

.

Then any function u : εZN ∩Ω → R2 can be identified with its piecewise interpo-
lation belonging to Cε(Ω).

Then we may regard Fε as defined on Cε(Ω) and extend it on all L∞(Ω;R2)
by setting Fε : L∞(Ω;R2) → R ∪ {+∞}

Fε(u) =





−
∑

ξ∈ZN

cξ
∑

i, i+ξ∈Zε(Ω)

εNu(εi) · u(εi + εξ) if u ∈ Cε(Ω)

+∞ otherwise.

(3.16)
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Theorem 3.1 Let Fε : L∞(Ω;R2) → R ∪ {+∞} be defined as in (3.16), then
Fε Γ-converges with respect to the w∗-topology of L∞(Ω;R2) to the functional
F : L∞(Ω;R2) → R ∪ {+∞} defined as

F (u) =




−|Ω|∑

ξ

cξ if u ∈ L∞(Ω;B2)

+∞ otherwise.

Proof. If uε ∈ Cε(Ω) and uε → u weakly in L∞(Ω;R2), then u ∈ L∞(Ω;B2).
Thus the Γ-limit is finite only on L∞(Ω; B2). The lower bound inequality is
straightforward since

Fε(u) ≥ −
∑

ξ∈ZN

cξ εN#{i, i + ξ ∈ Zε(Ω)} → −|Ω|
∑

ξ∈ZN

cξ.

In order to provide the upper bound inequality, it suffices, by density, to exhibit
an optimizing sequences uε when the target function u is piecewise-constant. We
will show how to construct uε when u is constant; the construction can be easily
repeated for piecewise-constant u on each set where it is constant.

Let then u ≡ u0, with u0 ∈ B2. Thus there exist u1, u2 ∈ S1 and t ∈ [0, 1]
such that u0 = tu1 + (1 − t)u2. Choose a mesoscopic scale δ = δ(ε) with ε <<
δ << 1 and let

uε(εi) =
{

u1 if 0 < εi1 ≤ t modulo δ
u2 if t < εi1 ≤ 1 modulo δ

(i1 is the first component of i ∈ ZN ). Then uε → u weakly in L∞(Ω;R2). Moreover
a simple computation show that for any ξ ∈ ZN

lim
ε→0

∑

i, i+ξ∈Zε(Ω)

εNuε(εi) · uε(εi + εξ) = |Ω|
(
−1 + C|ξ| lim

ε→0

ε

δ

)
= −|Ω|.

We then get the conclusion by summing over ξ ∈ ZN and taking into account that∑
ξ cξ < ∞.

4 An higher order description: vortex like singu-
larities

In what follows, in order to study non trivial asymptotic properties of energies
of the form (3.16), we will address the problem of finding a relevant scaling of
the energies as in the framework of development by Γ−convergence (see [11]), and
perform an asymptotic analysis in that regime.
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4.1 Isotropic nearest-neighbors XY model

Let us specialize the energies defined in (3.16) to the case of isotropic nearest-
neighbors XY model that is when

cξ =
{ 1 if ξ = ek, k = 1, . . . , N

0 otherwise.

Then the energy becomes

Fε(u) =





− ∑
i,j∈Zε(Ω)

|i−j|=1

εNu(εi) · u(εj) u ∈ Cε(Ω)

+∞ otherwise.

Let
mε := minFε(u) = −|Ω|+ o(1),

and, given a family of positive numbers δε converging to 0 as ε → 0, we consider
the scaled energies

Eδε
ε (u) :=

Fε(u)−mε

δε
.

Observe that, since mε = − ∑
i,j∈Zε(Ω)

|i−j|=1

εN , we have that, for u ∈ Cε(Ω),

Eδε
ε (u) =

εN

δε

∑

i,j∈Zε(Ω)

|i−j|=1

(1− u(εi) · u(εj)).

Note that, despite of Ising type models considered in [3] where the scaling δε = ε
gives rise to interfacial surface energies in the limit, here this phenomenon does
not occur for any δε such that limε→0

δε

ε2 = +∞ as the following example shows.

Example 4.1 Suppose for simplicity that 0 ∈ Ω. Given a, b ∈ S1, let

u(x) =
{

a if x1 ≤ 0
b if x1 > 0

,

where x1 is the first component of x ∈ RN . Then we can construct uε → u in L1

such that Eδε
ε (uε) → 0. In fact, let θa, θb ∈ [0, 2π) be such that a = (cos θa, sin θa),

b = (cos θb, sin θb), and set

θε(t) := (θa − θb)(1− t

ηε
) + θb,

12



Figure 2: The spin filed uε in Example 4.1: the mesoscopic relaxation prevents the
formation of domains.

a b

C

ε

6

?
-¾

δε À ε

where ηε = o(ε) is a scale to be determined a posteriori. Let, then, uε ∈ Cε(Ω) be
defined as

uε(εi) =

{
a if i1 ≤ 0,
(cos θ(εi1), sin θ(εi1)) if i1 ∈ (0, ηε],
b if i1 > ηε.

Then, an easy computation gives that

Eδε
ε (uε) ∼

(
1− cos

ε

ηε
(θa − θb)

)
ηε

δε
∼ ε2

ηεδε
.

Hence, it suffices to choose ηε such that ε2

ηεδε
→ 0.

In the sequel of the paper we will focus on the scaling δε = ε2| log ε|. With
such a scaling, non topologically trivial ground states will appear in the continuum
limit.

Let Eε : L∞(Ω;R2) → R ∪ {+∞} be defined by

Eε(u) =





1
| log ε|

∑

i,j∈Zε(Ω)

|i−j|=1

εN−2(1− u(εi) · u(εj)) if u ∈ Cε(Ω)

+∞ otherwise.

(4.17)

Note that, for any u ∈ Cε(Ω), we have

Eε(u) =
1

2| log ε|
∑

i,j∈Zε(Ω)

|i−j|=1

εN

∣∣∣∣
u(εi)− u(εj)

ε

∣∣∣∣
2

13



≥ 1
2| log ε|

N∑

k=1

∑

i∈Zε(Ω):

ε(i+Q)∈ Ω

εN |Dek
ε u(εi)|2 (4.18)

For any u ∈ Cε(Ω), let us define v = A(u) a piecewise affine interpolation of
u on the cells of the lattice as follows: let {p1, p2, . . . , pN !} be the set of the N !
permutations of {1, 2, . . . , N} and let {T 1, T 2, . . . , TN !} be a partition of the unit
cube into N -dimensional simplices defined by

T k := {x ∈ [0, 1]N : xpk(1) ≥ xpk(2) ≥ . . . ≥ xpk(N)}, k ∈ {1, 2, . . . , N !}.
Then v = A(u) is defined as

v(x) = u(εi) +
N∑

l=1

D
epj(l)
ε u

(
ε

(
i +

l−1∑
m=1

ep(l)

))
(xp(l) − εip(l)), x ∈ ε(i + T k).(4.19)

One can easily show that

∂v

∂xl
(x) = Del

ε u(εi), x ∈ ε(i + Pl),

where

Pl = {x : 0 ≤ xl ≤ 1, xl − 1 ≤ xm ≤ xl, l 6= m}. (4.20)

Thus, from (4.18), we easily deduce that, for ε small enough,

Eε(u) ≥ 1
2| log ε|

∫

Ωε

|∇v|2 dx, (4.21)

where

Ωε := {x ∈ Ω : dist(x, ∂Ω) >
√

Nε}. (4.22)

By the previous estimate and Lemma 4.4 below, we infer that

Eε(u) ≥ Fε(v),

where Fε is a Ginzburg-Landau energy of the form (2.12), whose limiting behavior
is described in Theorem 2.4. Actually, the following theorem, which is the main
result of the paper, yields that Eε and Fε are asymptotically equivalent.

Theorem 4.2 The following statements hold:

(i) Compactness and lower-bound inequality. Let (uε) be a sequence of func-
tions such that Eε(uε) ≤ C and let vε = A(uε) be defined by (4.19). Then
we can extract a subsequence (not relabeled) such that, for any Ω′ ⊂⊂ Ω,
FΩ′(?J(vε) − πMbΩ′) → 0, where M is an (N − 2)-dimensional integral
boundary locally in Ω. Moreover

lim inf
ε

Eε(uε) ≥ π‖M‖.
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(ii) Upper bound inequality. Let M be an (N − 2)-dimensional integral bound-
ary locally in Ω. There exists a sequence (uε) such that, for any Ω′ ⊂⊂ Ω,
FΩ′(?J(vε)− πMbΩ′) → 0 and

lim
ε

Eε(uε) = π‖M‖. (4.23)

Remark 4.3 In the case Ω is a bounded Lipschitz domain, we can prove that the
compactness and approximation result stated in Theorem 4.2 holds with respect to
the convergence in the flat norm FΩ (and not only FΩ′ for any Ω′ ⊂⊂ Ω). In fact
let us set Zε(Ω) := {i ∈ ZN : ε(i + [−1, 1]N ) ∩Ω 6= ∅} and, for any u : εZε → S1,
set

Eε(u) =
1

| log ε|
∑

i,j∈Zε(Ω)

|i−j|=1

(1− u(εi) · u(εj)).

Then, thanks to the Lipschitz regularity of Ω, for any u ∈ Cε(Ω) it is possible to
define a suitable extension u : εZε → S1 such that

Eε(u) ≤ C(Ω, N)Eε(u). (4.24)

Note that the piecewise affine function v = A(u), constructed as in (4.19), is well
defined in all the set Ω.

Then, by (4.24), it can be easily proved that if uε and M are as in Theorem 4.2
(i), then the family of piecewise affine functions vε = A(uε), uε being the extension
of uε defined as above, satisfy (up to subsequences): FΩ(?J(vε) − πM) → 0. In
particular this implies that M is a N − 2 integral boundary in Ω. Moreover given
any N − 2 integral boundary M in Ω, the optimizing sequence uε satisfying (4.23)
can be chosen in such a way that FΩ(?J(vε)− πM) → 0.

Eventually, we underline that the limit boundary M does not depend on the
type of extension of uε chosen, in the sense that if ũε is any other extension of uε

satisfying (4.24) and ṽε = A(ũε), then FΩ(?J(vε)− ?J(ṽε)) → 0.

In the next Lemma we show that, for any u ∈ Cε(Ω) the penalization term of
the Ginzburg-Landau energy of its affine interpolation can be controlled by Eε(u).

Lemma 4.4 Let u ∈ Cε(Ω) and let v = A(u) be given by (4.19). Then

1
ε2| log ε|

∫

Ωε

(|v|2 − 1)2 dx ≤ CEε(u),

where Ωε is defined in (4.22).

Proof. The Lemma is proved if we show that ∀i ∈ Zε(Ω) such that ε(i+[0, 1]N ) ⊂
Ω and for all k ∈ {1, 2, . . . , N !}, we get

sup
x∈ε(i+T k)

(|v|2 − 1)2 ≤ C

N∑

l=1

∣∣∣∣∣D
epk(l)
ε u

(
ε

(
i +

l−1∑
m=1

epk(l)

))∣∣∣∣∣

2

ε2. (4.25)
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In fact, if (4.25) hold true, we get

1
ε2| log ε|

∫

Ωε

(|v|2 − 1)2 dx

≤ 1
ε2| log ε|

∑

i

N !∑

k=1

∫

ε(i+T K)

(|v|2 − 1)2 dx

≤ 1
ε2| log ε|

∑

i

N !∑

k=1

εN sup
x∈ε(i+T k)

(|v|2 − 1)2

≤ C

2| log ε|
∑

i

N !∑

k=1

εN
N∑

l=1

∣∣∣∣∣D
epk(l)
ε u

(
ε

(
i +

l−1∑
m=1

epk(l)

))∣∣∣∣∣

2

≤ C

2| log ε|
∑

i,j∈Zε(Ω)

|i−j|=1

εN

∣∣∣∣
u(εi)− u(εj)

ε

∣∣∣∣
2

= CEε(u). (4.26)

We now prove (4.25). Fix i ∈ Zε(Ω) such that ε(i + [0, 1]N ) ⊂ Ω and k ∈
{1, 2, . . . , N !}, and set

αl = u(ε(i +
l∑

m=1

epk(l))).

Then, for x ∈ ε(i + T k) we can write

v(x) = α1 +
N∑

l=1

(αl+1 − αl)(
xl

ε
− il).

Then, since |αl| = 1 and |xl

ε − il| ≤ 1, we easily get that

(|v(x)|2 − 1)2 ≤ C

N∑

l=1

(|αl+1 − αl|2).

Proof of Theorem 4.2 (i) (Compactness and lower-bound inequality)
Let uε be such that Eε(uε) ≤ C, and let Ωn ⊂⊂ Ω be a sequence of Lipschitz open
sets such that Ωn ↗ Ω as n → +∞. Then, by Lemma 4.4 and (4.21), we have
that, for any t > 0 and n ∈ N

(1 + t)Eε(uε) ≥ 1
2| log ε|

∫

Ωn

|∇vε|2 dx +
t

C

∫

Ωn

(|vε|2 − 1)2 dx. (4.27)

Then, by Theorem 2.4 we deduce that, for all n we can extract a subsequence (not
relabeled) and find a integral boundary Mn, such that FΩn(?J(vε) − πMn) → 0.
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Note that if n′ > n then Mn′bΩn= Mn. Letting n → +∞, by a diagonaliza-
tion argument we can extract a further subsequence such that we have that
FΩn

(?J(vε)−πM) → 0 for all n ∈ N, where M is such that MbΩn
= Mn. Moreover,

by (4.27) and Theorem 2.4 (i), we get

lim inf
ε

Eε(uε) ≥ π

1 + t
|M |(Ωn).

Eventually, by letting n →∞ and t → 0, we obtain the conclusion.

In the proof of the upper bound inequality we will make use of the following
technical lemma (see [2] Lemma 8.3).

Lemma 4.5 Let S ⊂ RN be a bounded set contained in a finite union of Lipschitz
surfaces of codimension h, and for every t > 0, denote by St the t-neighborhood of
S. There exists a finite constant C (depending on S) such that LN (St) ≤ Cth for
every t ≥ 0 and

∫

St

dx

(dist(x, S))p
≤ C

h− p
th−p for every p < h and t ≥ 0.

Proof of Theorem 4.2 (ii) (Upper bound inequality)
For reader’s convenience we divide the proof in three steps.

step 1. We first consider the case when M = τMHN−2bM where M =
{x ∈ Ω : x1 = x2 = 0} and τM is any constant orientation of M. The function
u : RN → S1, given by

u(x) =
(x1, x2)√
x2

1 + x2
2

, (4.28)

is such that ?Ju = πM , up to a change of the orientation. Moreover u ∈ W 1,1
loc (RN ; S1)

and one can easily check that

lim
ε

1
| log ε|

∫

Ω\Dε

|∇u|2 dx = lim
ε

1
| log ε|

∫

Ω\Dε

1
x2

1 + x2
2

dx

= πHn−2(M) = π‖M‖, (4.29)

where Dε = {x ∈ Ω :
√

x2
1 + x2

2 < ε}. By Lemma 6.1 there exists yε ∈ (0, 1)N

such that, set uε(x) = T yε
ε u(x), the function vε = A(uε) converges to u strongly in

W 1,1
loc (RN ,Rm) which implies that FΩ(?J(vε) − ?J(u)) → 0. Moreover, as in the

proof of Lemma 6.1, we may suppose that, for all k ∈ {1, 2, . . . , N} and i ∈ ZN ,
Dek

ε uε(εi) =
∫ 1

0
∂u
∂xk

(ε(i + yε + tek)) dt. Indeed in this case one could have chosen
as optimizing sequence

wε(εi) =
{

u(εi) if (i1, i2) 6= (0, 0)
u0 otherwise,
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for some u0 ∈ S1. We have preferred the previous construction as it works also in
the most general case (see step 3). Let us consider i ∈ ZN such that i1 ∨ i2 > 3
in order that, for any k ∈ {1, 2} and for all t ∈ (0, 1) it holds that dist(εi + εyε +
tek,M) ≥ ε. We have that, by Jensen’s inequality,

|Dek
ε uε(εi)|2 =

∣∣∣∣
∫ 1

0

∂u

∂xk
(ε(i + yε + tek)) dt

∣∣∣∣
2

(4.30)

≤
∫ 1

0

∣∣∣∣
∂u

∂xk
(ε(i + yε + tek))

∣∣∣∣
2

dt

=
∣∣∣∣

∂u

∂xk
(x)

∣∣∣∣
2

+
∫ 1

0

(∣∣∣∣
∂u

∂xk
(ε(i + yε + tek))

∣∣∣∣
2

−
∣∣∣∣

∂u

∂xk
(x)

∣∣∣∣
2
)

dt,

for any x ∈ ε(i + [0, 1)N ). By an explicit calculation we get
∣∣∣∣∣∇

(∣∣∣∣
∂u

∂xk

∣∣∣∣
2
)

(x)

∣∣∣∣∣ ≤
C

(x2
1 + x2

2)
3
2
.

Hence, by (4.30), we have

|Dek
ε u(εi)|2 ≤

∣∣∣∣
∂u

∂xk
(x)

∣∣∣∣
2

+
Cε

(x2
1 + x2

2)
3
2
.

Thus

∑

i1∨i2>3

εN |Dek
ε u(εi)|2 ≤

∑

i1∨i2>1

∫

ε(i+Q)

∣∣∣∣
∂u

∂xk
(x)

∣∣∣∣
2

+
C

(x2
1 + x2

2)
3
2

dx

≤
∫

Ω\Dε

∣∣∣∣
∂u

∂xk
(x)

∣∣∣∣
2

dx + Cε

∫

Ω\Dε

1
(x2

1 + x2
2)

3
2

dx

By the previous estimate, observing that the energy accounting for the interaction
at a distance of order ε from the singularity is negligible in the limit, we get

Eε(uε) ≤ 1
| log ε|

∫

Ω\Dε

|∇u|2 dx + o(1)

and then the conclusion follows by (4.29).
step 2. Let now M = τMHN−2bM where M = A ∩ Ω with A any (N − 2)-

dimensional affine space in RN . Then there exists an isometry T : RN → RN

such that A = T{x1 = x2 = 0}. Then the function uT = u ◦ T−1 where u is given
by (4.28), is such that ?JuT = M . Moreover uT ∈ W 1,1

loc (RN ; S1) and (4.29) holds
with uT in place of u and

Dε = {x ∈ Ω : dist(x,A) < ε}.
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Let uε = T yε
ε uT as in step 1. Observing that now, for all k ∈ {1, 2, . . . , N},

∣∣∣∣∣∇
(∣∣∣∣

∂u

∂xk

∣∣∣∣
2
)

(x)

∣∣∣∣∣ ≤
C

(dist(x,A))
3
2
,

estimate (4.30) for uT yields to

∑

i:dist(εi,A)>(
√

N+2)ε

εN
∣∣Dek

ε uT (εi)
∣∣2 ≤

∫

Ω\Dε

∣∣∣∣
∂uT

∂xk
(x)

∣∣∣∣
2

dx + Cε

∫

Ω\Dε

1
(dist(x,A))

3
2

dx.

The conclusion follows as before.
step 3 In the general case, by Proposition 2.2, we may reduce to prove the

upper bound inequality for M a polyhedral boundary such that spt(M) ⊂⊂ Ω.
Let L be a (N −1)-dimensional polyhedral current such that ∂L = M . Then there
exists ũ : Ω → S1, a finite union S of (N − 3)-dimensional simplices in RN which
contains all N − 3-dimensional faces of L and δ, λ > 0 such that

(i) ũ ∈ W 1,1
loc (Rn, S1) and ?Jũ = πM ;

(ii) ũ is locally Lipschitz in RN \ (S ∪M) and there exists p < 3
2 such that

|Dũ| = O(1/dist(x, M)) + O(1/(dist(x, S))p); (4.31)

(iii) for every (N − 2)-dimensional face F of ∂L,

ũ(x) =
x′′

|x′′| for x ∈ U(F, δ, γ) ∩ Ω, (4.32)

where U(F, δ, γ) := {x ∈ RN : dist(x,F) ≤
(

δ ∧ γ√
1+γ2

)
dist(x, ∂F)}.

Let uε(x) = T yε
ε ũ(x) as in step 1 and 2. The claim follows if we prove that

lim sup
ε

Eε(uε) ≤ π‖M‖.

To this aim we localize our energies as follows. For any V ∈ RN we set, for all
u ∈ Cε(Ω),

Eε(u, V ) =
1

2| log ε|
∑

i,j∈Zε(V )

|i−j|=1

εN

∣∣∣∣
u(εi)− u(εj)

ε

∣∣∣∣
2

. (4.33)

For any η > 0 and D ⊂ RN , we define Dη = {x ∈ Ω : dist(x,D) < η}. Let U be
an open set of RN such that

M ∪ S ⊂ U ⊂
⋃

F∈∂L

U(F, δ, γ) ∪ Sη,
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then
Eε(uε) ≤ Eε(uε, S

η) +
∑

F∈∂L

Eε(uε, U(F, δ, η)) + Eε(uε, Ω \ U).

In what follows, by the arbitrariness of η, we get the conclusion if we prove that

(1) lim supε Eε(uε, S
η) ≤ O(η),

(2) lim supε Eε(uε, Ω \ U) = 0,

(3) lim supε

∑
F∈∂L Eε(uε, U(F, δ, η)) ≤ π‖M‖.

(1) For i ∈ Zε(Sη) such that dist(εi, S ∪M) > (
√

N + 2)ε, we have that, for any
k ∈ {1, 2, . . . , N} and s ∈ (0, 1), dist(ε(i + yε + sek), S ∪M) ≥ ε. Then, by (4.1),
we get

εN |Dek
ε uε(εi)|2 ≤ εN

∫ 1

0

| ∂ũ

∂xk
(ε(i + yε + sek))|2 ds

≤ CεN

∫ 1

0

1
(dist(ε(i + yε + sek), S))2p

+
1

(dist(ε(i + yε + sek),M))2
ds

≤ C

∫

εi+[0,ε)N

1
(dist(x, S))2p

+
1

(dist(x,M))2
dx. (4.34)

Then for n ∈ N large enough, by Lemma 4.5,

Eε(uε, S
η) ≤ Eε(uε, S

η ∩ (S ∪M)(n+2)ε) + Eε(uε, S
η \ (S ∪M)nε)

≤ o(1) +
1

| log ε|
∫

Sη\(S∪M)ε

1
(dist(x, S))2p

+
1

(dist(x, M))2
dx

≤ o(1) + C‖M‖(Sη),

from which we deduce (1).
(2) is straightforward since ũ is locally Lipschitz in RN \ U , from which we

get

Eε(uε, Ω \ U) ≤ C

| log ε| .

(3) follows easily since, for any F ∈ ∂L, by step 2

lim sup
ε

Eε(uε, U(F, δ, η)) ≤ π‖M‖(F ).

Remark 4.6 (Antiferromagnetic XY model) Let us consider the antiferro-
magnetic XY model. In this case the energy is F̃ε(u) = −Fε(u) with Fε given by
(3.16). The opposite sign in the interaction energy now favors oppositely directed
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Figure 3: Antiferromagnetic case. Vortex type 2-dimensional singularities: +1
charged vortex. In black and grey the two interpenetrating ferromagnetic vortices.

ε
-¾

nearest neighboring spins in the volume scaling. This case can be reduced to the
previous ferromagnetic one by using the variables

w(εi) = (−1)i1+i2+...+iN u(εi).

In this way F̃ε(u) = Fε(w) and it is possible to perform the whole analysis we have
done so far by using this new variable. In particular we can get some information
on the geometry of the vortex type singularities of the antiferromagnetic scaled
model. As an example we observe that the configuration of the spin field for a
ferromagnetic vortex in the variable w is associated to a spin field in the original
variable u which can be described as the superposition of two oppositely directed
vortices on two interpenetrating double spaced sublattices (see Fig 4.1).

4.2 Anisotropic nearest-neighbors XY model

In this section we consider the anisotropic nearest-neighbors XY model in which
the interactions in different directions are differently weighed, that is in formula
(3.16) cξ = 0 if ξ 6= ek for all k = 1, . . . , N . Then the energy becomes

F an
ε (u) =




−

N∑

k=1

cek

∑

i, i+ek∈Zε(Ω)

εNu(εi) · u(εi + εek) if u ∈ Cε(Ω)

+∞ otherwise.

Arguing as in the previous section the significant scaled energy becomes

Ean
ε (u) =





1
| log ε|

N∑

k=1

cek

∑

i, i+ek∈Zε(Ω)

εN−2(1− u(εi) · u(εi + εek)) if u ∈ Cε(Ω)

+∞ otherwise.

(4.35)
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Theorem 4.7 Let cek > 0 for all k = 1, . . . , N and set B = diag(
√

ce1 , . . . ,
√

ceN ).
Then the following statements hold:

(i) Compactness and lower-bound inequality. Let (uε) be a sequence of func-
tions such that Ean

ε (uε) ≤ C and let vε = A(uε) be defined by (4.19). Then
we can extract a subsequence (not relabeled) such that, for any Ω′ ⊂⊂ Ω,
FΩ′(?J(vε) − πMbΩ′) → 0, where M is an (N − 2)-dimensional integral
boundary locally in Ω. Moreover

lim inf
ε

Eε(uε) ≥ det(B)π‖B−1
# M‖.

(ii) Upper bound inequality. Let M be an (N − 2)-dimensional integral bound-
ary locally in Ω, there exists a sequence (uε) such that, for any Ω′ ⊂⊂ Ω,
FΩ′(?J(vε)− πMbΩ′) → 0 and

lim
ε

Eε(uε) = det(B)π‖B−1
# M‖.

Proof. (Compactness and lower-bound inequality) We first note that, for any
u ∈ Cε(Ω), we have

Eε(u) ≥ 1
2| log ε|

N∑

k=1

cek

∑

i∈Zε(Ω):

ε(i+Q)⊂ Ω

εN |Dek
ε u(εi)|2.

Thus by the definition of vε = A(uε) we easily deduce that, for ε small enough,

Eε(u) ≥ 1
2| log ε|

∫

Ωε

|∇v ·B|2 dx, (4.36)

where

Ωε := {x ∈ Ω : dist(x, ∂Ω) >
√

Nε}.
Hence, by (4.36) and Remark 2.5, we prove (i) arguing as in the proof of Theorem
4.2.

(Upper-bound inequality) Since the proof relies on the same argument used in
that of Theorem 4.2 (ii), here we only highlight the main differences by exhibiting
the optimizing sequence in the case M = τMHN−2bM where M = V ∩ Ω with V
any (N − 2)-dimensional affine space in RN . Let us set ũ = uT where uT is the
function introduced in step 2 of the proof of Theorem 4.2 and T : RN → RN is the
isometry such that B−1(V ) = T{x1 = x2 = 0}. We remind that ?J(ũ) = πB−1

# M
and easily infer that

1
| log ε|

∫

B−1(Ω\Dε)

|∇ũ|2 dx → π‖B−1
# M‖,
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Figure 4: Deformation of the geometry of the singularity by anisotropy for a 2-
dimensional +1 charged vortex: circular symmetry in the isotropic ce1 = ce2 case
(left), elliptical symmetry in the anisotropic ce1 > ce2 case (right).

ε
-¾

where Dε = {x ∈ Ω : dist(x, V) < ε}. Setting u = ũ ◦ B−1 one can easily verify
that ?J(u) = πM and, by a change of variable, that

1
| log ε|

∫

Ω\Dε

|∇u ·B|2 dx → det(B)π‖B−1
# M‖.

Let uε = T yε
ε u as in Lemma 6.1. Arguing as in the step 2 of the proof of Theorem

4.2 we have

Ean
ε (uε) ≤ 1

| log ε|
∫

Ω\Dε

|∇u ·B|2 dx + o(ε)

from which the conclusion follows.

4.3 Long range XY model

In this section we will focus on the long range XY model that is the case in which
all interactions are taken into account. We will mainly deal with the 2−dimensional
case and then discuss the extension of the results to higher dimensions. By scaling
the energy in (3.16) as in the previous cases, we obtain

Elr
ε (u) =





1
| log ε|

∑

ξ∈ZN

cξ
∑

i,i+ξ∈Zε(Ω)

εN−2(1− u(εi) · u(εi + εξ)) if u ∈ Cε(Ω)

+∞ otherwise.

It is convenient to regard the energies above in terms of different quotients. For
u ∈ Cε(Ω) we set

Dξ
εu(εi) =

u(εi + εξ)− u(εi)
ε|ξ|
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and rewrite the energy as

Elr
ε (u) =

1
2| log ε|

∑

ξ∈ZN

|ξ|2cξEξ
ε (u) (4.37)

where

Eξ
ε (u) =

∑

i,i+ξ∈Zε(Ω)

εN
∣∣Dξ

εu(εi)
∣∣2 .

4.3.1 The 2-dimensional case

In the following theorem we prove the analogue of Theorem 4.2 in the 2-dimensional
case under the main assumption that cξ = cξ⊥ which implies the isotropic behavior
of the energies in the limit.

Theorem 4.8 Let N = 2 and let {cξ}ξ be a family of non negative constants such
that cξ = cξ⊥ , ce1 > 0 and

∑
ξ∈Z2 |ξ|2cξ < +∞. The following statements hold:

(i) Compactness and lower-bound inequality. Let (uε) be a sequence of func-
tions such that Elr

ε (uε) ≤ C and let vε = A(uε) be defined by (4.19). Then
we can extract a subsequence (not relabeled) such that, for any Ω′ ⊂⊂ Ω,
FΩ′(?J(vε)− πMbΩ′) → 0 , where M is of the form

M =
N∑

k=1

dkδxk
, (4.38)

for some N ∈ N , dk ∈ Z and xk ∈ Ω. Moreover

lim inf
ε

Elr
ε (uε) ≥ π

2

∑

ξ∈Z2

|ξ|2cξ‖M‖. (4.39)

(ii) Upper bound inequality. Let M be of the form (4.38). Then there exists a
sequence (uε) such that, for any Ω′ ⊂⊂ Ω, FΩ′(?J(vε)− πMbΩ′) → 0 and

lim
ε

Elr
ε (uε) =

π

2

∑

ξ∈Z2

|ξ|2cξ‖M‖.

Remark 4.9 The condition cξ = cξ⊥ is in particular implied by a more natural
condition widely exploited in the physical literature of the the long range XY -
model, namely that cξ = c(|ξ|).
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Proof of Theorem 4.8 (i) (Compactness and lower-bound inequality)
Since ce1 > 0, the compactness is straightforward consequence of Theorem 4.2.
Given ξ ∈ Z2, we may partition Z2 as follows:

Z2 =
|ξ|2⋃

h=1

(zh + Zξ ⊕ Zξ⊥) (4.40)

with zh ∈ {z ∈ Z2 : 0 ≤ z · ξ < |ξ|, 0 ≤ z · ξ⊥ < |ξ|}. Then for u ∈ Cε we may
write

Eξ
ε (u) =

|ξ|2∑

h=1

Eξ,h
ε (u)

with

Eξ,h
ε (u) =

∑

i,i+ξ∈Zξ,h

ε (Ω)

ε2
∣∣Dξ

εu(εi)
∣∣2 ,

where
Zξ,h

ε (Ω) =: {i ∈ zh + Zξ ⊕ Zξ⊥ : εi ∈ Ω}.
For all h ∈ {1, . . . , |ξ|2} and u ∈ Cε(Ω), let us introduce vξ,h = Aξ,h(u) a

piecewise affine interpolation of u on the cells of the lattice zh +Zξ⊕Zξ⊥. To this
end, for all ξ ∈ R2, we set

T−ξ = {x ∈ R2 : 0 ≤ x · ξ⊥ ≤ x · ξ ≤ |ξ|},
T+

ξ = {x ∈ R2 : 0 ≤ x · ξ ≤ x · ξ⊥ ≤ |ξ|},
Qξ = T−ξ ∪ T+

ξ .

Then, for i ∈ zh + Zξ ⊕ Zξ⊥, vξ,h = Aξ,h(u) is defined as

vξ,h(x) = u(εi) + Dξ
εu(εi)

(
(x− εi) · ξ

|ξ|
)

+ Dξ⊥
ε u(εi + εξ)

(
(x− εi) · ξ⊥

|ξ|
)

for x ∈ ε(i + T−ξ ), and

vξ,h(x) = u(εi) + Dξ⊥
ε u(εi)

(
(x− εi) · ξ⊥

|ξ|
)

+ Dξ
εu(εi + εξ⊥)

(
(x− εi) · ξ

|ξ|
)

for x ∈ ε(i + T+
ξ ). Note that

∂vξ,h

∂ξ
(x) = Dξ

εu(εi), x ∈ ε(i + Pξ),

∂vξ,h

∂ξ⊥
(x) = Dξ⊥

ε u(εi), x ∈ ε(i + Pξ⊥)
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where

Pξ = {x ∈ R2 : −|ξ| < (x · ξ)− |ξ| < (x · ξ⊥) < (x · ξ) < |ξ|},
Pξ⊥ = {x ∈ R2 : −|ξ| < (x · ξ⊥)− |ξ| < (x · ξ) < (x · ξ⊥) < |ξ|}.

Note that ve1,1
ε = vε. Then, as in the proof of Theorem 4.2, we have that, for ε

small enough,

Eξ,h
ε (u) ≥ 1

2| log ε|
∫

Ωξ
ε

∣∣∣∣
∂vξ,h

ε

∂ξ

∣∣∣∣
2

+
∣∣∣∣
∂vξ,h

ε

∂ξ⊥

∣∣∣∣
2

dx =
1

2| log ε||ξ|2
∫

Ωξ
ε

|∇vξ,h
ε |2 dx,(4.41)

where

Ωξ
ε := {x ∈ Ω : dist(x, ∂Ω) >

√
2|ξ|ε}.

Given uε be such that Elr
ε (uε) ≤ C, we now verify that, for every U ⊂⊂ Ω, ξ ∈ Z2

and h ∈ {1, 2, . . . , |ξ|2}, FU (?J(vξ,h
ε )− ?J(vε)) → 0. To this end we show that the

sequences vξ,h
ε and vε satisfy the hypotheses of Lemma 2.3. Let U ′ be such that

U ⊂⊂ U ′ ⊂⊂ Ω. By (4.41) we have that

1
| log ε|

∫

U ′
|∇vξ,h

ε |2 + |∇vε|2 dx ≤ C. (4.42)

Set wε = vξ,h
ε − vε it holds

∫

U ′
|∇wε|2 dx ≤ C| log ε|. (4.43)

Moreover, since wε(εi) = 0 for all i ∈ zh + Zξ ⊕ Zξ⊥, we have that, for every
x ∈ εi + εQξ,

wε(x) =
∫ 1

0

∇wε(εi + t(x− εi)) · (x− εi) dt

by which we get that

|wε(x)|2 ≤
∫ 1

0

|∇wε(εi + t(x− εi)) · (x− εi)|2 dt. (4.44)

Set t0 = 1√
2|ξ| . With given x ∈ εi+εQξ, if t ≤ t0, we have that t|x−εi| ≤ tε

√
2|ξ| ≤

ε which implies, by the construction of the piecewise affine interpolations, that
∇wε(εi + t(x − εi)) · (x − εi) is constant on (0, t0). Then the following estimate
holds true
∫ 1

0

|∇wε(εi + t(x− εi)) · (x− εi)|2 dt ≤ 2
∫ 1

t0
2

|∇wε(εi + t(x− εi)) · (x− εi)|2 dt.
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Integrating (4.44) over εi + εQξ and using the previous estimate, we get
∫

εi+εQξ

|wε(x)|2 dx ≤ Cε2|ξ|2
∫ 1

t0
2

∫

εi+εQξ

|∇wε(εi + t(x− εi))|2 dx dt.

By the change of variables y = εi + t(x− εi) we have the following estimate
∫

εi+εQξ

|wε(x)|2 dx ≤ Cε2|ξ|2
t20

∫

εi+εQtξ

|∇wε(y)|2 dy ≤ Cε2|ξ|2
∫

εi+εQξ

|∇wε|2 dx.

Finally, summing over i ∈ (
zh + Zξ ⊕ Zξ⊥

) ∩ U , by (4.43) we get
∫

U

|wε|2 dx ≤
∑

i∈(zh+Zξ⊕Zξ⊥)∩U

∫

εi+εQξ

|wε|2 dx ≤ Cε2

∫

U ′
|∇wε|2 dx ≤ Cε2| log ε|.

Thus we may apply Lemma 2.3 and get, by the compactness result, that there exists
a subsequence (not relabeled) such that, for every U ⊂⊂ Ω FU (?J(vξ,h

ε )−πM) → 0
for all ξ ∈ Z2 and h ∈ {1, 2, . . . , |ξ|2} where M is of the form (4.38). Then by (4.41)
and by arguing as in the proof of the lower bound inequality in Theorem 4.2, we
obtain the lower bound inequality

lim inf
ε

Elr
ε (uε) ≥

∑

ξ

|ξ|2cξ

|ξ|2∑

h=1

lim inf
ε

Eξ,h
ε (u)

≥
∑

ξ

|ξ|2cξ‖M‖.

In the following proof the construction of the optimizing sequence is the same
as in the isotropic nearest-neighbors case. Here we only provide the main estimates
of the energy in order to obtain the upper bound.

Proof of Theorem 4.8 (ii) (Upper bound inequality)
For any given A ∈ A(Ω) we localize the energies defining

Elr
ε (u,A) =

∑

ξ∈Z2

|ξ|2cξEξ
ε (u, A)

where

Eξ
ε (u,A) =

∑

i,i+ξ∈Zε(A)

ε2
∣∣Dξ

εu(εi)
∣∣2 .

Assume for simplicity of notation that, by translation, 0 ∈ Ω. Let M = {0} and
M = δ0, the general case being easily deduced by arguing as in the proof of
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Theorem 4.2. Let u(x) = x
|x| and let uε(x) = T yε

ε u(x) be as in step 1 of the proof
of Theorem 4.2 (ii). Let εi, ε(i + ξ) ∈ B(0, 4ε|ξ|). Since |Dξ

εu(εi)| ≤ 2
ε|ξ| we have

that

Eξ
ε (u,B(0, 5ε|ξ|)) ≤ C

| log ε| .

Let εi, ε(i + ξ) ∈ Ω \B(0, 4ε|ξ|). As in (4.30), for every ξ ∈ Z2, we have:

|Dξ
εu(εi)|2 ≤ 1

|ξ|2 |∇u(x) · ξ|2 +
1
|ξ|2

∫ 1

0

(|∇u(x) · ξ|2 − |∇u(εi + εtξ) · ξ|2) dt

and
∣∣∣∇

(
|∇u · ξ|2

)
(x)

∣∣∣ ≤ C|ξ|2
|x|3 .

Thus, by the two previous estimates, we get
∑

i,i+ξ∈Zε(Ω\B(0,4ε|ξ|))
|Dξ

εu(εi)|2 ≤ 1
|ξ|2

∫

Ω\B(0,ε)

|∇u(x) · ξ|2 dx + Cε|ξ|
∫

Ω\B(0,ε|ξ|)

1
|x|3 dx

≤ 1
|ξ|2

∫

Ω\B(0,ε)

|∇u(x) · ξ|2 dx + C.

Since

Elr
ε (u) ≤ 1

2| log ε|
∑

ξ

|ξ|2cξEξ
ε (u,B(0, 5ε|ξ|)) (4.45)

+
1

2| log ε|
∑

ξ

|ξ|2cξEξ
ε (u,Ω \B(0, 4ε|ξ|)),

by the previous estimates we get that

Elr
ε (uε) ≤ C

| log ε|
∑

ξ∈Z2

|ξ|2cξ

+
1
2

∑

ξ∈Z2

|ξ|2cξ 1
2| log ε| (E

ξ
ε (u, Ω \B(0, ε)) + Eξ⊥

ε (u, Ω \B(0, ε)))

≤ C

| log ε|
∑

ξ∈Z2

|ξ|2cξ +
1
2

∑

ξ∈Z2

|ξ|2cξ 1
2| log ε|

∫

Ω\B(0,ε)

|∇u(x)|2 dx.

By the finiteness of
∑

ξ |ξ|2cξ, passing to the limit as ε → 0 and recalling that

lim
ε

1
2| log ε|

∫

Ω\B(0,ε)

|∇u(x)|2 dx = π,

we get the conclusion .
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4.3.2 Generalization to higher dimensions

In this section we discuss the long range problem in any dimension. We will state
the analogue of Theorem 4.8 under an N -dimensional condition which extends
the assumption cξ = cξ⊥ . The main drawback of this hypothesis is that it turns
out to be more abstract and in particular not implied by the physical relevant
condition cξ = c(|ξ|) in dimensions higher than 2 (an exception is provided by the
case N = 2k as we point out in Remark 4.10 below).

To detail this point we need some more definitions. Let {Bl : l ∈ N} be a
countable family of orthogonal bases in RN of vectors belonging to ZN such that

ZN =
⋃

l

Bl, #{l : ξ ∈ Bl} < +∞ ∀ξ ∈ ZN . (4.46)

In particular such a family is provided by {Bl : l ∈ N} = {Bξ : ξ ∈ ZN} where,
for any ξ ∈ ZN Bξ denotes an orthogonal base of RN such that ξ ∈ Bξ and η ∈ ZN

and |η| ≥ |ξ| for all η ∈ Bξ. It can be easily proved that such a family exists and
satisfies (4.46).

We can then rewrite the energies in (4.37) as follows

Elr
ε (u) =

1
2| log ε|

∑

l

∑

ξ∈Bl

c̃ξEξ
ε (u),

where

c̃ξ =
cξ|ξ|2

#{l ∈ N : ξ ∈ Bl} .

The main hypothesis we make here is the following N -dimensional discrete isotropy
condition:

∀η ∈ ZN , l ∈ N ∃cl : cl = c̃η ∀η ∈ Bl. (4.47)

Note that, if N = 2, (4.47) turns out to be the 2-dimensional condition cξ = cξ⊥

under the choice
Bξ = {ξ, ξ⊥}.

Remark 4.10 In dimension N = 2k to any ξ ∈ ZN it is possible to associate
N − 1 vectors ξ⊥i ∈ ZN , i ∈ {1, 2, . . . , N − 1}, such that |ξ⊥i | = |ξ| and that
Bξ = {ξ, ξ⊥1 , . . . , ξ⊥N−1} is an orthogonal base in RN . By choosing such a Bξ,
condition (4.47) turns out to be cξ = cξ⊥1 = . . . = cξ⊥N−1 and again includes the
case cξ = c(|ξ|).

The following result holds true:

Theorem 4.11 Let {cξ}ξ be a family of non negative constants satisfying hypoth-
esis (4.47) and such that cei > 0 for all i ∈ {1, 2, . . . , N} and

∑
ξ∈ZN |ξ|2cξ < +∞.

The following statements hold:
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(i) Compactness and lower-bound inequality. Let (uε) be a sequence of func-
tions such that Elr

ε (uε) ≤ C and let vε = A(uε) be defined by (4.19). Then
we can extract a subsequence (not relabeled) such that, for any Ω′ ⊂⊂ Ω,
FΩ′(?J(vε) − πMbΩ′) → 0, where M is an (N − 2)-dimensional integral
boundary locally in Ω. Moreover

lim inf
ε

Eε(uε) ≥ π

N

∑

ξ∈ZN

|ξ|2cξ‖M‖. (4.48)

(ii) Upper bound inequality. Let M be an (N − 2)-dimensional integral bound-
ary locally in Ω, there exists a sequence (uε) such that, for any Ω′ ⊂⊂ Ω,
FΩ′(?J(vε)− πMbΩ′) → 0 and

lim
ε

Eε(uε) =
π

N

∑

ξ∈ZN

|ξ|2cξ‖M‖.

The proof of this result is more technical than that of Theorem 4.8 but relies on
the same arguments. Here we prefer to omit the details and focus on the key ideas
of the proof.

Sketch of the proof of Theorem 4.11. The compactness result is straight-
forward as in the 2-dimensional case. To get the lower bound inequality we will
single out the contribution to the energy due to the interactions along the di-
rections of each base of the family {Bl : l ∈ N}. Let us fix l ∈ N and let
Bl = {ξ1, ξ2, . . . , ξN}. Then we may partition ZN as

ZN =

∏N

j=1
|ξj |⋃

h=1

(zh +
N⊕

j=1

Zξj) (4.49)

with zh ∈ {z ∈ ZN : 0 ≤ z · ξj < |ξj |, j = 1, 2, . . . , N}. By the hypothesis (4.47),
it is possible to rewrite the energy as

Elr
ε (u) =

1
2| log ε|

∑

l

clE l
ε(u)

where

E l
ε(u) =

∏N

j=1
|ξj |∑

h=1

N∑

j=1

Ej,h
ε (u)

accounts for the energy of the interactions in the directions of Bl and where

Ej,h
ε (u) =

∑

i,i+ξj∈Zj,h

ε (Ω)

εN
∣∣∣Dξj

ε u(εi)
∣∣∣
2

,

30



is the energy of the interactions in the direction ξj of the points of the lattice

Zj,h
ε (Ω) =: {i ∈ zh +

N⊕

i=1

Zξj : εi ∈ Ω}.

Let uε be such that Elr
ε (uε) ≤ C. Proceeding as in the 2-dimensional case, we

may define the piecewise affine interpolations vl,h
ε of uε on the cell of the lattice

zh +
⊕N

j=1 Zξj and get

N∑

j=1

Ej,h
ε (u) ≥ 1

2| log ε|∏N
j=1 |ξj |

∫

Ω′
|∇vl,h

ε |2 dx, (4.50)

for all Ω′ ⊂⊂ Ω. Moreover, by applying Lemma 2.3 we have, by the compactness
result, that there exists a subsequence (not relabeled) such that, for every Ω′ ⊂⊂ Ω
FΩ′(?J(vl,h

ε ) − πM) → 0 for all l ∈ N and h ∈ {1, 2, . . . ,
∏N

j=1 |ξj |} where M is
an N − 2-dimensional integral boundary locally in Ω. The lower bound inequality
follows as in the proof of Theorem 4.8.

The upper bound inequality is obtained by the same recovery sequence of the
isotropic nearest-neighbors case. More precisely let M be a polyhedral boundary
such that spt(M) ⊂⊂ Ω and let ũ and uε = T yε

ε (ũ) as in step 3 of the proof of
Theorem 4.2 (ii). Then by the orthogonality of each base Bl one can show that

E l
ε(uε) ≤ 1

2| log ε|
∫

Ω\Dε

|∇u|2 dx + o(ε)

where Dε is a suitable ε-neighborhood of M . Then passing to the limit one obtain

lim sup
ε

E l
ε(uε) ≤ π‖M‖.

The conclusion follows by summing over l and observing that

∑

l

cl =
1
N

∑

ξ

cξ|ξ|2.
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5 Appendix A: an alternative proof in the 2-d case

Here we restate the convergence result of Theorem 4.2 in the 2-dimensional case
and provide a different proof of the upper bound inequality using only discrete
estimates.

Theorem 5.1 The following statements hold:

(i) Compactness and lower-bound inequality. Let (uε) be a sequence of func-
tions such that Eε(uε) ≤ C and let vε = A(uε) be defined by (4.19). Then
we can extract a subsequence (not relabeled) such that, for any Ω′ ⊂⊂ Ω,
FΩ′(?J(vε) − πMbΩ′) → 0, where M =

∑n
k=1 dkδxk

for some n ∈ N ,
dk ∈ Z and xk ∈ Ω. Moreover

lim inf
ε

Eε(uε) ≥ π‖M‖ = π

n∑

k=1

|dk|. (5.1)

(ii) Upper bound inequality. Let M =
∑n

k=1 dkδxk
. Then there exists a sequence

(uε) such that, for any Ω′ ⊂⊂ Ω, FΩ′(?J(vε)− πMbΩ′) → 0 and

lim
ε

Eε(uε) = π‖M‖ = π

n∑

k=1

|dk|.

Proof of Theorem 5.1 (ii) (Upper bound inequality)
step 1. Let x0 ∈ Ω and µ = δx0 . For simplicity we may assume that x0 = (0, 0)
Then u(x) = x

|x| is such that ?J(u) = M . Let uε ∈ Cε(Ω) be defined by

ui
ε =

{
u(εi) if εi 6= (0, 0)
u0 otherwise,

for some u0 ∈ S1. Observe that vε = A(uε) → u strongly in W 1,1(Ω;R2) and then
?J(vε) → M in the flat norm. In fact, by a simple calculation, one can prove that,
for any δ > 0, ∇vε → ∇u uniformly in Ω \Bδ and

∫

Bδ

|∇vε| dx ≤ C

∫

Bδ

|∇u| dx.

Let us consider i ∈ Z2 such that i1, i2 > 0. We have that, by Jensen’s inequality,

∣∣∣∣
u(ε(i + e1))− u(εi)

ε

∣∣∣∣
2

=
∣∣∣∣
∫ 1

0

∇u(ε(i + te1)) · e1 dt

∣∣∣∣
2

(5.2)

≤
∫ 1

0

|∇u(ε(i + te1)) · e1|2 dt =
∫ 1

0

i22
ε2|i + te1|4 dt ≤ i22

ε2|i|4 .
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Analogously
∣∣∣∣
u(ε(i + e2))− u(εi)

ε

∣∣∣∣
2

≤ i21
ε2|i|4 . (5.3)

Then, by the previous inequality and the radial symmetry of u, we have that

Eε(uε) ≤ 2
| log ε|

dε∑

i1=1

dε∑

i2=1

1
i21 + i22

,

where dε =
[

diam(Ω)
ε

]
+ 1. Since dε = O(1

ε ), by Lemma 6.2 it holds

lim
ε

1
| log ε|

dε∑

i1=1

dε∑

i2=1

1
i21 + i22

=
π

2

we get
lim sup

ε
Eε(uε) ≤ π.

step 2. Let M =
n∑

k=1

δxk
. Then u(x) =

n∏
k=1

x−xk

|x−xk| , where the product is given by

the identification of R2 with C, is such that ?J(u) = M . Then the optimizing
sequence is given by

ui
ε =

{
u(εi) if εi 6= xk k ∈ {1, 2, . . . , n}
u0 otherwise,

for some u0 ∈ S1. In fact, set uk(x) = x−xk

|x−xk| , one can easily prove the following
estimate

|∇u|2 ≤ |∇uh|2 + |∇
∏

k 6=h

uk|2 + 2|∇uh||∇
∏

k 6=h

uk|

for all h ∈ {1, 2, . . . , n}. Note that |∇uk| is bounded in Ω \B(xk, r) for any r > 0.
Estimating the contribution of uε to the energy around each xk and using (5.2),
(5.3), we get

Eε(uε) ≤ 2n

| log ε|
dε∑

i1=1

dε∑

i2=1

1
i21 + i22

+
C

| log ε|
(
1 +

dε∑

i1=1

dε∑

i2=1

1√
i21 + i22

)
.

Hence, we conclude that

lim
ε

Eε(uε) = πn = π‖M‖.

step 3. In the general case M =
n∑

k=1

dkδxk
one can reduce to the previous step

by a diagonalization argument. In fact, the function u(x) =
n∏

k=1

(
x−xk

|x−xk|
)dk

is such
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that ?J(u) = M . Then, given xm
l ∈ B(xk, 1

m ), the sequence

um(x) =
n∏

k=1

( dk∏

l=1

( x− xm
l

|x− xm
l |

))

converges to u strongly in W 1,1(Ω;R2) and thus ?J(um) → M in the flat norm.
The conclusion follows observing that ?J(um) is as in step 2.

6 Appendix B: technical lemmas

For any y ∈ [0, 1]N and ε > 0, we denote by T ε
y the operator which maps u :

Rn → Rm in T ε
y u : Rn → Rm defined as

T ε
y u(x) = u(εy + ε

[x

ε

]
),

where, for all z = (z1, z2, . . . , zN ) ∈ RN , [z] = ([z1], [z2], . . . , [zN ]), [zi] being the
integer part of zi. Note that T ε

y u is constant on each cell of the lattice εZN and
thus can be identified with a discrete function mapping εZN into Rm.

The following approximation result has been used in the proof of the up-
per bound inequality in Theorems We state it here in a more general form than
needed because we think it could be useful for other applications in the discrete
to continuum framework.

Lemma 6.1 Let uε → u in W 1,1
loc (RN ,Rm). Then, for any compact set K of RN ,

there holds
lim

ε

∫

[0,1]N
‖A(T ε

y uε)− u‖W 1,1(K) dy = 0,

where A(T ε
y uε) is the piecewise affine interpolation of T ε

y uε defined in (4.19).

Proof. By Lemma 2.11 in [7], we get

lim
ε

∫

[0,1]N
‖T ε

y uε − u‖L1(K) dy = 0.

Noting that in each cell of the lattice εZN A(T ε
y uε) is a convex combination of the

values of T ε
y uε in the nodes of the cell itself, we easily infer that

lim
ε

∫

[0,1]N
‖A(T ε

y uε)− u‖L1(K) dy = 0.

Set vε
y(x) = A(T ε

y uε(x)), the Lemma is proved if we show that

lim
ε

∫

[0,1]N
‖∇vε

y −∇u‖L1(K) dy = 0.
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Let us observe that

T ε
y uε(x) = uε(εy + εi), ∀x ∈ ε(i + [0, 1)N )

and that
∂vε

y

∂xl
(x) =

uε(εy + εi + εl)− uε(εy + εi)
ε

, ∀x ∈ ε(i + Pl),

where Pl is defined as in (4.20). Then, for almost every y ∈ [0, 1]N

∂vε
y

∂xl
(x) =

∫ 1

0

∂uε

∂xl
(εy + εi + εtel) dt.

Let K ⊂⊂ K ′ ⊂⊂ K ′′ ⊂⊂ RN be fixed. By using Fubini’s Theorem and the
change of variables z = y + i + tel − x

ε we get, for ε small enough,
∫

(0,1)N

dy

∫

K

∣∣∣∣
∂vε

y

∂xl
− ∂u

∂xl

∣∣∣∣ dx

≤
∫

(0,1)N

dy
∑

i∈ZN∩K′

∫

εi+Pl

∣∣∣∣
∂vε

y

∂xl
− ∂u

∂xl

∣∣∣∣ dx

≤
∫

(0,1)N

dy
∑

i∈ZN∩K′

∫

εi+Pl

dx

∫ 1

0

∣∣∣∣
∂uε

∂xl
(εy + εi + εtel)− ∂u

∂xl
(x)

∣∣∣∣ dt

=
∑

i∈ZN∩K′

∫

εi+Pl

dx

∫ 1

0

dt

∫

(0,1)N

∣∣∣∣
∂uε

∂xl
(εy + εi + εtel)− ∂u

∂xl
(x)

∣∣∣∣ dy

≤
∑

i∈ZN∩K′

∫

εi+Pl

dx

∫

(−1,2)N

∣∣∣∣
∂uε

∂xl
(εz + x)− ∂u

∂xl
(x)

∣∣∣∣ dz

≤
∫

(−1,2)N

dz

∫

K′′

∣∣∣∣
∂uε

∂xl
(εz + x)− ∂u

∂xl
(x)

∣∣∣∣ dx

≤
∫

(−1,2)N

dz

∫

K′′

∣∣∣∣
∂uε

∂xl
(εz + x)− ∂uε

∂xl
(x)

∣∣∣∣ dx + C

∫

K′′

∣∣∣∣
∂uε

∂xl
(x)− ∂u

∂xl
(x)

∣∣∣∣ dx

The conclusion follows letting ε go to 0 thanks to the uniform continuity of the
translation operator for strongly converging families in L1.

The equality stated in the following lemma is obtained by a simple compu-
tation.

Lemma 6.2 Let (dε)ε be a family of positive integer numbers such that dε = O( 1
ε ).

Then the following equality holds:

lim
ε

1
| log ε|

dε∑

i1=1

dε∑

i2=1

1
i21 + i22

=
π

2
.
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