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Abstract. We deal with a variational model of the Stock-Recruitment (S-R) relation-
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1. Introduction

The cycle of regeneration of a population is crucial to maintain the population at a
stable level. For fish populations, a crucial step in this cycle is the Recruitment phase, i.e.
the age at which the fishes born become vulnerable to the fishing activities. The Stock-
Recruitment (S-R) problem concern the relationship between the spawning fish stock
biomass (SSB) and the subsequent recruitment. Despite the fundamental importance of
the S-R process in fish dynamic, the mathematical modeling of this subject is yet not really
satisfactory. The matter is that a typical S-R plot is quite spread and it is not immediately
evident if a S-R relationship actually holds or what its mathematical expression has to
be. Of course, various models has been proposed to describe the S-R relationship, such
as Beverton-Holt model, Ricker model, hockey stick model etc... We refer the reader to
[2, 3, 9, 14, 16, 20] and the reference therein for an account on the S-R problem. In this
paper we propose a variational approach based on prime principles. A basic observation
is that many fish species appear to maintain a constant mean recruitment level, at least
in some SSB range. This is the reason for the assumption of constant recruitment in
many fish population models. We assume this fact as a prime principle which could be
mathematically stated by asking that any S-R relationship, say r = h(s), has a fixed
integral mean in a reference SSB range [s1, s2]. At this step, there are infinitely many
possible relations of the type r = h(s) satisfying this principle, and we need some criterion
in order to select the function h among all the possible ones. To this aim, we suppose that
the biological phenomenon of recruitment, being submitted to natural selection, produces
a S-R relationship more advantages as possible. Therefore, in such a way the function h is
selected as the best as possible to guarantee the well survivor of the fish stock. Introducing
a cost function W (s, r), which denotes the positive cost for the amount s of SSB which
yields the recruitment r, we assume as another prime principle that the S-R relationship
h is characterized as a minimum, or at least as a critical point, of the following functional

J(h) =

∫ s2

s1

(

∫ h(s)

0

W (s, r) dr

)

ds.

In Section 2 we discuss existence and uniqueness of an S-R relationship by using ba-
sic tools of the Calculus of Variations. In Section 3 we show as the most common S-R
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relationships considered in the literature could be characterized by these variational prin-
ciples. Moreover, we derive the following necessary condition which has to be satisfied by
any S-R relationship h:

W (s, h(s)) = constant.

The above condition is quite simple and could be used to test the equilibrium of the
recruitment level. More precisely, under external pressure such as fishing, pollution etc...
the fish stock can leave its optimal previous configuration. Although this occurrence could
be not detectable, at least not below a certain SSB level, from a direct inspection of the
S-R process, it could be evident by inspection of the above necessary condition. Indeed,
also if the observed S-R values do not show any detectable trend in the recruitment, it is
sufficient to test the validity of the equation W (s, h(s)) = constant to control the state
of the recruitment. If this equation is not satisfied, we infer that the optimality condition
is violated, and then the previous equilibrium of the S-R process is lost. In Section
4 we describe an exploratory numerical procedure based on this variational framework.
Although rudimentary, the analysis performed seems in our opinion promising. Therefore
we believe that the variational model proposed deserves to be deeper investigate both
from the theoretical and the applicative point of view.

2. The Variational framework

In this section we will introduce the key ideas to model the main problem of relating
the SSB to the subsequent recruitment based on the Calculus of Variations. In particular,
instead of searching an explicit S-R relationship, we look for some basic theoretic principles
in order to develop a variational model. Since we are primarily interested in cases in which
there are no detectable trends in the recruitment, we will confine our treatment on the
range of the SSB which corresponds to an oscillating recruitment around a medium value
rm. If we denote by r = h(s) the hypothetical functional S-R relationship and [s1, s2] is
the equilibrium range of SSB, our first principle can be stated as the following

Principle 1. The function h(s) satisfy the following integral mean condition
∫ s2

s1

h(s) ds = rm(s1 − s2).

At this point we need some criterion in order to select the function h among all the pos-
sible ones. To this aim, we suppose that the biological phenomenon of recruitment, being
submitted to natural selection, produces a S-R relationship more advantages as possible.
Therefore, in such a way the function h is selected as the best as possible to guarantee the
well survivor of the stock. Of course, we need some more precise statement in order to
translates these hypothesis into a useful mathematical principle. We assume that, what-
ever the recruitment process actually works, the stock, in his equilibrium configuration,
operates by minimizing an energy-like functional, or at least by selecting critical points.
More precisely, we ask that the S-R relationship realizes the minimum, or at least a critical
point, among all other possible configurations. To define a suitable functional we denote
by W (s, r) the positive cost for the amount s of SSB which yields the recruitment r. It is
reasonable to suppose that the total cost in [s1, s2] depends on the area spanned by the
function h. In other words, very expensive recruitment levels are possible but only at a
very small range of SSB. Therefore, the total cost associated to the function h could be
defined as

J(h) =

∫ s2

s1

(

∫ h(s)

0

W (s, r) dr

)

ds.

We can now state a second variational principle



A VARIATIONAL APPROACH TO THE STOCK-RECRUITMENT RELATIONSHIP 3

Principle 2. The function r = h(s) for a S-R relationship realizes the minimum, or at
least a critical point, of the functional

J(h) =

∫ s2

s1

(

∫ h(s)

0

W (s, r) dr

)

ds. (2.1)

Our main aim is then to derive some consequences from these two prime principles
which could be useful to handle with the S-R relationship. Observe that the function h

and the cost W in (2.1) are in general unknown. Moreover, the total cost J(h) depends
only on the amount of the recruitment. Of course the S-R phenomenon could be also
depend on the geometric shape of h, for instance from the rapidity at which variations
on the recruitment happens. It is possible to take into account of these requirements by
introducing terms in (2.1) which depends on the first derivative h′. For a similar approach
applied to the control of industrial producing of flat surfaces see the forthcoming paper
[4].

2.1. The basic equation. In this section we propose to derive a control equation by
using the basic techniques of the Calculus of Variations. For an introduction to this topic
we refer for instance to [5, 11, 13, 15, 21]. The problem is to study the behavior of the
energy-type functional (2.1) under area preserving perturbations of the function h. In
this section we suppose that the functions W and h satisfy all the regularity assumption
needed. Consider a smooth function η : [s1, s2] → R such that

∫ s2

s1
η(s) ds = 0. To fix

ideas, it is possible to consider functions of the type η(s) = sin
(

2kπ s−s1

s2−s1

)

. For ε > 0,

we consider the perturbations

hε(s) = h(s) + εη(s).

With this choice the functions hε are admissible according to our Principle 1. We address
to evaluate the first variation of the functional J . By definition, the first variation of J is
given by

δJ(h, η) := lim
ε→0+

J(hε) − J(h)

ε
.

Observe that

J(hε) − J(h)

ε
=

1

ε

∫ s2

s1

(

∫ hε(s)

0

W (s, r) dr −

∫ h(s)

0

W (s, r) dr

)

ds

=

∫ s2

s1

(

1

ε

∫ hε(s)

h(s)

W (s, r) dr

)

ds.

Letting ε → 0, by the fundamental theorem of calculus we get

δJ(h, η) =

∫ s2

s1

W (s, h(s)) η(s) ds.

According to our Principle 2, the recruitment processing selects a critical point of J if
this first variation vanishes. This is the case if we require the condition

W (s, h(s)) = constant (2.2)

since in such case

δJ(h, η) = C

∫ s2

s1

η(s) ds = 0, (2.3)

recalling that the perturbations η are area preserving. Therefore in this case the configu-
ration h(s) is a critical point for J . Vice versa, as standard in Calculus of Variations (see
for instance [5, 11, 21]) δJ = 0 for every η implies condition (2.2). Of course, condition
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(2.2) can be investigated by the Implicit Function Theorem. However, in such case the
function h is defined just locally. Moreover, if h ∈ C1, differentiation yields the following
equation

∂sW (s, h(s)) + ∂rW (s, h(s))h′(s) = 0, (2.4)

which could be solved just for special forms of the cost W . Therefore, critical points
of J could be in general difficult to find. Anyway, condition (2.2) could be taken as a
characterization of the S-R relationship once the cost density function W (s, r) is given, by
biological derivation or by experimental inspection. In particular, condition (2.2) could be
useful to test if an observed recruitment is in equilibrium with respect to the correspondent
SSB. In the next section we will see how the basic S-R relationship considered in literature
can be regarded as minimizers of suitable cost functional J .

2.2. Existence of a S-R relationship. The above variational paradigm make sense
only if optimal configuration h in fact exists. Since we are dealing with an infinite di-
mensional problem this is not a trivial fact. Applying the so called direct methods of the
Calculus of Variations, it is not difficult to find conditions under with such a minimum
exists. Basically, the matter is to have a compactness condition on the space of admissi-
ble functions h and lower semicontinuity (l.s.) of the functional J . In such case, given a
minimizing sequence, i.e. a sequence hn such that

lim
n→+∞

J(hn) = inf J(h) = m,

by compactness we find (by passing to a subsequence) an admissible function h such that
hn → h as n → +∞. Then, by l.s. we have

J(h) ≤ lim inf
n→+∞

J(hn) = m.

Hence h is a minimizer for the functional J . To apply direct methods, denoting by
L(s, r) =

∫ r

0
W (s, t) dt, the functional J can be written in the standard form

J(h) =

∫ s2

s1

L(s, h(s)) ds. (2.5)

Typically, to get existence we have to impose conditions on the function L(s, r) and/or on
the space of admissible functions h. Note that the functional J is l.s. with respect to the
strong convergence of the Lebesgue space Lp([s1, s2]). Indeed, every convergent sequence
hn → h in Lp([s1, s2]) admits a subsequence, denoted again by hn, such that hn(s) → h(s)
for almost every (a.e.) s ∈ [s1, s2]. Applying the Fatou’s Lemma we get

J(h) =

∫ s2

s1

L(s, h(s)) ds ≤ lim inf
n→+∞

∫ s2

s1

L(s, hn(s)) ds = lim inf
n→+∞

J(hn).

Since the above argument can be applied to every subsequence, the l.s. of J follows.
Observe that the above argument actually establishes the l.s of J with respect to the
pointwise convergence. However, compactness with respect to the strong topology in Lp

spaces in general is not easy to recover. Observe that in this framework the condition
(2.2) is understood for a.e. s ∈ [s1, s2]. Under some conditions on the integrand function,
a standard existence result can be stated.

Theorem 2.1 (Existence Theorem I). Let W (s, r) be a positive continuous cost satisfying
the following conditions:

(1) (Growth condition) There exists continuous functions K(s), H(s) > 0 and 1 < p <

+∞ such that L(s, r) ≥ H(s)|r|p − K(s);
(2) (Convexity condition) Fixed s, the function L(s, r) is convex with respect to the

r-variable;
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Then, the functional J(h) admits minimizers on Lp([s1, s2]). Moreover, every solution of
(2.2) is in fact a minimizer of J . If W (s, ·) is one-to-one then minimizers are a.e. con-
tinuous and there is uniqueness of minimizers of J among continuous functions. Finally,
if L(s, ·) is strictly convex then we have a unique minimizer of J .

Proof. By the growth condition we infer the compactness with respect to the weak topol-
ogy of Lp([s1, s2]). Observe also that the weak convergence preserves the constraint stated
in Principle 1. On the other hand, the convexity assumption ensures that the functional
J is convex. Since convex and l.s. functional are l.s. with respect to the weak topology,
the direct method yields the existence of a minimizer h ∈ Lp([s1, s2]) for J(h). By the
convexity condition, for every s, r, r̂ the following inequality holds

L(s, r̂) ≥ L(s, r) + ∂rL(s, r)(r̂ − r). (2.6)

Fixed two admissible functions r = h(s), r̂ = ĥ(s), recalling that L(s, r) =
∫ r

0
W (s, t) dt,

integrating the above inequality we obtain

J(ĥ) ≥ J(h) +

∫ s2

s1

W (s, h(s))
(

ĥ(s) − h(s)
)

ds.

Therefore, because of Principle 1, if h satisfy the necessary condition (2.2) then J(ĥ) ≥

J(h) for every ĥ, and then h is a minimizer of J . First we show uniqueness among
continuous functions. For if, consider h1, h2 two continuous minimizers of J . Since h1, h2

are both minimizer of J we have

J(h1) = J(h2) ⇒

∫ s2

s1

(

∫ h1(s)

h2(s)

W (s, r) dr

)

ds = 0.

By the Integral Mean Value Theorem there exist s∗ ∈ [S1, S2], rs∗ ∈ (h1(s
∗), h2(s

∗)) such
that

W (s∗, rs∗)(s2 − s1)(h1(s
∗) − h2(s

∗)) = 0.

Therefore, there exists at least one point s∗ such that h1(s
∗) = h2(s

∗). By the necessary
condition (2.2), because of continuity we get

W (s, h1(s)) = W (s∗, h1(s
∗)) = W (s∗, h2(s

∗)) = W (s, h2(s)).

Then, by the injectivity of W (s, ·) the equality h1 = h2 follows. Let us now check that
minimizers are in fact a.e. continuous. Indeed, consider a sequence such that sn → s as
n → +∞. By passing to a subsequence we may assume that h(sn) → l. By continuity
of W we infer W (sn, h(sn)) → W (s, l). Therefore, by using condition (2.2) and the
injectivity of W , for a.e. s ∈ [s1, s2] we have h(s) = l. Finally, given two minimizers u, v,
by convexity it follows that also u+v

2
is a minimizer. Therefore we have

∫ s2

s1

(

1

2
L(s, u) +

1

2
L(s, v) − L

(

s,
u + v

2

))

ds = 0.

However, by convexity the integrand function is positive. Hence, for almost every s ∈
[s1, s2] it results

1

2
L(s, u) +

1

2
L(s, v) − L

(

s,
u + v

2

)

= 0.

If L(s, ·) is strictly convex the above formula leads to a contradiction and then J must
admit a unique minimizer. �

The assumptions of Theorem 2.1 can be weakened in several ways, see [12, 15]. Observe
that if W (s, ·) ∈ C1, the strictly convexity assumption on L is equivalent to the condition
∂rW > 0, namely, as one can aspect, the cost W is strictly increasing with respect to
variations on the recruitment at a fixed SSB level. Moreover, if W ∈ Ck and ∂rW 6= 0,
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by using the Implicit Function Theorem it results that every solution of (2.2), and then
every minimizer of J , is in fact of class Ck. Observe that the assumptions of Theorem 2.1
are conditions on the integrand function L(s, r) and then they impose some restrictions
on the expression of the cost function W (s, r). For instance, a suitable growth condition
on W could be as the following

W (s, r) ≥ α(s)rq + β(s)

for continuous functions α(s), β(s) > 0 and q > 0. Therefore, since the cost function
W (s, r) is an unknown of the model, it could be preferable to make some more assumption
on the space of admissible function. To this aim, under minor regularity assumption on
W (s, r) (continuity is in fact enough), is not hard to check that the functional J is l.s., in
fact continuous, with respect to the pointwise convergence. To get compactness we need
some more conditions on the admissible functions. A first condition could be derived by
observing that by biological reasons, the recruitment is bounded by a large constant K.
Therefore, we may assume to deal with equibounded functions. Moreover, it could be
reasonable to aspect that a biological system has a limited capacity to perform variations
of his state, for instance in responding to environmental changes. Moreover, since the
S-R phenomenon works at a discrete scale, we may assume that the rapidity at which
the recruitment changes along the process is bounded by a constant M . Therefore, we
could also assume a uniform bound on the first derivative of the admissible functions.
Hence, an appropriate space of admissible functions is the space LipM ([s1, s2], ‖ · ‖∞) of
Lipschitz functions with Lipschitz constant not greater than M . Then, the compactness is
guaranteed by the Ascoli-Arzelà compactness Theorem. Actually, a weaker condition on a
p-norm of the first derivative is enough by considering the space AC([s1, s2]) of absolutely
continuous functions. We summarize this discussion in the following

Theorem 2.2 (Tonelli’s Compactness Theorem). Every sequence hn in AC([S1, S2]) such
that

‖hn‖∞ ≤ K, ‖h′

n‖p ≤ M

for 1 < p ≤ +∞, admits a uniformly convergent subsequence to a function h ∈ AC([s1, s2])
satisfying the same bound ‖h‖∞ ≤ K, ‖h′‖p ≤ M .

Proof. If p = +∞, hn is an equibounded and equi-Lipischitz sequence. Then the result
follows by the Ascoli-Arzelà Theorem. Consider now the case 1 < p < +∞. Let q be the
conjugate exponent of p, i.e. 1

p
+ 1

q
= 1. For every s, t ∈ [s1, s2], by the Holder inequality

we get

|hn(s) − hn(t)| ≤

∫ t

s

|h′

n(u)| du ≤

(
∫ t

s

|h′

n(u)|p du

)

1

p

(t − s)
1

q ≤ M(t − s)
1

q .

Hence, hn is an equi-Holder sequence and therefore hn is equicontinuous. Since hn is
equibounded by hypothesis, the Ascoli-Arzelà Theorem ensures the existence of a subse-
quence, denoted again by hn, which converge uniformly to a continuous function h such
that ‖h‖∞ ≤ K. By the condition ‖h′

n‖p ≤ M , we find a function g ∈ Lp([s1, s2]) and a
subsequence w′

n of h′

n such that w′

n → g weakly in Lp([s1, s2]), namely

∀ϕ ∈ Lq([s1, s2]) :

∫ s2

s1

w′

n(s)ϕ(s) ds →

∫ s2

s1

g(s)ϕ(s) ds

as n → +∞. For s̄ ∈ [s1, s2], consider the characteristic function ϕ := χ[s1,s̄] ∈ Lq([s1, s2]).
Since wn ∈ AC([s1, s2]) we have

wn(s̄) − wn(s1) =

∫ s̄

s1

w′

n(s) ds =

∫ s2

s1

w′

n(s)ϕ(s) ds.
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Letting n → +∞ we get

h(s̄) − h(s1) =

∫ s2

s1

g(s)ϕ(s) ds =

∫ s̄

s1

g(s) ds.

Therefore h ∈ AC([s1, s2]) and h′ = g almost everywhere. Since the norm is l.s. with
respect to the weak convergence we finally get

‖h′‖p = ‖g‖p ≤ lim inf
n→+∞

‖w′

n‖p ≤ M.

�

We then state the following

Theorem 2.3 (Existence Theorem II). Let W (s, r) > 0 be a continuous cost function.
Then the functional J(h) defined by (2.1) admits minimizers h on the set

Λ =

{

h ∈ AC([s1, s2]) : ‖h‖∞ ≤ K, ‖h′‖p ≤ M, 1 < p ≤ +∞,

∫ s2

s1

h(s) dS = rm(s1 − s2)

}

.

Proof. The existence follows combining Theorem 2.2 with the fact that J is continuous
with respect to the pointwise convergence. �

Although in Theorem 2.3 we have almost no restrictions on the cost function W and we
find regular minimizers of the functional J , in general in this case we cannot expect the
validity of the condition (2.2). Indeed, in such case the variations hε = h + εη in general
do not belong to Λ.

3. Remarkable examples

In this section we show that the basic S-R relationships considered in the literature can
be reformulated in a variational framework.

3.1. Constant recruitment. The constant recruitment h(s) = rm satisfy the necessary
condition (2.2) if and only if the cost function W = W (r) does not depend explicitly on the
SSB. In such case the constant recruitment is the only possible equilibrium configuration.
Therefore, if one aspect that the cost to produce the recruitment has to depend on the
underlying SSB, we have to aspect a non-constant, maybe fluctuating around a medium
level, S-R relationship.

3.2. Beverton-Holt. The classical Beverton and Holt model correspond to the configu-
ration h(s) = αs

1+βs
where α, β are model parameters. In order to satisfy condition (2.2) a

simple choice is for

W (s, r) = r
1 + βs

s
.

Therefore the cost is directly proportional to the recruitment produced and inversely
proportional to the underlying SSB. Then, for a given recruitment, the cost is very high
at small SSB levels, while it decreases for higher SSB level. This last behavior could
be not realistic since one may aspect an increasing cost for high SSB levels to produce
the same recruitment level. The parameters α, β could be chosen in order to satisfy our
Principle 1. With this choice, observing that L(s, r) = 1

2
r2
(

1+βs

s

)

, by applying Theorem
2.1 it follows that h is the unique minimizer of the functional J .
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3.3. Ricker. In the Ricker model the S-R relationship has the form h(s) = αse−βs where
as above we consider parameters in order to satisfy Principle 1. The obvious choice is for

W (s, r) = r
eβs

s
.

This cost has the advantage to penalize both low and high level of SSB. As above, the
Ricker configuration is the unique minimizer of the functional J .

4. An application attempt

In this section we sketch a quantitative use of the variational model. Our aim is just
to illustrate a possible way to use the model to investigate the S-R relationship in fish
dynamic. In such a way we propose further developments to realize useful tools responding
to the needed of the scientists involved in this field. Therefore, we maintain our discussion
to a quite rough level without getting inside in deep statistical or numerical details.

Suppose to have a fish population in its natural equilibrium configuration. This means
that if we consider a S-R plot, the correspondent points will be disposed according to our
variational principles. Therefore, no detectable trend will be apparent for the recruitment
(Principle 1). If the stock is subject to a stress factor, such as an higher fishing pressure,
pollution, and so on, we aspect a modification of the stock equilibrium. However, in
such case the S-R plot could be not evidence this stress factors, showing no-trend or
paradoxically a positive trend in the recruitment as it is actually happened in the collapse
of some fish stock in the past. We claim that the necessary condition

W (s, h(s)) = constant (4.1)

could be useful to investigate these occurrences. In fact, if by biological inspection we
recover the expression of the cost function W , and by the S-R plot we infer the expression
of h, then we can test the validity of (4.1). Actually, if (4.1) is not satisfied, this means that
some of the variational principles of the model are violated. In particular the recruitment
configuration leaves its optimal configuration (Principle 2) despite to a no detectable trend
in the S-R plot (Principle 1).

There are several difficulties into realize the above program. In fact, by starting from
a stock equilibrium configuration, the matter is to infer a suitable expression for the cost
function which has to be constant on the configuration r = h(s). This step of course
requires a large number of S-R plots to test the cost W . However, in general for a given
fish stock just few data are available. This obstacle could be surrounded by a numerical
simulator. Here we use the ALADYM (actually ALADYM-r) model developed in [1].
ALADYM is a single species simulator which, by starting from the main parameters of
the population (growth parameters, natural and fishing mortality, etc...), produces the
evolution of a simulated population for the time prescribed by the user. The relative
software is licensed as open source under GPL2 and can be freely downloaded from the
Fisboat web-site (www.ifremer.fr/drvecohal/fisboat). We refer to [1] and to the software
documentation for the details concerning the ALADYM model. Here we have chosen pa-
rameter which could be representative of female of M. Merluccius, generating an evolution
population over a period of twenty years with two different fishing efforts (corresponding
to the parameter Fishing coefficient F of the ALADYM model equal to 1 or to 1.5).
Anyway, for reader convenience we provide an example of input sheet for the ALADYM
model in the Appendix. Afterwords, we use the generated population to estimate the SSB
and the subsequent recruitment. To this aim we have used another software tool called
SURBA based on [7]. For the description of the SURBA model we refer the reader also to
[10, 17, 18]. SURBA is currently under development and test versions are available from
the Marine Laboratory, Aberdeen. (Contact Coby Needle: needlec@marlab.ac.uk).We
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have limited our simulation to 15 age classes. We provide an example of input sheet
for the SURBA model in the Appendix. In particular, we have chosen the SSB and re-
cruitment estimate evaluated by the 50-th percentile of bootstrapped runs performed by
SURBA. In this way we have generated various S-R plot corresponding to the two different
fishing coefficient F . Here, see Figure 4.1 and Figure 4.2, we furnish some of these plot
(the values are rescaled by the factor 106). To measure the trend on the Recruitment
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Figure 4.1. Four different S-R plot with F = 1
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Figure 4.2. Four different S-R plot with F = 1.5

we have chosen the non-parametric Spearman’s rank correlation coefficient, denoted by ρ.
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We refer to [8] for a preliminary discussion on the subject. The ρ coefficient satisfy the in-
equality −1 ≤ ρ ≤ 1 and furnishes a measure of how well an arbitrary monotonic function
describes the relationship between two variables. Here we confine ourself to observe that
values of ρ close to 1 or −1 denotes an increasing or decreasing trend, otherwise we may
assume that no trend is detectable. Here we calculate the ρ coefficient by the simplified
formula

ρ = 1 −
6
∑n

i=1 d2
i

n(n2 − 1)
(4.2)

where di = xi − yi is the difference between the ranks of the corresponding values s, r of
the S-R plot, while n is the total number of points of the plot. Therefore, despite the
changing in the fishing pressure, in general there is no detectable trend in the recruitment
(see Figure 4.1 and 4.2). At this point we want to use condition (4.1) to get a more sensitive
analysis. Indeed, if the stock leaves for some reason its equilibrium configuration, then
plotting the values given by (4.1) we aspect to observe a remarkable trend. Suppose for
instance that the first plot in Figure 4.1 corresponds to an equilibrium configuration. We
have to choose a cost function satisfying (4.1). Here we make very simple choices in order
to use just basic routine of calculus programs such as MATLAB or R software. Usually,
just few points on a S-R plot are available. However, condition (4.1) is a global condition.
Therefore it would be more accurate to infer an expression of the configuration r = h(s)
and then to evaluate h on a given grid of points which will remain fixed for the evaluation
of the configurations coming from all the other plot. Therefore we have fixed a grid of ten
points by the MATLAB command z = linspace(x(1), x(end), 10), where x denotes the
abscissa vector of the points belonging to the first plot of Figure 4.1, to generate the vector
z. Then we recover the configuration h by a simple linear interpolation. The evaluation of
h on the grid z could be done by the MATLAB command h1 = interp1(x1, y1, z,′ linear′)
where x1, y1 denotes the coordinates of the points of the first plot. We have now to choose
a function W such that evaluating W on h1 returns a same constant value. A simple choice
is a polynomial having h1 as vector of roots. This choice is problematic from a numerical
point of view but is immediate by the MATLAB command w = poly(h1) which furnishes
the coefficients w of such polynomial. Of course here we have to suppose that such a
polynomial is an approximation in some sense of a suitable cost function W . Anyway, if
also the other plot in Figure 4.1 correspond to equilibrium configurations, then our choice
is meaningful if and only if the plot of points (zi,W (h(zi))) does not present any detectable
trend. By evaluating h(zi) as above by linear interpolation, and the values W (h(zi)) by
the MATLAB command polyval(w, h(zi)), we can evaluate the Spearman’s coefficient
for the obtained new plot. Of course, we aspect that this procedure will produce a
detectable trend starting from the plot of Figure 4.2, showing that the previous equilibrium
configuration of the stock is lost. The results obtained are summarized in Figure 4.3 and
Figure 4.4. The plot presented are representative of what happens in general run, i.e.
more spread plot with a low ρ coefficient in the F = 1 case, a monotonic plot with
high ρ factor in the F = 1.5 case. Therefore, Figure 4.3 and Figure 4.4 could suggest a
compromised S-R process despite no trend is detectable from Figure 4.1 and Figure 4.2.
Here we have restricted to run which involve range of SSB overlapping with the interval
corresponding to z. As one can aspect, otherwise the plot obtained are not accurate.

Therefore, although rudimentary, in our opinion these exploratory evaluations seem
promising. Hence we believe that the variational model proposed deserves to be deeper
investigated both from the theoretical and applicative point of view.
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5. Discussion

We have proposed a variational model of the Stock-Recruitment (S-R) relationship
in fish dynamic. In this model the S-R relationship is characterized as a minimizer of
the integral energy functional (2.1). By basic tools of Calculus of Variations we derived
the necessary condition (2.2) which a Stock-Recruitment relationship has to satisfy. As
application, this necessary condition is used to test the equilibrium of the recruitment
level. Precisely, an exploratory numerical procedure is performed by using some software
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tools to produce simulated data relative to a fish population corresponding to different
fishing impact. The calculation proposed seems to show that by increasing the fishing
impact the necessary condition (2.2) is violated despite no trend is detectable by the Stock-
Recruitment configuration. Therefore, the method outlined in the paper could be useful
to test the equilibrium of the Recruitment level in apparent stationary configurations.
Therefore, we believe that the variational model proposed deserves to be deeper investigate
both from the theoretical and the applicative point of view.

6. Appendix

We provide an example of input sheets for the ALADYM and SURBA runs.

6.1. Input for ALADYM. The Input data for the ALADYM model are collected in
an EXCEL sheet. Here we present the parameters utilized. In particular we have chosen
the natural mortality according to the Chen-Watanabe model (see [6]) and a constant
recruitment in order to built the simulated population.

Figure 6.1. ALADYM inputs

6.2. Input for SURBA. The Input data for the SURBA (we have used the version
SURBA 2.20) model could be collected in a text file .dat. Here we present the parameters
utilized. We have utilized the female exploited population coming from the ALADYM
model. In particular, since ALADYM works at a month scale, just to simplify the data
interpretation, we have converted the population data to a year scale to produce the
index for the SURBA model. We run Surba with constant vectors at age for natural
mortality, maturity and stock weights, using the estimates generated by the ALADYM
model. Moreover we have chosen a smoothing factor equal to 1 and a λ factor equal to
zero in every SURBA run.

Acknowledgments. The author wishes to thank G. Lembo and M.T. Spedicato for
useful discussions on the subject and for attracting its attention to the ALADYM and
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Figure 6.2. ALADYM inputs

Figure 6.3. ALADYM inputs
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