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Abstract -This note is devoted to obtain an approximation result for BV-functions by means of a quasi-
polyhedral sequence of BV-functions. This approximation could have interesting applications in some prob-
lems of the Calculus of Variations.

1. Introduction

In this note, we prove an approximation result for BV-functions. In this direction, the first classical
result is due to Anzellotti-Giaquinta, who proved that BV-functions can be approximated by means of smooth
functions which are essentially obtained by mollification, so that their main interest lies on the C∞-regularity.

In the framework of the Calculus of Variations, this type of approximation has been usefully applied
in various problems concerning relaxation and Γ-convergence, where {uε} plays the role of the “recovery
sequence”.

However, in some recent problems it seems more useful to have an approximation of BV-functions which
takes into account not so much the C∞-regularity of the approximating sequence, as the geometric properties
of its discontinuity set.

This idea has been firstly developped by Dibos and Séré, in the context of the approximation of mini-
mizers for the Mumford-Shah functional (see [5]). They proved an approximation result for SBV -functions
by means of functions, still belonging to SBV , with their jump set contained in a finite union of smooth
hypersurfaces, included in hyperplanes.

Following the outlines of Dibos and Séré, Cortesani and Toader in [4] (see also [3]) proved that those
functions, which have a polyhedral jump set and are of class C∞ outside, are dense in SBV p ∩ L∞, in an
appropriate sense connected with the Mumford-Shah functional.

In view of similar possible applications, we propose a new approximation result for general BV-functions,
which therefore could also be of Cantor type. This implies that the approximating functions are slightly more
general than those proposed by Cortesani and Toader. More precisely, given u ∈ BV ∩ L∞ we construct a
sequence of BV -functions, strictly converging to u, such that their set of approximate discontinuity points is
“almost” a polyhedron, in the sense that the HN−1-measure of the non-polyhedral part is small. This result
is obtained by refining a classical theorem, due to Federer, of approximation of a countable HN−1-rectifiable
set by means of smooth compact manifolds which are arbitrarily close to a polyhedron, apart from a set of
small HN−1-measure.
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2. Preliminaries

In the following, we assume that N ≥ 2 is a fixed integer. Given x0 ∈ RN and r > 0, Br(x0) denotes
the ball in RN centered in x0 with radius r. Let Ω be an open bounded set in RN . We denote by M(Ω;RN )
the space of the RN -valued Radon measures on Ω. Let LN be the Lebesgue measure on RN , and HN−1 be
the Hausdorff measure of dimension N − 1 on RN . We denote by ωN the Lebesgue measure of the unit ball
in RN , so that LN (Br(x0)) = ωNrN , and by SN−1 the spherical surface of the unit ball.

Let u ∈ L1
loc(Ω); we say that u has an approximate limit at x ∈ Ω, if there exists a unique value ũ(x) ∈ R

such that

(2.1) lim
r→0+

−
∫

Br(x)

|u(y)− ũ(x)| dx = 0 ,

where −∫
Br(x)

stands for 1
LN (Br(x))

∫
Br(x)

. Let Su be the set of points where the previous property does not
hold, the so-called approximate discontinuity set. Note that Su is a Borel set and ũ : Ω \ Su → R is a Borel
function. Clearly, if x is a Lebesgue point of u, then (2.1) holds with ũ(x) replaced by u(x). Moreover, we
recall that LN -almost every x ∈ Ω is a Lebesgue point of u.

The space BV(Ω) is defined as the space of those functions u : Ω → R belonging to L1(Ω) whose
distributional gradient Du is an RN -valued Radon measure with total variation |Du| bounded in Ω. We
indicate by Dau and Dsu the absolutely continuous and the singular part of the measure Du with respect
to the Lebesgue measure. We recall that Dau and Dsu are mutually singular, moreover we can write

Du = Dau + Dsu and Dau = ∇u LN ,

where ∇u is the Radon-Nikodým derivative of Dau with respect to the Lebesgue measure. In particular,

Dsu = Dcu + (u+ − u−)νu HN−1bSu

where Su is defined above and it can be decomposed into two subsets Ju and Su \ Ju, with Ju countable
HN−1-rectifiable and HN−1(Su \ Ju) = 0. The set Ju is the so-called jump set of u. Finally, Dcu is the
Cantor part of Du.

Let us recall a useful property for the composition of BV-functions with Lipschitz functions.

THEOREM 2.1 (see, [2, Theorem 3.16]). Let Ω, Ω′ be open subsets of RN and φ : Ω′ → Ω be a bijective
Lipschitz function, whose inverse is Lipschitz, too. Let u ∈ BV(Ω) and v = u ◦ φ. Then v ∈ BV(Ω′) and

1
[Lip(φ)]N−1

|Du|(φ(B)
) ≤ |Dv|(B) ≤ [Lip(φ−1)]N−1|Du|(φ(B)

)

for every Borel subset B of Ω′.

For a general survey on measures and BV-functions we refer to [2], [6], [7], [8], [9].

3. Main results

In the first theorem, we improve a fine property of countable HN−1-rectifiable sets stated in [7, Theorem
4.2.19] (see also [1, Theorem 3.2]). This result is the crucial tool in order to obtain the quasi-polyhedral
approximation of BV-functions, which will be stated in Theorem 3.3.
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THEOREM 3.1. Let BR be a ball in RN and S ⊂ BR be a countable HN−1-rectifiable set. Then for
every ε > 0 there exists a diffeomorphism φε : RN → RN satisfying the following properties:
(i) φε : BR → BR and, outside BR, φε = Id, (where Id denotes the identity function Id(x) = x);
(ii) Lip(φε), Lip(φ−1

ε ) ≤ 1 + ε;
(iii) there exists a polyhedron Kε ⊂ BR, composed by a finite number of (N − 1)-cubes, such that

HN−1(S 4 φε(Kε)) < ε ;

(iv) as ε → 0+, φε → Id, uniformly on RN ;
(v) as ε → 0+, |J(φ−1

ε )| and |J(φε)| tend to 1 uniformly on Ω, where J(φ−1
ε ) and J(φε) denote the deter-

minants of the Jacobian matrices of φ−1
ε and φε, respectively.

Proof. The existence of the diffeomorphism φε with the properties (i)–(iii) is proved in [7, Theorem
4.2.19] (see also, [1, Theorem 3.2]). We will show (iv) and (v). By (ii), it follows

1
1 + ε

|x− y| ≤ |φε(x)− φε(y)| ≤ (1 + ε)|x− y|
and

|φε(x)| ≤ |φε(x)− φε(y0)|+ |φε(y0)| ≤ (1 + ε)|x− y0|+ |y0| ≤ 2R + 3|y0|
where x ∈ BR and y0 ∈ RN \BR; the same holds for φ−1

ε . Hence, the sequences {φε}, {φ−1
ε } are equibounded

and equicontinuous, then there exist φ0, ψ0 : RN → RN such that, up to a subsequence, φε → φ0 and
φ−1

ε → ψ0 uniformly on BR (and so on the whole of RN , since φε = φ−1
ε = Id outside BR).

It is easy to see that φ0(ψ0(x)) = ψ0(φ0(x)) = x, so that ψ0 = φ−1
0 . Moreover,

(3.1) |φ0(x)− φ0(y)| = |x− y| ,

which implies that φ0 (and hence φ−1
0 , too) is a linear isometric map. Indeed, assume firstly that φ0(0) = 0;

then, by (3.1), we have

(3.2) |φ0(x)| = |x| .

Equalities (3.1) and (3.2) implies also that

(3.3) 〈x, y〉 = 〈φ0(x), φ0(y)〉 ,

where 〈·, ·, 〉 denotes the usual scalar product in RN ; hence, if {ei}i=1,...,N is an orthonormal basis in RN , then
{φ0(ei)}i=1,...,N is an orthonormal basis in RN , too. Given x =

∑
αiei, we can write φ0(x) =

∑
βiφ0(ei),

where, by (3.3),
αi = 〈x, ei〉 = 〈φ0(x), φ0(ei)〉 = βi .

This proves that φ0 is a linear isometric map, which coincides with the identity outside BR, hence φ0 ≡ Id.

If φ0(0) = x0 6= 0, it is enough to replace φ0 with φ̃0(·) = φ0(·) − x0. As before, φ̃0 results to be a
linear isometric map, which coincides with a pure translation of x0 outside BR. So x0 must be zero and
φ̃0 = φ0 = Id; this implies also that the whole sequence {φε}, and not only a subsequence, tends to Id.

In order to prove (v), we note that, by (ii) and recalling that for every invertible matrix A, the det(A−1) =
1/det(A), it follows

1
(1 + ε)N

≤ |J(φε)| ≤ (1 + ε)N and
1

(1 + ε)N
≤ |J(φ−1

ε )| ≤ (1 + ε)N ,

which concludes the proof.
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In order to state our main result, we need the following definition.

DEFINITION 3.2. Given u ∈ BV(Ω) ∩ L∞(Ω), we say that a sequence {uε} ⊆ BV(Ω) ∩ L∞(Ω) is a
quasi-polyhedral approximation of u, if the following properties hold:

• the sequence {uε} is equibounded in L∞(Ω);

• uε → u strongly in L1(Ω), as ε → 0;

• |Duε|(Ω) → |Du|(Ω), as ε → 0;

• there exists a sequence of polyhedron {Kε} ⊆ Ω such that HN−1(Suε
4Kε) → 0, as ε → 0;

• HN−1(Suε
) → HN−1(Su), as ε → 0.

The following theorem contains our main result; i.e., the quasi-polyhedral approximation of bounded
BV-functions.

THEOREM 3.3. Let Ω = BR. For every u ∈ BV(Ω) ∩ L∞(Ω), there exists a quasi-polyhedral approxi-
mation {uε} of u. More precisely, for every ε > 0, setting uε := u ◦ φε (where φε is given in Theorem 3.1),
it follows that uε ∈ BV(Ω) ∩ L∞(Ω) and

(i) ‖uε‖∞ = ‖u‖∞ and ‖uε‖BV ≤ (1 + ε)N‖u‖BV;

(ii) uε → u strongly in L1(Ω), as ε → 0;

(iii) |Duε|(Ω) → |Du|(Ω), as ε → 0;

(iv) there exists a polyhedron Kε ⊂ Ω and a constant c > 0 such that HN−1(Suε 4Kε) ≤ cε ;

(v) (1 + ε)1−NHN−1
(
Su) ≤ HN−1(Suε) ≤ (1 + ε)N−1HN−1

(
Su).

Proof. For every ε > 0, define uε := u ◦ φε, where φε : RN → RN is the diffeomorphism given
in Theorem 3.1, with S := Su, which is a countable HN−1-rectifiable subset of Ω. Clearly, by definition,
‖uε‖∞ = ‖u‖∞. By Theorem 2.1 the function uε belongs to BV(Ω) ∩ L∞(Ω) and, for every 0 < ε ≤ 1,

‖uε‖BV =
∫

Ω

|uε| dx + |Duε|(Ω) ≤
∫

Ω

|u||Jφ−1
ε | dy + (1 + ε)N−1|Du|(Ω) ≤ (1 + ε)N‖u‖BV ≤ c ,

where |Jφ−1
ε | denotes the determinant of the Jacobian matrix of φ−1

ε and c is a positive constant independent
of ε. Hence, there exists u0 ∈ BV(Ω) such that, up to a subsequence,

uε → u0 strongly in L1(Ω) and Duε ⇀ Du0 weakly∗ in M(Ω;RN ) .

Firstly, we will show that u0 = u, which implies also that the whole sequence, not only a subsequence,
converges to u.

Let N ⊂ Ω, with LN (N) = 0, be such that for every x ∈ Ω \N , up to another subsequence, uε(x) → u0(x)
and

(3.4)

u0(x) = lim
r→0

1
ωNrN

∫

Br(x)

u0(y) dy

and

u(x) = lim
r→0

1
ωNrN

∫

Br(x)

u(y) dy .
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Recalling Theorem 3.1, we have that |Jφ−1
ε | and |Jφε| tend to 1, as ε → 0+, uniformly on Ω. Moreover, for

every r > 0 and every x ∈ Ω \N , we have

|uε(x)− u(x)| ≤
∣∣∣∣∣uε(x)− 1

ωNrN

∫

Br(x)

uε(y) dy

∣∣∣∣∣ +

∣∣∣∣∣
1

ωNrN

∫

Br(x)

uε(y) dy − u(x)

∣∣∣∣∣

≤
∣∣∣∣∣uε(x)− 1

ωNrN

∫

Br(x)

uε(y) dy

∣∣∣∣∣ +

∣∣∣∣∣
1

ωNrN

∫

φε(Br(x))

u(y)[|Jφ−1
ε (y)| − 1] dy

∣∣∣∣∣

+

∣∣∣∣∣
1

ωNrN

[ ∫

φε(Br(x))

u(y) dy −
∫

Br(x)

u(y) dy
]∣∣∣∣∣ +

∣∣∣∣∣
1

ωNrN

∫

Br(x)

u(y) dy − u(x)

∣∣∣∣∣ .

Passing to the limsup as ε → 0+ and taking into account that {uε} tends to u0 strongly in L1(Ω) and
pointwise in Ω \N , we obtain

lim sup
ε→0+

|uε(x)− u(x)|

≤
∣∣∣∣∣u0(x)− 1

ωNrN

∫

Br(x)

u0(y) dy

∣∣∣∣∣ +
‖u‖∞
ωNrN

lim sup
ε→0+

LN (φε(Br(x)))
[
sup
Ω

∣∣∣|Jφ−1
ε (y)| − 1

∣∣∣
]

+
‖u‖∞
ωNrN

lim sup
ε→0+

LN (φε(Br(x))4Br(x)) +

∣∣∣∣∣
1

ωNrN

∫

Br(x)

u(y) dy − u(x)

∣∣∣∣∣

=

∣∣∣∣∣u0(x)− 1
ωNrN

∫

Br(x)

u0(y) dy

∣∣∣∣∣ +

∣∣∣∣∣
1

ωNrN

∫

Br(x)

u(y) dy − u(x)

∣∣∣∣∣ ,

for every r > 0. Now, letting r → 0+, it follows

lim sup
ε→0+

|uε(x)− u(x)| ≤ lim sup
r→0+

[∣∣∣∣∣u0(x)− 1
ωNrN

∫

Br(x)

u0(y) dy

∣∣∣∣∣ +

∣∣∣∣∣
1

ωNrN

∫

Br(x)

u(y) dy − u(x)

∣∣∣∣∣

]
= 0 ,

where we take into account (3.4). This implies that uε(x) → u(x) for a.e. x ∈ Ω and since we have also that
uε(x) → u0(x) for every x ∈ Ω \N , it follows that u = u0 almost everywhere and that the whole sequence
{uε} tends to u in L1(Ω). Now, taking into account the lower semicontinuity of the total variation, (i) and
(ii) of Theorem 3.1, and Theorem 2.1, we have

|Du|(Ω) ≤ lim inf
ε→0+

|Duε|(Ω) ≤ lim sup
ε→0+

|Duε|(Ω)

≤ lim sup
ε→0+

(1 + ε)N−1|Du|(φε(Ω)) = lim sup
ε→0+

(1 + ε)N−1|Du|(Ω) = |Du|(Ω) .

Hence, the previous inequality is actually an equality and (iii) is proven. Finally, by (iii) of Theorem 3.1,
there exists a polyhedron Kε ⊂ Ω such that

(3.5) HN−1(Su 4 φε(Kε)) < ε .

Hence, taking into account that Suε = φ−1
ε (Su), the properties of Hausdorff measures (see Proposition 2.49

in [2]), and (ii) of Theorem 3.1, it follows

HN−1(Suε 4Kε) = HN−1(φ−1
ε (Su)4Kε) = HN−1

(
φ−1

ε (Su 4 φε(Kε))
)

≤ (1 + ε)N−1HN−1
(
Su 4 φε(Kε)

) ≤ (1 + ε)N−1ε ,

where the last inequality is due to (3.5). In a similar way we obtain

1
(1 + ε)N−1

HN−1
(
Su) ≤ HN−1(Suε) ≤ (1 + ε)N−1HN−1

(
Su),

which concludes the proof.
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