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1 Flow of non smooth vector fields: the regular
Lagrangian flow

When b : [0, T ] × Rd → Rd is a bounded smooth vector field, the flow of b is
the smooth map X : [0, T ]× Rd → Rd such that

dX

dt
(t, x) = b(t, X(t, x)) , t ∈ [0, T ]

X(0, x) = x .

(1)

Existence and uniqueness of the flow are guaranteed by the classical Cauchy–
Lipschitz theorem. The study of (1) out of the smooth context is of great
importance (for instance, in view of the possible applications to conservation
laws or to the theory of the motion of fluids) and has been studied by several
authors. What can be said about the well–posedness of (1) when b is only in
some class of weak differentiability? We remark from the beginning that no
generic uniqueness results (i.e. for a.e. initial datum x) are presently available.

This question can be, in some sense, “relaxed” (and this relaxed problem
can be solved, for example, in the Sobolev or BV framework): we look for
a canonical selection principle, i.e. a strategy that “selects”, for a.e. initial
datum x, a solution X(·, x) in such a way that this selection is stable with
respect to smooth approximations of b. This in some sense amounts to rede-
fine our notion of solution: we add some conditions which select a “relevant”
solution of our equation. This is encoded in the following definition: we con-
sider only the flows such that there are no concentrations of the trajectories.
We will denote by Ld the d-dimensional Lebesgue measure in Rd.

Definition 1 (Regular Lagrangian flow). Let b ∈ L1
loc([0, T ] × Rd; Rd).

We say that a map X : [0, T ]×Rd → Rd is a regular Lagrangian flow for the
vector field b if
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(i) for a.e. x ∈ Rd the map t 7→ X(t, x) is an absolutely continuous integral
solution of γ̇(t) = b(t, γ(t)) for t in [0, T ], with γ(0) = x;

(ii)there exists a constant L independent of t such that

Ld
(
X(t, ·)−1(A)

)
≤ LLd(A) for every Borel set A ⊂ Rd. (2)

The constant L in (ii) will be called the compressibility constant of X.

2 The link with the transport equation

Existence, uniqueness and stability of regular Lagrangian flows have been
proved in [DPL89] by DiPerna and Lions for Sobolev vector fields with
bounded divergence. In a recent groundbreaking paper (see [Amb04]) this
result has been extended by Ambrosio to BV coefficients with bounded from
below divergence.

The arguments of the DiPerna–Lions theory are quite indirect and they
exploit (via the theory of characteristcs) the connection between (1) and the
Cauchy problem for the transport equation

∂tu(t, x) + b(t, x) · ∇xu(t, x) = 0

u(0, ·) = ū .

(3)

Assuming that the divergence of b is in L1 we can define bounded distribu-
tional solutions of (3) using the identity b ·∇xu = ∇x ·(bu)−u∇x ·b. Following
DiPerna and Lions we say that a distributional solution u ∈ L∞([0, T ]× Rd)
of (3) is a renormalized solution if

∂t[β(u(t, x))] + b(t, x) · ∇x[β(u(t, x))] = 0

[β(u)](0, ·) = β(ū)
(4)

holds in the sense of distributions for every function β ∈ C1(R; R). In their
seminal paper DiPerna and Lions showed that, if the vector field b has Sobolev
regularity with respect to the space variable, then every bounded solution is
renormalized. Ambrosio [Amb04] extended this result to BV vector fields with
divergence in L1. Under suitable compressibility assumptions (for instance
∇x · b ∈ L∞), the renormalization property gives uniqueness and stability
for (3) (the existence follows in a quite straightforward way from standard
approximation procedures).

In turn, this uniqueness and stability property for (3) can be used to show
existence, uniqueness and stability of regular Lagrangian flows (we refer to
[DPL89] for the original proofs and to [Amb04] for a different derivation of
the same conclusions).
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3 Properties of the regular Lagrangian flow

Having defined our notion of solution of (1) and having shown well–posedness
for this problem under suitable regularity assumptions on the vector field, it is
interesting to investigate some further properties of this solution. In particular
we are interested to

• the regularity of the regular Lagrangian flow with respect to the initial
datum: this amounts to the study of the map x 7→ X(t, x);

• the compactness of regular Lagrangian flows corresponding to vector fields
satisfying natural uniform bounds.

The differentiability of the regular Lagrangian flow with respect to x has
been first studied by Le Bris and Lions in [LBL04]. For vector fields with
Sobolev regularity, they are able to show (using an extension of the theory of
renormalized solutions) the existence of measurable maps Wt : Rd×Rd → Rd

such that

X(t, x + εy)−X(t, x)− εWt(x, y)
ε

→ 0 locally in measure in Rd
x × Rd

y.

(5)
We recall that a sequence of Borel maps {fn} is said to be locally convergent

in measure to f in Rk if

lim
n→∞

Lk
(
{x ∈ BR(0) : |fn(x)− f(x)| > δ}

)
= 0

for every R > 0 and every δ > 0. If the sequence {fn} is locally equibounded
in L∞, then the local convergence in measure is equivalent to the strong
convergence in L1

loc.
However, it turns out (see [AM05]) that the differentiability property ex-

pressed in (5) does not imply the classical approximate differentiability. We
recall that a map f : Rk → Rm is said to be approximately differentiable at
x ∈ Rk if there exists a linear map L(x) : Rk → Rm such that

f(x + εy)− f(x)− εL(x)y
ε

→ 0 locally in measure in Rd
y.

Notice also that this concept has a pointwise meaning, while the one in (5)
is global. Moreover, it is possible to show that the map f is approximately
differentiable a.e. in Ω ⊂ Rk if and only if the following Lusin–type approxi-
mation with Lipschitz maps holds: for every ε > 0 it is possible to find a set
Ω′ ⊂ Ω with Lk(Ω \Ω′) ≤ ε such that f |Ω′ is Lipschitz.

Approximate differentiability for regular Lagrangian flows relative to W 1,p

vector fields, with p > 1, has been first proved by Ambrosio, Lecumberry and
Maniglia in [ALM05]. The need for considering only the case p > 1 comes
from the fact that some tools from the theory of maximal functions are used,
as will be explained in the next section. In [ALM05] the strategy is no more an
extension of the theory of renormalized solutions: the authors introduce some
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new estimates along the flow, inspired by the remark that, at a formal level,
we can control the time derivative of log (|∇X(t, x)|) with |∇b|(t, X(t, x)).
The strategy of [ALM05] allows to make this remark rigorous: it is possible to
consider some integral quantities which contain a discretization of the space
gradient of the flow and prove some estimates along the flow, in fact using the
PDE formulation of the problem presented in the previous section. Then, the
application of Egorov theorem allows the passage from integral estimates to
pointwise estimates on big sets, and from this it is possible to recover Lipschitz
regularity on big sets, and eventually one gets the approximate differentiabili-
ty. However, the application of Egorov theorem implies a loss of quantitative
informations: this strategy does not allow a control of the Lipschitz constant
in terms of the size of the “neglected” set.

4 Quantitative estimates for W 1,p vector fields

Starting from the result of Ambrosio, Lecumberry and Maniglia [ALM05], the
main point of [CDL06] is a modification of the estimates in such a way that
quantitative informations are not lost. Let X be a regular Lagrangian flow
relative to a bounded vector field b ∈ L1(W 1,p) for some p > 1. For every
R > 0 we define the quantity

Ap(R,X) :=

∥∥∥∥∥ sup
0≤t≤T

sup
0<r<R

∫
Br(x)

log
(
|X(t, x)−X(t, y)|

r
+ 1

)
dy

∥∥∥∥∥
Lp

x(BR(0))

.

The strategy of the proof is based on two main steps.

4.1 A–priori estimate

It is possible to give an a–priori estimate for the functional Ap(R,X) in terms
of the L1

t (L
p
x) norm of Db and the compressibility constant of the flow. Trying

to estimate the quantity

d

dt

∫
Br(x)

log
(
|X(t, x)−X(t, y)|

r
+ 1

)
dy (6)

we get some difference quotients of the vector field computed along the flow.
Here comes into play the theory of maximal functions.

We recall that, for f ∈ L1
loc(Rk; Rm), we can define the maximal function

of f as

Mf(x) := sup
r>0

∫
Br(x)

|f(y)| dy .

It is well–known (see for example [Ste70]) that for every p > 1 the strong
estimate
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‖Mf‖Lp(Rk) ≤ Ck,p‖f‖Lp(Rk) (7)

holds, while this is not true in the limit case p = 1. Moreover, if f has Sobolev
regularity, we can estimate the increments using the maximal function of
the derivative: there exists a negligible set N ⊂ Rk such that for every x,
y ∈ Rk \N we have

|f(x)− f(y)| ≤ Ck|x− y|
(
MDf(x) + MDf(y)

)
.

Going back to (6), we see that it is possible to estimate the difference
quotients which appear in the time differentiation using the maximal function
of Db, computed along the flow. After, we integrate with respect to the time,
we pass to the supremums and eventually we take the Lp norm in order to
reconstruct the quantity Ap(R,X). Then, changing variable (and for this we
just pay a factor given by the compressibility constant L) and using the strong
estimate (7) in order to express the bound in term of Db, we finally get the
a–priori quantitative estimate

Ap(R,X) ≤ C
(
R,L, ‖Db‖L1(Lp)

)
. (8)

4.2 Quantitative Lipschitz property

From the bound (8) we can obtain a quantitative Lusin–type Lipschitz ap-
proximation of the regular Lagrangian flow. This means that we are able to
estimate the growth of the Lipschitz constant in terms of the size of the ne-
glected set. For every fixed ε > 0 and every R > 0 we apply Chebyshev
inequality to get a constant

M = M(ε) =
Ap(R,X)

ε1/p

and a set K ⊂ BR(0) with Ld(BR(0) \K) ≤ ε such that for every x ∈ K

sup
0≤t≤T

sup
0<r<2R

∫
Br(x)

log
(
|X(t, x)−X(t, y)|

r
+ 1

)
dy ≤ M .

From this it easily follows that

|X(t, x)−X(t, y)| ≤ exp
(

cdAp(R,X)
ε1/p

)
|x− y| ,

i.e. we obtain the following explicit control of the Lipschitz constant:

Lip (X(t, ·)|K) ∼ exp
(
Cε−1/p

)
. (9)
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5 Corollaries and remarks

5.1 Immediate consequences

Approximate differentiability

Recalling the equivalence stated immediately after the definition of approxi-
mate differentiability, it follows that the regular Lagrangian flow is approxi-
mately differentiable with respect to the space variable a.e. in Rd. We notice
that the quantitative result expressed in (9) is not strictly necessary for this
first consequence.

Compactness

The quantitative version of the Lusin–type Lipschitz approximation can be
used to show the precompactness in L1

loc for the regular Lagrangian flows
{Xn} generated by a sequence {bn} of vector fields equibounded in L∞ and in
L1(W 1,p) (for p > 1), under the assumption that the compressibility constants
of the regular Lagrangian flows are equibounded. We illustrate here the main
idea to get this result.

On every ball BR(0), the regular Lagrangian flows are equibounded. We fix
ε > 0. For every n we apply (9) to find a set Kn with Ld(BR(0)\Kn) ≤ ε such
that the Lipschitz constants of the maps Xn|Kn are equibounded. Then we can
extend every map Xn|Kn

to a map X̃n defined on all BR(0) in such a way that
the sequence {X̃n} is equibounded and equicontinuous over BR(0). Hence we
can apply Ascoli–Arzelà theorem to this sequence, getting strong compactness
in L∞. But since every map X̃n coincides with the regular Lagrangian flow Xn

out of a small set, it is simple to check that this implies strong compactness
in L1 for the regular Lagrangian flows {Xn}.

A merit of this approach is the fact that the compactness result holds
under an assumption of equiboundedness of the compressibility constants: we
do not need a uniform bound on the divergence of the vector fields (this would
be in general a stronger condition). Some compactness results under uniform
bounds on the divergence are already present in the literature: see for example
[DPL89].

We finally remark that an extension of our strategy to the case p = 1 would
give a positive answer to a conjecture proposed by Bressan in [Bre03B]. See
also [Bre03A] for a related conjecture on mixing flows.

5.2 Quantitative stability

With similar techniques it is possible to show a result of quantitative stabi-
lity for regular Lagrangian flows relative to W 1,p vector fields (here we need
again the assumption p > 1). The stability results in [DPL89] and [Amb04]
were obtained using some abstract compactness arguments, hence they do
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not give a rate of convergence. It is indeed possibile to show that, for the
regular Lagrangian flows X1 and X2 relative to bounded vector fields b1 and
b2 belonging to L1(W 1,p), the following estimate holds:

‖X1(T, ·)−X2(T, ·)‖L1(Br) ≤ C
∣∣ log

(
‖b1 − b2‖L1([0,T ]×BR)

)∣∣−1
.

The constant C and R depend on the usual uniform bounds on the vector
fields. We remark that this estimate also gives a new direct proof of the
uniqueness of the regular Lagrangian flow.

5.3 A regularity result for the PDE

Using again (9) it is possible to show a result relative to solutions to the
transport equation (3). We can prove that for bounded vector fields belonging
to L1(W 1,p) (as usual with p > 1) and with bounded divergence, solutions
of (3) propagate a mild regularity, the same one of the corresponding regular
Lagrangian flow expressed by (9).

6 An a–priori estimates approach

The estimates we have presented give a new possible approach to the theory of
regular Lagrangian flows. In particular, we can develop (in the W 1,p context
with p > 1) a theory of ODEs completely independent from the associated
PDEs theory. The general scheme is the following:

• the compactness we have illustrated can be used to show existence of the
regular Lagrangian flow, via regularization, for vector fields with bounded
divergence;

• the uniqueness comes together with the stability, which is recovered in a
new quantitative fashion;

• in addition to these results, we can show the quantitative regularity ex-
pressed in (9), which implies the approximate differentiability;

• finally, a new compactness result is obtained.

All this results are obtained at the Lagrangian level, with no mention to the
transport equation theory.
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