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1 Introduction

Nonconvex interactions in lattice systems lead to a number of interesting phenom-
ena that can be translated into a variety of energies within their limit continuum
description as the lattice size tends to zero. These effects may be due to different
superposed causes. When only nearest-neighbour interactions are taken into ac-
count, a scaling effect for nonconvex energy densities with non-faster-than-linear
growth at infinity (such as Lennard-Jones potentials or the ‘weak membrane’ ener-
gies considered by Blake and Zisserman in Image Processing) show the appearance
of a competing surface term besides a convex bulk integral. In this way one can
derive the Mumford Shah functional of Computer Vision as the limit of finite-
difference schemes [18], explain Griffith’s theory of Fracture as a phase transition
with one ‘well’ at infinity [29], or give a microscopical interpretation of softening
phenomena [10]. In the one-dimensional case a complete description can be given
highlighting in addition oscillations and micro-cracking (see [14] and also Del Piero
and Truskinowsky [21] for a Mechanical insight).

For energies with ‘superlinear’ growth (these growth conditions are expressed
in terms of the scaled difference quotients) Alicandro and Cicalese [2] have shown
that, upon some natural decay conditions on the energy densities φε, the Γ-limit
as ε→ 0 of an arbitrary system of interactions∑

i,j∈εZN∩Ω

εNφε

( i− j

ε
,
uj − ui

ε

)
(Ω a bounded open subset of Rn) always exists (upon passing to subsequences)
and is expressed as an integral functional∫

Ω

ϕ(Du) dx.

The simplest case is when only nearest-neighbour interactions are present, in which
case the function ϕ is computed via a convexification process [2]. When not only
nearest-neighbour interactions are taken into account, in contrast, the description
of the limit problem turns out more complex involving in general some ‘homoge-
nization’ process (see [15], [2]). It is worth noting that the necessity of such a com-
plex description arises also for simple linear spring models where the nonlinearity
is of a more ‘geometrical’ origin (see [22]). Even in the simple one-dimensional case
of next-to-nearest-neighbour interaction the limit bulk energy density is described
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by a formula of ‘convolution type’ that highlights a non-trivial balance between
first and second neighbours (see [26], [8]). Additional phenomena arise in the case
when the range of interaction does not vanish with the lattice size, in which case
a complex non-local interaction can take place (see [9]).

In this paper we provide a higher-order description of one-dimensional next-
to-nearest-neighbour systems of the form∑

i,i+1∈εZ∩Ω

εψ1

(ui+1 − ui

ε

)
+

∑
i,i+2∈εZ∩Ω

εψ2

(ui+2 − ui

2ε

)
using the terminology of developments by Γ-convergence (introduced in Anzellotti
and Baldo [4]) and equivalence of variational theories (in the spirit of Braides and
Truskinovsky [17]). In this one-dimensional case the integrand ϕ is given as the
convex envelope of an effective energy ψ described by an explicit convolution-type
formula describing oscillations at the lattice level

ψ(z) = ψ2(z) +
1
2

min{ψ1(z1) + ψ1(z2) : z1 + z2 = 2z},

that allows an easier description of the phenomena. Besides the possibility of os-
cillatory solutions on the microscopic scale, we show some additional features:
first, the appearance of a boundary-layer contribution on the boundary due to
the asymmetry of the boundary interactions. This type of boundary contribution
has been studied by Charlotte and Truskinovsky [19] in terms of local minima for
quadratic interactions and here is described in energetical terms in the general
case. The formula for the boundary contribution is quite general, and can be also
formulated for higher-dimensional problems, where additional difficult technical
issues arise (see e.g. the recent work by Theil [28]).

A second feature is the appearance of a phase-transition surface energy, that
is due to the non convexity of the zero-order energy density ψ that forces the
appearance of phase transitions and the appearance of internal boundary layers due
to the presence of next-to-nearest neighbour interactions. By showing an equivalent
family of continuum energies we highlight that second neighbours play the same
role as the higher-order gradients in the gradient theory of phase transitions. It is
worth noting that, under some assumptions on the geometry of displacements, by
combining this result with the description of Lennard-Jones systems by Pagano
and Paroni [26] we obtain a variational asymptotic theory with first and second
gradients that qualitatively differs from that obtained as a pointwise limit (see e.g.
Blanc, Le Bris and Lions [6]).

A third issue is that ‘macroscopic’ transitions must be coupled to ‘microscopic’
ones; i.e., even if the limit deformation is an affine function u(t) = zt the corre-
sponding microscopic deformations may be forced to have oscillations correspond-
ing to a minimizing pair (z1, z2) with z1 = (ui+1 − ui)/ε for i odd mixed with
oscillations corresponding to the same pair, but with z1 = (ui+1−ui)/ε for i even,
thus introducing an ‘anti-phase’ boundary that may not be detected by the macro-
scopic averaged field u. This justifies a necessarily more complex description of the
limit in terms of a vector variable u = (u1, u2) that separately describes ‘even’ and
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‘odd’ oscillations. If we integrate out microscopic patters the limit theory takes a
non-local form where the internal surface terms are influenced by the boundary and
also between themselves. Note that anti-phase boundaries necessarily arise under
some boundary conditions. Similar phenomena arise in the study of spin systems
(see [1] for their description using Γ-convergence). It must be remarked that the
use of the new vector variable u brings more information than the description by
Young measures (see Paroni [27]), by which the interaction of micro-oscillations
with phase transitions cannot be detected.

Finally, an additional fourth feature appears in the description of Lennard-
Jones type microscopic interactions, where the higher-order Γ-limit gives a fracture
term. The microscopic pattern influence the value of the fracture energy through
the appearance of boundary layers on the two sides of the fracture (an alternative
description of this phenomena justified by a renormalization-group approach, un-
der a different scaling of the energy, is provided by Braides, Lew and Ortiz [16]).
The computation can be compared with that with a fixed interface by Blanc and
Le Bris [5]. Note that these fracture boundary layer may compete with those forced
by boundary conditions; as a consequence, for example, for Lennard-Jones inter-
actions subject to forced displacement at the boundary we obtain that fracture
at the boundary is energetically favoured, in contrast with the nearest-neighbour
case when fracture may appear anywhere in the sample.

2 Setting of the problem

We will consider one-dimensional next-to-nearest neighbour interactions on (a por-
tion of) a lattice λnZ of the form En(u) : An(0, L) → [0,+∞) given by

En(u) =
n−1∑
i=0

λnψ1

(ui+1 − ui

λn

)
+
n−2∑
i=0

λnψ2

(ui+2 − ui

2λn

)
,

where ψ1, ψ2 are Borel functions bounded from below (this condition can be re-
laxed). Here and in the following of the paper λn = L

n , An(0, L) is the set of
all functions u : λnZ ∩ [0, L] → R and we often use the notation ui = u(iλn).
We will also make the identification of such functions with their piecewise-affine
interpolations and thus simply write

An(0, L) = {u : R → R : u ∈ C(R), u(t) is affine for t ∈ (i, i+1)λn, i ∈ {0, . . . , n−1}}.

We will also consider problems with fixed boundary data. To this end, given l ∈ R
we define Eln(u) : An(0, L) → [0,+∞] as

Eln(u) =
{
En(u) if u(0) = 0, u(L) = l
+∞ otherwise.

(2.1)

We also define the effective (zero-order) energy density of the system ψ0 by

ψ0(α) = ψ2(α) +
1
2

inf{ψ1(z1) + ψ1(z2) : z1 + z2 = 2α} (2.2)
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obtained by ‘minimizing out’ the nearest-neighbour interactions (see [15], [26], [8]).
For any α ∈ R, we define the set of (microscopic) minimal states of the effective

energy density Mα as the set of all the pairs optimizing the minimum problem for
ψ0(α); i.e.

Mα := {(z1, z2) ∈ R2 : z1 + z2 = 2α, ψ0(α) = ψ2(α) +
1
2

(ψ1(z1) + ψ1(z2))}.

The case #Mα = 1, so that Mα = {(α, α)} and ψ∗∗0 (α) = ψ1(α) + ψ2(α), is
usually referred to as the strict Cauchy-Born hypothesis, while the case #Mα = 2
as the local Cauchy-Born hypothesis. In this case Mα = {(zα1 , zα2 ), (zα2 , z

α
1 )} with

zα2 6= zα1 .
For l ∈ R, if ψ∗∗0 ( lL ) < ψ0( lL ), then ψ∗∗0 coincides with an affine function on

a neighborhood of ( lL ). We denote by r such affine function and let N(l) be the
number of αi such that ψ0(αi) = ψ∗∗0 (αi) = r(αi). In the following we will make
the assumption that #N(l) < +∞. We also define the set Ml as follows:

Ml =


∅ if ψ∗∗0 ( lL ) = +∞
M

l
L if ψ∗∗0 ( lL ) = ψ0( lL )

N(l)⋃
i=1

Mαi if ψ∗∗0 ( lL ) < ψ0( lL ).

Let zα = (zα1 , z
α
2 ) ∈ Mα; we define the minimal energy configurations uzα :

Z → R and uzα : Z → R by

uzα(i) =
[
i

2

]
zα2 +

(
i−
[
i

2

])
zα1 , uzα(i) = uzα(i+ 1)− zα1

and uzα,n : λnZ → R, uzα,n : λnZ → R by

uzα,n(xni ) = uzα(i)λn, uzα,n(xni ) = uzα(i)λn. (2.3)

Note that the gradient of (the piecewise affine interpolation corresponding to) uzα

takes the values zα1 , z
α
2 on intervals (i, i+1) with i even/odd respectively while the

converse holds for uzα and that the piecewise affine interpolations of both uzα,n

and uzα,n converge uniformly to αt.

2.1 Even and odd interpolation

In order to describe the fine behaviour of discrete minimizers we will separately
consider even and odd indices. In order to separately track the limits of the cor-
responding interpolations, given u : An(0, L) → R we define the even interpolator
function u1 : An(0, L) → R and the odd interpolator function u2 : An(0, L) → R
as follows:

u0
1 = 0, ui+1

1 − ui1 =
{
ui+1 − ui i is even
ui − ui−1 i is odd

if n is even, u0
2 = 0 ui+1

2 − ui2 =
{
ui+1 − ui i is odd
ui+2 − ui+1 i is even
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Figure 1: Interpolator functions for minimal energy configuration.

if n is odd, u0
2 = 0 ui+1

2 − ui2 =

 ui+1 − ui i is odd
ui+2 − ui+1 i is even, i < n− 1
ui − ui−1 i = n− 1.

We will say that a sequence of functions un belonging to An(0, L) converges to
u = (u1, u2) in Lp (1 ≤ p ≤ ∞) if un = (un,1, un,2) converges to u = (u1, u2) in Lp.
Note that this convergence implies that (but is not equivalent to) un → 1

2 (u1 +u2)
in the usual sense in Lp. Moreover, for any functional space B, we will write u ∈ B
meaning that u1, u2 ∈ B.

With this notation the minimal energy configurations uzα and uzα can be
respectively identified with

uzα(i) = (zα1 i, z
α
2 i), uzα(i) = (zα2 i, z

α
1 i)

(see Fig. 1).

2.2 Crease and boundary-layer energies

We will show that (proper scalings of) the energies En give rise to phase-transition
energies with interfacial energy and boundary terms. The quantification of these
energies will be done by optimizing boundary and transition layers on the lattice
level on the whole lattice (or only its positive part in the case of boundary layers)
with minimal configurations as conditions at infinity. To this end we introduce
the energy densities below. Note that the energies do not depend only on z, but
we have to take into account also a possible ‘shift’ since it may occur that it is
energetically convenient not to match the minimal configuration exactly but its
translation by a constant (which gives the same bulk contribution). Note that such
a fixed translation is lost in the passage to the continuum.

Let z = (z1, z2) ∈ R2, φ, l ∈ R. The right-hand side boundary layer energy of
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z with shift φ is

B+(z, φ) = inf
N∈N

min
{

1
2ψ1(u1 − u0) +

∑
i≥0

(
ψ2

(
ui+2−ui

2

)
+ 1

2

(
ψ1

(
ui+2 − ui+1

)
+ ψ1

(
ui+1 − ui

))
− ψ0

(
z1+z2

2

))
:

u : N → R, u(0) = 0, ui = uiz − φ if i ≥ N
}
.

The left-hand side boundary layer energy of z with shift φ is

B−(z, φ) = inf
N∈N

min
{

1
2ψ1(u−1 − u0) +

∑
i≤0

(
ψ2

(
ui−ui−2

2

)
+ 1

2

(
ψ1

(
ui − ui−1

)
+ ψ1

(
ui−1 − ui−2

))
− ψ0

(
z1+z2

2

))
:

u : −N → R, u(0) = 0, ui = uiz + φ if i ≤ −N
}
.

Let z′ = (z′1, z
′
2) ∈ R2. The (crease) transition energy between z and z′ with

shift φ is

C(z, z′, φ) = inf
N∈N

min
{

1
2ψ1(u0 − u−1) +

∑
i≤−1

(
ψ2

(
ui+2−ui

2

)
+ 1

2

(
ψ1

(
ui+2 − ui+1

)
+ ψ1

(
ui+1 − ui

))
− ψ0

(
z1+z2

2

))
+ 1

2ψ1(u1 − u0) +
∑
i≥0

(
ψ2

(
ui+2−ui

2

)
+ 1

2

(
ψ1

(
ui+2 − ui+1

)
+ ψ1

(
ui+1 − ui

))
− ψ0

(
z′1+z

′
2

2

))
:

u : Z → R, ui = uiz + φ1 if i ≤ −N
ui = uiz′ + φ2 if i ≥ N, φ = φ1 − φ2

}
.

Remark 2.1 Note that B+(z, φ) = B−(z,−φ). In the case of affine minimal-
energy configurations, which is to say when #Mz = #Mz′ = 1, we often have a
simpler description of the limit. We introduce a slightly different notation for this
case. If z = (z, z) and z′ = (z′, z′) we set

B±(z, φ) = B±(z, φ) and C(z, z′, φ) = C(z, z′, φ).

Remark 2.2 If ψ1, ψ2 are such that ψ0 ∈ C1(R), then it can be easily shown
that, for all z, z′ ∈ R2, B+, B− and C are shift independent, thus it is possible to
rewrite the previous energies as follows

B+(z) = inf
N∈N

min
{

1
2ψ1(u1 − u0) +

∑
i≥0

(
ψ2

(
ui+2−ui

2

)
+ 1

2

(
ψ1

(
ui+2 − ui+1

)
+ ψ1

(
ui+1 − ui

))
− ψ0

(
z1+z2

2

))
:

u : N → R,
u(0) = 0, (ui+1

1 − ui1) = z1, (ui+1
2 − ui2) = z2 if i ≥ N

}
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B−(z) = inf
N∈N

min
{

1
2ψ1(u−1 − u0) +

∑
i≤0

(
ψ2

(
ui−ui−2

2

)
+ 1

2

(
ψ1

(
ui − ui−1

)
+ ψ1

(
ui−1 − ui−2

))
− ψ0

(
z1+z2

2

))
:

u : −N → R,
u(0) = 0, (ui+1

1 − ui1) = z1, (ui+1
2 − ui2) = z2 if i ≤ −N

}
C(z, z′) = inf

N∈N
min

{
1
2ψ1(u0 − u−1) +

∑
i≤−1

(
ψ2

(
ui+2−ui

2

)
+ 1

2

(
ψ1

(
ui+2 − ui+1

)
+ ψ1

(
ui+1 − ui

))
− ψ0

(
z1+z2

2

))
+ 1

2ψ1(u1 − u0) +
∑
i≥0

(
ψ2

(
ui+2−ui

2

)
+ 1

2

(
ψ1

(
ui+2 − ui+1

)
+ ψ1

(
ui+1 − ui

))
− ψ0

(
z′1+z

′
2

2

))
:

u : Z → R,
(ui+1

1 − ui1) = z1, (ui+1
2 − ui2) = z2 if i ≤ −N

(ui+1
1 − ui1) = z′1, (ui+1

2 − ui2) = z′2 if i ≥ N
}
.

Remark 2.3 By the previous two remarks we observe that, in the case #Mz = 1,
if ψ1, ψ2 are such that ψ0 ∈ C1(R), then B+(z) = B−(z). Moreover, by the formula
defining B± one easily gets that, set z = (z, z), if z is a minimum point for ψ1,
then B±(z) = 1

2 minψ1.

3 Γ-convergence for superlinear growth densities

3.1 Zero-order Γ-limit

In this section we give a description of the (zero-order) Γ-limit of the sequence
En showing that the result by Braides, Gelli and Sigalotti [15] can be extended
to Dirichlet and periodic boundary conditions. We have to take some extra care
in that we do not assume that our potentials are everywhere finite. For the sake
of simplicity, and without losing in generality, we will suppose ψ1, ψ2 to be non
negative.

Theorem 3.1 (Zero order Γ-limit - Dirichlet boundary data) Let ψ1, ψ2 :
R → [0,+∞] be Borel functions such that the following hypotheses hold:

[A1] dom ψ1 = dom ψ2 is an interval of R,
[A2] ψ1 and ψ2 are lower semicontinuous on their domain,
[A3] lim|z|→+∞

ψ1(z)
|z| = +∞.

Then the Γ-limit of Eln with respect to the L1-topology is given by

El(u) =


∫ L

0

ψ∗∗0 (u′(t))dt u ∈W 1,1(0, L), u(0) = 0, u(L) = l

+∞ otherwise

on L1(0, L).
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Remark 3.2 It is possible to weaken hypothesis [A1] supposing that dom ψ1 =⋃
iAi where Ai is an interval of the real line. In this case some extra condition is

needed. For example, one can suppose that, if z ∈ dom ψ0 and z1, z2 are optimal
for z in the sense of (2.2), then z1, z2 ∈ Ai and that dom ψ2 contains the convex
hull of dom ψ1.

Proof of Theorem 3.1. In the following we suppose that L = 1. Let un → u in
L1(0, 1) and be such that supnEln(un) < +∞, then, up to subsequences un ⇀ u
weakly in W 1,1(0, 1) and u(0) = 0, u(1) = l. Moreover

lim inf
n

Eln(un) ≥
∫

(0,1)

ψ∗∗0 (u′(t)) dt.

To prove the Γ- lim sup inequality we consider two cases:

(a) l is an internal point of dom ψ0, (b) l ∈ ∂dom ψ0.

In case (a) we use a density argument. Let u be such that El(u) < +∞. Then
u′(t) ∈ domψ0 for a.e. t ∈ (0, 1). Without loss of generality we may suppose that
domψ0 = [0,+∞) or domψ0 = (0,+∞). If u′ ≥ c > 0 the density argument is
easy as it is possible to construct a sequence of piecewise affine functions (un)
such that u′n ≥ c

2 > 0, un → u in W 1,1(0, 1) and limn

∫ 1

0
ψ∗∗0 (u′n) =

∫ 1

0
ψ∗∗0 (u′).

If otherwise inf u′ = 0, then |{t : u′(t) > l}| 6= 0 and η > 0 exists such that
|{t : l + η < u′(t) < 1

η}| > 0. Let uT ∈ W 1,∞(0, 1) be such that uT (0) = 0 and
u′T = u′ ∨ T , and let

vT (t) = uT (t) + cT

∫ t

0

χ{t: u′∈(l+η, 1η )} where cT =
l − uT (1)

|{t : l + η < u′ < 1
η}|

.

Observe that limT→0+ cT = 0. We have that vT ∈W 1,∞(0, 1), vT (0) = 0, vT (1) = l
and that, for T → 0+, vT → u in W 1,1(0, 1). By lower semicontinuity we have

lim inf
T→a

∫
(0,1)

ψ∗∗0 (v′T (t)) dt ≥
∫

(0,1)

ψ∗∗0 (u′(t)) dt.

Moreover ∫
(0,1)

ψ∗∗0 (v′T ) dt =
∫

{t: u′≤T}

ψ∗∗0 (T ) dt+
∫

{t: T<u′≤l+η}

ψ∗∗0 (u′) dt

+
∫

{t: l+η≤u′≤ 1
η }

ψ∗∗0 (u′ + cT ) dt+
∫

{t: u′> 1
η }

ψ∗∗0 (u′) dt. (3.1)

Observe that, thanks to the uniform continuity of ψ∗∗0 on compact sets, we have

lim
T→0+

∫
{t: l+η≤u′≤ 1

η }

ψ∗∗0 (u′ + cT ) dt =
∫

{t: l+η≤u′≤ 1
η }

ψ∗∗0 (u′) dt. (3.2)
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To pass to the limit in the equality (3.1) we need to consider the following two
cases:

(i) lim
T→0+

ψ∗∗0 (T ) = +∞, (ii) lim
T→0+

ψ∗∗0 (T ) < +∞.

In case (i), for T small enough we have that ψ∗∗0 (T ) ≤ ψ∗∗0 (u′(t)) for a.e. t such
that u′(t) ≤ T , hence ∫

{t: u′≤T}

ψ∗∗0 (T ) dt ≤
∫

{t: u′≤T}

ψ∗∗0 (u′) dt.

In case (ii) we have that ψ∗∗0 is uniformly continuous in [0, 1
η ]. Hence, passing to

the limit as T → 0+ in (3.1), thanks to (3.2) we finally have that

lim sup
T→0+

∫
(0,1)

ψ∗∗0 (v′T (t)) dt ≤
∫

(0,1)

ψ∗∗0 (u′(t)) dt. (3.3)

Thanks to (3.3) and a density argument it suffices to prove the Γ- lim sup inequality
for u(t) piecewise affine. For the sake of simplicity we prove it for u(t) = zt with z
such that ψ∗∗0 (z) = ψ0(z) as the general case can be easily obtained by a convexity
argument. Thanks to hypothesis [A2] there exist z = (z1, z2) ∈ Ml. Setting un =
uz,n as in (2.3), then un → u in L1(0, 1) and limnEn(un) =

∫
(0,1)

ψ0(u′) dt. Defining

vn(t) =

un(t) if t ∈ [0, 1− λn]

un(1− λn) +
(l − un(1− λn)

λn
(t− 1 + λn) if t ∈ [1− λn, 1]

then vn(0) = 0, vn(1) = z and it holds

En(un)− En(vn) ≤ λn|ψ2(z)− ψ2(
z + z2

2
)|+ λn|ψ1(z1)− ψ1(z)|.

Thanks to hypotheses [A1] we have that

lim
n

(En(un)− En(vn)) = 0,

thus proving that vn is the recovery sequence for our problem.
In case (b), observing that ψ∗∗0 (l) = ψ0(l) and that u(t) = lt, the proof is easily

obtained as the boundary condition is automatically satisfied for un = uz,n when
z1 = z2 = l.

Remark 3.3 Observe that in the previous proof the construction of vn is simpli-
fied in the case of even lattices.

We now state the analog result in the periodic case. Set

An(R) := {u : R → R : u ∈ C(R), u(t) is affine for t ∈ (i, i+1)λn for all i ∈ Z},
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let E#,l
n (u) : An(R)→ [0,+∞] be defined as

E#,l
n (u) =


n−1∑
i=0

λnψ1

(ui+1 − ui

λn

)
+
n−1∑
i=0

λnψ2

(ui+2 − ui

2λn

)
if u ∈ A#,l

n (0, L)

+∞ otherwise,

where A#,l
n (0, L) := {u ∈ An(R) : u((i + n)λn) = u(iλn) + l} (i.e., u(t) are

L−periodic perturbation of the affine function l
L t ).

Theorem 3.4 (Zero order Γ-limit - Periodic boundary data) In the hypothe-
ses of Theorem 3.1 the Γ-limit of E#,l

n with respect to the L1
loc-topology is given

by

E#,l(u) =


∫ L

0

ψ∗∗0 (u′(t)) dt if u ∈W 1,1
#,l(0, L)

+∞ otherwise

on L1
loc(R), where W 1,1

#,l(0, L) := {u ∈W 1,1
loc (R) : u(t)− lt is L periodic}.

Proof. Supposing that L = 1, let un → u in L1
loc(R) such that supnE#,l

n (un) <
+∞. Then, up to subsequences, un ⇀ u weakly in W 1,1

loc (R) and a.e. in every
compact set of R. Thus

u(x+ 1)− u(x) = lim
n

(un(x+ 1)− un(x)) = lim
n

(un([x] + 1)− un([x])) = l

and then u ∈ W 1,1
#,l(0, 1). The thesis is easily obtained by arguing as in the proof

of Theorem 3.1.

3.2 First-order Γ-limit

In this section we compute the first-order Γ-limit of En under periodic or Dirich-
let type boundary conditions, and show the appearance of phase transitions and
boundary terms in the limit energy. Interfacial energies will appear in the case
when ψ0 is a non-convex function. Our model case is when ψ0 is a double-well
potential with two minimum points (in particular there is only one ‘interval of
non-convexity’), and each minimum point z possesses only one (in the trivial case
(z, z)) or two (i.e., (z1, z2) and (z2, z1) with z1 6= z2) minimal-energy configura-
tion. We nevertheless treat a more general case, for which some hypotheses (that
are always satisfied except for ‘degenerate’ cases) must be made clear as follows:

[H1](discreteness of the energy states)

#({x ∈ R : ψ0(x) = ψ∗∗0 (x)} ∩ {x ∈ R : ψ0 is affine}) < +∞.

This condition is necessary in order to deal with a finite number of accessible
energy states;
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[H2] (finiteness of minimal energy configurations) for every α ∈ R such that
ψ0(α) = ψ∗∗0 (α)

#Mα < +∞;

[H3] (compatibility of minimal energy configurations) for every α, β ∈ R
with α 6= β, such that ψ0(α) = ψ∗∗0 (α) and ψ0(β) = ψ∗∗0 (β) and for every
zα = (zα1 , z

α
2 ) ∈ Mα and zβ = (zβ1 , z

β
2 ) ∈ Mβ it holds

zαi 6= zβj i, j ∈ {1, 2}.

This condition is necessary in order to have a non-zero surface energy for the
transition from α to β;

[H4] (continuity and growth conditions) ψ1, ψ2 : R → [0,+∞] are Lipschitz
functions such that

ψ1(z) ≥ mz + q

for some m, q ∈ R with m 6= 0 (note that m is not required to be positive) and
that l is such that

lim
|z|→+∞

ψ0(z)− pz = +∞ for all p ∈ ∂ψ∗∗0 (l);

[H5] (non-degeneracy for the boundary datum) l is such that

lim
|z|→+∞

ψ1(z)− pz = +∞ for all p ∈ ∂ψ∗∗0 (l);

[H6] (finiteness of the intervals of non-convexity) l is such that N(l) < +∞
(N(l) defined as in (2.3)).

The following compactness result states that functions un such that Eln(un) =
minEl +O(λn) locally have microscopic oscillations close to minimal-energy con-
figurations belonging to Ml, except for a finite number of interactions that con-
centrate on a finite set S in the limit.

Proposition 3.5 (Compactness - Dirichlet boundary data) Suppose that hy-
potheses [H1]–[H6] hold. If {un} is a sequence of functions such that

sup
n
E1,l
n (un) = sup

n

Eln(un)−minEl

λn
< +∞ (3.4)

then there exists a set S ⊂ (0, L) with #S < +∞ such that, up to subsequences,
un converges to u = (u1, u2) in W 1,∞

loc ((0, L) \S) where u1, u2 are piecewise-affine
functions and u1(L) + u2(L) = 2l. Moreover u′(t) ∈ Ml for a.e. t ∈ (0, L) and
S(u′) = S(u′1) ∪ S(u′2) ⊆ S.

Proof. For simplicity of notation we can suppose that L = 1 and that n is even,
the proof being analogous in the general case.

Set
ψ̃1(z) = ψ1(z)−

m

2
z,
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(m as in [H4]) we have that

ψ̃1(z) ≥ c(|z| − 1) (3.5)

for some c > 0. Thus we have

+∞ > En(un) ≥
n−1∑
i=0

λnψ1

(
ui+1
n − uin
λn

)
=

n−1∑
i=0

λnψ̃1

(
ui+1
n − uin
λn

)
+
m

2

n−1∑
i=0

(ui+1
n − uin)

=
n−1∑
i=0

λnψ̃1

(
ui+1
n − uin
λn

)
+
m

2
l.

Then, by the definition of even and odd interpolations, we have

+∞ > 2
n−1∑

i=0, even

λnψ̃1

(
ui+1
n − uin
λn

)
+ 2

n−1∑
i=0, odd

λnψ̃1

(
ui+1
n − uin
λn

)

=
n−1∑
i=0

λnψ̃1

(
ui+1

1,n − ui1,n
λn

)
+
n−1∑
i=0

λnψ̃1

(
ui+1

2,n − ui2,n
λn

)
=

∫ 1

0

ψ̃1(u′1,n(t)) dt+
∫ 1

0

ψ̃1(u′2,n(t)) dt.

Thanks to (3.5) we get, for h ∈ {1, 2}∫ 1

0

|u′h,n(t)| dt < +∞. (3.6)

Let {Jj}, {Kj} be two families of intervals of the real line where ψ∗∗0 is, respec-
tively, a straight line or a strictly convex function, satisfying

∂ψ∗∗0 (x) 6= ∂ψ∗∗0 (y) for all x ∈ Jj , y ∈ Jj+1

Kj , Kj+1 are not contiguous,

where we have denoted by ∂ψ∗∗0 (x) the sub-differential of ψ∗∗0 in x. Note that, by
the growth conditions on ψ0, Jj is a bounded interval. Suppose that l ∈ Jj for
some j and that p(l) ∈ ∂ψ∗∗0 (l). We define rj(x) = p(l)(x− l)+ψ∗∗0 (l), the straight
line such that ψ∗∗0 (x) = rj(x) for all x ∈ Jj . Since minEl = ψ∗∗0 (l), by (3.4) we
get

C ≥ E1,l
n (un) =

n−2∑
i=0

(
ψ2

(ui+2
n − uin

2λn

)
+

1
2

(
ψ1

(ui+2
n − ui+1

n

λn

)
+ ψ1

(ui+1
n − uin
λn

))
− ψ∗∗0 (l)

)
+

1
2

(
ψ1

(unn − un−1
n

λn

)
+ ψ1

(u1
n − u0

n

λn

))
− ψ∗∗0 (l)
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=
n−2∑
i=0

E in(un) +
1
2

(
ψ1

(unn − un−1
n

λn

)
+ψ1

(u1
n − u0

n

λn

)
− rj

(unn − un−1
n

λn

)
− rj

(u1
n − u0

n

λn

))
,

where we have set

E in(un) = ψ2

(ui+2
n − uin

2λn

)
+

1
2

(
ψ1

(ui+2
n − ui+1

n

λn

)
+ψ1

(ui+1
n − uin
λn

))
−rj

(ui+2
n − uin

2λn

)
.

Thanks to the continuity of ψ1(z) and rj(z) and to hypothesis [H5], we have that
ψ1(z)−rj(z) has a finite minimum since lim|z|→+∞(ψ1(z)−rj(z)) = +∞. It follows
that

n−2∑
i=0

E in(un) ≤ C. (3.7)

We infer that, for every η > 0, if we define In(η) := {i ∈ {0, 1, . . . , n − 2} :
E in(un) > η}, then

sup
n

#In(η) ≤ C(η) < +∞.

Let i 6∈ In(η); then by (3.7)

0≤ψ2

(ui+2
n − uin

2λn

)
+

1
2

(
ψ1

(ui+2
n − ui+1

n

λn

)
+ψ1

(ui+1
n − uin
λn

))
−ψ0

(ui+2
n − uin

2λn

)
≤ η

0≤ψ0

(ui+2
n − uin

2λn

)
− rj

(ui+2
n − uin

2λn

)
≤ η .

Let ε = ε(η) be defined so that if

0 ≤ ψ0(z)− rj(z) ≤ η,

0 ≤ ψ2(z) +
1
2

(
ψ1(z1) + ψ1(z2)

)
− ψ0(z) ≤ η with z1 + z2 = 2z,

then
dist ((z1, z2),Ml) ≤ ε(η).

Chosen η > 0 such that

2ε(η) < min{|z′ − z′′|, z′, z′′ ∈ Ml},

we deduce that, if i− 1, i 6∈ In(η) then there exists z ∈ Ml such that∣∣∣(ui+1
n − uin
λn

,
ui+2
n − ui+1

n

λn

)
− z
∣∣∣ ≤ ε

and ∣∣∣(uin − ui−1
n

λn
,
ui+1
n − uin
λn

)
− z
∣∣∣ ≤ ε.
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Hence, there exists a finite number of indices 0 = i1 < i2 < . . . < iNn = n such
that for all k = 1, 2, . . . , Nn there exists znk = (zn1,k, z

n
2,k) ∈ Ml such that for all

i ∈ {ik−1 + 1, ik−1 + 2, . . . , ik − 1} we have∣∣∣(ui+1
n − uin
λn

,
ui+2
n − ui+1

n

λn

)
− znk

∣∣∣ ≤ ε.

Then, by the definitions of even and odd interpolations it can be easily seen that∣∣∣ui+1
1,n − ui1,n

λn
− zn1,k

∣∣∣ ≤ ε i ∈ {ik−1 + 2, ik−1 + 3, . . . , ik − 1},∣∣∣ui+1
2,n − ui2,n

λn
− zn2,k

∣∣∣ ≤ ε i ∈ {ik−1 + 1, ik−1 + 2, . . . , ik − 2}. (3.8)

Let {j1, j2, . . . , jMn} be the maximal subset of 0 = i1 < i2 < . . . < iNn = n defined
by the requirement that if znjk ∈ Mβ then znjk+1 ∈ Mγ with β 6= γ and Mβ ,Mγ ⊂
Ml. Thanks to (3.4) there exists C(η) > 0 such that E1

n(un) ≥ C(η)Mn. Thus, up
to further subsequences, we can suppose that Mn = M , znjk = zk = (z1,k, z2,k) and
that xnjk → xk. Fix δ, set S =

⋃
k

xk and Sδ =
⋃
k

(xk − δ, xk + δ). Then, by (3.8) we

get
sup

t∈(0,1)\Sδ

|u′s,n(t)− zs,k| ≤ ε s ∈ {1, 2}.

The previous estimates, together with (3.6) ensure that un is an equicontinuous
and equibounded sequence in (0, 1)\Sδ. Thus, thanks to the arbitrariness of δ, up to
passing to a further subsequence (not relabelled), un converges in W 1,∞

loc ((0, 1)\S)
to a function u such that u′(t) ∈ Ml a.e. t ∈ (0, 1). Moreover S(u′) ⊆ S.

To prove that u1 and u2 are piecewise affine functions, we need to prove that
they are continuous. Suppose by contradiction that S(u1) 6= ∅. Then, for n large
enough,

for all M ∈ N there exits i :
∣∣∣ui+1

1,n − ui1,n
λn

∣∣∣ > M. (3.9)

Then, by (3.4), we have that, for some j

C ≥
n−2∑

i=0, even

(
ψ2

(ui+2
n − uin

2λn

)
+

1
2

(
ψ1

(ui+2
n − ui+1

n

λn

)
+ ψ1

(ui+1
n − uin
λn

))
−rj

(ui+2
n − uin

2λn

))
.

Then, for i even, by the definition of even and odd interpolations, we get

C ≥ 1
2

(
ψ1

(ui+2
2,n − ui+1

2,n

λn

)
+ψ1

(ui+1
1,n − ui1,n

λn

))
−rj

(ui+2
2,n − ui+1

2,n + ui+1
1,n − ui1,n

2λn

)
.

Since rj(z) = pz + q with p ∈ ∂ψ∗∗0 (l), the previous estimate gives

C ≥ 1
2

(
ψ1

(ui+2
2,n − ui+1

2,n

λn

)
−p
(ui+2

2,n − ui+1
2,n

λn

)
+ψ1

(ui+1
1,n − ui1,n

λn

)
−p
(ui+1

1,n − ui1,n
λn

))
.
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By the previous inequality, we get the contradiction thanks to (3.9) and to hy-
pothesis [H5].

The same argument can be exploited also in the case l ∈ Kj for some j.

Remark 3.6 (Boundary terms blow-up) Observe that, if hypothesis [H5] is
dropped, it is possible to produce an example of ψ1 and ψ2 and a sequence (un)
equibounded in energy such that

lim
n

1
2

(
ψ1

(unn − un−1
n

λn

)
+ψ1

(u1
n − u0

n

λn

)
−rj

(unn − un−1
n

λn

)
−rj

(u1
n − u0

n

λn

))
= −∞

(3.10)

preventing us from deducing inequality (3.7). In fact if

ψ1(z) = |z| − 1, ψ2(z) =


−2z − 6 z ∈ (−∞,−1],
5z + 1 z ∈ (−1, 0],
−z + 1 z ∈ (0, 1],
4z − 4 z ∈ (1,+∞),

we have that

ψ∗∗0 (z) =
{
−3z − 7 z ∈ (−∞,−1],
2z − 2 z ∈ (−1,+∞).

For l = 1 we have that ∂ψ∗∗0 (l) = {2} and that

lim
z→∞

ψ1(z)− 2z = −∞,

thus not fulfilling hypothesis [H5]. The sequence

u0
n = 0, ui+1

n − uin =


√
λn i = 0,

λn i = 1, 2, . . . , n− 2,
2λn −

√
λn i = n− 1,

satisfies (3.10) and is such that E1,l
n (un) = 0.

The first Γ-limit is given in terms of the variables u (giving microscopic oscil-
lations) and s (the shift). It describes transitions between different phases through
the term C and with the boundary through the terms B±. The final form of the
limit is obtained by optimizing in the shift term, taking care of the compatibil-
ity restrictions due to the boundary conditions. Note the difference in the limit
boundary conditions in the even and odd cases.

Theorem 3.7 (First order Γ-limit - Dirichlet boundary data) Suppose that
hypotheses [H1]–[H6] hold and let E1,l

n : An(0, L) → [0,+∞] be defined by

E1,l
n (u) =

Eln(u)−minEl

λn
.

We then have:
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(Case n even) E1,l
n Γ-converges with respect to the L∞-topology to

E1,l
even(u) = inf

{
E1,l
even(u, s) : s : S(u′) ∪ {0, L} → R,

∑
t∈S(u′)∪{0,L}

s(t) = l
}

where

E1,l
even(u, s) =


∑

t∈S(u′)

C(u′(t−),u′(t+), s(t)) +B+(u′(0), s(0)) +B−(u′(L), s(L)),
if u′ ∈ PC(0, L), u′ ∈ Ml, u1(L) + u2(L) = 2l

+∞ otherwise

on W 1,∞(0, L).

(Case n odd) E1,l
n Γ-converges with respect to the L∞-topology to

E1,l
odd(u) = inf

{
E1,l
odd(u, s) : s : S(u′) ∪ {0, L} → R,

∑
t∈S(u′)∪{0,L}

s(t) = l
}

where

E1,l
odd(u, s) =


∑

t∈Su′

C(u′(t−),u′(t+), s(t)) +B+(u′(0), s(0)) +B−(u′(L), s(L))
if u′ ∈ PC(0, L), u′ ∈ Ml, u1(L) + u2(L) = 2l

+∞ otherwise

on W 1,∞(0, L).

Proof. The general case being dealt with similarly, in the following we will sup-
pose that n is even, L = 1 and, using the notation of the previous proof, that
l ∈ Jj for some j.

Γ-liminf inequality. Let un → u in L∞(0, 1) be such that E1,l
n (un) < +∞.

Then, thanks to Proposition 3.5 there exist M ∈ N, α1, α2, . . . , αM ∈ Ml and
0 = x0 < x1 < . . . < xM = 1 such that

u′n(t) → zαj t ∈ (xj−1, xj) j ∈ {1, 2, . . . ,M}. (3.11)

For i ∈ {0, 1, . . . ,M}, let {kin}n be a sequence of indices such that k0
n = 0 and

lim
n

(
kin −

i∑
j=1

xj − xj−1

λn

)
= 0, (3.12)

and let {hin}n be a sequence of indices such that

lim
n
λnh

i
n =

xi − xi−1

2
.

Since ψ∗∗0 is affine in Jj , we have that

nψ∗∗0 (l) = nψ∗∗0

( M∑
j=1

αj(xj − xj−1)
)

=
M∑
j=1

n(xj − xj−1)ψ∗∗0 (αj)
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=
M∑
j=1

kj
n−1∑

i=kj−1
n

n
(xj − xj−1)
(kjn − kj−1

n )
ψ0(αj)

=
M−1∑
j=1

kj
n−1∑

i=kj−1
n

ψ0

(ui+2
n − uin

2λn

)
+

n−2∑
i=kM−1

n

ψ0

(ui+2
n − uin

2λn

)
+ ψ0(αM ) +Rn,

with

Rn =
M−1∑
j=1

kj
n−1∑

i=kj−1
n

((
n

(xj − xj−1)
(kjn − kj−1

n )

)
ψ0(αj)− ψ0

(ui+2
n − uin

2λn

))

+
n−2∑

i=kM−1
n

(
n

(xM − xM−1)
(kMn − kM−1

n )

)(
ψ0(αM )− ψ0

(ui+2
n − uin

2λn

))
+
(
n

(xM − xM−1)
(kMn − kM−1

n )
− 1
)
ψ0(αM ).

Thanks to Proposition 3.5, (3.12) and to the continuity of ψ0 we have that Rn → 0.
To get the Γ-liminf inequality it is useful to rewrite the energy as follows:

E1
n(un) =

n−2∑
i=0

ψ2

(ui+2
n − uin

2λn

)
+
n−1∑
i=0

ψ1

(ui+1
n − uin
λn

)
−
M−1∑
j=1

kj
n−1∑

i=kj−1
n

ψ0

(ui+2
n − uin

2λn

)
−

n−2∑
i=kM−1

n

ψ0

(ui+2
n − uin

2λn

)
− ψ0(αM )−Rn

= E1
n(un, h

1
n) +

M−1∑
j=1

E1
n(un, h

j
n, h

j+1
n ) + E1

n(un, h
M
n )−Rn (3.13)

where we have set

E1
n(un, h

1
n) =

h1
n−1∑
i=0

(
ψ2

(ui+2
n − uin

2λn

)
+ ψ1

(ui+1
n − uin
λn

)
− ψ0

(ui+2
n − uin

2λn

))
,

E1
n(un, h

j
n, h

j+1
n ) =

hj+1
n −1∑
i=hj

n

(
ψ2

(ui+2
n − uin

2λn

)
+ ψ1

(ui+1
n − uin
λn

)
− ψ0

(ui+2
n − uin

2λn

))
,

E1
n(un, h

M
n ) =

n−2∑
i=hM

n

(
ψ2

(ui+2
n − uin

2λn

)
+ ψ1

(ui+1
n − uin
λn

)
− ψ0

(ui+2
n − uin

2λn

))
+ψ1

(unn − un−1
n

λn

)
− ψ0(αM ).

As the general case can be obtained by slightly modifying the definition of ũn,

17



in the sequel we will suppose that hjn, k
j
n, h

j
n − kjn, h

j+1
n − kjn are even. Defining

ũin =


uin
λn

if i ∈ {0, 1, . . . , h1
n}

uzα1 (i)− uzα1 (h1
n) +

uh
1
n
n

λn
if i ≥ h1

n,

by the continuity of ψ1 and ψ2, we can find a suitable continuous function ω(ε) :
R → R, ω(0) = 0 such that, as ũin is a test function for the minimum problem
defining B+(u′(0), φ(0)), for any ε > 0, we have, for n large enough,

E1
n(un, h

1
n) =

1
2
ψ1(ũ1

n − ũ0
n) +

∑
i≥0

(
ψ2

( ũi+2
n − ũin

2

)
+

1
2

(
ψ1

(
ũi+2
n − ũi+1

n

)
+ ψ1

(
ũi+1
n − ũin

))
− ψ0

( ũi+2
n − ũin

2

))
+ ω(ε)

≥ B+(u′(0), φ(0)) + ω(ε), (3.14)

where

φ(0) = uzα1 (h1
n)−

u
h1

n
n

λn
.

Exploiting the same argument, for j ∈ {1, 2, . . . ,M − 1}, we can define

ũin =



uzαj (i)− uzαj (hjn − kjn) +
uh

j
n
n

λn
if i ≤ hjn − kjn,

ui+k
j
n

n

λn
if hjn − kjn ≤ i ≤ hj+1

n − kjn,

uzαj+1 (i)− uzαj+1 (hj+1
n − kjn) +

uh
j+1
n
n

λn
if i ≥ hj+1

n − kjn ,

and we have that

E1
n(un, h

j
n, h

j+1
n ) =

1
2
ψ1(ũ0

n − ũ−1
n ) +

∑
i≤−1

(
ψ2

( ũi+2
n − ũin

2

)
+

1
2

(
ψ1

(
ũi+2
n − ũi+1

n + ψ1

(
ũi+1
n − ũin

))
− ψ0

( ũi+2
n − ũin

2

))
+

1
2
ψ1(ũ1

n − ũ0
n) +

∑
i≥0

(
ψ2

( ũi+2
n − ũin

2

)
+

1
2

(
ψ1

(
ũi+2
n − ũi+1

n

)
+ ψ1

(
ũi+1
n − ũin

))
− ψ0

( ũi+2
n − ũin

2

))
+ω(ε)

≥ C(u′(xj−),u′(xj+), φ(xj)) + ω(ε), (3.15)

with

φ(xj) =
u
hj

n
n

λn
− uzαj (hjn − kjn) + uzαj+1 (hj+1

n − kjn)−
u
hj+1

n
n

λn
.
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Finally, with

ũin =


uzαM (i)− uzαM (hMn − n) +

uh
M
n
n

λn
if i ≤ hMn − n,

ui+nn

λn
− l

λn
hMn − n ≤ i ≤ 0,

we obtain

E1
n(un, h

M
n ) =

1
2
ψ1(ũ0

n − ũ−1
n ) +

∑
i≤0

(
ψ2

( ũin − ũi−2
n

2

)
+

1
2

(
ψ1

(
ũin − ũi−1

n

)
+
(
ũi−1
n − ũi−2

n

))
− ψ0

( ũi+2
n − ũin

2

))
+ ω(ε)

≥ B−(u′(1), φ(1)) + ω(ε), (3.16)

where

φ(1) =
u
hM

n
n

λn
− uzαM (hMn − n).

Since we have ∑
t∈S(u′)∪{0,1}

φ(t) = l, (3.17)

we obtain that, thanks to (3.13), (3.14), (3.15) and (3.16),

E1,l
n (un) ≥ B+(u′(0), φ(0))

+
∑

t∈S(u′)

C(u′(t−),u′(t+), φ(t)) +B−(u′(1), φ(1)) + cω(ε)−Rn

≥ inf
{
E1,l
even(u, s) : s : S(u′) ∪ {0, 1} → R,

∑
t∈S(u′)∪{0,1}

s(t) = l
}

+ c ω(ε)−Rn.

Thus, by the arbitrariness of ε, we get

lim inf
n

E1,l
n (un) ≥ inf

{
E1,l
even(u, s) : s : S(u′) ∪ {0, 1} → R,

∑
t∈S(u′)∪{0,1}

s(t) = l
}
.

(3.18)

Γ-limsup inequality. Let u be such that E1,l
even(u) < +∞. Then there exist

M ∈ N, α1, α2, . . . , αM ∈ Ml and 0 = x0 < x1 < . . . < xM = 1 such that
#S(u′) = M − 1 and

u′(t) = zαj t ∈ (xj−1, xj) j ∈ {1, 2, . . . ,M}. (3.19)

Thanks to the boundary conditions on u, we have that
M−1∑
i=1

(xi+1 − xi) = 1. For

ε > 0 let ϕ : S(u′) ∪ {0, 1} → R be such that∑
t∈S(u′)∪{0,1}

ϕ(t) = l,
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∑
t∈S(u′)

C(u′(t−),u′(t+), ϕ(t)) +B+(u′(0), ϕ(0)) +B−(u′(1), ϕ(1))

≤ E1,l
even(u) + ε. (3.20)

Fix η > 0. For j ∈ {1, 2, . . . ,M−1} let v1 = (v1,1, v1,2), vj,j+1 = (vj,j+1,1, vj,j+1,2)
and vM = (vM,1, vM,2) be such that

v0
1 = 0, vi1 = uizα1 − ϕ(0) for i ≥ N,

vij,j+1 =

{
uizαj + φj,j+1

1 for i ≤ −N ,
uizαj+1 + φj,j+1

2 for i ≥ N ,

v0
M = 0, viM = uizαM − ϕ(1) for i ≤ −N,

where

φj,j+1
1 = −

j∑
k=0

ϕ(xk), φj,j+1
2 = −

j+1∑
k=0

ϕ(xk)

and

1
2
ψ1(v1

1 − v0
1) +

∑
i≥0

(
ψ2

(vi+2
1 − vi1

2

)
+

1
2

(
ψ1

(
vi+2
1 − vi+1

1

)
+ ψ1

(
vi+1
1 − vi1

))
− ψ0(α1)

)
≤ B+(u′(0), ϕ(0)) + η,

1
2
ψ1(v0

j,j+1 − v−1
j,j+1) +

∑
i≤−1

(
ψ2

(vi+2
j,j+1 − vij,j+1

2

)
+

1
2

(
ψ1

(
vi+2
j,j+1 − vi+1

j,j+1

)
+ ψ1

(
vi+1
j,j+1 − vij,j+1

))
− ψ0

(zαj

1 + z
αj

2

2

))
+

1
2
ψ1(v1

j,j+1 − v0
j,j+1) +

∑
i≥0

(
ψ2

(vi+2
j,j+1 − vij,j+1

2

)
+

1
2

(
ψ1

(
vi+1
j,j+1 − vij,j+1

)
+ ψ1

(
vi+1
j,j+1 − vij,j+1

))
− ψ0

(zαj+1
1 + z

αj+1
2

2

))
≤ C(u′(xj−),u′(xj+), ϕ(xj)) + η,

1
2
ψ1(v1

M − v0
M ) +

∑
i≤0

(
ψ2

(viM − vi−2
M

2

)
+

1
2

(
ψ1

(
viM − vi−1

M

)
+ ψ1

(
vi−1
M − vi−2

M

))
− ψ0(αM )

)
≤ B−(u′(1), ϕ(1)) + η.
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Consider the sequence of functions (un) defined as follows

uin =


λnvi1 if 0 ≤ i ≤ [x1n]−N ,
λnv

i−[xjn]
j,j+1 + λnDj if [xjn]−N ≤ i ≤ [xj+1n]−N

j ∈ {1, 2, . . . ,M − 1},
λnvi−nM + λnDM if n−N ≤ i ≤ n− 1,
0 if i = n,

where

D1 = −uzα1 (−N) + uzα1 ([x1n]−N),

Dj = −
j−1∑
k=1

uzαk (−N) +
j∑

k=1

uzαk ([xkn]−
j−1∑
h=1

[xhn]−N) j ∈ {2, 3, . . . ,M}.

Then un → u in L∞ and

E(un) ≤ B+(u′(0), ϕ(0)) +
M−1∑
j=1

C(u′(xj−),u′(xj+), ϕ(xj)) +B−(u′(1), ϕ(1))

+R̃n + cη, (3.21)

where

R̃n = ψ2

(v0
M − v−2

M

2

)
+

1
2

(
ψ1(v0

M − v−1
M ) + ψ1(v−1

M − v−2
M )
)

−ψ0

(v0
M − v−2

M

2

)
− ψ2

(unn − un−2
n

2λn

)
− 1

2

(
ψ1(

unn − un−1
n

λn
)

+ψ1(
un−1
n − un−2

n

λn
)
)

+ ψ0

(unn − un−2
n

2λn

)
and, by the continuity of ψ1, ψ2 and ψ0, R̃n → 0. Thanks to (3.20) and (3.21) we
have that

lim sup
n

En(un) ≤ E1,l
even(u) + cη + ε.

We obtain the thesis thanks to the arbitrariness of η and ε.

Remark 3.8 In the case that ψ1, ψ2 are such that ψ0 ∈ C1(R) then, thanks to
Remark 2.2, the first order Γ-limit has no shift minimization formula:

(Case n even)

E1,l
even(u) =


∑

t∈S(u′)

C(u′(t−),u′(t+)) +B+(u′(0)) +B−(u′(L)),
if u′ ∈ PC(0, L), u′ ∈ Ml, u1(L) + u2(L) = 2l,

+∞ otherwise,

(Case n odd)

E1,l
odd(u) =


∑

t∈Su′

C(u′(t−),u′(t+)) +B+(u′(0)) +B−(u′(L)),
if u′ ∈ PC(0, L), u′ ∈ Ml, u1(L) + u2(L) = 2l,

+∞ otherwise.
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Remark 3.9 In the case that

#Mα = 1 for all α ∈ R such that ψ0(α) = ψ∗∗0 (α),

then, by Remark 2.1, the first order Γ-limit does not depend on the parity of the
lattice, or, in formula,

E1,l(u) = inf
{
E1,l(u, s) : s : S(u′) ∪ {0, L} → R,

∑
t∈S(u′)∪{0,L}

s(t) = l
}

where

E1,l(u, s) =


∑

t∈S(u′)

C(u′(t−), u′(t+), s(t)) +B+(u′(0), s(0)) +B−(u′(L), s(L)),
if u′ ∈ PC(0, L), (u′, u′) ∈ Ml, u(0) = 0, u(L) = l,

+∞ otherwise.

The Γ-limit in the periodic case is similar to that with Dirichlet boundary
conditions, except for the absence of boundary terms. Note that in the case of odd
interactions non-uniform minimal-energy configurations are not admissible test
functions, and hence phase transitions may be forced by the periodicity constraints.

Theorem 3.10 (First-order Γ-limit - Periodic boundary data) Suppose that
hypotheses [H1]–[H4] and [H6] hold and let E#,l

1,n : A#,l
n (0, L) → [0,+∞] be defined

by

E#,l
1,n (u) =

E#,l
n (u)−minE#,l

λn
. (3.22)

We then have:

(Case n even) E#,l
1,n Γ-converges with respect to the L∞loc-topology to

E#,l
1 (u) =


∑

t∈S(u′)∩[0,L)

C(u′(t−),u′(t+)), if u′ ∈ PCloc(R), u′ ∈ Ml,
u(t)− lt is L-periodic,

+∞ otherwise

on W 1,∞
loc (R) and u′1(0+) = u′1(L+) and u′2(0+) = u′2(L+).

(Case n odd) The same results hold but u′1(0+) = u′2(L+) and u′2(0+) =
u′1(L+).

Proof. Since the Γ-liminf and the Γ-limsup inequalities are easily deducible from
the proof of Theorem 3.7, we will only prove the compactness result.

In the following, without loss of generality, we suppose L = 1, n even and
l ∈ Jj for some j. Moreover, with the same notation of the previous proposition,
we define rj to be the straight line such that ψ∗∗0 (x) = rj(x) for all x ∈ Jj . Let
un → u in L∞loc(R) be such that supnE

#,l
1,n (un) < +∞. By the definition of E#,l

n,1 ,
we have that un is such that supnE#,l

n (un) < +∞, and then, as in Theorem 3.4,

u1(t) + u2(t)
2

− lt = u(t)− lt is 1-periodic.
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Thanks to the periodicity assumption, we have that

un+1
n − unn
λn

=
u1
n − u0

n

λn

and then

+∞ > E#,l
n,1 (un) =

n−1∑
i=0

(
ψ1

(ui+1
n − uin
λn

)
+ ψ2

(ui+2
n − uin

2λn

)
− ψ∗∗0 (l)

)
=

n−1∑
i=0

(
ψ2

(ui+2
n − uin

2λn

)
+

1
2

(
ψ1

(ui+2
n − ui+1

n

λn

)
+ ψ1

(ui+1
n − uin
λn

))
− ψ∗∗0 (l)

)
=

n−1∑
i=0

E in(un) (3.23)

where

E in(un) = ψ2

(ui+2
n − uin

2λn

)
+

1
2

(
ψ1

(ui+2
n − ui+1

n

λn

)
+ψ1

(ui+1
n − uin
λn

))
−rj

(ui+2
n − uin

2λn

)
.

Thanks to (3.23) we can deduce, as in the proof of Proposition 3.5, that there
exists S ⊂ (0, 1] with #(S) < +∞ such that, up to subsequences, un → u in
W 1,∞

loc (R \ (S + k)), k ∈ Z and that u′ ∈ Ml. By the definition of even and odd
interpolations, thanks to the periodicity hypothesis, we have

u1
1,n − u0

1,n

λn
=
u1
n − u0

n

λn
=
un+1
n − unn
λn

=
un+1

1,n − un1,n
λn

,

u1
2,n − u0

2,n

λn
=
u2
n − u1

n

λn
=
un+2
n − un+1

n

λn
=
un+1

2,n − un2,n
λn

.

Passing to the limit in the previous expressions we get that u′1(0+) = u′1(1+) and
u′2(0+) = u′2(1+).

Remark 3.11 We observe that, in contrast with Theorem 3.7, here, the absence
of boundary layer terms in the limit, allowed us to skip hypothesis [H5] to obtain
inequality (3.23).

Remark 3.12 Note that in the case n is odd, if u′ ≡ (z1, z2) in (0, L) with z1 6= z2,
then kL ∈ S(u′) for all k ∈ Z.

4 Γ-convergence for Lennard-Jones type densities

In this section we deal with the zero- and first-order Γ-limit, under periodic and
Dirichlet boundary conditions, of energies Hn of the form

Hn(u) =
n−1∑
i=0

λnJ1

(ui+1 − ui

λn

)
+
n−2∑
i=0

λnJ2

(ui+2 − ui

2λn

)
,
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where J1 and J2 are Lennard-Jones type potentials. Our model case being the
standard (6, 12) Lennard-Jones potential, we will treat more general energy densi-
ties. With the same notation of the previous section we define H#,l

n (u) : An(R)→
[0,+∞] as

H#,l
n (u) =

{
Hn(u) if u ∈ A#,l

n (0, L)
+∞ otherwise

and H l
n(u) : An(0, L)→ [0,+∞] as

H l
n(u) =

{
Hn(u) if u(0) = 0, u(L) = l
+∞ otherwise.

(4.1)

We also set

J0(z) = J2(z) +
1
2

inf{J1(z1) + J1(z2) : z1 + z2 = 2z},

BV #,l(0, L) = {u ∈ BVloc(R) : u(t)− lt is L periodic},
BV l(0, L) = {u ∈ BV (0, L) : u(0+) = 0, u(L−) = l},

and use the analogous notation for SBV spaces.
Adapting the proof of Theorem 3.2 in [12] it is possible to prove the following

two theorems which are the analogue of Theorem 3.4 and Theorem 3.1.

Theorem 4.1 (Zero order Γ-limit - Periodic boundary data) Let ψj : R →
(−∞,+∞] be Borel functions bounded below. Suppose that there exists a convex
function Ψ : R → [0,+∞] such that

lim
z→−∞

Ψ(z)
|z|

= +∞

and there exist constants c1, c2 > 0 such that

c1(Ψ(z)− 1) ≤ Jj(z) ≤ c2 max{Ψ(z), |z|} for all z ∈ R, j = 1, 2,

then the Γ-limit of H#,l
n with respect to the L1

loc-topology is given by

H#,l(u) =


∫ L

0

J∗∗0 (u′(t)) dt if u ∈ BV #,l(0, L), Dsu > 0

+∞ otherwise

on L1
loc(R), where Dsu denotes the singular part of the measure Du with respect

to the Lebesgue measure.

Theorem 4.2 (Zero order Γ-limit - Dirichlet boundary data) Let ψj : R →
(−∞,+∞] be Borel functions bounded below satisfying the same conditions as in
the previous theorem; then the Γ-limit of H l

n with respect to the L1
loc-topology is

given by

H l(u) =


∫ L

0

J∗∗0 (u′(t)) dt if u ∈ BV l(0, L), Dsu > 0

+∞ otherwise

on L1(0, L).
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In the same spirit of Section 3.2, we now deal with the problem of computing
the first order Γ−limit of Hn in order to describe boundary layer phenomena in
the continuum limit. The following set of hypotheses makes clear what kind of
Lennard-Jones type potentials we will consider in this case:

[H1]LJ(discreteness of the energy states)

#({x ∈ R : J0(x) = J∗∗0 (x)} ∩ {x ∈ R : J0 is affine}) < +∞,

[H2]LJ (finiteness of minimal energy configurations) for every α ∈ R such that
J0(α) = J∗∗0 (α)

#Mα < +∞,

[H3]LJ (compatibility of minimal energy configurations) for every α, β ∈ R
with α 6= β, such that J0(α) = J∗∗0 (α) and J0(β) = J∗∗0 (β) and for every zα =
(zα1 , z

α
2 ) ∈ Mα and zβ = (zβ1 , z

β
2 ) ∈ Mβ it holds

zαi 6= zβj i, j ∈ {1, 2},

[H4]LJ (continuity and growth conditions) J1, J2 : R → (−∞,+∞] are suffi-
ciently smooth functions bounded below such that J0 ∈ C1(R) and there exists a
convex function Ψ : R → [0,+∞] and constants c1, c2 > 0 such that

lim
z→−∞

Ψ(z)
|z|

= +∞,

and

c1(Ψ(z)− 1) ≤ Jj(z) ≤ c2 max{Ψ(z), |z|} for all z ∈ R, j = 1, 2;

[H5]LJ (structure of J1, J2 and J0) the following limits exist:

lim
z→+∞

J1(z) = J1(+∞), lim
z→+∞

J2(z) = J2(+∞) lim
z→+∞

J0(z) = J0(+∞),

J0(z) = min J0 if and only if z = γ, and J0(+∞) > J0(γ);
[H6]LJ (finiteness of the intervals of non-convexity) l is such that N(l) < +∞

(N(l) defined as in (2.3)).
The following compactness result will be used in proving Theorem 4.4. It de-

scribes functions withH#,l
n (un) = minH#,l+O(λn), stating that below the thresh-

old γ they behave as in the Sobolev case and develop no discontinuity. Above the
threshold they may develop a finite number of discontinuities, behaving otherwise
as in the Sobolev case with periodic condition corresponding to γ.

Proposition 4.3 (Compactness - Periodic boundary data) Suppose that hy-
potheses [H1]LJ–[H6]LJ hold. If {un} is a sequence of functions such that

sup
n
H#,l

1,n (un) = sup
n

H#,l
n (un)−minH#,l

λn
< +∞ (4.2)

and there exists t ∈ [0, L) such that supn |un(t)| < +∞, then, up to subsequences,
un → u strongly in L1

loc(R) where u ∈ SBV #,l(0, L) is such that
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(i) #(S(u) ∩ [0, L)) < +∞. In particular

(a) if l ≤ γ then S(u) = ∅,
(b) if l > γ then 0 < #(S(u) ∩ [0, L)) < +∞,

(ii) [us(t)] > 0 s = 1, 2 for all t ∈ S(u),

(iii) #(S(u′) ∩ [0, L)) < +∞,

(iv) u′(t) ∈ Ml a.e. t ∈ (0, L). In particular

(a) if l ≤ γ then u′(t) ∈ M
l
L ,

(b) if l > γ then u′(t) ∈ Mγ .

Proof. To fix the ideas let us suppose that un(0) = 0 and that L = 1. Let us
observe that (4.2) implies that

sup
n
H#,l
n (un) ≤ C < +∞. (4.3)

With the notation so far used, let us set un = (un,1, un,2). Since if un,1 = un,2 it
is possible to prove that un → u strongly in L1

loc(R) and that u ∈ SBV #,l(0, L)
repeating the same proof of Theorem 3.7 in [13] first and then using Theorem 3.1
in [13], we only sketch this part of the proof. For all n ∈ N, let Tn ∈ R be such that
limn Tn = +∞, limn λnTn = 0 and set In := {i ∈ {0, 1, . . . , n− 1} : |ui+1

n − uin| >
λnTn}. Let wn be defined as

wn(t) =


0 if t = 0
un(t) if t ∈ (i, i+ 1)λn, i 6∈ In
un(iλn) if t ∈ (i, i+ 1)λn, i ∈ In

and let vn(t) be an extension of wn(t) given by the following formula vn(t+ k) =
wn(t) + kl for all k ∈ Z. By (4.3), thanks to the growth hypotheses, by arguing as
in [13] (Theorem 3.7), we have that ‖vn‖BVloc(R) ≤ C. Then, up to subsequences
not relabelled, vn → u strongly in L1

loc(R). The same holds true for un since, by
construction, for all compact sets K ⊂ R, limn

∫
K
|un(t)− vn(t)| dt = 0. Set

H1
n(un) =

n−2∑
i=0

(
J0

(ui+2
n − uin

2λn

)
− J0(γ)

)
, (4.4)

by (4.2) we have that supnH1
n(un) ≤ C < +∞. Let us set vin = uin − iλnzγ

and J̃0(z) = J0(z + γ) − J0(γ). We have that the sequence of functionals H1
n

satisfies all the hypotheses of Theorem 3.1 in [13] which implies in particular that
u ∈ SBV #,l(0, L). In the general case, when un,1(t) 6= un,2(t) for some t ∈ [0, 1),
the previous argument need to be modified in order to prove the convergence of
even and odd interpolator functions independently. In this case, observing that

H#,l
n (un) = 1

2

2∑
s=1

E#,l
n,s (un,s), where

E#,l
n,s (un,s) =

n−1∑
i=0

λnJ1

(ui+1
n,s − uin,s
λn

)
+
n−2∑
i=0

λnJ2

(ui+2
n,s − uin,s

2λn

)
,
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we get

sup
n
E#,l
n,s (un,s) ≤ C < +∞. (4.5)

Thus the convergence to u ∈ SBV #,l(0, L) can be now easily proved using the ar-
gument we have exploited before independently for s = 1, 2. By (4.5) and Theorem
4.1 we also get (ii). The proof of (iii) and (iv) can be obtained arguing as in the
proof of Theorem 3.7. Let us prove (ii) in case (a). If l < γ then, thanks to the hy-
pothesis [H5]LJ on J0, we have that for all p ∈ ∂J∗∗0 (l) lim|z|→+∞ J0(z)−pz = +∞
and the claim follows again arguing as in the proof of Theorem 3.10. If l = γ,
by the boundary conditions and (iv), u(t) = u1(t)+u2(t)

2 = γt a.e. t ∈ (0, 1), thus
S(u)∩ [0, 1) = ∅. This, together with (i), for s = 1, 2, implies that S(us)∩ [0, 1) = ∅
and then the claim follows by the definition of S(u).

Let us prove (ii) in the case (b). Arguing as in the proof of Theorem 3.7, set

H1
n(us,n) =

n−2∑
i=0

(
J0

(ui+2
s,n − uis,n

2λn

)
− J0(γ)

)
, (4.6)

by (4.2) we have that supnH1
n(us,n) ≤ C < +∞. Let us set vin = uin − iλnzγ and

J̃0(z − γ) = J0(z) − J0(γ). Observing that Ml = Mγ , vn → u − tzγ strongly in
L1

loc(R). Thus, by Theorem 3.1 in [14], for s = 1, 2 we have

C ≥ lim inf
n

H1
n(us,n) = lim inf

n

n−2∑
i=0

J̃0

(vi+2
s,n − vis,n

2λn

)
≥

∫
(0,1)

F (u′s(t)) dt+
∑

t∈S(us)∩(0,1)

G([us](t), (4.7)

where

F (z) =
{ 0 if z = γ

+∞ otherwise

and

G(w) =

{
J0(+∞)− J0(γ) if w > 0
0 if w = 0
+∞ if w < 0.

By (4.7) and hypothesis [H5]LJ we finally get that

#S(u) = #
2⋃
s=1

S(us) ≤ C < +∞.

The Γ-limit described below takes into account both phase transitions and
discontinuities. Note that the energy of a discontinuity takes into account boundary
layers on both sides of the jump. For simplicity of notation we define

SBV #,l
c (0, L) = {u ∈ SBV #,l(0, L) : (i)-(iv) of Proposition 4.3 hold}. (4.8)
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Theorem 4.4 (First order Γ-limit - Periodic boundary data) Suppose that
hypotheses [H1]LJ − [H6]LJ hold and let H#,l

1,n : A#,l
n (0, L) → [0,+∞] be defined

by

H#,l
1,n (u) =

H#,l
n (u)−minH#,l

λn
. (4.9)

We then have:
(Case n even)

(i) if l ≤ γ

H#,l
1,n Γ-converges with respect to the L∞loc-topology to

H#,l
1 (u) =

{ ∑
t∈S(u′)∩[0,L)

C(u′(t−),u′(t+)), if u ∈ SBV #,l
c (0, L),

+∞ otherwise

on W 1,∞
loc (R), where SBV #,l

c (0, L) is defined in (4.8), and u′1(0+) = u′1(L+)
and u′2(0+) = u′2(L+).

(ii) if l > γ

H#,l
1,n Γ-converges with respect to the L1

loc-topology to

H#,l
1 (u) =


∑

t∈S(u′)\S(u)∩[0,L)

C(u′(t−),u′(t+)) +
∑

t∈S(u)∩[0,L)

BJ(u′(t−),u′(t+)),

if u ∈ SBV #,l
c (0, L),

+∞ otherwise

on L1
loc(R) where

BJ(z, z′) = B+(z) +B−(z′)− 2J0(γ) + 2J2(+∞) + J1(+∞)

and u′1(0+) = u′1(L+) and u′2(0+) = u′2(L+).

(Case n odd) The same results hold but u′1(0+) = u′2(L+) and u′2(0+) = u′1(L+).

Proof. Since the proof is similar to that of Theorem 3.10, we only highlight the
main differences in the case l > γ proving the Γ-liminf inequality for the second
term in the energy.

In the following we will suppose that L = 1 and n is even. Let un → u in
L1

loc(R) be such that supnH
#,l
1,n (un) < +∞. Then, thanks to Proposition 4.3 and

to the translation invariance of the energies, without loss of generality, we can
further suppose that

u(0) = 0, u(1) = l, S(u) ∩ [0, 1) = S(u′) ∩ [0, 1) = {t}.

Let zγ1 , zγ2 ∈ Mγ be such that

u′(t−) = zγ1 , u′(t+) = zγ2
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and let {hn}n be a sequence of indices such that,

λnhn ≤ t and lim
n
λnhn = t. (4.10)

It is convenient to rewrite the energy as follows

H#,l
1,n (un) = Hn(un, hn−) +Hn(un, hn+) + J2

(uhn+1
n − uhn−1

n

2λn

)
+ J2

(uhn+2
n − uhn

n

2λn

)
+ J1

(uhn+1
n − uhn

n

λn

)
− 2J0(γ), (4.11)

where

Hn(un, hn−) =
hn−2∑
i=0

(
J2

(ui+2
n − uin

2λn

)
+ J1

(ui+1
n − uin
λn

)
− J0(γ)

)
+J1

(uhn
n − uhn−1

n

λn

)
and

Hn(un, hn+) =
n−2∑

i=hn+1

(
J2

(ui+2
n − uin

2λn

)
+ J1

(ui+1
n − uin
λn

)
− J0(γ)

)
+J1

(unn − un−1
n

λn

)
− J0(γ).

Defining

ũin =


ui+hn+1
n

λn
if 0 ≤ i ≤ n− hn − 1

unn
λn

+ uzγ
2
(i)− uzγ

2
(n− hn − 1) if i ≥ n− hn − 1,

by the continuity of J1 and J2, we can find a suitable continuous function ω(ε) :
R → R, ω(0) = 0 such that,for all ε > 0, as ũin is a test function for the minimum
problem defining B+(zγ2), for n large enough we have

Hn(un, hn+) =
1
2
J1(ũ1

n − ũ0
n) +

∑
i≥0

(
J2

( ũi+2
n − ũin

2

)
+

1
2

(
J1

(
ũi+2
n − ũi+1

n

)
+ J1

(
ũi+1
n − ũin

))
− J0(γ)

)
+ ω(ε)

≥ B+(zγ2) + ω(ε). (4.12)

Analogously, defining

ũin =


u0
n

λn
+ uzγ

1
(i)− uzγ

1
(−hn) if i ≤ −hn,

ui+hn
n

λn
if −hn ≤ i ≤ 0,
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we have,

Hn(un, hn−) =
1
2
J1(ũ0

n − ũ−1
n ) +

∑
i≤0

(
J2

( ũin − ũi−2
n

2

)
+

1
2

(
J1

(
ũin − ũi−1

n

)
+
(
ũi−1
n − ũi−2

n

))
− J0(γ)

)
+ ω(ε)

≥ B−(zγ1) + ω(ε). (4.13)

Thanks to inequalities (4.12), (4.13) and formula (4.11), we get

H#,l
1,n (un) ≥ J2

(uhn+1
n − uhn−1

n

2λn

)
+ J2

(uhn+2
n − uhn

n

2λn

)
+ J1

(uhn+1
n − uhn

n

λn

)
−2J0(γ) +B−(zγ1) +B+(zγ2) + c ω(ε).

By (4.10), the definition of t and hypothesis [H5]LJ , we have

lim inf
n

H#,l
1,n (un) ≥ 2J2(+∞) + J1(+∞)− 2J0(γ) +B−(zγ1) +B+(zγ2) + cω(ε)

= BJ(u′(t−),u′(t+)) + c ω(ε).

The claim follows by the arbitrariness of ε.
Slightly modifying the construction made in the proof of Γ-limsup inequality

in Theorem 3.7, it can be proven that this bound is optimal.

We find useful to set

ũ(t) =

u(0+) if t = 0
u(t) if t ∈ (0, L)
u(L−) if t = L.

(4.14)

The proof of the following result can be straightly derived by that of Proposi-
tion 4.3.

Proposition 4.5 (Compactness - Dirichlet boundary data) Suppose that hy-
potheses [H1]LJ–[H6]LJ hold. If {un} is a sequence of functions such that

sup
n
H l

1,n(un) = sup
n

H l
n(un)−minH l

λn
< +∞, (4.15)

then, up to subsequences, un → u strongly in L1
loc(0, L) where u ∈ SBV l(0, L) is

such that

(i) #S(ũ) < +∞ (ũ defined in (4.14)). In particular

(a) if l ≤ γ then S(ũ) = ∅,
(b) if l > γ then 0 < #(S(ũ)) < +∞,

(ii) [ũs(t)] > 0 s = 1, 2 for all t ∈ S(u),

(iii) #(S(u′)) < +∞,
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(iv) u′(t) ∈ Ml a.e. t ∈ (0, L). In particular

(a) if l ≤ γ then u′(t) ∈ M
l
L ,

(b) if l > γ then u′(t) ∈ Mγ .

The Γ-limit for Dirichlet boundary conditions takes the form below, where
boundary-layer effects at the boundary are taken into account. For simplicity of
notation we define

SBV lc (0, L) = {u ∈ SBV l(0, L) : conditions (i)-(iv) of Proposition 4.5 hold}.
(4.16)

Theorem 4.6 (First order Γ-limit - Dirichlet boundary data) Suppose that
hypotheses [H1]LJ–[H6]LJ hold and let H l

1,n : An(0, L) → [0,+∞] be defined by

H l
1,n(u) =

H l
n(u)−minH l

λn
. (4.17)

We then have:

(i) if l ≤ γ

H l
1,n Γ-converges with respect to the L∞-topology to

H l
1(u) =


∑

t∈S(u′)

C(u′(t−),u′(t+)), if u ∈ SBV lc (0, L),

+∞ otherwise

on W 1,∞(0, L), with SBV lc (0, L) defined in (4.16).

(ii) if l > γ and #Mγ = 1

H l
1,n Γ-converges with respect to the L1

loc-topology to

H l
1(u) =

{
C(γ, γ)#(S(u′) \ S(u)) +BIJ#S(u) +BBJ#S(ũ) + 2B(γ)

if u ∈ SBV lc (0, L)
+∞ otherwise

on L1
loc(R), where

BBJ = J1(+∞) + J2(+∞)− J0(γ)

is the boundary layer energy for a jump at the boundary of the domain, and

BIJ = 2B(γ)− 2J0(γ) + 2J2(+∞) + J1(+∞)

is the boundary layer energy for a jump at an internal point of the domain.

Remark 4.7 Note that, compared to the periodic case, we have further restricted
our analysis to the case #Mγ = 1 when l > γ. In the general case a dependence
on the parity of the lattice would appear in the limit as in Theorem 3.7.
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Proof of Theorem 4.6. Since the proof is similar to that of Theorem 3.10,
we only highlight the main differences in the case l > γ proving the Γ-liminf
inequality for the last term in the energy. In what follows we will suppose L = 1
and n even. Let un → u in L1

loc(0, L) be such that supnH l
1,n(un) < +∞. Moreover,

for simplicity, suppose that
S(u) = {0}. (4.18)

By the compactness result of Proposition 4.5, we have that u′(t) = zγ ∈ Mγ for
a.e. t ∈ (0, L). Let {hn}n be a sequence of indices such that limn λnhn = 1

2 . It is
convenient to rewrite the energy as follows:

H l
1,n(un) = Hn(un, 0+) +Hn(un, 1−) + J1

(u1
n − u0

n

λn

)
+J2

(u2
n − u0

n

2λn

)
− J0(γ), (4.19)

where

Hn(un, 0+) =
hn∑
i=1

(
J2

(ui+2
n − uin

2λn

)
+ J1

(ui+1
n − uin
λn

)
− J0(γ)

)
,

Hn(un, 1−) =
n−2∑

i=hn+1

(
J2

(ui+2
n − uin

2λn

)
+ J1

(ui+1
n − uin
λn

)
− J0(γ)

)
+J1

(unn − un−1
n

λn

)
− J0(γ).

Defining

ũin =


ui+1
n

λn
if 0 ≤ i ≤ hn − 1

uhn
n

λn
+ uzγ (i)− uzγ (hn) if i ≥ hn − 1,

by the continuity of J1 and J2, we can find a suitable continuous function ω(ε) :
R → R, ω(0) = 0 such that,for all ε > 0, as ũin is a test function for the minimum
problem defining B(γ), for n large enough we have

Hn(un, 0+) =
1
2
J1(ũ1

n − ũ0
n) +

∑
i≥0

(
J2

( ũi+2
n − ũin

2

)
+

1
2

(
J1

(
ũi+2
n − ũi+1

n

)
+ J1

(
ũi+1
n − ũin

))
− J0(γ)

)
+ ω(ε)

≥ B+(zγ) + ω(ε). (4.20)

Analogously, defining

ũin =


uhn
n

λn
+ uzγ (i)− uzγ (hn − n) if i ≤ hn − n,

ui+nn

λn
− l

n
if hn − n ≤ i ≤ 0,
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we have,

Hn(un, 1−) =
1
2
J1(ũ0

n − ũ−1
n ) +

∑
i≤0

(
J2

( ũin − ũi−2
n

2

)
+

1
2

(
J1

(
ũin − ũi−1

n

)
+
(
ũi−1
n − ũi−2

n

))
− J0(γ)

)
+ ω(ε)

≥ B(γ) + ω(ε). (4.21)

By (4.18) and hypothesis [H5]LJ , we have

lim inf
n

H l
1,n(un) ≥ J1(+∞) + J2(+∞)− J0(γ) + 2B(γ) + cω(ε)

= BBJ + 2B(γ) + cω(ε).

The Γ-liminf inequality follows by the arbitrariness of ε.

In the following two examples we consider the case of standard Lennard-Jones
and Morse potentials pointing out some interesting features about phase transition
energies in these cases.

Example 4.8 Let us consider the Lennard-Jones case:

J1(z) =


+∞ if z ≤ 0

k1

z12
− k2

z6
if z > 0,

J2(z) = J1(2z)

for some k1, k2 > 0. Set zmin = (2k1/k2)
1
6 the minimum point of J1 and γ the

minimum point of J0, it can be proven that

J∗∗0 (z) =

{
J0(z) if 0 < z ≤ γ :=

(
1+2−12

1+2−6

) 1
6
zmin

J0(γ) otherwise.

Hence no mesoscopic phase transition energies come into play because N(l) = 1
being

Ml =

 ∅ if l/L ≤ 0
M

l
L if 0 < l/L < γ

Mγ otherwise.

It is also possible to show that neither microscopic phase transition energies appear
as #Ml ≤ 1.

Example 4.9 Let us consider the Morse case:

J1(z) = k1

(
1− e−k2(z−zmin)

)2

, J2(z) = J(2z)

for some k1, k2 > 0. Set γ the minimum point of J0, it can be proven that

J∗∗0 (z) =
{
J0(z) if z ≤ γ < zmin

J0(γ) otherwise.
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This again gives that no mesoscopic phase transition energy appear in the first
order Γ-limit as N(l) = 1 being

Ml =
{

M
l
L if l/L < γ

Mγ otherwise.

We now give an example of Lennard-Jones type potentials leading to meso-
scopic phase transition terms in the limit.

Example 4.10 Let

J1(z) = (z − zm)2 ∧ tχ(zm,+∞)(z)
J2(z) = J1(z/k)

for some t < z2
m and k > zm+

√
t/2

zm−
√
t/2

. Then (see Fig. 2)

J0(z) =


(z − zm)2 + ( 1

kz − zm)2 if z ≤ zm +
√
t/2

( 1
kz − zm)2 + 1

2 t if zm +
√
t/2 < z ≤ k(zm +

√
t)

3
2 t if z > k(zm +

√
t)

and

J∗∗0 (z) =



J0(z) if z ≤ zm +
√

t
2(1+k2)

a(z − zm −
√

t(1+k2)
2 ) + b if zm +

√
t

2(1+k2) < z ≤ zm +
√

t(1+k2)
2

J0(z) if zm +
√

t(1+k2)
2 < z ≤ kzm

t
2 if z > kzm,

where

a =
2
k2

(
zm(1− k) +

√
t(1 + k2)

2

)
, b =

1
k2

(
zm(1− k) +

√
t(1 + k2)

2

)2

+
t

2
.

In this case we have that

Ml =


M

l
L if l/L ≤ α

Mα ∪Mβ if α < l/L ≤ β

M
l
L if β < l/L ≤ γ

Mγ otherwise

where

α = zm +

√
t

2(1 + k2)
, β = zm +

√
t(1 + k2)

2
, γ = kzm.

A mesoscopic phase transition energy will occur in the limit being N(l) = 2 for
α ≤ l

L ≤ β.
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Figure 2: J0 and J∗∗0 (bold line) in Example 4.10

5 Minimum Problems

In this section we describe the structure of the minima for the first order discrete
energies we studied in Section 3 and 4 in some special cases. In particular we will
focus on the periodic case for superlinear growth densities and on the Dirichlet
case for Lennard-Jones densities.

5.1 Superlinear-growth densities

The next theorem deals with the convergence of minimizer for first-order discrete
energies of the form (3.22) in two special cases. For the sake of simplicity and
without losing in generality we can set L = 1.

Theorem 5.1 Suppose that hypotheses [H1]–[H4] and [H6] hold and suppose that
ψ0 is such that

Ml = Mα ∪Mβ if l ∈ (α, β).

Then the minimizers (un) of min{E#,l
1,n (u)}, for n even and l ∈ (α, β), converge,

up to subsequences, to one of the functions:

(i) if Mα = {(α, α)}, Mβ = {(β, β)}, then u = (u, u),

u(t) = αχI(t) + βχ(0,1)\I(t)

where I ⊂ (0, 1) is an interval such that |I|α + (1 − |I|)β = l. Moreover
E#,l

1 (u) = 2C(α, β).

(ii) if Mα = {(α, α)}, Mβ = {(β1, β2), (β2, β1)}, then u = (u1, u2),

u1(t) = αχI(t) + β1χ(0,1)\I(t)
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u2(t) = αχI(t) + β2χ(0,1)\I(t)

where I ⊂ (0, 1) is an interval such that |I|α + (1 − |I|)β = l. Moreover
E#,l

1 (u) = 2C((α, α), (β1, β2)).

Proof. The claim follows thanks to Theorem 3.10 applying the minima conver-
gence result in Γ-convergence problem (see [8] and [20]) and observing that we
have

E#,l
1 (u) ≥ 2C((α, α), (β, β)),

E#,l
1 (u) ≥ C((α, α), zβ) + C((α, α), zβ1 ) for all zβ , zβ1 ∈ Mβ .

in case (i) and (ii), respectively.

5.2 A graphic reduction method

In what follows we describe a graphic reduction method which can be useful to treat
cases more complicated than those seen in the previous theorem. Let l ∈ (α, β).
We introduce some terminology: the plane (z1, z2) is said to be the micro-phase
plane (m-p plane). A point w = (w1, w2) in the m-p plane is said to be a micro-
configuration (m-c) if w ∈ Ml. An arrow in the m-p plane connecting two m-cs,
starting from a m-c (z1, z2) and pointing to a m-c (z̃1, z̃2) is said to be a phase-
transition (p-t) and is indicated by (z1, z2) → (z̃1, z̃2).

Definition 5.2 Two p-ts (z1, z2) → (z′1, z
′
2), (w1, w2) → (w′1, w

′
2) are said to be

connected if (z1, z2) ≡ (w′1, w
′
2) or if (z′1, z

′
2) ≡ (w1, w2). A set of connected p-ts is

said to be a loop if every m-c is starting and ending point for two p-ts. A loop is
said to be of length n ∈ N (or an n-loop) if it is built connecting n p-ts.

Definition 5.3 A real function F defined on the cartesian product of two m-p
planes is called an energy.

Let F be a given energy. The energy of a phase transition (z1, z2) → (z̃1, z̃2)
is F ((z1, z2), (z̃1, z̃2)). The energy of a sets of p-ts is the sum of the energies of
all p-ts. Two sets of p-ts are said to be (energetically) equivalent if they have the
same energy. An n-loop is said to be reducible if it is equivalent to another set of
p-ts containing an m-loop with m < n.

We are interested in solving the minimum problem for the Γ-limit of energies of
the type (3.22) in the same hypotheses of the previous theorem where, following the
definitions above, F (z1, z2) = C(z1, z2). Observe that, by the compactness result
obtained in the previous section and the definition of transition energy C(·, ·), we
know that

(R1) u′ ∈ Ml = Mα ∪Mβ ,

(R2) u′ is 1-periodic,

(R3) C(zα, zβ) = C(zα, zβ) = C(zβ , zα) = C(zβ , zα),

36



•

•

,

x 0 1

l

Figure 3: 2-loop and minimizing configuration in Example 5.4

(R4) C(·, ·) > 0.

Thanks to (R1) and the definition of Mα and Mβ , we know that the m-cs we have
to consider in the m-p plane, where we are going to plot our minimal configurations,
are those laying on the straight lines

z1 + z2 = 2α, z1 + z2 = 2β.

Moreover, by (R2), we know that the allowed p-ts form a loop. By (R3) two p-ts
symmetric with respect to z1 = z2 as well as two p-ts with starting and ending
points exchanged are equivalent. We will describe this graphic method with three
examples. The first two are cases (i) and (ii) in Theorem (5.1).

Example 5.4 Let Mα = {(α, α)} and Mβ = {(β, β)}. In this case only one 2-loop
is possible. Thus there is only one minimizing configuration (see Fig. 3).

•

•

•

•

•

•

,

2 1

1 2

,

1 2

2 1

Figure 4: equivalent 2-loops (Example 5.5)

Example 5.5 Let Mα = {(α, α)} and Mβ = {(β1, β2), (β2, β1)}. In this case two
equivalent 2-loops can be built (see Fig.4). Moreover a 3-loop can be built, but it
can be reduced to a 2-loop as shown in Fig. 5, thus the minimum configuration
has two transitions and the associated fields u = u1+u2

2 , u1 and u2 look like those
in Fig. 6.
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•

•
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2 1
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,

2 1

1 2 •

•

•

,

2 1

1 2

Figure 5: reduction of a 3-loop (Example 5.5)

u
1

u

u
2

1

2

1

l

l

l

1

1

Figure 6: minimizing fields (Example 5.5)

Example 5.6 Let Mα = {(α1, α2), (α2, α1)} and Mβ = {(β1, β2), (β2, β1)}. In
this case two pairs of equivalent 2-loops and two of 3-loops can be built. Moreover
three 4-loops can be built but each of them can be reduced to a 2-loop, thus the
minimum configuration has two or three transitions. To say which loop minimizes
the energy we have to compare the minimum 2-loop energy

m2 ≡ min{2C((α1, α2), (β1, β2)), 2C((α1, α2), (β2, β1))},

with the minimum 3-loop energy

m3 ≡ min{C((α1, α2), (β1, β2)) + C((β1, β2), (β2, β1)) + C((β2, β1), (α1, α2)),
C((α1, α2), (β1, β2)) + C((β1, β2), (α2, α1)) + C((α2, α1), (α1, α2))}.

Three cases can occur. If m2 < m3 a 2-loop configuration is minimal and the corre-
sponding minimizing fields are shown in Fig.7. If m2 > m3 a 3-loop configuration
minimizes the energy and the corresponding fields are shown in Fig 8. If m2 = m3

the 2-loop and 3-loop configurations are equienergetic.

The following is an example of interaction energies ψ1, ψ2 leading to a ψ0

satisfying the hypotheses of Theorem 5.1 in cases (i) and (ii).
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Figure 7: fields in the 2-loop configuration (Example 5.6)

x
0

u
1

1

1

2
u

2

1

2

2

1

2

1

1

2

1

2
2

1
2

u
1

u
2

x
0

x
1

x
0

x
1

u

u

x
0

x
0

x
1

x
0

x
1

1

1

1

1

1

Figure 8: fields in the 3-loop configuration: x0 ∈ (0, x) with αx + β(1 − x) = l,
x1 ∈ (x0, x0 + 1− x) (Example 5.6)
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Figure 9: Example 5.7: ψ0 and ψ∗∗0 .

Example 5.7 Consider ψ1 = (z+1)2∧(z−1)2. It is possible to compute explicitly
φ(z) ≡ min{ψ1(z1)+ψ1(z2) : z1+z2 = 2z} obtaining φ(z) = (z+1)2∧(z−1)2∧z2

and in particular

2φ(z) =
{
ψ1(z − 1) + ψ1(z + 1) z ∈ (− 1

2 ,
1
2 ),

2ψ1(z) otherwise
.

i) If ψ2 = − z2

2 , computing explicitly ψ∗∗0 (see Fig. 9) one gets that, for l ∈
(−1, 1), Ml = M−1 ∪M1 where #M−1 = #M1 = 1.

ii) If ψ2 = z2, computing explicitly ψ∗∗0 one gets that, for l ∈ (− 3
4 ,−

1
4 ), Ml =

M− 3
4 ∪M− 1

4 and, for l ∈ ( 1
4 ,

3
4 ), Ml = M

1
4 ∪M

3
4 where #M− 3

4 = #M
3
4 = 1

while #M− 1
4 = #M

1
4 = 2.

We end this section by giving an example of potentials leading to the energetic
description we showed in Example 5.6.

Example 5.8 Consider ψ1 = (z+2)2∧z2∧(z−2)2 and ψ2 = (z+1)2∧((z−1)2+1).
Again it is possible to compute φ(z) = (z+2)2 ∧ (z+1)2 ∧ (z− 1)2 ∧ (z− 2)2 ∧ z2.
In particular

2φ(z) =


2ψ1(z) z ∈ (−∞,− 3

2 )
ψ1(z − 1) + ψ1(z + 1) z ∈ (− 3

2 ,−
1
2 )

ψ1(z − 2) + ψ1(z + 2) z ∈ (− 1
2 ,

1
2 )

ψ1(z − 1) + ψ1(z + 1) z ∈ ( 1
2 ,

3
2 )

2ψ1(z) z ∈ ( 3
2 ,+∞)

and, computing ψ∗∗0 , it can be seen that for l ∈ (− 7
8 ,

9
8 ) we have that Ml =

M− 7
8 ∪M

9
8 with #M− 7

8 = #M
9
8 = 2. Observe that, to construct an example like

this, it is not possible to substitute the second order asymmetric interaction we
used with an even one, otherwise hypothesis [H3] would not be satisfied.

5.3 Lennard-Jones densities

Since the analysis of minimum problems for the scaled Lennard-Jones type ener-
gies of the form (4.1) when l ≤ γ does not present new features with respect to the
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superlinear case, we will focus on minimum problems with l > γ when a contri-
bution due to the crack appears in the limit. Although a more general description
like the one we have provided in the previous section is possible, in order to give a
simplified analysis of the phase transition phenomena for standard Lennard-Jones
NNN energies, we restrict to the case J1(z) = J2(2z) = J(z) with minJ < J(+∞)
and #Mγ = 1.

For the sake of simplicity and without losing in generality we can set L = 1.

Theorem 5.9 (Localization of fracture) Suppose that hypotheses [H1]LJ–[H6]LJ
hold and suppose that J1(z) = J2(2z) = J(z) is such that

min J < J(+∞), #Mγ = 1. (5.22)

Then the minimizers (un) of min{H l
1,n(u)}, for l > γ, converge, up to subse-

quences, to one of the functions:

u1(t) = γt, u2(t) = γt+ (l − γ)

Moreover H l
1(u) = 3J(+∞)− J0(γ).

Remark 5.10 Note that the previous result asserts that, at first order in λn, the
fracture of the ground state can be localized at the boundary of the domain.

Proof of Theorem 5.9. Thanks to Remark 2.3 we get

B±(γ) =
1
2
J(γ).

Since by Theorem 4.6 we have that u′(t) = u′(t) = γ a.e. t ∈ (0, L), we have that

BIJ = J(γ)− 2J0(γ) + 3J(+∞), BBJ = 2J(+∞)− J0(γ).

The claim follows applying the minima convergence result in Γ-convergence prob-
lems and observing that, since

H l
1(u) ≥ BIJ(γ)#S(u) +BBJ#S(ũ) + 2B(γ).

one has that #S(u) ≤ 1 and #S(ũ) ≤ 1. It remains to compare the energy H l
1(u)

in the following four cases:

(a) #S(u) = 0 #S(ũ) = 1, (b) #S(u) = 1 #S(ũ) = 0,
(c) #S(u) = 0 #S(ũ) = 0, (d) #S(u) = 1 #S(ũ) = 1.

By the boundary conditions, (c) must be rejected. By the positiveness of our
energies (d) has an energy greater than (a) and (b). If we are in the case (a),
then the only two minimizers are u1 and u2 while in the case (b) all the possible
minimizers are functions of the type u(t) = γt + (l − γ)χ(t) where t ∈ (0, L). We
have that

H l
1(u1) = H l

1(u2) = 3J(+∞)− J0(γ), H l
1(u) = 5J(+∞)− 2J0(γ),

and the claim follows observing that, by the definition of J0 and thanks to hy-
pothesis (5.22) J0(γ) ≤ J(γ) + min J < J(γ) + J(+∞).
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6 Equivalence by Γ-convergence

In this section we give an interpretation of the results of Section 3 by linking them
with the gradient theory of phase transitions. We show that in a sense discrete
energies with next-to-nearest neighbour interactions act as singular perturbation
of non-convex energies with higher-order gradients. In order to give a rigorous
meaning to this statement we will use the notion of equivalence by Γ-convergence
(see [17]).

Definition 6.1 Let L be a set of parameters and for l ∈ L let F lε(u) and Glε(u)
be parameterized families of functionals. We say that F lε and Glε are equivalent to
first order along the sequence εn if

(i) for all l ∈ L Γ- lim
n→∞

F lεn
(u) = Γ- lim

n→∞
Glεn

(u) =: F l0(u)

(ii) for all l ∈ L Γ- lim
n→∞

F lεn
(u)−minF l0(u)

εn
= Γ- lim

n→∞

Glεn
(u)−minF l0(u)

εn
.

With a slight abuse we use the same notation if F lε and Glε are defined only for
ε = εn. In the following, after setting εn = λn, F lεn

(u) = E#,l
n (u), and

Glεn
(u) = G#,l

n (u) =


∫

(0,L)

ψ̃0(u′) dt+ λ2
n

∫
(0,L)

|u′′|2 dt u ∈W 2,2
loc (R),

u− lt is L-periodic

+∞ otherwise on L1(0, L),

we prove the following equivalence result.

Theorem 6.2 (Γ-equivalence - Periodic boundary data) Let ψ̃0 : R → R
be a Borel function such that

(i) lim
|z|→+∞

ψ̃0(z)
|z|

= +∞,

(ii) (ψ̃0)∗∗ = ψ∗∗0 .

(iii) {z ∈ R : ψ̃0(z) = (ψ̃0)∗∗(z)} = {z ∈ R : ψ0(z) = ψ∗∗0 (z)}

(iv) ψ̃0(zi + z) − (ψ̃0)∗∗(zi + z) = O(zα), α > 1 for all zi such that ψ̃0(zi) =
(ψ̃0)∗∗(zi)

If {z : ψ∗∗0 is affine} =
N⋃
i=1

[αi, βi] disjoint intervals, suppose that

#Mαj = #Mβj = 1 and (6.23)

2
∫ βj

αj

√
ψ̃0(s)− ψ∗∗0 (s) ds = C(αj , βj) for some j ∈ {1, 2, . . . , N(l)}, (6.24)

with N(l) < +∞, then F lεn
and Glεn

are equivalent up to the first order for l ∈
[αj , βj ].
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Remark 6.3 In the special case that hypotheses (i) and (iv) are satisfied by ψ0,
it is possible to restate the previous result asserting that F lεn

is equivalent up to
the first order, for l ∈ [αj , βj ], to the following family of functionals

H l
ε(u) =


∫

(0,L)

ψ0(u′) dt+ kε2
∫

(0,L)

|u′′|2 dt u ∈W 2,2
loc (R),

u− lt is L-periodic

+∞ otherwise on L1(0, L),

where

k =

(
C(αj , βj)∫ βj

αj

√
ψ0(s) ds

)2

,

along the sequence εn = λn.

Proof of Theorem 6.2
Zero-order equivalence. In what follows we set L = 1. By Theorem 3.4 we need
to prove that

Γ- lim
n
G#,l
n (u) = E#,l(u) =


∫ 1

0

ψ∗∗0 (u′(t)) dt if u ∈W 1,1
#,l(0, 1)

+∞ otherwise on L1
loc(R).

First observe that, thanks to hypothesis (i) and the definition of G#,l
n , we have

that, as in Theorem 3.4, the limit is finite only on W 1,1
#,l(0, 1). Moreover, as

G#,l
n (u) ≥

∫ 1

0

ψ̃0(u′(t)) dt ≥
∫ 1

0

(ψ̃0)∗∗(u′(t)) dt,

then

Γ- lim inf
n

G#,l
n (u) ≥

∫ 1

0

(ψ̃0)∗∗(u′(t)) dt.

By an easy density argument it suffices to obtain the Γ- lim sup inequality for
u ∈ C2(R) such that u(t) − lt is 1-periodic. In this case we have, from the defi-
nition of Γ- lim sup, taking the pointwise limit of G#,l

n (u) and passing to its lower
semicontinuous envelope with respect to the strong L1 convergence,

Γ- lim sup
n

G#,l
n (u) ≤

∫ 1

0

(ψ̃0)∗∗(u′(t)) dt.

First-order equivalence. Set

G#,l
1,n(u) :=

G#,l
n (u)−minE#,l

λn

=


1
λn

∫ 1

0

(ψ̃0(u′)− (ψ̃0)∗∗(l)) dt+ λn

∫ 1

0

|u′′|2 dt if u ∈W 2,2
loc (R),

u(t)− lt is 1-periodic,
+∞ otherwise on L1

loc(R).
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Thanks to Theorem 3.10 and hypothesis (6.23), we need to prove that

Γ- lim
n
G#,l

1,n(u) = E#,l
1 (u) =


∑

t∈S(u′)∩(0,1]

C(u′(t−), u′(t+)), if u′ ∈ PCloc(R),
u′ ∈ Ml, u(t)− lt is 1-periodic,

+∞ otherwise on W 1,∞
loc (R).

Compactness. Let un → u in W 1,1
loc (R) be such that

sup
n
G#,l

1,n(un) ≤ c. (6.25)

As in the proof of the zero order equivalence, we have that u(t)− lt is a 1-periodic
function. Without loss of generality, we may suppose that (ψ̃0)∗∗ is a straight line
in a neighborhood of l and we write (ψ̃0)∗∗(z) = r(z) (the case (ψ̃0)∗∗ is strictly
convex can be proved in the same way). Since∫ 1

0

(ψ̃0)∗∗(u′n(t)) dt ≥ (ψ̃0)∗∗(l) and ψ̃0 ≥ (ψ̃0)∗∗,

we have that

G#,l
1,n(un) ≥ 1

λn

∫ 1

0

((ψ̃0)∗∗(u′n)− (ψ̃0)∗∗(l)) dt =
1
λn

∫ 1

0

((ψ̃0)∗∗(u′n)− r(u′n)) dt

and

G#,l
1,n(un) ≥ 1

λn

∫ 1

0

(ψ̃0(u′n)− (ψ̃0)∗∗(u′n)) dt =
1
λn

∫ 1

0

W (u′n) dt

where we have set for short W (z) = ψ̃0(z)− (ψ̃0)∗∗(z). By (6.25) we get that , for
all η > 0

lim
n
|{t : (ψ̃0)∗∗(u′n(t))− r(u′n(t)) > η} ∩ {t : W (u′n(t)) > η}| = 0.

Since, thanks to hypothesis (iii), we have that {z ∈ R : ψ̃0(z) = (ψ̃0)∗∗(z) =
r(z)} = Ml, we get that, up to subsequences, u′n → z a.e. where z ∈ Ml.

Let us prove that u′ ∈ PCloc(R). By the 1-periodicity of u it suffices to consider
K a compact set of (0, 1] and prove that u′ ∈ PC(K) . Without loss of generality
we can suppose that K = [a, b] and that t1, t2, . . . , tM ∈ S(u′) ∩ [a, b]. For i =
1, 2, . . . ,M we can find a±i ∈ [a, b] such that

a < a−i < ti < a+
i < a−i+1 < b (6.26)

and that there exist the limits

lim
n
u′n(a

±
i ) = u′(a±i ) ∈ Ml with u′(a+

i ) 6= u′(a−i ). (6.27)

It holds

G#,l
1,n(un) ≥ 1

λn

∫ b

a

W (u′n) dt+ λn

∫ b

a

|u′′n|2 dt
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≥
M∑
i=1

( 1
λn

∫ a+
i

a−i

W (u′n) + λn

∫ a+
i

a−i

|u′′n|2
)
,

and, by Young’s inequality,

G#,l
1,n(un) ≥

M∑
i=1

2
∫ a+

i

a−i

√
W (u′n)|u′′n| dt ≥ 2

M∑
i=1

∣∣∣∫ a+
i

a−i

√
W (u′n)|u′′n| dt

∣∣∣
≥ 2

M∑
i=1

∣∣∣∫ u′n(a+
i )

u′n(a−i )

√
W (s) ds

∣∣∣ = M∑
i=1

C(u′n(a
−
i ), u′n(a

+
i )).

Since we have that

lim inf
n→∞

G#,l
1,n(un) ≥

M∑
i=1

lim inf
n→∞

C(u′n(a
−
i ), u′n(a

+
i )) ≥

M∑
i=1

C(u′(a−i ), u′(a+
i ))

≥ M min{C(u′(a−i ), u′(a+
i )), i ∈ {1, 2, . . . ,M}} ≥ cM,

thanks to (6.25) we get that u′ ∈ PC([a, b]).
Γ-liminf inequality. Thanks to the compactness result we have just proven, we
can infer that there exist 0 < t1 < t2 < . . . < tN ≤ 1 such that

S(u′) = {t ∈ R : t+ q = ti, q ∈ Z, i = 1, 2, . . . , N}.

With an abuse of notation we can choose again a±i such that (6.26) and (6.27)
hold true with a = 0, b = 1 and M = N . Then, by the periodicity of u, we get

G#,l
1,n(un) ≥

∫ a−1

0

√
W (u′n)|u′′n| dt

+
N−1∑
i=1

∫ a−i+1

a−i

√
W (u′n)|u′′n| dt+

∫ 1

a−N

√
W (u′n)|u′′n| dt

≥
N−1∑
i=1

∫ a−i+1

a−i

√
W (u′n)|u′′n| dt+

∫ 1+a−1

a−N

√
W (u′n)|u′′n| dt.

Passing to the lim inf for n→ +∞ in the previous inequality we have

lim inf
n

G#,l
1,n(un) ≥

N−1∑
i=1

lim inf
n→+∞

∫ a−i+1

a−i

√
W (u′n)|u′′n| dt

+ lim inf
n→+∞

∫ 1+a−1

a−N

√
W (u′n)|u′′n| dt

=
∑

t∈S(u′)∩(0,1]

C(u′(t−), u′(t+)).

Γ-limsup inequality. We now construct a recovery sequence (un) for the Γ-limsup
in a periodicity cell. Fix l ∈ [αj , βj ], let u be such that E#,l

1 (u) < +∞. Supposing,
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without loss of generality, that αj = 0, βj = 1, since the limit energy depends only
on u′, our approximation construction modifies u′ only in a small neighborhood
of S(u′) and is invariant under translation, it is not restrictive to suppose that u′

is the 1-periodic extension of χ(a,b) where (a, b) ⊆ [0, 1] and that 0 < a < b ≤ 1.
Following the well known construction of the recovery sequence in the Modica-
Mortola problem [25] (see also [7]) it is possible to find vn → u in W 1,1(0, 1) such
that

lim
n→+∞

1
λn

∫ 1

0

W (v′n) dt+ λn

∫ 1

0

|v′′n|2 dt =
∑

t∈S(u′)∩(0,1]

C(u′(t−), u′(t+)). (6.28)

From now on we will call (vn) the Modica-Mortola recovery sequence for u. In the
following we will modify the sequence (vn) to obtain our recovery sequence (un)
which has to satisfy (6.28) but also the condition

un(t)− lt is 1-periodic

which can be rephrased as∫ 1

0

u′n(t) dt =
∫ 1

0

u′(t) dt. (6.29)

Since v′n modifies u′ only in (a− λn, a+ λn)∪ (b− λn, b+ λn) we can define u′n to
be

u′n(t) =


t+ 1− a− λn if t ∈ (a+ λn, a+ λn + kn)
−t+ 1 + b+ λn if t ∈ (b− λn − kn, b− λn)
1 + kn if t ∈ (a+ λn + kn, b− λn − kn)
v′n(t) otherwise

where kn has to be chosen such that (6.29) holds. Since∫ 1

0

u′n dt =
∫ 1

0

v′n dt+ k2
n + kn(b− a− 2λn − 2kn),

setting

αn :=
∫ 1

0

(u′n − v′n) dt, (6.30)

the equation for kn becomes

k2
n − kn(b− a− 2λn) + αn = 0

and it can be chosen to be

kn =
(b− a− 2λn

2

)(
1−

√
1− 4αn

(b− a− 2λn)2
)

= O(αn).
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By hypothesis (iv) it holds true that

G#,l
1,n(un) ≤

∫ 1

0

W (v′n)
λn

+ λn|v′′n|2 dt+

b−λn∫
a+λn

W (u′n)
λn

+ λn|u′′n|2 dt

≤
∫ 1

0

W (v′n)
λn

+ λn|v′′n|2 dt+

a+λn+kn∫
a+λn

W (t+ 1− a− λn)
λn

dt

+

b−λn∫
b−λn−kn

W (−t+ 1 + b+ λn)
λn

dt+ 2λnkn +
(b− a− 2λn − 2kn)

λn
W (1 + kn)

≤
∫ 1

0

W (v′n)
λn

+ λn|v′′n|2 dt+
2
λn
kn sup{W (s) : s ∈ (1, 1 + kn)}

+2λnkn +
c

λn
O(kαn).

Passing to the lim sup in the previous inequality, by (6.28), observing that

αn =
∫ 1

0

u′ − v′n dt ≤ Cλn,

we conclude the proof.

Theorem 6.4 (Γ-equivalence - Dirichlet boundary data) In the same hy-
potheses of Theorem 6.2, if εn = λn,

Glεn
(u) = Gln(u) =


∫

(0,L)

(
ψ̃0(u′) + λ2

n|u′′|2
)
dt+ λn

(
B+(u′(0)) +B−(u′(L))

)
if u ∈W 2,2(0, L), u(0) = 0, u(L) = l,

+∞ otherwise on L1(0, L),

where

B+(z) : R → R is such that inf
z
{C(w, z) +B+(z)} = B+(w),

B−(z) : R → R is such that inf
z
{C(w, z) +B−(z)} = B−(w), (6.31)

and F lεn
(u) = Eln(u), then F lεn

and Glεn
are equivalent up to the first order for

l ∈ [αj , βj ].

Proof. Suppose that L = 1. As the proof is analogous to that of the previous
theorem, we only point out the main differences in the construction of the recovery
sequence for the first order equivalence. As before, let αj = 0, βj = 1 and let u be
such that u′(t) = χ(a,b)(t) with (a, b) ⊆ (0, 1). In the following we set

Gl1,n(u) :=
Gln(u)−minEl

λn
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=


∫ L

0

( ψ̃0(u′)− (ψ̃0)∗∗(u′)
λn

+ λn|u′′|2
)
dt+B+(u′(0)) +B−(u′(L))

if u ∈W 2,2(0, L), u(0) = 0, u(1) = l,
+∞ otherwise on L1(0, 1).

Fix ε > 0. Thanks to (6.31) there exist z, z̃ such that

C(z, u′(0+)) +B+(z) ≤ B+(u′(0)) + ε and
C(z̃, u′(1−)) +B−(z̃) ≤ B−(u′(1−)) + ε.

Fix η > 0, let ũ be such that

ũ′(t) =

 z if t ∈ (−η, 0)
u′(t) if t ∈ (0, 1)
z̃ if t ∈ (1, η),

and let (ṽn) be the Modica-Mortola recovery sequence for ũ. It holds that ṽn → u
in W 1,1(0, 1) and that

limn

∫ 1

0

( ψ̃0(ṽ′n)− (ψ̃0)∗∗(ṽ′n)
λn

+ λn|ṽ′′n|2
)
dt

=
∑

t∈S(u′)∩(0,1)

C(u′(t−), u′(t+)) + C(z, u′(0+)) + C(z̃, u′(1−)). (6.32)

As done in the proof of the previous theorem, we can modify (ṽn) in order to
construct our recovery sequence (un) which fulfils the boundary conditions un(0) =
0, un(1) = l. We have that

Gl1,n(un) =
∫ 1

0

( ψ̃0(ṽ′n)− (ψ̃0)∗∗(ṽ′n)
λn

+ λn|ṽ′′n|2
)
dt+B+(z) +B(z̃).

Passing to the lim supn in the previous expression, thanks to (6.32), we get that

lim sup
n

Gl1,n(un) =
∑

t∈S(u′)∩(0,1)

C(u′(t−), u′(t+))

+C(z, u′(0+)) +B+(z) + C(z̃, u′(1−)) +B−(z̃)
≤ El1(u) + 2ε.

The claim follows by the arbitrariness of ε.
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