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The goal of this note is to prove the following result:

Theorem 1. Let M be a smooth, compact, Riemannian manifold with non-

negative Ricci curvature and let f ∈ C1(R).
Let u ∈ C3(M) be a solution of

∆gu + f(u) = 0

on M , with m := infM u, M := supM u, and let F be a primitive of f .

Then,
1

2
|∇gu(x)|2 ≤ sup

r∈[m,M]
F (r) − F (u(x)), (1)

for any x ∈ M .

Also, if equality in (1) holds at some point xo ∈ {∇gu 6= 0}, then:

• equality in (1) holds at all the points of the connected component of

M ∩ {∇gu 6= 0} that contains xo,

• Ricg(∇gv,∇gv) vanishes at all the points of the connected component

of M ∩ {∇gu 6= 0} that contains xo.
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The notation used here above is the standard one, namely ∇g is the
Riemannian gradient and ∆g is the Laplace-Beltrami operator, that is, in
local coordinates,

(∇gφ)i = gij∂jφ

and

∆gφ = divg(∇gφ) =
1

√

|g|
∂i

(

√

|g|gij∂jφ
)

,

for any smooth function φ : M → R.
We remark that when equality in (1) holds on a connected open set U ,

then u is an isoparametric function in U , see pages 541–548 of [8]. In par-
ticular, any level set σ of u has constant mean curvature along σ ∩ U . For
a comprehensive description of isoparametric functions, see also [10].

The pointwise estimate of Theorem 1 may be seen as an extension of the
one obtained in [6], where a similar result was proven in the case of Rn.

We observe that if F is bounded, (1) implies the following universal esti-
mate:

1

2
|∇gu(x)|2 ≤ sup

r∈R

F (r) − inf
r∈R

F (r).

The proof we give here of Theorem 1 uses the technique of [2], where
important strengthenings of the work of [6] were performed in the degenerate
and singular Euclidean case.

The proof is based on the “P -function technique”, i.e. in a convenient use
of the maximum principle, applied to a function which solves a degenerate
PDE (see [7, 9]).

For related results in the Euclidean setting, see also [4].

Proof of Theorem 1. We recall that, if φ ∈ C3(M),

1

2
∆g|∇gφ|

2 = |Hφ|
2 + 〈∇g∆gφ,∇gφ〉 + Ricg(∇gφ,∇gφ). (2)

Here above, Hφ is the Hessian of φ: note that (2) is the so-called Bochner-
Weitzenböck formula (see, for instance, [1, 11] and references therein).

Moreover, we have that

|Hφ|
2 ≥

∣

∣∇g|∇gφ|
∣

∣

2
almost everywhere. (3)

See, for instance, [3] for the simple proof of this fact.
Also, we observe that, since M is compact, if v ∈ C 2(M) then there exists

x(v) ∈ M which minimizes v, and so

∇gv(x(v)) = 0. (4)

We now define
G(t) := sup

r∈[m,M]
F (r) − F (t). (5)

We remark that
G(t) ≥ 0 (6)

for any t ∈ [m, M].
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We also fix α ∈ (0, 1), say α = 1/2, and set [u]Cα(M) to be the α-seminorm
of u, which is finite by assumption.

Let

F :=
{

v ∈ C2(M) solutions of ∆gv = G′(v) in M with m ≤ v ≤ M

and [v]Cα(M) ≤ [u]Cα(M)

}

.
(7)

Also, given v ∈ F, following [2], we define

P (v, x) := |∇gv(x)|2 − 2G(v(x)). (8)

We now claim that, for any v ∈ F and any x ∈ M ,

|∇gv(x)|2∆gP (v, x) − 2G′(v(x))〈∇gv(x),∇gP (v, x)〉 ≥
|∇gP (v, x)|2

2
. (9)

We remark that (9) may be considered the Riemannian analogue of formula
(2.7) in [2], where a similar equality was found in the Euclidean setting.

To prove (9), we use (2) and (7) to obtain that

|∇gv|
2∆gP − 2G′(v)〈∇gv,∇gP 〉 −

|∇gP |2

2

= |∇gv|
2
(

∆g|∇gv|
2 − 2∆g

(

G(v)
)

)

+ 2f(v)〈∇gv,∇gP 〉 −
|∇gP |2

2

= 2|∇gv|
2
(

|Hv|
2 + 〈∇g∆gv,∇gv〉 + Ricg(∇gv,∇gv) − divg

(

G′(v)∇gv
)

)

+2f(v)〈∇gv,∇gP 〉 −
|∇gP |2

2

= 2|∇gv|
2
(

|Hv|
2 − 〈∇g(f(v)),∇gv〉

+Ricg(∇gv,∇gv) − G′′(v)|∇gv|
2 − G′(v)∆gv

)

+2f(v)
(

〈∇gv,∇g|∇gv|
2〉 − 2〈∇gv,∇g

(

G(v)
)

〉
)

−

∣

∣

∣
∇g|∇gv|

2 − 2∇g

(

G(v)
)

∣

∣

∣

2

2

= 2|∇gv|
2
(

|Hv|
2 − f ′(v)|∇gv|

2

+Ricg(∇gv,∇gv) + f ′(v)|∇gv|
2 −

(

f(v)
)2

)

+2f(v)
(

〈∇gv,∇g|∇gv|
2〉 + 2f(v)|∇gv|

2
)

−

∣

∣

∣
∇g|∇gv|

2 + 2f(v)∇gv
∣

∣

∣

2

2

= 2|∇gv|
2
(

|Hv|
2 + Ricg(∇gv,∇gv)

)

−

∣

∣∇g|∇gv|
2
∣

∣

2

2
.
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Hence, recalling (3) and the fact that the Ricci curvature is nonnegative, we
obtain that

|∇gv|
2∆gP − 2G′(v)〈∇gv,∇gP 〉 −

|∇gP |2

2

= 2|∇gv|
2
(

|Hv|
2 −

∣

∣∇g|∇gv|
∣

∣

2
+ Ricg(∇gv,∇gv)

)

≥ 2|∇gv|
2 Ricg(∇gv,∇gv).

(10)

We observe that the above quantity is nonnegative, and this proves (9).
Now, we define

Po := sup
v∈F

x∈M

P (v, x). (11)

We observe that, if v ∈ F,

|f(v(x)) − f(v(y))| ≤ ‖f‖C1([m,M])|v(x) − v(y)|

≤ ‖f‖C1([m,M])‖v‖Cα(M)|x − y|α

≤ ‖f‖C1([m,M])‖u‖Cα(M)|x − y|α

for any x, y ∈ M .
Consequently, by elliptic regularity (see, e.g., [5]), any v ∈ F satisfies

‖v‖C2,α(M) ≤ Co (12)

for a suitable Co > 0 independent on v (more precisely, Co only depends
on f , m, M and ‖u‖Cα(M)).

In particular, the sup in (11) is finite.
We claim that

Po ≤ 0. (13)

To check (13), we argue by contradiction. We suppose that

Po > 0 (14)

vk ∈ F and xk ∈ M in such a way that

Po −
1

k
≤ P (vk, xk) ≤ Po. (15)

Since M is compact, we may suppose that xk converges to some x∞ ∈ M ,
up to subsequence.

Also, by (12), vk converges in C2(M), up to subsequence, to some v∞.
Notice that v∞ ∈ F by construction.
Therefore, (15) gives that

P (v∞, x∞) = Po. (16)

From (6), (14) and (16), we obtain that

|∇gv∞(x∞)|2 ≥ |∇gv∞(x∞)|2 − 2G(v∞(x∞)) = Po > 0

and therefore

∇gv∞(x∞) 6= 0. (17)
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In light of (9), (16) and (17), the Strong Maximum Principle gives that

P (v∞, x) = Po for any x ∈ M . (18)

In particular, recalling (4) and using (6), (14) and (18), we conclude that

0 = |∇gv∞(x(v∞))|2 ≥ |∇gv∞(x(v∞))|2 − 2G
(

v∞(x(v∞))
)

= P
(

v∞, x(v∞)
)

= Po > 0.

Since this is a contradiction, the proof of (13) is complete.
Then, by (5) and (13),

0 ≥ Po = sup
v∈F

x∈M

P (v, x) ≥ P (u, x) = |∇gu(x)|2 − 2G(u(x))

= |∇gu(x)|2 − 2

[

sup
r∈[m,M]

F (r) − F
(

u(x)
)

]

,

that is (1).
We now suppose that equality in (1) holds at some point

xo ∈ {∇gu 6= 0} (19)

and we prove that it holds at all the points of the connected component of
M ∩ {∇gu 6= 0} that contains xo.

For this, let M ′ be such connected component. We notice that, by (5)
and (13),

0 ≥ Po ≥ P (u, xo) = |∇gu(xo)|
2 − 2

[

sup
r∈[m,M]

F (r) − F
(

u(xo)
)

]

= 0,

and so

P (u, xo) = max
x∈M

P (u, x) = 0.

Thus, (19) and the Strong Maximum Principle gives that

P (u, x) = 0 for any x ∈ M ′. (20)

This shows that equality in (1) holds at all the points of M ′.
Furthermore, from (10) and (20),

0 = |∇gv|
2∆gP − 2G′(v)〈∇gv,∇gP 〉 −

|∇gP |2

2
≥ 2|∇gv|

2 Ricg(∇gv,∇gv)

and so

|∇gv|
2 Ricg(∇gv,∇gv) = 0

at all the points of M ′.
Since ∇gv 6= 0 in M ′, this gives that Ricg(∇gv,∇gv) vanishes identically

in M ′.
This completes the proof of Theorem 1. �
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Remark 2. We observe that, from (3), (10) and (20), we have also proved
that if equality in (1) holds at some point xo ∈ {∇gu 6= 0}, then |Hv| =
∣

∣∇g|∇gv|
∣

∣ at all the points of the connected component of M ∩ {∇gu 6= 0}
that contains xo.
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