A POINTWISE GRADIENT BOUND FOR ELLIPTIC EQUATIONS ON COMPACT MANIFOLDS WITH NONNEGATIVE RICCI CURVATURE

Alberto Farina
LAMFA - CNRS UMR 6140
Université de Picardie Jules Verne
Faculté des Sciences 33, rue Saint-Leu
80039 Amiens CEDEX 1, France
\section*{Enrico Valdinoci}
Università di Roma Tor Vergata
Dipartimento di Matematica
via della ricerca scientifica, 1
I-00133 Rome, Italy

(Communicated by the associate editor name)

The goal of this note is to prove the following result:
Theorem 1. Let M be a smooth, compact, Riemannian manifold with nonnegative Ricci curvature and let $f \in C^{1}(\mathbb{R})$.

Let $u \in C^{3}(M)$ be a solution of

$$
\Delta_{g} u+f(u)=0
$$

on M, with $\mathfrak{m}:=\inf _{M} u, \mathfrak{M}:=\sup _{M} u$, and let F be a primitive of f.
Then,

$$
\begin{equation*}
\frac{1}{2}\left|\nabla_{g} u(x)\right|^{2} \leq \sup _{r \in[\mathbf{m}, \mathfrak{M}]} F(r)-F(u(x)) \tag{1}
\end{equation*}
$$

for any $x \in M$.
Also, if equality in (1) holds at some point $x_{o} \in\left\{\nabla_{g} u \neq 0\right\}$, then:

- equality in (1) holds at all the points of the connected component of $M \cap\left\{\nabla_{g} u \neq 0\right\}$ that contains x_{o},
- $\operatorname{Ric}_{g}\left(\nabla_{g} v, \nabla_{g} v\right)$ vanishes at all the points of the connected component of $M \cap\left\{\nabla_{g} u \neq 0\right\}$ that contains x_{o}.

[^0]The notation used here above is the standard one, namely ∇_{g} is the Riemannian gradient and Δ_{g} is the Laplace-Beltrami operator, that is, in local coordinates,

$$
\left(\nabla_{g} \phi\right)^{i}=g^{i j} \partial_{j} \phi
$$

and

$$
\Delta_{g} \phi=\operatorname{div}_{g}\left(\nabla_{g} \phi\right)=\frac{1}{\sqrt{|g|}} \partial_{i}\left(\sqrt{|g|} g^{i j} \partial_{j} \phi\right),
$$

for any smooth function $\phi: M \rightarrow \mathbb{R}$.
We remark that when equality in (1) holds on a connected open set U, then u is an isoparametric function in U, see pages 541-548 of [8]. In particular, any level set σ of u has constant mean curvature along $\sigma \cap U$. For a comprehensive description of isoparametric functions, see also [10].

The pointwise estimate of Theorem 1 may be seen as an extension of the one obtained in [6], where a similar result was proven in the case of \mathbb{R}^{n}.

We observe that if F is bounded, (1) implies the following universal estimate:

$$
\frac{1}{2}\left|\nabla_{g} u(x)\right|^{2} \leq \sup _{r \in \mathbb{R}} F(r)-\inf _{r \in \mathbb{R}} F(r) .
$$

The proof we give here of Theorem 1 uses the technique of [2], where important strengthenings of the work of [6] were performed in the degenerate and singular Euclidean case.

The proof is based on the " P-function technique", i.e. in a convenient use of the maximum principle, applied to a function which solves a degenerate PDE (see [7, 9]).

For related results in the Euclidean setting, see also [4].
Proof of Theorem 1. We recall that, if $\phi \in C^{3}(M)$,

$$
\begin{equation*}
\frac{1}{2} \Delta_{g}\left|\nabla_{g} \phi\right|^{2}=\left|H_{\phi}\right|^{2}+\left\langle\nabla_{g} \Delta_{g} \phi, \nabla_{g} \phi\right\rangle+\operatorname{Ric}_{g}\left(\nabla_{g} \phi, \nabla_{g} \phi\right) . \tag{2}
\end{equation*}
$$

Here above, H_{ϕ} is the Hessian of ϕ : note that (2) is the so-called BochnerWeitzenböck formula (see, for instance, $[1,11]$ and references therein).

Moreover, we have that

$$
\begin{equation*}
\left|H_{\phi}\right|^{2} \geq\left|\nabla_{g}\right| \nabla_{g} \phi| |^{2} \quad \text { almost everywhere. } \tag{3}
\end{equation*}
$$

See, for instance, $[3]$ for the simple proof of this fact.
Also, we observe that, since M is compact, if $v \in C^{2}(M)$ then there exists $x(v) \in M$ which minimizes v, and so

$$
\begin{equation*}
\nabla_{g} v(x(v))=0 . \tag{4}
\end{equation*}
$$

We now define

$$
\begin{equation*}
G(t):=\sup _{r \in[\mathrm{~m}, \mathfrak{M}]} F(r)-F(t) . \tag{5}
\end{equation*}
$$

We remark that

$$
\begin{equation*}
G(t) \geq 0 \tag{6}
\end{equation*}
$$

for any $t \in[\mathfrak{m}, \mathfrak{M}]$.

We also fix $\alpha \in(0,1)$, say $\alpha=1 / 2$, and set $[u]_{C^{\alpha}(M)}$ to be the α-seminorm of u, which is finite by assumption.

Let
$\mathcal{F}:=\left\{v \in C^{2}(M)\right.$ solutions of $\Delta_{g} v=G^{\prime}(v)$ in M with $\mathfrak{m} \leq v \leq \mathfrak{M}$ and $\left.[v]_{C^{\alpha}(M)} \leq[u]_{C^{\alpha}(M)}\right\}$.
Also, given $v \in \mathcal{F}$, following [2], we define

$$
\begin{equation*}
P(v, x):=\left|\nabla_{g} v(x)\right|^{2}-2 G(v(x)) . \tag{8}
\end{equation*}
$$

We now claim that, for any $v \in \mathcal{F}$ and any $x \in M$,

$$
\begin{equation*}
\left|\nabla_{g} v(x)\right|^{2} \Delta_{g} P(v, x)-2 G^{\prime}(v(x))\left\langle\nabla_{g} v(x), \nabla_{g} P(v, x)\right\rangle \geq \frac{\left|\nabla_{g} P(v, x)\right|^{2}}{2} . \tag{9}
\end{equation*}
$$

We remark that (9) may be considered the Riemannian analogue of formula (2.7) in [2], where a similar equality was found in the Euclidean setting.

To prove (9), we use (2) and (7) to obtain that

$$
\begin{aligned}
& \left|\nabla_{g} v\right|^{2} \Delta_{g} P-2 G^{\prime}(v)\left\langle\nabla_{g} v, \nabla_{g} P\right\rangle-\frac{\left|\nabla_{g} P\right|^{2}}{2} \\
& =\left|\nabla_{g} v\right|^{2}\left(\Delta_{g}\left|\nabla_{g} v\right|^{2}-2 \Delta_{g}(G(v))\right)+2 f(v)\left\langle\nabla_{g} v, \nabla_{g} P\right\rangle-\frac{\left|\nabla_{g} P\right|^{2}}{2} \\
& =2\left|\nabla_{g} v\right|^{2}\left(\left|H_{v}\right|^{2}+\left\langle\nabla_{g} \Delta_{g} v, \nabla_{g} v\right\rangle+\operatorname{Ric}_{g}\left(\nabla_{g} v, \nabla_{g} v\right)-\operatorname{div}_{g}\left(G^{\prime}(v) \nabla_{g} v\right)\right) \\
& +2 f(v)\left\langle\nabla_{g} v, \nabla_{g} P\right\rangle-\frac{\left|\nabla_{g} P\right|^{2}}{2} \\
& =2\left|\nabla_{g} v\right|^{2}\left(\left|H_{v}\right|^{2}-\left\langle\nabla_{g}(f(v)), \nabla_{g} v\right\rangle\right. \\
& \left.+\operatorname{Ric}_{g}\left(\nabla_{g} v, \nabla_{g} v\right)-G^{\prime \prime}(v)\left|\nabla_{g} v\right|^{2}-G^{\prime}(v) \Delta_{g} v\right) \\
& \left.+2 f(v)\left(\left.\left\langle\nabla_{g} v, \nabla_{g}\right| \nabla_{g} v\right|^{2}\right\rangle-2\left\langle\nabla_{g} v, \nabla_{g}(G(v))\right\rangle\right) \\
& -\frac{\left.\left|\nabla_{g}\right| \nabla_{g} v\right|^{2}-\left.2 \nabla_{g}(G(v))\right|^{2}}{2} \\
& =2\left|\nabla_{g} v\right|^{2}\left(\left|H_{v}\right|^{2}-f^{\prime}(v)\left|\nabla_{g} v\right|^{2}\right. \\
& \left.+\operatorname{Ric}_{g}\left(\nabla_{g} v, \nabla_{g} v\right)+f^{\prime}(v)\left|\nabla_{g} v\right|^{2}-(f(v))^{2}\right) \\
& \left.+2 f(v)\left(\left.\left\langle\nabla_{g} v, \nabla_{g}\right| \nabla_{g} v\right|^{2}\right\rangle+2 f(v)\left|\nabla_{g} v\right|^{2}\right) \\
& -\frac{\left.\left|\nabla_{g}\right| \nabla_{g} v\right|^{2}+\left.2 f(v) \nabla_{g} v\right|^{2}}{2} \\
& =2\left|\nabla_{g} v\right|^{2}\left(\left|H_{v}\right|^{2}+\operatorname{Ric}_{g}\left(\nabla_{g} v, \nabla_{g} v\right)\right)-\frac{\left.\left.\left|\nabla_{g}\right| \nabla_{g} v\right|^{2}\right|^{2}}{2} .
\end{aligned}
$$

Hence, recalling (3) and the fact that the Ricci curvature is nonnegative, we obtain that

$$
\begin{align*}
& \left|\nabla_{g} v\right|^{2} \Delta_{g} P-2 G^{\prime}(v)\left\langle\nabla_{g} v, \nabla_{g} P\right\rangle-\frac{\left|\nabla_{g} P\right|^{2}}{2} \\
& \quad=2\left|\nabla_{g} v\right|^{2}\left(\left|H_{v}\right|^{2}-\left.\left|\nabla_{g}\right| \nabla_{g} v\right|^{2}+\operatorname{Ric}_{g}\left(\nabla_{g} v, \nabla_{g} v\right)\right) \tag{10}\\
& \quad \geq 2\left|\nabla_{g} v\right|^{2} \operatorname{Ric}_{g}\left(\nabla_{g} v, \nabla_{g} v\right) .
\end{align*}
$$

We observe that the above quantity is nonnegative, and this proves (9).
Now, we define

$$
\begin{equation*}
P_{o}:=\sup _{\substack{v \in \mathcal{F} \\ x \in M}} P(v, x) \text {. } \tag{11}
\end{equation*}
$$

We observe that, if $v \in \mathcal{F}$,

$$
\begin{aligned}
\mid f(v(x)) & -f(v(y))\left|\leq\|f\|_{C^{1}([\mathfrak{m}, \mathfrak{M}])}\right| v(x)-v(y) \mid \\
& \leq\|f\|_{C^{1}([\mathfrak{m}, \mathfrak{M}])}\|v\|_{C^{\alpha}(M)}|x-y|^{\alpha} \\
& \leq\|f\|_{C^{1}([\mathfrak{m}, \mathfrak{M}])}\|u\|_{C^{\alpha}(M)}|x-y|^{\alpha}
\end{aligned}
$$

for any $x, y \in M$.
Consequently, by elliptic regularity (see, e.g., [5]), any $v \in \mathcal{F}$ satisfies

$$
\begin{equation*}
\|v\|_{C^{2, \alpha}(M)} \leq C_{o} \tag{12}
\end{equation*}
$$

for a suitable $C_{o}>0$ independent on v (more precisely, C_{o} only depends on $f, \mathfrak{m}, \mathfrak{M}$ and $\left.\|u\|_{C^{\alpha}(M)}\right)$.

In particular, the sup in (11) is finite.
We claim that

$$
\begin{equation*}
P_{o} \leq 0 \tag{13}
\end{equation*}
$$

To check (13), we argue by contradiction. We suppose that

$$
\begin{equation*}
P_{o}>0 \tag{14}
\end{equation*}
$$

$v_{k} \in \mathcal{F}$ and $x_{k} \in M$ in such a way that

$$
\begin{equation*}
P_{o}-\frac{1}{k} \leq P\left(v_{k}, x_{k}\right) \leq P_{o} . \tag{15}
\end{equation*}
$$

Since M is compact, we may suppose that x_{k} converges to some $x_{\infty} \in M$, up to subsequence.

Also, by (12), v_{k} converges in $C^{2}(M)$, up to subsequence, to some v_{∞}. Notice that $v_{\infty} \in \mathcal{F}$ by construction.
Therefore, (15) gives that

$$
\begin{equation*}
P\left(v_{\infty}, x_{\infty}\right)=P_{o} . \tag{16}
\end{equation*}
$$

From (6), (14) and (16), we obtain that

$$
\left|\nabla_{g} v_{\infty}\left(x_{\infty}\right)\right|^{2} \geq\left|\nabla_{g} v_{\infty}\left(x_{\infty}\right)\right|^{2}-2 G\left(v_{\infty}\left(x_{\infty}\right)\right)=P_{o}>0
$$

and therefore

$$
\begin{equation*}
\nabla_{g} v_{\infty}\left(x_{\infty}\right) \neq 0 \tag{17}
\end{equation*}
$$

In light of (9), (16) and (17), the Strong Maximum Principle gives that

$$
\begin{equation*}
P\left(v_{\infty}, x\right)=P_{o} \quad \text { for any } x \in M . \tag{18}
\end{equation*}
$$

In particular, recalling (4) and using (6), (14) and (18), we conclude that

$$
\begin{aligned}
& 0=\left|\nabla_{g} v_{\infty}\left(x\left(v_{\infty}\right)\right)\right|^{2} \geq\left|\nabla_{g} v_{\infty}\left(x\left(v_{\infty}\right)\right)\right|^{2}-2 G\left(v_{\infty}\left(x\left(v_{\infty}\right)\right)\right) \\
& \quad=P\left(v_{\infty}, x\left(v_{\infty}\right)\right)=P_{o}>0 .
\end{aligned}
$$

Since this is a contradiction, the proof of (13) is complete.
Then, by (5) and (13),

$$
\begin{aligned}
0 \geq P_{o} & =\sup _{\substack{v \in \mathcal{F} \\
x \in M}} P(v, x) \geq P(u, x)=\left|\nabla_{g} u(x)\right|^{2}-2 G(u(x)) \\
& =\left|\nabla_{g} u(x)\right|^{2}-2\left[\sup _{r \in[\mathrm{~m}, \mathfrak{M}]} F(r)-F(u(x))\right],
\end{aligned}
$$

that is (1).
We now suppose that equality in (1) holds at some point

$$
\begin{equation*}
x_{o} \in\left\{\nabla_{g} u \neq 0\right\} \tag{19}
\end{equation*}
$$

and we prove that it holds at all the points of the connected component of $M \cap\left\{\nabla_{g} u \neq 0\right\}$ that contains x_{o}.

For this, let M^{\prime} be such connected component. We notice that, by (5) and (13),

$$
0 \geq P_{o} \geq P\left(u, x_{o}\right)=\left|\nabla_{g} u\left(x_{o}\right)\right|^{2}-2\left[\sup _{r \in[\mathfrak{m}, \mathfrak{M}]} F(r)-F\left(u\left(x_{o}\right)\right)\right]=0,
$$

and so

$$
P\left(u, x_{o}\right)=\max _{x \in M} P(u, x)=0 .
$$

Thus, (19) and the Strong Maximum Principle gives that

$$
\begin{equation*}
P(u, x)=0 \quad \text { for any } x \in M^{\prime} . \tag{20}
\end{equation*}
$$

This shows that equality in (1) holds at all the points of M^{\prime}.
Furthermore, from (10) and (20),

$$
0=\left|\nabla_{g} v\right|^{2} \Delta_{g} P-2 G^{\prime}(v)\left\langle\nabla_{g} v, \nabla_{g} P\right\rangle-\frac{\left|\nabla_{g} P\right|^{2}}{2} \geq 2\left|\nabla_{g} v\right|^{2} \operatorname{Ric}_{g}\left(\nabla_{g} v, \nabla_{g} v\right)
$$

and so

$$
\left|\nabla_{g} v\right|^{2} \operatorname{Ric}_{g}\left(\nabla_{g} v, \nabla_{g} v\right)=0
$$

at all the points of M^{\prime}.
Since $\nabla_{g} v \neq 0$ in M^{\prime}, this gives that $\operatorname{Ric}_{g}\left(\nabla_{g} v, \nabla_{g} v\right)$ vanishes identically in M^{\prime}.

This completes the proof of Theorem 1.

Remark 2. We observe that, from (3), (10) and (20), we have also proved that if equality in (1) holds at some point $x_{o} \in\left\{\nabla_{g} u \neq 0\right\}$, then $\left|H_{v}\right|=$ $\left|\nabla_{g}\right| \nabla_{g} v| |$ at all the points of the connected component of $M \cap\left\{\nabla_{g} u \neq 0\right\}$ that contains x_{o}.

REFERENCES

[1] Marcel Berger, Paul Gauduchon, and Edmond Mazet, Le spectre d'une variété riemannienne, Lecture Notes in Mathematics, Vol. 194, Springer-Verlag, Berlin, 1971. MR0282313 (43 8025)
[2] Luis Caffarelli, Nicola Garofalo, and Fausto Segàla, A gradient bound for entire solutions of quasi-linear equations and its consequences, Comm. Pure Appl. Math. 47 (1994), no. 11, 1457-1473. MR1296785 (95k:35030)
[3] Alberto Farina, Yannick Sire, and Enrico Valdinoci, Stable solutions of elliptic equations on Riemannian manifolds, preprint.
[4] Alberto Farina and Enrico Valdinoci, A pointwise gradient estimate in possibly unbounded domains with nonnegative mean curvature, to appear in Adv. Math.
[5] David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, second ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR737190 (86c:35035)
[6] Luciano Modica, A gradient bound and a Liouville theorem for nonlinear Poisson equations, Comm. Pure Appl. Math. 38 (1985), no. 5, 679-684. MR803255 ($87 \mathrm{~m}: 35088$)
[7] L. E. Payne, Some remarks on maximum principles, J. Analyse Math. 30 (1976), 421-433. MR0454338 (56 12589)
[8] Vladimir E. Shklover, Schiffer problem and isoparametric hypersurfaces, Rev. Mat. Iberoamericana 16 (2000), no. 3, 529-569. MR1813328 (2002c:53061)
[9] René P. Sperb, Maximum principles and their applications, Mathematics in Science and Engineering, vol. 157, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1981. MR615561 (84a:35033)
[10] Gudlaugur Thorbergsson, A survey on isoparametric hypersurfaces and their generalizations, Handbook of differential geometry, Vol. I, North-Holland, Amsterdam, 2000, pp. 963-995. MR1736861 (2001a:53097)
[11] Jiaping Wang, Lecture notes on geometric analysis, available online at www.math.nthu.edu.tw/user/writing/w1168.pdf.
E-mail address: alberto.farina@u-picardie.fr
E-mail address: enrico.valdinoci@uniroma2.it

[^0]: 2000 Mathematics Subject Classification. Primary: 35J15, 35J61; Secondary: 53B20.
 Key words and phrases. Geometric analysis of PDEs, a-priori estimates.
 This work has been supported by FIRB project "Analysis and Beyond" and GNAMPA project "Equazioni nonlineari su varietà: proprietà qualitative e classificazione delle soluzioni".

