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The goal of this note is to prove the following result:

Theorem 1. Let M be a smooth, compact, Riemannian manifold with non-
negative Ricci curvature and let f € C1(R).
Let u € C3(M) be a solution of

Agu+ f(u) =0

on M, with m := infpr u, M := sup,; u, and let F' be a primitive of f.
Then, )
5IVou(@)[* < sup F(r) = F(u(x)), (1)
r€[m,m]
for any x € M.
Also, if equality in (1) holds at some point x, € {V u # 0}, then:
e cquality in (1) holds at all the points of the connected component of
M N {Vg4u # 0} that contains x,,

e Ricy(V4v,V4v) vanishes at all the points of the connected component
of M N{V4u # 0} that contains x,.
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The notation used here above is the standard one, namely V, is the
Riemannian gradient and A, is the Laplace-Beltrami operator, that is, in
local coordinates,

(Vg0)' = g7 0;¢

Agp =divy (Vo) = L

VIl
for any smooth function ¢ : M — R.

We remark that when equality in (1) holds on a connected open set U,
then v is an isoparametric function in U, see pages 541-548 of [8]. In par-
ticular, any level set o of u has constant mean curvature along o N U. For
a comprehensive description of isoparametric functions, see also [10].

The pointwise estimate of Theorem 1 may be seen as an extension of the
one obtained in [6], where a similar result was proven in the case of R".

We observe that if F' is bounded, (1) implies the following universal esti-
mate:

and

0 (V1lg"0;9),

1
51Vgu(e)? < sup F(r) — inf F(),

The proof we give here of Theorem 1 uses the technique of [2], where
important strengthenings of the work of [6] were performed in the degenerate
and singular Euclidean case.

The proof is based on the “P-function technique”, i.e. in a convenient use
of the maximum principle, applied to a function which solves a degenerate
PDE (see [7, 9]).

For related results in the Euclidean setting, see also [4].

Proof of Theorem 1. We recall that, if ¢ € C3(M),
1 .
§Ag|vg¢|2 = |JLI¢>|2 +(VgAgp, Vy9) + Ricy(Vgp, Vy0). (2)

Here above, Hy is the Hessian of ¢: note that (2) is the so-called Bochner-
Weitzenbock formula (see, for instance, [1, 11] and references therein).
Moreover, we have that

|Hy|* > |V9\Vg¢||2 almost everywhere. (3)

See, for instance, [3] for the simple proof of this fact.
Also, we observe that, since M is compact, if v € C?(M) then there exists
x(v) € M which minimizes v, and so

Vgv(z(v)) = 0. (4)
We now define
G(t) == es[upm] F(r)— F(t). (5)
We remark that
G(t)>0 (6)

for any t € [m,MM].
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We also fix a € (0, 1), say o = 1/2, and set [u]ca(ary to be the a-seminorm
of u, which is finite by assumption.
Let

F .= {v € C?(M) solutions of Ayv = G'(v) in M with m <v <9

(7)
and [v]ca(ar) < [U]CQ(M)}'
Also, given v € F, following [2], we define
P(v,z) := [Vgo(x)|* — 2G(v()). (8)
We now claim that, for any v € F and any ¢ € M,
P 2
IV 0(z)|?AyP(v, 2) — 2G" (v(2))(V yv(x), V,P(v,2)) > W. 9)

We remark that (9) may be considered the Riemannian analogue of formula
(2.7) in [2], where a similar equality was found in the Euclidean setting.
To prove (9), we use (2) and (7) to obtain that

P 2
[Vgu?AgP — 2G' (v)(Vgv, V4 P) — %
V,PJ?
= |ng|2(Ag|ng|2 — 2A9(G(v))) +2f(v)(Vgv,VyP) — %
= 2|V,v)? (\HU\Q + (VgAg4v, V) 4+ Ricy(Vyv, Vyv) — divg (G/(v)vgv))
vV, P
2£(0) (V0,9 P) — VoL

= 2V (P = (Vy(f(0)), Vo)
+Ricy(V,v, Vyv) — G (0)|V40]? — G,(U)Ag’u)
+2f(v) ((ng, Vg|ng|2> —2(Vyv,Vy (G(U))>)

2
‘VQ‘VQUP - 2VQ(G(U))‘
a 2
= 2Vl (|H P — /@) Vvl

+Ricy(Vyv, Vy0) + [ (0)| Vo = (f(0))?)
+2£(0) ((V40, V, Vo) + 2£ ()] V07

2
‘VQ\VQUP + 2f(U)Vg’U‘
a 2

[Vl Vel

= vagv|2(\HU\2 + Ricy (Vv vgv)) .
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Hence, recalling (3) and the fact that the Ricci curvature is nonnegative, we
obtain that

Vo PI?
2
2 . 1
= 2V (|H 2 = [V, V0l]* + Ricy(Vgr, Vgr)) 10

> 2|V,v|? Ricy(Vgv, Vyv).

|V 0?AyP — 2G' (v)(V 40,V ,P) —

We observe that the above quantity is nonnegative, and this proves (9).

Now, we define
P, := sup P(v,x). (11)

veF
xeM

We observe that, if v € F,
(@) = Fo@)] < [ fllor momlv(@) —v(y)]

< N fller qmomp loll o (any |2 — y|*
< [ fller (o lull o (any [z — y|*

for any z, y € M.
Consequently, by elliptic regularity (see, e.g., [5]), any v € F satisfies

[vllcza oy < Co (12)
for a suitable C, > 0 independent on v (more precisely, C, only depends
on f7 m, I and ||UHCO‘(M))

In particular, the sup in (11) is finite.
We claim that

P, <0. (13)
To check (13), we argue by contradiction. We suppose that
P, >0 (14)
v € F and xp € M in such a way that
1
P, — Z < P(vg,z) < P,. (15)

Since M is compact, we may suppose that x; converges to some o, € M,
up to subsequence.
Also, by (12), vi converges in C?(M), up to subsequence, to some vq.
Notice that v, € F by construction.
Therefore, (15) gives that

P(Voo, Too) = Py. (16)
From (6), (14) and (16), we obtain that
‘vgvoo(xoo”2 > |vgvoo(xoo>|2 = 2G (Vo0 (To0)) = Po > 0

and therefore
vgvoo(a:oo) 7é 0. (17)
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In light of (9), (16) and (17), the Strong Maximum Principle gives that
P(vo, ) = P, for any z € M. (18)
In particular, recalling (4) and using (6), (14) and (18), we conclude that
0= |ngOO(‘T(UOO))’2 = |vgvoo{fz(”00))’2 - QG(UOO(x(UOO)))
= P(voo,:z(voo)) =P, >0.

Since this is a contradiction, the proof of (13) is complete.
Then, by (5) and (13),

0> P, = sup P(v,2) > P(u,2) = |Vyu(z)|* — 2G(u(x))
veF
zeM

= |Vgu(a:)]2 —2| sup F(r)-— F(u(x)) ,

re&[m,m]
that is (1).
We now suppose that equality in (1) holds at some point
zo € {Vgu # 0} (19)

and we prove that it holds at all the points of the connected component of
M N {V4u # 0} that contains z,.

For this, let M’ be such connected component. We notice that, by (5)
and (13),

0> P, > P(u,z,) = |vgu($o)|2 —2| sup F(r)— F(u(xo)) =0,
r€[m,m]
and so

P(u, z,) = max P(u, ) = 0,
(u, o) max (u,z) =0

Thus, (19) and the Strong Maximum Principle gives that
P(u,z) =0 for any = € M'. (20)

This shows that equality in (1) holds at all the points of M'.
Furthermore, from (10) and (20),

V,P|?
0=|V,u?A P —2G' (v)(V4v,V,P) — % > 2|V 0|* Ric, (V,4v, Vyv)

and so
|V 4v|* Ricy (Vyv, Vyv) =0
at all the points of M’.
Since Vv # 0 in M’, this gives that Ricy(V4v, V4v) vanishes identically
in M.
This completes the proof of Theorem 1. O
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Remark 2. We observe that, from (3), (10) and (20), we have also proved
that if equality in (1) holds at some point z, € {Vgu # 0}, then |H,| =
|V4|V4u|| at all the points of the connected component of M N{V gu # 0}
that contains z,.
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