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Abstract

An extension of Alberti’s result to second order derivatives is obtained.
Precisely, if Q is an open subset of RY and if f € L! (Q;RNXN) is
symmetric-valued, then there exist u € W' (Q) with Vu € BV (Q;RY)
and a constant C' > 0 depending only on N such that

D*u = f LN 4 [Vu] @ vy, HY 71| S(Vu),

and

/ u| + |Vul dac—l—/ [[Va]| dHYH < 0/ \f| dz.
Q S(Vu)NQ Q
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1 Introduction

The theory of second order structured deformations (SOSDs) has been recently
introduced by Owen and Paroni [12], and it offers a generalization to the realm
of second order derivatives of the previously developed class of (first order)
structured deformations (SDs) due to Del Piero and Owen [8], and subsequently
treated analytically by Choksi and Fonseca [6] (see also Del Piero and Truski-
nowsky [9]). These theories aim at describing certain singular or defective be-
havior of elastic and elasto-plastic materials. A SOSD is a quadruple (x, u, g, f)
satisfying some technical conditions preventing interprenetation of matter, as
well as regularity properties of the fields away from &, where & is the disarrange-
ment site, u is the transplacement, and g and f are tensor fields with properties
similar to those of Vu and V2u, respectively. A pair (x,u) is a simple de-
formation from a region Q if k C Q has zero volume, u is injective and is a
“piece-wise” classical deformation from Q\k. Owen and Paroni [12] have shown
that a SOSD (k, u, g, f) may be approximated by simple deformations (kn, 1),
i.e., k = liminf k,, u = lim u,,, g = lim Vu,, and f = lim V?u,,, where the latter
three limits are taken in the L sense, while liminf &, = U3, NS°_ K. In
light of this approximation, we may view g(z) as the local deformation at x
without including the effects of discontinuities of the transplacement w,, at the
disarrangement site £,. A similar interpretation holds for f(x). Mechanically
we may interpret Vu and V2u as macroscopic deformation measures, while g
and f are the corresponding local (or microscopic) quantities. We refer to the
references quoted above for further details and examples.
The energy associated to a simple deformation is

E(u,k) := /QW(ZI?,U,VU,VQU)CZI—F/.’(/)(ZE, [u],v) dx
+/n(:z:, [Vu],v)dHN 1, (1.1)

where the first term is the bulk energy of the material in the placement €2, the
second and third terms take into account the contribution of the surface energy
due to slips and separation and to interfaces between two phases of material,
respectively. In (1.1) v represents the normal to x and [-] denotes the jump. We
define the energy of a SOSD as the energetically most economical way to build
it up from simple deformations, i.e.,

I{k,u, g, f) :=inf{liminf E(u,, k) : (kn, u,) approximates (k,u, g, f)}.

By analogy with the previous work of Choksi and Fonseca [6], where the study of
SDs was recasted within the theory of SBV, here we are tempted to reformulate
the theory of SOSDs either in SBH or in SBV? (see [4, 5, 10, 11, 13]). Then
again, the first question that naturally arises concerns the characterization of
all macroscopic (k,u, g, f) that may be attained as limits of quadruples built
from smoother deformations. As a first iteration towards this quest, we search
for necessary and sufficient conditions ensuring that a pair (g, f) admits an



underlying function wu, either in SBH or in SBV?2, such that K := S(Vu),
g=Vu, f=Vu

The corresponding problem for first order derivatives was completely solved by
Alberti [1] who proved the following result:

Theorem 1.1 Let Q be an open subset of RY and let f € L' (Q;RN) . Then
there exists w € BV () and a constant C' > 0, depending only on N, such that

Du = fLN + [uv, HN 71| S(u),

and

/|u\ daz—i—/ Hu]|dHN_1§C/|f\ dz.
Q S(u)nQ Q

Here v,(z) € SN ~1 is the unit normal to the jump set S(u) at .

Note that this theorem confirms the striking gap existing between the Sobolev
space W11 (Q) and the space BV (Q) of functions of bounded variation. In-
deed, it is well known that in a simply connected domain  C R¥, a function
fert (Q; RN) is the gradient of a Sobolev function v € W' (Q) if and only
if it satisfies curl f = 0 in the sense of distributions, that is if

ofi _ 0f;
aQJj 3331'

forallz,57=1,---,N. (1.2)

However, if one allows the function u to belong to a class larger than Wi1 (),
such as SBV (2), then the PDE constraint (1.2) may no longer be satisfied.

When Q = R the proof of Theorem 1.1 is based on the construction of an
approximating sequence {us} of the form

us(w) =Y filw — yi) X1, (1.3)
T;

where {T;} is the family of all open cubes of the form Q(y;, ) with centers y;
belonging to the lattice (6Z)" and f; is the mean value of f on T}.
Alberti in [1] proved also the following Lusin-type result:

Theorem 1.2 Let Q be an open subset of RN with finite measure and let f :
Q — RY be a Borel function. Then, for every e > 0, there exists an open set
A CQ and a function u € C} (Q) such that

Al <e|®|, f=Du inOQ\A

and
IDul| o) < CeYP7Y flliry  for all p € [0, 00

where C' is a constant which depends on N only.



The argument of the proof of Theorem 1.2 is very similar to that of Theorem
1.1, with the sequence (1.3) replaced by

vs(w) =Y filw — i) (),
T;

where now the functions v; € C§(T;) are smooth cut-off functions rather than
characteristic functions xr,.

Later, Alberti [2] extended Theorem 1.2 to higher order derivatives, and he
obtained

Theorem 1.3 Let k be a positive integer and let A be a positive finite measure
on the open set @ C RN. Let f: Q — (RM)I(k) be a continuous function and
let € be a positive real number. Then there exists a compact set K C Q) and a
function u € C¥ (Q, ]RM) such that

MO\K) <eX(Q), f=DFu inK

and
[ D*ul| oo () < Ce || flloe ()
where C' is a constant which depends only on N and k.

The approximating sequence in this case has the form

ws(z) =: Z Z %(fz)a(ilf —ui)" | Yilx),

T; || <Kk

where we are using the standard multi-index notation.

Unlike the generalization of Theorem 1.2 to higher order derivatives, i.e.
Theorem 1.3, the analog of Theorem 1.1 for second order derivatives does not
follow by a straightforward adaptation of its proof when we ask the potential u to
be in the Sobolev space W', Moreover, while Theorem 1.1, as originally proved
by Alberti [1], relies on a careful modification of the argument of Theorem 1.2,
the same strategy will no longer work when attempting to establish Theorem
1.4 below from the corresponding second order Lusin result in Theorem 1.3.
Indeed, it is well known that gradients of continuous maps can only jump across
hyperplanes, and that the gradient jump must be a rank-one matrix oriented
following the normal to the hyperplane (see Ball and James [3]). Therefore, a
careful geometric construction is required, and here we achieve this via finite
element techniques of triangulations of R for polynomials of degree 2. Our
main theorem is

Theorem 1.4 Let Q be an open subset of RY and let f ¢ L' (Q;RNXN) . Then

sym

there exists w € BH () and a constant C > 0 depending only on N such that
D?*u= fLN +[Vu] @ vg, HY 71 S(Vu),

/ lul + [Vu| dx—f—/ [[Vu]| dHN ! gc/ |f| da.
Q S(Vu)NQ Q

and



In the passage from the Sobolev space W21 to the space BH the Hessian
matrix D?u remains symmetric but it may loose in general the PDE constraint
curl= 0. By going to the larger space SBV? also symmetry may be lost. Indeed,
applying Theorem 1.1 twice we prove that

Theorem 1.5 Let Q be an open subset of RY and let f ¢ L* (Q;RNXN) . Then
there exist w € SBV? () and a constant C > 0, depending only on N, such
that

VZu(x) = f(zx) for LY a.e. x € RV,

and

/\u|+|w| dx+/ [u]] + |[Vu]| dHN ! gc/ f| da.
Q (S(w)US(Vu))NQ Q

Note that, by virtue of the very definition of SBV?2, it can be easily estab-
lished that, given (g, f) € LY(Q; RY) x L1(Q; RV*N) | there exists u € SBV2()
satisfying

Vu=g, Viu=f LNaezec,

if and only if

g€ SBV(Q;RY) and f=Vg LN ae.xcQ.

2 Preliminaries

In what follows £V and H™~! are, respectively, the N dimensional Lebesgue
measure and the N — 1 dimensional Hausdorff measure in RY. When there is
no possibility of confusion, if £ ¢ RY is a Lebesgue measurable set then we
abbreviate |E| := LV (E). Let @ be the the unit cube (—1/2,1/2)Y and set
Q(g,€) = zg + £Q for zg € RN, & > 0. We denote by ]Révyr);N the space of all
symmetric N X N matrices endowed with the norm

N
[fl:= Y Iyl where f = (fi3) 4,j=1--,N,

ii=1

ie., fij = fe;-e; where {eq,...,en} is the standard orthonormal basis of R .

We review briefly some facts about functions of bounded variation which
will be useful in the sequel. A function u € L(2;R?) is said to be of bounded
variation, and we write u € BV(Q;R%), if forall i = 1,---d, and j = 1,--- N,
there exists a finite Radon measure y;; such that

/Quz(x) 8871; (x)dw = — /Q v(x) dpgj

for every v € C}(Q;R). The distributional derivative Du is the matrix—valued
measure with (i, j)-th entry p;;. Given u € BV(Q;R?) the approzimate upper



and Jower Iimit of each component w;, ¢ = 1,---d, are given by

uf (z) == inf {t eR: Elirg+ ELN LY {yeQnQ(z,e): u(y) >t}) = 0}
and

u; (x) :=sup {t eR: Elir(]gl+ ELN LY {yeQnQ(z,e): wi(y) <t})) = 0} ,

while the jump set of u, or singular set, is defined by

i=1

It is well known that S(u) is N — 1 rectifiable, i.e.

- G K,UE,
n=1

where HY~1(E) = 0 and K, is a compact subset of a C'! hypersurface. If x €
O\S(u) then u(z) is taken to be the common value of (uf (z),--- ,u} (x)) and
(uy (), ,uy (z)). It can be shown that u(z) € R? for H¥ ! a.e. z € Q\S(uw).
Furthermore, for HY 1 a.e. z € S(u) there exist a unit vector v,(z) € SN~!
normal to S(u) at z, and two vectors v~ (z), ut(z) € R? (the traces of u on
S(u) at the point ) such that

1

m -5 u(y) — ut ()N Ny =0
=V e J{yeQ(zo.e): (y—)-vu(z)>0}
and .
im — uy) —u (@) NV Day o,
=0 N Jiyeqe

0,6): (y—2) vu(2)<0}

Note that, in general, (u;)* # ( )Z and (u;)” # (u™);. We denote the jump
of w across S(u) by [u] == u™ —

decomposed as

. The distributional derivative Du may be

Du = Vul™|Q+ [u] @ vy HN L S(u) + C(u), (2.1)

where Vu is the density of the absolutely continuous part of Du with respect
to LN and C(u) is the Cantor part of Du. These three measures are mutually
singular. We designate by ||u||py the norm of v in the Banach space BV ()
defined by

lullsv (o) :AVUIdﬂch/S( )HUHdHN_l +HIC@)|(E).

The space SBV(Q) of special functions with bounded variation is

SBV(Q) :={u € BV(Q): C(u) = 0}.



We now introduce the space of functions of bounded Hessian
BH(Q): = {u € W"Y(Q) : D*u is a finite Radon measure}
={ue W' (Q): Vue BV(Q;RY)},

where D?u denotes the distributional Hessian of .
In view of (2.1) now applied to Vu in place of u, we may decompose D?u as

D%u = V2u LN Q4+ [Vu] @ vy, HY 7 S(Vu) 4+ C(Vu),

where V2u is the density of the absolutely continuous part of D?u with respect
to LN, ie., V2u = V(Vu), [Vu] := (Vu)" — (Vu) ™, and C(Vu) is the Cantor
part of D?u.

Since D?u is a symmetric distribution, we then have that

Vu(z) € RYXY, (Vu)t = (V)™ = avy, (2.2)
for some a € L}IN*‘ LS(Vw) (Q). The latter equality results immediately from the

fact that ((Vu)+ - (Vu)f) ® vy, must a symmetric rank-one matrix.
Note also that if u is W2(Q) then D?u = V2u LV |Q with

0%y
V%:( ) i,j=1,---,N.
39:1-3933«

The space SBH () of special functions of bounded Hessian, cf. [13, 10, 11, 4],
is the space of all functions of bounded Hessian such that Vu € SBV (£;RY),
ie,ue BH(2) and

D?*u = V?u LN [Q+ [Vu] @ vo, HY 71 S(Vu).
Finally we define the space SBV?2(Q), cf. [5], as
SBV*(Q) = {u e SBV(Q): Vu € SBV(Q;RY)}.

Clearly SBH(Q) c SBV%(Q), and if v € SBH(Q) then Du = Vu, while if
u € SBV?(Q) then Du is given by (2.1) and, again writing V?u = V (Vu),

DVu = V2LV |Q+ [Vu] @ vy, HY 1 8(Vu).

As shown in Theorem 1.5 below, if « € SBV?2(£2) then the symmetry of V2u is
no longer guaranteed.

3 The SBH setting

Here we improve Theorem 1.5 by obtaining the potential u in W'!(Q) provided
f is symmetric valued, as dictated by (2.2). Guided by Alberti’s work [1], this
property will be a direct consequence of a Lusin’s-type result for second order
derivatives. Precisely,



Lemma 3.1 Let f ¢ L' (RN;RNXN) and let 7 > 0. Then there exists u €

sym

SBH (]RN) and a constant C' > 0, depending only on N, such that
/ ul -+ [Vu| + |f — V2u| dx <, (3.1)
RN
/ V]| dHN ! < C/ f| da. (3.2)
S(Vu) RN

Assuming that the lemma holds, we now prove our main result.

Proof of Theorem 1.4. We proceed as in [1] to construct by an induction
argument two sequences {u,} C SBH (RY) and {f,} C L' (RV;RY:N) as
follows:

set ug := 0 and fy := f, and for given n € N suppose that u, 1 € SBH (RN)
and f,_; € L' (]RN;]RNXN) have been selected. By Lemma 3.1 there exists

sym

u, € SBH (RN) such that

1
/ [tn| + [Vg| + | fac1 — Vg | do < —n/ \fr1| de,
RN 2 RN

/ [Vu,]| dHN ! < 0/ fro1| de.
S(Vuy,) RN

Set f, := fo_1 — V2u,. We claim that the function

[e%S)
U = E Unp
n=1

satisfies the requirements. Indeed, note that

1
/ | frolde < — |f|dx forall n €N,
RN 2an RN

where aq := 1, a, := a1 +n for n > 2. Thus

ul + |Vu| de < / [un| + |Vu,| dz
[t 1vu >/ |
<> o [ Ml
29 Jou

g/ £ de,
RN

similarly

/ \[Vu]\dHN—1§CZ/ IfnflldeC/ | f] d,
S(Vu) n=1JR¥N R



also V2u(z) = f (z) for LY a.e. € RY, and this concludes the proof. m

The remaining two subsections are dedicated to the proof of Lemma 3.1.
In Subsection 3.1 we restrict our attention to the case N = 2, where the main
ideas may be easily introduced with the help of figures. In Subsection 3.2 we
will prove Lemma 3.1 in its full generality.

3.1 The 2—dimensional case

We prove Lemma 3.1 in the case N = 2. Fix h > 0, ¢, 5 € Z, and denote by Azj
the lattice points

Al :=ihey + jhey = (ih, jh) with i,j € Z,

sz is the closed triangle whose vertices are the points Azj, A?-i—l,j and AﬁjH,
and AP

and Ui}fj denotes the closed triangle whose vertices are A?,jv A?—l,j i1
Clearly the union of all triangles Lﬁj and Ui}fj forms a triangulation 7" of R2
(see Figure 1). Let

L( o )7(7171)
T TR

where {e;, ez} denotes an orthonormal basis of R2.

t.=

F F F
Al A Ay
Uh uh .
i,j+1 it 1,41
L,
i+1 “J
. h
j A1
Al
L3 U?I .
j—1 it 1,7
e2
t &»
i—1 1 [ 1 }
+ c1 A1

Figure 1: Triangulation for N = 2

Proof of Lemma 3.1.
Step 1. Assume first that f € C. (RQ;R2X2). Let ¢ > 0 be so large that

f () = 0 outside the square (—£/2,(/2)*. Fix 7 > 0 and let A > 0 be sufficiently

small such that 0

|2 — 2| < 2h = |f(2) — f(Z)] < 7

(3.3)



Consider a triangulation 7" as described above, and define

1 1
Fhl an, = 3 (/ fdas) e e = ﬁ/ Jfudz,
J L. UU,hJH Fi L:'/I,jUU"{Zr‘J
1 1
Fitat,n = 72 </ fdx) e e
i Ly oulk. . Li 0V 4
1
Fh . = - / fdfl: t
i J+1’Ai+1)j h? ( Lh U%II‘FL i+l
1 Ji1 + fa2
o P G e O
UI

[N |

If the function f was the Hessian of a function v, i.e., f = V2v, then

would be the average over Lﬁ vl 41,; of the second derivative

h
FAh

i,5°

h
A, +1,4

o
of v calculated along the direction of the segment A z+1 o Le, 0?v /0% (

—>
note that the two triangles have as a common side the segment APSAL L 5). A

n and F Z,, n We now define
11+| i,5+17 /+\ g

a function w which is continuous, piecewise quadratic (u is quadratic on any
triangle L?j and Uihj), and whose Hessian is close to f in L' norm.
; ;

similar interpretation holds for th

/;7

On each triangle Lﬁj and Ui/fj the function « shall have the form

L 1
u(x,y) = 561133 + agzy + iasy + a4x + asy + ag,

where the constants aq,...,as may vary from triangle to triangle. Since we
want the function v to be small, continuous, and with its Hessian close to f, we
require that u(Ah ) = 0 for every i,j € Z, and that the second derivative of u
calculated along a side of a triangle be equal to the mean value of f along the
same side. Precisely, in the triangle LZ ; we prescribe

h _
U(Ai,j) u(Az-l—l j) (Az j+1) 0 (34)
and
V2u61 e = FAh Al Vzuez c€g = FAh Al Vut- -t = FX;, VU
4L+ 477,741 4, J+177 i+,

A simple computation then shows that

wly, (@) = 5ai!(@— i) — i+ DR+ ay (@ - ih)(y — jh)
155 . .
+ 503" (y = M)y — (G + Dh), (3.5)

where the constants a;, i = 1,...,6, are given by
abd=Fh, ,
% 4 A7 ,7Af+| i

: h

= FA:’NA?/H'

10



Clearly the function w is continuous, since it is continuous on each triangle and
its values on the boundary of each triangle are assigned via (3.4) and by fixing
the second order derivative of u along the sides. Moreover, using (3.5) we have

e / fldz,

B

+ ‘aé’j

|, lulde < C11LL, (o}
(2%

2
where B{fj = Lﬁj U Ui}fj+1 U Uifﬂr17j+1 U U’i]:Ll,j' Similarly, we find
/ |Vu|dx§0h/ |flde.
L e

h
(¥

Since

(V)12 — fi2 = (# - f12> _ ((V2“)11 42r (V2u)zr (VQU)IQ)

(V2u)11 — fia n (V2u)aa — fo2

+

2 2
Cftet- Viutot 4 (Vw11 — fun n (Vu)az — fao
2 2
Fh —fn F" — fa2
AP AP A AP
o o+ h i,40 it 1,4 4,900,541
=ft-t FA?;Hl’A?M,j + 2 + 2

by virtue of (3.3) we have

/ |f — V2u|dz
L

h
3

= /L (If11 — (VW) 11| + | faz — (VZ)aa| + 2| f12 — (V2u)12|) dx

h
¥

F F
SC ‘fel'eliFAlh Al ‘+‘fez'e27FALh AR
L. RS Y] iy, 1
iy
> dx

Clearly the estimates above hold also for the triangles U;;. Summing over all

+Vtt~@h

i1

I
A;‘H ¥

n
< CglLll

2,

the triangles of 7/ contained in (—¢, £)2 yields
[ =¥l <cn,
R2

where we have used the fact that for A sufficiently small both » and f vanish
outside (—¢, £)* and hence (3.1) is established.

11



To obtain (3.2) notice that S(Vu) is contained in the union of the sides of
the triangles, and thus

/ o [0l < OB S a5+
S(Vu

1,J

>§0/RN|f\dm.

This concludes Step 1.
Step 2. Given f ¢ L! (RQ;RE;IE) and > 0, by density we may find f, €
C. (RQ; RQXQ) such that

sym
[ar=tldezn [ iflde (36)
RY RY
By Step 1 applied to f,, there exists u € SBH (RQ) such that

[t 1Vl |fy = 9P o <

/ V]| dHY < c/ fol da,
S(Vu) RN

which, together with (3.6), yields

/ |u+Vu+|fV2u|d9:<77(1+/ fda:),
RN RN

/ V4| a1V < C(1+n)/ f) de

S(Vu) RN

and the proof is complete. m

3.2 The N—-dimensional case

In what follows we will exploit well-known facts of triangulations of RY com-
monly used in finite element methods (see Ciarlet [7]). An N-simplex is the
convex hull K of N + 1 points 4; € RY (the vertices of K) which are not
contained in a hyperplane, namely

N+1 N+1
K = .CCGRNZ.CC:Z)\J‘AJ',OS)\J'S].,Z)\j:].
j=1 j=1
and foralli € {1,..., N +1}
{Aj—A;:je{l,...,N+1}\ {i}} isa basis of RY. (3.7)
The barycentric coordinates \j = X\; (z),j=1,---, N +1, of any point x € RY
with respect to the points A;, 7 =1,---, N 41, are the unique solutions of the

linear system
N+1
/\jaij:a:i Z:L”',N,

A =1,
j=1

<
Lo

(3.8)

2

12



where A; := (ay1;,--- ,an;) . Let P2 denote the set of polynomials of degree less

than or equal to two in the N variables z1,---,zy. It can be shown that if
p € Py then
N+1
= NN~ Dp(A)+ ) 4Np(Ayj),
i=1 i<j
where A;; := # are the midpoints of the edges of the N-simplex K.

Let
Qg ={pePy:p(A;)=0foralli=1,--- ,N+1}.

If p € Qk then
p=Y_4N\p(Ay). (3.9)

i<j
The set

is called the set of degrees of freedom in the space Q.
Lemma 3.2 Letp € Q. Then
(i) forallz ¢ it K andi, j€{l--- ,N+1}, i # ],
V() - (Ai = Aj) = 4(A; = M) p(Aij) ;
(ii) forallz € int K andi, je{1--- ,N+1},i<4,
(VZp(x) (Ai — 45)) - (Ai — 4;) = —8p (Ayy);
Proof. Fix z € int K and choose k € {1,... N}. In view of (3.8), and for

t € R close to 0, we obtain

N+1

> A(@ (A — A))) age = (2 + (A — 4))x

r=1
=xp +tag —tag;
N+1
= Z AT(ZE) Ar —|—taki - takj.
r=1

The uniqueness of solutions of (3.8) now yields

Mot HA — A)) = M(@) e £,
iz (A — A7) = Mi(@) +
Aj(x+ (A — Aj)) = Aj(=) —

13



By (3.9) we have

Vp(e) - (A = Aj) = pla 1A~ A7)

t=0
= GO 10 0y - N pag)l|
= 40u(@) — N@)p (4)
and
2
(V) (A~ A7) (A; -~ 4y) = ol 84— Ap)|
2
= U@ ) - 0pdy)]|
= —8p(4y),

and the proof is complete. m

Decompose the unit cube @ := [~1/2,1/2]" into a triangulation 7 of a finite
number of N—simplexes in such a way that any two distinct N—simplexes are
either disjoint or they have in common a vertex, an edge, or a face. For any
fixed h > 0 subdivide R¥ into closed cubes of the form Q(z, h) with centers =
belonging to the lattice (hZ)N. In each cube consider a triangulation 77" of
N-simplexes, self-similar to the triangulation 7 of Q. The family

is a triangulation of R™.
Note that by construction there exists a positive constants C' independent
of h such that

%hN < |K"| < ChY, %hN‘l <HNTH(OK™) < ORN T, (3.10)

for all K" € 7"
If AZ € R" is the middle point on an edge of an N-simplex in 77, then we

define TZ,}‘ as the set of all N-simplexes K" € 7 which contain the point A%,
i

precisely
h .__ h h . h h
Tan, = {K"er AL e K }.

Due to the self-similarity of the construction, it is clear that there exists an
integer M € N, independent of h, such that

card (Tz{,;‘) <M (3.11)

for all middle points A%;.
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Proposition 3.3 Given a triangulation ™" constructed as above, there exists

a constant C' > 0, depending on the triangulation but not on h, such that for
every N-simplex K" € 7" with vertices { A}, ..., A%Hl} we have

(i) for every fizedi € {1,... ;N +1}

\v\gCZ‘v~E?j‘ for all v € RY;

J#i
(i)
gl<c > |(€EL)-EL| forall ¢ e RNKY, (3.12)
1<i<j<N+1
where
Al — Ab

Proof. Since by construction each N-simplex K" € 7" maybe obtained
by a translation and a dilation of an N—simplex K € 7 in the unit cube, then
EZ = E;; where E;; are the corresponding vectors for K. Thus (i) follows
immediately from (3.7). To prove (ii), without loss of generality, and via a
translation of the axes, we may suppose that Ay;1 = 0, and so (see (3.7))

{A1,..., Ay} isabasisof RV, (3.13)
We claim that the matrices
eijI:Eij(X)Eij, 1<i<ji <N,

form a basis for Ré\;;N . For any two vectors a,b € RY set
a®b:=a®b+ba.

Since

1 .
ei(N+1):WAi®Ai, i=1,...,N,

1
eij:ﬁ[Ai@Ai*FAi@Ai*Ai(;)Aj], 1<i<ji <N,
|Ai — A

to prove the claim it suffices to show that
{A;©A;:1<i<j< N} arelinearly independent.

Suppose, by contradiction, that for some s,p € {1,..., N}, with s > p, there
exist constants o;; such that

(1,9)#(p,s),1<i<j<N
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Let ¢ € RV \ {0} be such that (see (3.7))
c-Ap=0 forall ke{l,...,N}\{s}, As-c#0. (3.15)
By (3.14) and (3.15) we find
Ap(As - 0) = Ay(Ay - o)+ A(Ay - ¢) = (A, © Ao
= Y aiAi(Ac )+ Y agAi(A o),

i<s, i#p j>s

and we deduce that

Ap = Z Qs A + ZasjAj’

i<s, i#£p j>s

ie.,

Ap €span{Ay, ..., Ap 1, Ap1,.. AN, AN )

which is in contradiction with (3.13). This asserts the claim, from which (3.12)
follows. m

To the triangulation 7" we associate the space V;, of piecewise quadratic
functions, i.e. u|pn € Qpn for each K" ¢ 7", and u is completely determined
by the set of degrees of freedom

[ty e U ZKh.

K”ET’L

Note that V, ¢ C (RN ) . Indeed, if u € V}, then clearly w is continuous in the
interior of each N-simplex K" ¢ 7". If two N -simplexes K, K5 € 7" have in
common an edge of vertices A and A?, since the traces uly, and ug, are
polynomials of degree two which agree on three points (the VeLces and the

h

7, and we

middle point), then they must agree along the whole segment A”A
have established continuity across the N-simplexe boundaries.

Proof of Lemma 3.1.
Step 1: Assume first that f € C. (]RN;]RNXN) . Let £ > 0 be so large that

sym
f(x) = 0 outside the cube Q) = (—E/Q,E/Z)N, and for n > 0 choose h =
h(n) > 0 such that

v =yl < Nh=If (@)= 1 )| < 7% (3.16)

for all z,y € RY with |z —y| < Nh. Let 7" be a triangularization of RY
corresponding to the parameter h. Define a function u, € Vj as follows:

if K" is a N-simplex of 7 with vertices {A?,... ,A%Jrl'}, then

Ry L 2) (A" — APV - (AP — APV
u(4l) = 5= |T/U L (F@)AL = A1) - (4 = ADydr. (317)

h
Tery, TeTh,
i Al
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Since f is continuous, from the Integral Mean Value Theorem it follows that
1 3 3
u(A}) = -3 (f (@ijn) (A} — AMY) - (A} — AT) (3.18)

for some z; 5, € |J T (note that this set is connected). By Lemma 3.3 we

h
TET
ij
have

/|f V2u|dx* Z/ |f V2u|dx

Kher,

<CZZ/ ((f = V*u) EY) - E| da.

Krer, i<j

In view of Lemma 3.2 and (3.18) we have

8
(Vi) - By = =g v (44) = U owand B5) - 25
i J
Hence
L=< S50 [ 1)~ e EL) Bl da
RN Khe’Th‘ 1<
< Z Z/ $Z,j,ll)| dx
Kherh i<j

—C Z Z/ f(@ign)| do

KhETh‘ KILC[Q ’L<j
<Cr,

where we have used (3.16).
Next we show that there exists a constant C, independent of h, such that
for every fixed i € {1,..., N + 1} we have

IVt poo (sen mvy < — Z lu(AL)] (3.19)
J#i

Indeed, by Lemmas 3.2 and 3.3(i) for all x € K" and for every fixed i €
{1,...,N 4+ 1} we have

IVu(z)] < C [Vu(w) - B <cz 7 (A7)
J#i j;éz ‘
<—Z| (%)
J#i
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where we have used the fact that |A — A;’\ > o h for some a > 0 that does not
depend on h.
We estimate the jump term of the BV norm of Vu. Since u|, € Py for
each K" € 7", we have
> ok

K”'ET]"

and so

/ [Vul] dHV =< Y / [V]| dHN
S(Vu)

K”ET” S(Vu)NoK™"

Z > Ju (AL HNT! (9K

Khrerh Al eK"

SOV YT YT |u(4))

Khrerh Al eK"

where we have used (3.10) and (3.19). By (3.17) and (3.11), we get

Vul| dHN 71 < CRrY / )| da
/S(W)I[ ] D m 2)

K’LET” A,’_’,_GI(” )
4 Ter /7;)7, TET’A',,
i

<C Y Z/ |f ()] dz

{hETh Ah EI{" U T

Ah
< C/ |f| de.
RN

Finally, by (3.9) and (3.19),

/ lu| + |Vl de < Z/ | + V| de

Khrerh

<C Y Z( ) |lu (A%)| AN

I(IIETII Ah EK”

<ot Y% \TI/ 2| de

Kh B AI_I,Y Kh
e AGE TETj;h TET”

<Ch > Y / z)| dx

Kherh Al eKh
’T' n
A'
k¥

< Ch/ If] da.
RN
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This completes the proof of Step 1.
Step 2:

The argument in the general case where f € L! (]RN;R
identical to that of Step 2 in Subsection 4.1. m

NXxN

sym ) is entirely

4 The SBV? setting

In this section we prove Theorem 1.5, precisely, we show that any function
fel! (Q;]RNXN), not necessarily symmetric valued, is the the density with
respect to the N-dimensional Lebesgue measure of the distributional Hessian of
a SBV? function.

We obtain this result by applying Theorem 1.1 twice.

Proof of Theorem 1.5. Foreveryi=1,..., N, define

N
Fi = Z fijej.
j=1
Since F; € L1 (Q; RN), by Theorem 1.1 there exist v; € SBV(Q2) and a constant
C = C(N) > 0 such that
Dvi = Fl ,CN LQ + [Ui]yv,; HNil LS(Uz);
with
/m\ da:Jr/ [vg]| dHN L gc/ |Ey| de.
Q S(vs)NQ Q
Set v := Zf\;l v;e;. Clearly v € SBV (Q; RN), and we have
Dv=fLY[Q+ [v] @ v, HY ] S(v), (4.1)
with

N—-1
/Q\v\ da:Jr/S(v)ﬂQ[v] dH gc/gm da. (4.2)

Now, since v € L1 (Q;]RN), and invoking again Theorem 1.1, there exists a
function v € SBV(2) such that

Du=v LN Q4 [u] @ v, HYN 7Y S(u), (4.3)

and

/ lul d:z:—l—/ [u]| dHN ! < C/ lv| dz. (4.4)
Q S(w)ne Q

Therefore we conclude that Vu = v LV a.e. v € RY, thus u € SBV?(Q), and
(4.1)-(4.4) assert that u fulfills the statement of the theorem. m
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