
A new partial regularity result for non-autonomous convex

integrals with non standard growth conditions

Bruno De Maria - Antonia Passarelli di Napoli

Dipartimento di Matematica e Applicazioni ”R. Caccioppoli”
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ABSTRACT. We establish C1,γ-partial regularity of minimizers of non autonomous convex integral func-

tionals of the type: F(u; Ω) :=
´
Ω

f(x, Du) dx, with non standard growth conditions into the gradient

variable
1

L
|ξ|p ≤ f(x, ξ) ≤ L(1 + |ξ|q)

for a couple of exponents p, q such that

1 < p ≤ q < min

{
p

n

n− 1
, p + 1

}
,

and α- Hölder continuous dependence with respect to the x variable. The significant point here is that the

distance between the exponents p and q is independent of α. Moreover this bound on the gap between the

growth and the coercitivity exponents improves previous results in this setting.

AMS Classifications: 35B65; 35J50; 49J25.
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1 Introduction

In the last few years there has been an increasing interest in variational integrals exhibiting
a gap between the growth and the coercitivity exponents of the form

F(u; Ω) :=
ˆ

Ω
f(x,Du) dx (1.1)

with
1
L
|ξ|p ≤ f(x, ξ) ≤ L(1 + |ξ|q) for some L ≥ 1, (F1)
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where 1 < p ≤ q < +∞, u : Ω → RN and Ω is a bounded open set in Rn.
Here we shall assume that there exist constants C, ν > 0 and an exponent α ∈ (0, 1)

such that f(x, ξ) is a C2(Ω,Rn×N ) function fulfilling (F1) and whose derivatives satisfy the
following assumptions:

|Dξf(x1, ξ)−Dξf(x2, ξ)| ≤ C|x1 − x2|α (1 + |ξ|q−1); (F2)

ν(1 + |ξ|2) p−2
2 |ζ|2 ≤ 〈

Dξξf(x, ξ)ζ, ζ
〉
; (F3)

for any ξ ∈ RnN and for any x, x1, x2 ∈ Ω.
By assumption (F1), we are dealing with functionals satisfying the so-called non stan-

dard growth conditions. Moreover it is well known that condition (F3), which is a strict
uniform ellipticity condition on D2f , is equivalent to the strict uniform convexity of f . As
in our previous paper [11], no control on the growth of the second derivatives of f from
above will be assumed.

The theory of functionals with non standard growth conditions started with a series of
well known papers by Marcellini ([26, 27, 28]) and after has been developed in many different
aspects. The main topics treated in this setting are related to the lower semicontinuity,
the relaxation and the regularity of the minimizers of such functionals (see for example
[3, 5, 6, 16, 17, 18, 24, 31] and the references in [29] for a complete list).
From the very beginning it has been clear that, even in the scalar case, no regularity can
be expected if the exponents p and q are too far apart.

In fact, Marcellini himself produced an example of functional with non standard growth
conditions having unbounded minimizers (see [21] and [26]).

On the other hand if the ratio
q

p
≤ c(n) → 1 (1.2)

as n → +∞, many regularity results are available both in the scalar and in the vectorial
setting. The starting issue in the analysis of the regularity is just to improve the integrability
of the gradient of a minimizer from Lp to Lq. In this direction we quote for example
[13, 14, 20]. We stress that this kind of regularity has revealed to be crucial when one try
to argue approximating the integrand with a sequence of functions having standard growth
conditions. In fact, the useful apriori estimates depend on the Lq norm of the gradient of
minimizer because of the right hand side of (F2) (for a self contained treatment we refer to
[4] and the references therein).

On the other hand, C1,γ partial regularity results have been established by means of a
linearization argument that avoids the approximation procedure based on suitable apriori
estimates. The first result in this direction has been obtained in [3], under special structure
assumptions on the integrand f and afterwards in [30], without any structure assumption
on the integrand.

It is worth pointing out that all the quoted results concern autonomous functionals, i.e.
f ≡ f(Du).
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The study of the regularity in the non autonomous case f ≡ f(x,Du), started with the
paper [15] by Esposito, Leonetti and Mingione. The result of [15] states that if f is convex
with respect to the gradient variable, it satisfies assumption (F1) and (F2) with p, q such
that

1 < p ≤ q < p
n + α

n
(1.3)

and if there is no Lavrentiev Phenomenon for the functional, then a W 1,p local minimizer
of F actually belongs to W 1,q.

Note that the combination of the facts that f both depends on x and exhibits a gap
could determine the occurrence of the Lavrentiev Phenomenon, that translates into the
impossibility of approximate in energy a W 1,p function with W 1,q functions.

In this paper shall prove C1,γ partial regularity of minimizers of F with the following
gap between growth and coercivity exponent:

1 < p ≤ q < min
{

p
n

n− 1
, p + 1

}
. (1.4)

This is somehow surprising, since the condition (1.4) is independent of the exponent
α, which is produced by the α-Hölder continuity dependence of Df with respect to the x

variable. Moreover the new range in (1.4) is wider than the one given by (1.3).
In our previous paper [11], we proved a C1,γ partial regularity result for minimizers

under the same set of assumptions (F1), (F2) and (F3), and provided that no Lavrentiev
Phenomenon occured. But in that paper we were forced to assume that

2 ≤ p ≤ q < p
n + α

n
, (1.5)

that is condition (1.3) with p ≥ 2, because we first established an higher integrability
property of the minimizers following [15], and afterwards we performed a blow-up procedure.
Moreover, we also confined ourselves to the case p ≥ 2, because the usual finite difference
quotient method used to prove higher integrability, led us to heavy technical difficulties in
the case 1 < p < 2. Indeed, even if the result of Esposito, Leonetti and Mingione [15] is
proved for every p > 1, in [11] we needed an higher integrability result which had to be
uniform with respect the rescaling procedure necessary for the blow-up method. However,
in [11] we sensibly improved the outcome of Bildhauer and Fuchs’ work [6], where Df was
assumed to be Lipschitz continuous with respect the x variable and D2f had controlled
growth from above. We also would like to stress that even in the case α = 1, which is the
situation considered by Bildhauer and Fuchs in [6], our new range (1.4) is still better than
(1.3) .

In the current context, we present a completely new proof which allows us to improve the
quoted results on partial regularity and directly treat the case p > 1. The higher integrability
step, which entailed the bound (1.3), is replaced by the proof of a Caccioppoli type inequality
for the minimizers of a suitable perturbation of the rescaled functionals. The Caccioppoli
type estimate will present some extra terms that won’t effect the blow-up procedure. The
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main difficulty in studying the regularity properties of minimizers of integrals with non-
standard growth is that the usual test functions, whose gradient is essentially proportional
to the gradient of the minimizers, don’t have the right degree of integrability. A gluing
Lemma due to Fonseca and Maly ([17]), used to connect in an annulus two W 1,p functions
with a W 1,q function, will play a key role to overcome this difficulty and partly provide the
bound (1.4). In fact the gluing Lemma holds if

q < p
n

n− 1
.

To be more precise we could allow q ≤ p + 1 if

p + 1 < p
n

n− 1
,

that is when p > n − 1. This restriction on q is explained in the following remark, taken
from [30].

Remark 1.1. [The Euler-Lagrange system for q ≤ p + 1.] If u is a local minimizer of the
functional F and φ ∈ C1

c (Ω,RN ) we get by the minimality condition that for any ε > 0:

0 ≤
ˆ

Ω
[F (Du + εDφ)− F (Du)] dx = ε

ˆ

Ω

ˆ 1

0

∂F

∂ξi
α

(Du + εtDφ)Dαφi dtdx ,

where the usual summation convention is in force. Dividing this inequality by ε, and letting
ε ↘ 0, we infer from the growth assumptions and since q ≤ p + 1, that

ˆ

Ω

∂F

∂ξi
α

(Du)Dαφi dx ≥ 0.

Consequently, u is a weak solution to the Euler-Lagrange system for I:
ˆ

Ω

∂F

∂ξi
α

(Du)Dαφi dx = 0 ∀φ ∈ C1
c (Ω,RN ).

After having established the Caccioppoli type estimate, the blow-up argument, aimed
to establish a decay estimate for the excess function of a minimizer, can be started up. The
excess function, roughly speaking, measures how the gradient of the minimizer is far from
being constant on small balls.

Moreover, by skipping the higher integrability step, it is not necessary to assume the
non occurrence of the Lavrentiev Phenomenon (see [15]).
We also point out that regularity for minimizers of non autonomous functionals with stan-
dard growth conditions is usually achieved via the Ekeland principle after a comparison
between the minimizer of the original functional and the minimizer of a suitable ”frozen”
one (see [2, 19]).
However, owing to the anisotropic growth of the functional, it seems that the comparison
method cannot work in our context.

The main result of this paper is the following.
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Theorem 1.2. Let f be a C2(Ω,Rn×N ) integrand satisfying the assumptions (F1), (F2)
and (F3) with growth exponents p, q such that

1 < p ≤ q < min
{

p
n

n− 1
, p + 1

}
. (1.6)

If u ∈ W 1,p
loc (Ω,RN ) is a local minimizer of the functional F , then there exists an open subset

Ω0 of Ω such that
meas(Ω \ Ω0)

and
u ∈ C1,γ

loc (Ω0,RN ) for every γ <
α

2
,

where α is the exponent appearing in (F2).

Since our regularity result is only partial, we are not in contradiction with the coun-
terexample of [15], which shows that (1.3) is unavoidable to boost the integrability of the
W 1,p-minimizers up to W 1,q.

Partial regularity results are a common feature when treating vectorial minimizers,
because everywhere regularity cannot be proved in this case (see the counterexample due
to De Giorgi and those due to Sverak and Yan [9, 32, 33]). Hence, the next issue is trying
to estimate the Hausdorff dimension of the singular set. In the case of functionals with
standard growth conditions, these estimates have been established in [25] (see also [10]).
But in our setting, this kind of result cannot be achieved. In fact, an example constructed
in [18] shows that if p and q are far enough, depending on the dimension n and the regularity
of x 7→ f(x,Du), then the set of non-Lebesgue points of a minimizer can be nearly as bad
as that of any other W 1,p function.

2 Preliminaries

In this section we recall some standard definitions and collect several Lemmas that we shall
need to establish our main result.

We begin with the definition of local minimizer for a functional with nonstandard growth
conditions.

Definition 2.1. A function u ∈ W 1,1
loc (Ω,RN ) is a local minimizer of F if f(x,Du(x)) ∈

L1
loc(Ω) and ˆ

supp ϕ
f(x,Du) dx ≤

ˆ

supp ϕ
f(x, Du + Dϕ) dx,

for any ϕ ∈ W 1,1
loc (Ω,RN ) with suppϕ ⊂ Ω.

In order to deal with the case 1 < p ≤ 2, we shall use the following auxiliary function
defined for ξ ∈ Rk

Vβ(ξ) = (1 + |ξ|2)β−2
4 ξ,
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for any exponent β > 1. Recall that

|Vβ(ξ)| is a non-decreasing function of |ξ|; (2.1)

|Vβ(ξ + η)| ≤ c(β)(|Vβ(ξ)|+ |Vβ(η)|); (2.2)

min{t2, tβ}|Vβ(ξ)|2 ≤ |Vβ(tξ)|2 ≤ max{t2, tβ}|Vβ(ξ)|2; (2.3)

(1 + |ξ|2 + |η|2)β
2 ≤ 1 + (1 + |ξ|2 + |η|2)β−2

2 (|ξ|2 + |η|2) if β ≤ 2; (2.4)

c(β)(|ξ|2 + |ξ|β) ≤ |Vβ(ξ)|2 ≤ C(β)(|ξ|2 + |ξ|β) if β ≥ 2; (2.5)

|Vβ(ξ)|2 is convex if 1 < β < 2. (2.6)

Many of the previous properties of the function Vβ can be easily checked and they
have been successfully employed in the study of the regularity of minimizers of convex and
quasiconvex integrals under subquadratic growth conditions ([1, 7, 8, 31]).

In the linearization procedure we shall use the translated functional of F on the unit
ball B ≡ B1(0)

I(v) :=
ˆ

B
g(y, Dv) dy

defined by setting

g(y, ξ) = f(x0 + r0y, A + ξ)− f(x0 + r0y,A)−Dξf(x0 + r0y, A)ξ, (2.7)

where A is a matrix such that |A| is uniformly bounded by a positive constant M . Next
Lemma, whose proof is given in [11], contains the growth conditions on g.

Lemma 2.2. Let f ∈ C2(Ω × Rn×N ) be a function satisfying the assumptions (F1), (F2)
and (F3) and let g(y, ξ) be the function defined by (2.7). Then we have

c1|Vp(ξ)|2 ≤g(y, ξ) ≤ c2|Vq(ξ)|2; (I1)

|Dξg(y, ξ)| ≤ c(1 + |ξ|2) q−2
2 |ξ|; (I2)

|Dξg(y1, ξ)−Dξg(y2, ξ)| ≤ crα
0 |y1 − y2|α (1 + |ξ|q−1); (I3)

c(1 + |ξ|2) p−2
2 |ζ|2 ≤ 〈

Dξξg(y, ξ)ζ, ζ
〉

(I4)

where the constant c, c1 and c2 depend on M, p and q.

The following result is standard if p ≥ 2 and can be inferred from [1] (Lemma 2.2) in
the case 1 < p < 2.

Lemma 2.3. For β > 1 and η, ξ ∈ RN×n there holds

C1(1 + |η|2 + |ξ|2)β−2
2 ≤

ˆ 1

0
(1 + |η + tξ|2)β−2

2 dt ≤ C2(1 + |η|2 + |ξ|2)β−2
2

with some positive constants C1, C2 depending only on β.
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Next Lemma can be found in a slightly different form in [17] (Lemma 2.2), see also [30]
and [31], and it will be crucial in our proofs. In fact it will allow us to construct admissible
test functions needed to establish the Caccioppoli inequality.

Lemma 2.4. Let 0 < r < s < 1 and let v ∈ W 1,p(B1(0);RN ). If 1 < p ≤ q < pn
n−1 there

exist a function w ∈ W 1,p(B1(0);RN ) and two radii 0 < r < r′ < s′ < s < 1 depending on
v such that

w =





v in Br′

v in B1 \Bs′

(2.8)

s− r

3
≤ s′ − r′ ≤ s− r

and ˆ

Bs\Br

|w|p dx ≤ c(n, p)
ˆ

Bs\Br

|v|p dx; (2.9)

ˆ

Bs\Br

|Dw|p dx ≤ c(n, p)
ˆ

Bs\Br

|Dv|p dx. (2.10)

Moreover if p ≥ 2 we have

ˆ

Bs′\Br′
|w|q dx ≤ c(n, p, q)(s− r)n

(
1− q

p

) (ˆ

Bs\Br

|v|p dx

) q
p

; (2.11)

ˆ

Bs′\Br′
|Dw|q dx ≤ c(n, p, q)(s− r)n

(
1− q

p

) (ˆ

Bs\Br

|Dv|p dx

) q
p

. (2.12)

While, in case 1 < p < 2, we have that
ˆ

Bs\Br

|Vp(w)|2 dx ≤ c(n, p)
ˆ

Bs\Br

|Vp(v)|2 dx. (2.13)

ˆ

Bs\Br

|Vp(Dw)|2 dx ≤ c(n, p)
ˆ

Bs\Br

|Vp(Dv)|2 dx. (2.14)

ˆ

Bs′\Br′
|Vp(w)| 2q

p dx ≤ c(n, p, q)(s− r)n
(
1− q

p

) (ˆ

Bs\Br

|Vp(v)|2 dx

) q
p

; (2.15)

ˆ

Bs′\Br′
|Vp(Dw)| 2q

p dx ≤ c(n, p, q)(s− r)n
(
1− q

p

) (ˆ

Bs\Br

|Vp(Dv)|2 dx

) q
p

. (2.16)

Next Lemma finds an important application in the so called hole-filling method. Its
proof can be found in [23] (See Lemma 6.1).
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Lemma 2.5. Let h : [ρ, R0] → R be a non-negative bounded function and 0 < θ < 1, 0 ≤ A,
0 ≤ B and 0 < β. Assume that

h(r) ≤ A

(d− r)β
+ B + θh(d)

for ρ ≤ r < d ≤ R0. Then

h(ρ) ≤ cA

(R0 − ρ)β
+ B,

where c = c(θ, β) > 0.

In order to deal with the case 1 < p < 2, we shall need the following Poincaré-Sobolev
inequality, whose proof can be found in [12] (for other versions of this inequality we refer to
[7, 8]).

Lemma 2.6. Assume 1 < p < 2 and let u ∈ W 1,p(Ω,RN ). Then there exists a positive
constant c ≡ c(n,N, p) such that

(ˆ

Bρ(x0)

∣∣∣∣Vp

(
u− (u)ρ

ρ

)∣∣∣∣
2n

n−p

dx

)n−p
2n

≤ c

(ˆ

Bρ(x0)
|V (Du)|2 dx

) 1
2

.

Next result is a simple consequence of the a priori estimates for solutions to linear
elliptic systems with constant coefficients.

Proposition 2.7. Let u ∈ W 1,p(Ω;RN ), p ≥ 1 be such that
ˆ

Ω
Aij

αβDαuiDβϕj dx = 0

for every ϕ ∈ C∞
0 (Ω;RN ), where Aij

αβ is a constant matrix satisfying the strong Legendre
Hadamard condition

Aij
αβλiλjµαµβ ≥ ν|λ|2|µ|2 ∀λ ∈ RN , µ ∈ Rn.

Then u ∈ C∞ and for any ball BR(x0) b Ω we have

sup
B R

2 (x0)

|Du| ≤ c

Rn

ˆ

BR

|Du| dx

For the proof see [22], [23] in case p ≥ 2 and see [7], [8] in case 1 ≤ p < 2.

3 A Caccioppoli type inequality

In order to perform the blow up procedure, it will be convenient to introduce suitable
translations of minimizers of the functional F . More precisely, if u is a local minimizer of
F we shall consider the function

v(y) =
u(x0 + r0y)− r0Ay − (u)B1(0)

r0
.
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The minimality of u implies that
ˆ

B1(0)
f(x0 + r0y, Du(x0 + r0y)) dy ≤

ˆ

B1(0)
f(x0 + r0y, Du(x0 + r0y) + Dϕ(x0 + r0y)) dy

that isˆ

B1(0)
f(x0 + r0y, Dv(y) + A) dy ≤

ˆ

B1(0)
f(x0 + r0y, Dv(y) + A + Dϕ(x0 + r0y)) dy

and hence ˆ

B1(0)
g(y,Dv) dy ≤

ˆ

B1(0)
g(y,Dv + Dϕ) dy + crα

0

ˆ

B1(0)
|Dϕ| dy, (3.1)

for every ϕ ∈ W 1,1(B1(0);RN ) with compact support, where g is the function defined at
(2.7).

Therefore, the first step in the proof of Theorem 1.2 is to obtain a Caccioppoli type
inequality for every function v ∈ W 1,p(B1(0);RN ) which satisfies the minimality inequality
(3.1).

Proposition 3.1. Let us suppose that g(y, ξ) ∈ C2(B1(0);RnN ) satisfies the assumptions
(I1), (I2), (I3) with

1 < p ≤ q < p

(
n

n− 1

)
(3.2)

and set t = min{2, p}. If the function v ∈ W 1,p(B1(0);RN ) satisfies the inequality (3.1)
then, for every ρ < 1, we have

ˆ

B ρ
2

|Vp(Dv)|2 dy ≤c

ˆ

Bρ

∣∣∣∣Vp

(
v

ρ

)∣∣∣∣
2

dy + c

(ˆ

Bρ

|Vp(Dv)|2 +
∣∣∣∣Vp

(
v

ρ

)∣∣∣∣
2

dy

) q
p

+ crα
0

(ˆ

Bρ

|Dv|t dy

) 1
t

+ crα
0

(ˆ

Bρ

|v|t
ρt

dy

) 1
t

, (3.3)

for a positive constant c independent of the parameter r0 and of the point x0 appearing in
the definition of g(y, ξ).

Proof. Let us fix two radii ρ
2 < r < s < ρ. Lemma 2.4 implies that there exist ψ ∈

W 1,p(B1(0)) and r < r′ < s′ < s such that

ψ = v on Br′ ψ = v on B1 \Bs′ ,

s− r

3
≤ s′ − r′ ≤ s− r. (3.4)

Thanks to the assumption (3.2), the function ψ satisfies the estimates (2.9)–(2.12) in case
p ≥ 2 and (2.13)–(2.16) in case 1 < p < 2.

Fix now a cut-off function η ∈ C∞
0 (Bs′) such that 0 ≤ η ≤ 1, η ≡ 1 on Br′ and

|Dη| ≤ c
s′−r′ and set

ϕ = (1− η)ψ ϕ̃ = ηψ.
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By the left hand inequality in assumption (I1), we get
ˆ

Br′
(1 + |Dv|2) p−2

2 |Dv|2 dy ≤ c

ˆ

Bs′
g(y, Dϕ̃) dy

=
ˆ

Bs′\Br′
[g(y, Dϕ̃)− g(y,Dv)] dy +

ˆ

Bs′
[g(y,Dv)− g(y,Dϕ)] dy +

ˆ

Bs′\Br′
[g(y, Dϕ)] dy

=I + II + III, (3.5)

where we used that in Br′ one has ϕ̃ = v and ϕ = 0 . By the minimality inequality (3.1)
for v we have that

II ≤ crα
0

(ˆ

Bs′
|Dv −Dϕ| dy

)
, (3.6)

since v − ϕ ∈ W 1,p
0 (Bs′) Moreover, since g(y, ξ) ≥ 0 for all y ∈ B1 and all ξ ∈ Rn×N , we

have that
I ≤

ˆ

Bs′\Br′
[g(y,Dϕ̃)] dy. (3.7)

Hence inserting (3.6) and (3.7) in (3.5) we get
ˆ

Br′
(1 + |Dv|2) p−2

2 |Dv|2 dy

≤ c

ˆ

Bs′\Br′
[g(y, Dϕ̃)] dy +

ˆ

Bs′\Br′
[g(y, Dϕ)] dy + crα

0

(ˆ

Bs′
|Dv −Dϕ| dy

)

= J + JJ + JJJ. (3.8)

Now we treat the cases 1 < p ≤ 2 and p > 2 separately.

• The case 1 < p ≤ 2.

In order to estimate J , we use the right inequality in assumption (I1) thus getting

J ≤ c

ˆ

Bs′\Br′
(1 + |Dϕ̃|2) q−2

2 |Dϕ̃|2 dy = c

ˆ

Bs′\Br′
(1 + |Dϕ̃|2) p−2

2
+ q−p

2 |Dϕ̃|2 dy

= c

ˆ

Bs′\Br′
(1 + |Dϕ̃|2) p−2

2 (1 + |Dϕ̃|2) p
2

q−p
p |Dϕ̃|2 dy

≤ c

ˆ

Bs′\Br′
(1 + |Dϕ̃|2) p−2

2 |Dϕ̃|2
[
1 + |Dϕ̃|2(1 + |Dϕ̃|2) p−2

2

] q−p
p

dy. (3.9)

where we used (2.4) in the last line. Hence

J ≤ c

ˆ

Bs′\Br′
(1 + |Dϕ̃|2) p−2

2 |Dϕ̃|2 dy + c

ˆ

Bs′\Br′

(
|Dϕ̃|2(1 + |Dϕ̃|2) p−2

2

) q
p

dy

≤ c

ˆ

Bs′\Br′
|Vp(Dϕ̃)|2 dy + c

ˆ

Bs′\Br′
|Vp(Dϕ̃)| 2q

p dy. (3.10)
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Arguing exactly in the same way we have

JJ ≤ c

ˆ

Bs′\Br′
|Vp(Dϕ)|2 dy + c

ˆ

Bs′\Br′
|Vp(Dϕ)| 2q

p dy. (3.11)

From (3.10) and (3.11), using the properties of the function Vp and the definition of ϕ̃ and
ϕ we obtain

J + JJ ≤ c

ˆ

Bs′\Br′
|Vp(Dϕ̃)|2 dy + c

ˆ

Bs′\Br′
|Vp(Dϕ̃)| 2q

p dy

+ c

ˆ

Bs′\Br′
|Vp(Dϕ)|2 dy + c

ˆ

Bs′\Br′
|Vp(Dϕ)| 2q

p dy

= c

ˆ

Bs′\Br′
|Vp(D(1− η)ψ)|2 dy + c

ˆ

Bs′\Br′
|Vp(D(1− η)ψ)| 2q

p dy

+ c

ˆ

Bs′\Br′
|Vp(D(ηψ))|2 dy + c

ˆ

Bs′\Br′
|Vp(D(ηψ))| 2q

p dy

≤ c

ˆ

Bs′\Br′
|Vp(Dψ)|2 dy + c

ˆ

Bs′\Br′

∣∣∣∣Vp

(
ψ

s′ − r′

)∣∣∣∣
2

dy

+ c

ˆ

Bs′\Br′
|Vp(Dψ)| 2q

p dy + c

ˆ

Bs′\Br′

∣∣∣∣Vp

(
ψ

s′ − r′

)∣∣∣∣
2q
p

dy, (3.12)

where we also used the properties of η. Therefore, using (2.13)–(2.16) and (3.4), we get

J + JJ ≤ c

ˆ

Bs\Br

|Vp(Dv)|2 dy + c

ˆ

Bs\Br

∣∣∣∣Vp

(
v

s− r

)∣∣∣∣
2

dy

+ c(s− r)n

(
1

(s− r)n

ˆ

Bs\Br

|Vp(Dv)|2 +
∣∣∣∣Vp

(
v

s− r

)∣∣∣∣
2

dy

) q
p

. (3.13)

Concerning JJJ , recalling that ϕ = 0 on Br′ , using Hölder’s inequality and Lemma 2.4
we have

JJJ =crα
0

[ˆ

Bs′
|Dv| dy +

ˆ

Bs′\Br′
|Dψ| dy

]

≤crα
0

[ˆ

Bρ

|Dv| dy +
ˆ

Bs′\Br′
|Dψ| dy +

ˆ

Bs′\Br′

|ψ|
(s′ − r′)

dy

]

≤crα
0 ρ

n
p′

[ˆ

Bρ

|Dv|p dy

] 1
p

+ crα
0 ρ

n
p′

[ˆ

Bs′\Br′
|Dψ|p dy +

ˆ

Bs′\Br′

|ψ|p
(s′ − r′)p

dy

] 1
p

≤crα
0 ρ

n
p′

[ˆ

Bρ

|Dv|p dy

] 1
p

+ crα
0 ρ

n
p′

[ˆ

Bρ

|v|p
(s− r)p

dy

] 1
p

, (3.14)

where p′ is the Hölder conjugate of p and we used again (2.9), (2.10) and (3.4).

• The case p ≥ 2.
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In this case we use the right inequality in assumption (I1), property (2.5) and the definition
of ϕ and ϕ̃ as follows

J + JJ ≤ c

ˆ

Bs′\Br′
(1 + |Dϕ̃|2) q−2

2 |Dϕ̃|2 dy + c

ˆ

Bs′\Br′
(1 + |Dϕ|2) q−2

2 |Dϕ|2 dy

≤ c

ˆ

Bs′\Br′
|Dϕ̃|2 + |Dϕ̃|q dy + c

ˆ

Bs′\Br′
|Dϕ|2 + |Dϕ|q dy

≤ c

ˆ

Bs′\Br′
|Dψ|2 + |Dψ|q dy + c

ˆ

Bs′\Br′

∣∣∣∣
ψ

s′ − r′

∣∣∣∣
2

+
∣∣∣∣

ψ

s′ − r′

∣∣∣∣
q

dy (3.15)

Hence, by Lemma 2.4, we get

J + JJ ≤ c

ˆ

Bs\Br

|Dv|2 + c(s− r)n
(
1− q

p

) (ˆ

Bs\Br

|Dv|p dy

) q
p

+ c

ˆ

Bs\Br

∣∣∣∣
v

s− r

∣∣∣∣
2

+ c(s− r)n
(
1− q

p

) (ˆ

Bs\Br

∣∣∣ v

s− r

∣∣∣
p
dy

) q
p

≤ c

ˆ

Bs\Br

|Vp(Dv)|2 dy + c

ˆ

Bs\Br

∣∣∣∣Vp

(
v

s− r

)∣∣∣∣
2

dy

+ c(s− r)n

(
1

(s− r)n

ˆ

Bs\Br

|Vp(Dv)|2 +
∣∣∣∣Vp

(
v

s− r

)∣∣∣∣
2

dy

) q
p

, (3.16)

where we used again (3.4).
Now we argue exactly as in (3.14) and obtain that

JJJ =crα
0

[ˆ

Bs′
|Dv| dy +

ˆ

Bs′\Br′
|Dψ| dy

]

≤crα
0

[ˆ

Bρ

|Dv| dy +
ˆ

Bs′\Br′
|Dψ| dy +

ˆ

Bs′\Br′

|ψ|
(s′ − r′)

dy

]

≤crα
0 ρ

n
2

[ˆ

Bρ

|Dv|2 dy

] 1
2

+ crα
0 ρ

n
2

[ˆ

Bs′\Br′
|Dψ|2 dy +

ˆ

Bs′\Br′

|ψ|2
(s′ − r′)2

dy

] 1
2

≤crα
0 ρ

n
2

[ˆ

Bρ

|Dv|2 dy

] 1
2

+ crα
0 ρ

n
2

[ˆ

Bρ

|v|2
(s− r)2

dy

] 1
2

. (3.17)

Hence we can write a final estimate for JJJ as follows:

JJJ ≤ crα
0 ρ

n
t′

(ˆ

Bρ

|Dv|t dy

) 1
t

+ crα
0 ρ

n
t′

(ˆ

Bρ

|v|t
ρt

dy

) 1
t

. (3.18)

where t = min{2, p} and t′ is the Hölder conjugate of t.
Inserting (3.13) and (3.18) or (3.16) and (3.18) in (3.8) in case 1 < p ≤ 2 and p ≥ 2

respectively, we obtain
ˆ

Br

|Vp(Dv)|2 dy ≤ c

ˆ

Bs\Br

|Vp(Dv)|2 dy + c

ˆ

Bs\Br

∣∣∣∣Vp

(
v

s− r

)∣∣∣∣
2

dy

12



+ c(s− r)n

(
1

(s− r)n

ˆ

Bs\Br

|Vp(Dv)|2 +
∣∣∣∣Vp

(
v

s− r

)∣∣∣∣
2

dy

) q
p

+ crα
0 ρ

n
t′

(ˆ

Bρ

|Dv|t dy

) 1
t

+ crα
0 ρ

n
t′

(ˆ

Bρ

|v|t
ρt

dy

) 1
t

, (3.19)

where t = min{2, p}.
Now, we fill the hole by adding the quantity

c

ˆ

Br

|Vp(Dv)|2 dy

to both sides of (3.19) and use the iteration Lemma 2.5 to obtain that

ˆ

B ρ
2

|Vp(Dv)|2 dy ≤ c

ˆ

Bρ

∣∣∣∣Vp

(
v

ρ

)∣∣∣∣
2

dy + cρn

(
1
ρn

ˆ

Bρ

|Vp(Dv)|2 +
∣∣∣∣Vp

(
v

ρ

)∣∣∣∣
2

dy

) q
p

+ crα
0 ρ

n
t′

(ˆ

Bρ

|Dv|t dy

) 1
t

+ crα
0 ρ

n
t′

(ˆ

Bρ

|v|t
ρt

dy

) 1
t

. (3.20)

The conclusion follows dividing both sides by ρn.

4 Decay estimate

As usual the proof of Theorem 1.2 relies on a blow up argument aimed to establish a decay
estimate for the excess function of the minimizer, which is defined as

E(x, r) =
ˆ

Br(x)
|Vp(Du− (Du)r)|2 + rβ (4.1)

with β < α. The blow up argument for a local minimizer u ∈ W 1,p
loc of F with an integrand

function f(x, ξ) ∈ C2(Ω,Rn×N ) fulfilling assumptions (F1), (F2) and (F3) for a couple of
exponents satisfying (1.4), is contained in the following

Proposition 4.1. Fix M > 0. There exists a constant C(M) > 0 such that, for every
0 < τ < 1

4 , there exists ε = ε(τ, M) such that, if

|(Du)x0,r| ≤ M and E(x0, r) ≤ ε,

then
E(x0, τr) ≤ C(M) τβ E(x0, r).

Proof. Step 1. Blow up

Fix M > 0. Assume by contradiction that there exists a sequence of balls Brj (xj) ⊂⊂ Ω
such that

|(Du)xj ,rj | ≤ M and λ2
j = E(xj , rj) → 0 (4.2)

13



but
E(xj , τrj)

λ2
j

> C̃(M)τβ (4.3)

where C̃(M) will be determined later. Setting Aj = (Du)xj ,rj , aj = (u)xj ,rj and

vj(y) =
u(xj + rjy)− aj − rjAjy

λjrj
(4.4)

for all y ∈ B1(0), one can easily check that (Dvj)0,1 = 0 and (vj)0,1 = 0. By the definition
of λj at (4.2), we get

ˆ

B1(0)

|V (λjDvj)|2
λ2

j

dy +
rβ
j

λ2
j

= 1, (4.5)

and hence ˆ

B1(0)
|Dvj |p dy ≤ C 1 < p < 2 (4.6)

ˆ

B1(0)
|Dvj |2 + λp−2

j |Dvj |p dy ≤ C p ≥ 2. (4.7)

Therefore passing possibly to not relabeled sequences

vj ⇀ v weakly in W 1,p(B1(0);RN ) 1 < p < 2;

vj ⇀ v weakly in W 1,2(B1(0);RN ) p ≥ 2;

Aj −→ A

rj −→ 0;
rγ
j

λ2
h

−→ 0, ∀ γ > β. (4.8)

Step 2. Minimality of vj

We normalize f around Aj as follows

fj(y, ξ) =
f(xj + rjy, Aj + λjξ)− f(xj + rjy,Aj)−Dξf(xj + rjy, Aj)λjξ

λ2
j

(4.9)

and we consider the corresponding rescaled functionals

Ij(w) =
ˆ

B1(0)
[fj(y, Dw)]dy. (4.10)

The minimality of u yields that
ˆ

B1(0)
f(xj + rjy, Du(xj + rjy)) dy ≤

ˆ

B1(0)
f(xj + rjy, Du(xj + rjy) + Dϕ(xj + rjy)) dy

14



for every ϕ ∈ W 1,1
0 (Brj (xj);RN ), that is

ˆ

B1(0)
f(xj + rjy, Aj + λjDvj(y)) dy ≤

ˆ

B1(0)
f(xj + rjy,Aj + λjDvj(y) + Dϕ(xj + rjy)) dy,

for every ϕ ∈ W 1,1
0 (Brj (xj);RN ). Thus, by the definition of the rescaled functionals, we

have

Ij(vj) ≤ Ij(vj + ϕ) +
ˆ

B1(0)

Dξf(xj + rjy,Aj)Dϕ

λj
dy. (4.11)

Using (F2) we conclude that

Ij(vj) ≤ Ij(vj + ϕ) +
ˆ

B1(0)

[Dξf(xj + rjy,Aj)−Dξf(xj , Aj)]Dϕ

λj
dy

≤ Ij(vj + ϕ) + c(M)
rα
j

λj

ˆ

B1(0)
|Dϕ| dy. (4.12)

Step 3. v solves a linear system

Since vj satisfies inequality (4.12) we have that

0 ≤ Ij(vj + sϕ)− Ij(vj) + c(M)
rα
j

λj

ˆ

B1(0)
|sDϕ| dy, (4.13)

for every ϕ ∈ C1
0 (B) and for every s ∈ (0, 1). Now, by the definition of the rescaled

functionals we get

Ij(vj + sϕ)− Ij(vj) =
ˆ

B1(0)

ˆ 1

0
[Dξfj(xj + rjy, Aj + λj(Dvj + tsDϕ))]sDϕ dt dy

=
c

λj

ˆ

B1(0)
[Dξf(xj + rjy, Aj + λj(Dvj + sDϕ))−Dξf(xj + rjy, Aj)]sDϕ dy.

(4.14)

Inserting (4.14) in (4.13), dividing by s and taking the limit as s → 0, we conclude that

0 ≤ c

λj

ˆ

B1(0)
[Dξf(xj + rjy, Aj + λjDvj)−Dξf(xj + rjy, Aj)]Dϕdy

+
c(M)rα

j

λj

ˆ

B1(0)
|Dϕ| dy. (4.15)

Let us split

B1(0) = E+
j ∪ E−

j = {y ∈ B1 : λj |Dvj | > 1} ∪ {y ∈ B1 : λj |Dvj | ≤ 1}.

By (4.6), in case 1 < p < 2, we get

|E+
j | ≤

ˆ

E+
j

λp
j |Dvj |p dy ≤ λp

j

ˆ

E+
j

|Dvj |p dy ≤ cλp
j . (4.16)
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By assumption (F1) and the convexity of f we have that

|Dξf(x, ξ)| ≤ c(1 + |ξ|q−1)

Since q < p + 1, we can apply Hölder’s inequality thus obtaining

1
λj

∣∣∣∣∣
ˆ

E+
j

[Dξf(xj + rjy, Aj + λjDvj)−Dξf(xj + rjy,Aj)]Dϕ dy

∣∣∣∣∣
≤ c

λj
|E+

j |+ cλq−2
j

ˆ

E+
j

|Dvj |q−1 dy

≤ cλp−1
j + cλq−2

j

(ˆ

E+
j

|Dvj |p dy

) q−1
p

|E+
j |

p−q+1
p

≤ cλp−1
j . (4.17)

In case p ≥ 2, by (4.7) we get

|E+
j | ≤

ˆ

E+
j

λ2
j |Dvj |2 dy ≤ λ2

j

ˆ

E+
j

|Dvj |2 dy ≤ cλ2
j . (4.18)

Arguing as before, we have

1
λj

∣∣∣∣∣
ˆ

E+
j

[Dξf(xj + rjy, Aj + λjDvj)−Dξf(xj + rjy,Aj)]Dϕ dy

∣∣∣∣∣
≤ c

λj
|E+

j |+ cλq−2
j

ˆ

E+
j

|Dvj |q−1 dy

≤ cλj + cλ
2q−p−2

p

j

(ˆ

E+
j

λp−2
j |Dvj |p dy

) q−1
p

|E+
j |

p−q+1
p

≤ cλj . (4.19)

Hence, for every p > 1, we infer that

lim
j→∞

c

λj

∣∣∣∣∣
ˆ

E+
j

[Dξf(xj + rjy,Aj + λjDvj)−Dξf(xj + rjy,Aj)]Dϕ dy

∣∣∣∣∣ = 0. (4.20)

On E−
j we have

1
λj

ˆ

E−j
[Dξf(xj + rjy, Aj + λjDvj)−Dξf(xj + rjy, Aj)]Dϕdy

=
ˆ

E−j

ˆ 1

0
Dξξf(xj + rjy,Aj + tλjDvj) dtDvjDϕdy. (4.21)

Note that (4.16) yields that χ
E−

j

→ χB1
in Lr, for every r < ∞. Moreover by (4.8) we have,

at least for subsequences, that

λjDvj → 0 a.e. in B1
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rj → 0

and
xj → x0.

Hence the uniform continuity of Dξξf on bounded sets implies

lim
j

1
λj

ˆ

E−j
[Dξf(xj + rjy,Aj + λjDvj)−Dξf(xj + rjy, Aj)]Dϕ dy

=
ˆ

B1

Dξξf(x0, A)DvDϕ dy. (4.22)

Since β < α, by (4.8) we deduce that

lim
j

rα
j

λj
= 0. (4.23)

By estimates (4.20), (4.22) and (4.23), passing to the limit as j →∞ in (4.15) yields

0 ≤
ˆ

B1

Dξξf(x0, A)DvDϕdy

Changing ϕ in −ϕ we finally get
ˆ

B1

Dξξf(x0, A)DvDϕ dy = 0

i.e. v solves a linear system which is uniformly elliptic thanks to the uniform convexity of
f . The regularity result stated in Proposition 2.7 implies that v ∈ C∞(B1) and for any
0 < τ < 1 ˆ

Bτ

|Dv − (Dv)τ |2 dy ≤ cτ2

ˆ

B1

|Dv − (Dv)1|2 dy ≤ cτ2, (4.24)

for a constant c depending on M .

Step 4. Conclusion

Fix τ ∈ (0, 1
4), set bj = (vj)B2τ , Bj = (Dvj)Bτ and define

wj(y) = vj(y)− bj −Bjy.

After rescaling, we note that λjwj satisfies the following integral inequality
ˆ

B1(0)
gj(y, λjDwj) dy ≤

ˆ

B1(0)
gj(y, λjDwj + Dϕ) dy + crα

j

ˆ

B1(0)
|Dϕ| dy,

for every ϕ ∈ W 1,1
0 (B1(0)) where

gj(y, ξ)=f(xj + rjy, Aj + λjBj + ξ)− f(xj+rjy, Aj + λjBj)−Dξf(xj + rjy,Aj + λjBj)ξ.

It is easy to check that Lemma 2.2 applies to each gj , for some constants that could depend
on τ through |λjBj |. But, given τ , we may always choose j large enough to have |λjBj | <
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λj

τ
n
t

< 1, where t = min{2, p}. Hence we can apply Proposition 3.1 to each λjwj . In case
1 < p < 2 we have that

lim
j

E(xj , τrj)
λ2

j

= lim
j

1
λ2

j

ˆ

Bτrj (x)
|Vp(Du− (Du)τrj )|2 dy + lim

j

τβrβ
j

λ2
j

≤ lim
j

1
λ2

j

ˆ

Bτ

|Vp(λjDwj)|2 dy + τβ

≤ c lim
j

ˆ

B2τ

1
λ2

j

∣∣∣∣Vp

(
λjwj

τ

)∣∣∣∣
2

dy

+ c lim
j

λ
2(q−p)

p

j

(ˆ

B2τ

|Vp(λjDwj)|2
λ2

j

+
1
λ2

j

∣∣∣∣Vp

(
λjwj

τ

)∣∣∣∣
2

dy

) q
p

+ c lim
j

rα
j

λ2
j

(ˆ

Bτ

λp
j |Dwj |p dy

) 1
p

+ c lim
j

rα
j

λ2
j

(ˆ

Bτ

λp
j

|wj |p
τp

dy

) 1
p

+ τβ

≤ c lim
j

ˆ

B2τ

1
λ2

j

∣∣∣∣Vp

(
λjwj

τ

)∣∣∣∣
2

dy + τβ

since

lim
j

λ
2(q−p)

p

j = 0, lim
j

rα
j

λ2
j

= 0

and the integrals appearing as their factors are bounded as j → ∞. Now, since vj → v

strongly in Lp(B1(0)), using the Sobolev-Poincaré inequality stated in Lemma 2.6, one can
easily check that

lim
j→+∞

ˆ

B 1
2

|Vp(λj(vj − v))|2
λ2

j

dy = 0. (4.25)

In fact, for every ϑ ∈ (0, p
2) we can use Hölder’s inequality of exponents p

2ϑ and p
p−2ϑ as

follows ˆ

B 1
2

|Vp(λj(vj − v))|2
λ2

j

dy =
ˆ

B 1
2

|vj − v|2(1 + λ2
j |vj − v|2) p−2

2 dy

≤


ˆ

B 1
2

|vj − v|p(1 + λ2
j |vj − v|2) p(p−2)

4 dy




2ϑ
p

×


ˆ

B 1
2

|vj − v|
2p(1−ϑ)

p−2ϑ (1 + λ2
j |vj − v|2)

p(p−2)(1−ϑ)
2(p−2ϑ) dy




p−2ϑ
p

≤


ˆ

B 1
2

|vj − v|p dy




2ϑ
p



ˆ

B 1
2

(
|Vp(λj(vj − v))|2

λ2
j

) p(1−ϑ)
p−2ϑ

dy




p−2ϑ
p

≤


ˆ

B 1
2

|vj − v|p dy




2ϑ
p



ˆ

B 1
2

|Vp(λj(Dvj −Dv))|2
λ2

j

dy




1−ϑ

.
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Last inequality is obtained applying Lemma 2.6 to the second integral, choosing ϑ ∈ (0, p
2)

such that p(1−ϑ)
p−2ϑ = n

n−p . Hence (4.25) follows noticing that the first integral vanishes as j

goes to infinity and second one stays bounded thanks to (4.5), since v ∈ C∞
0 (B1(0)).

Since bj → (v)2τ and Bj → (Dv)τ , using (4.25) and the definition of wj we get

lim
j

E(xj , τrj)
λ2

j

≤ c lim
j

ˆ

B2τ

1
λ2

j

∣∣∣∣Vp

(
λj(wj − v + v)

τ

)∣∣∣∣
2

dy + τβ

= c lim
j

ˆ

B2τ

1
λ2

j

∣∣∣∣Vp

(
λj(vj − v + v − bj −Bjy)

τ

)∣∣∣∣
2

dy + τβ

≤ c

ˆ

B2τ

|v − (v)2τ − (Dv)τy|2
τ2

dy + τβ

≤ c

ˆ

B2τ

|v − (v)2τ − (Dv)2τy|2
τ2

dy + c

ˆ

B2τ

|(Dv)τy − (Dv)2τy|2
τ2

dy + τβ

≤ c

ˆ

B2τ

|Dv − (Dv)2τ |2 dy + c|(Dv)τ − (Dv)2τ |2 + τβ

≤ cτ2 + cτβ ≤ c?
Mτβ.

The contradiction follows, if 1 < p < 2, by choosing c?
M > C̃(M).

Now we face the case p ≥ 2. Arguing as we did for the case 1 < p < 2 and using
property (2.5) we get

lim
j

E(xj , τrj)
λ2

j

≤ c lim
j

ˆ

Bτ

(|Dwj |2 + λp−2
j |Dwj |p) dy + τβ

≤ c lim
j

ˆ

B2τ

( |wj |2
τ2

+ λp−2
j

|wj |p
τp

)
dy

+ c lim
j

λ
2(q−p)

p

j

(ˆ

B2τ

(
|Dwj |2 + λp−2

j |Dwj |p
)

dy

) q
p

+ c lim
j

rα
j

λ2
j

(ˆ

B2τ

λ2
j |Dwj |2 dy

) 1
2

+ c lim
j

rα
j

λ2
j

(ˆ

B2τ

λ2
j

|wj |2
τ2

dy

) 1
2

+ τβ

≤ c

ˆ

B2τ

|v − (v)2τ − (Dv)τy|2
τ2

dy + τβ

≤ c

ˆ

B2τ

|v − (v)2τ − (Dv)2τy|2
τ2

dy + c

ˆ

B2τ

|(Dv)τy − (Dv)2τy|2
τ2

dy + τβ

≤ c

ˆ

B2τ

|Dv − (Dv)2τ |2 dy + c|(Dv)τ − (Dv)2τ |2 + τβ

≤ cτ2 + cτβ ≤ c?
Mτβ.

The contradiction follows, if p ≥ 2, by choosing c?
M > C̃(M).
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5 Proof of Theorem 1.2

The proof of our regularity result follows from the decay estimate of Proposition 4.1 by a
standard iteration argument. We sketch it here for the reader’s convenience.

Proof of Theorem 1.2. Following the arguments used in Section 6 of [19], from Proposition
4.1 we deduce that for every M > 0 there exist 0 < τ < 1

4 and η > 0 such that if

|(Du)x0,R| ≤ M and E(x0, R) < η (5.1)

then

|(Du)x0,τkR| ≤ 2M and E(x0, τ
kR) < c(M)τβkE(x0, R) (5.2)

for every k ∈ N. Estimate (5.2) yields that if (5.1) holds for any ρ ∈ (0, R) we have

|(Du)x0,ρ| ≤ c(M) and E(x0, ρ) < c(M)
( ρ

R

)β
E(x0, R)

Therefore, in case 1 < p < 2, using (2.3) we obtain
ˆ

Bρ(x0)
|Du− (Du)x0,ρ| dx =

ˆ

Bρ(x0)∩{x: |Du−(Du)x0,ρ|≤1}
|Du− (Du)x0,ρ| dx

+
ˆ

Bρ(x0)∩{x: |Du−(Du)x0,ρ|>1}
|Du− (Du)x0,ρ| dx

≤ c

ˆ

Bρ(x0)
|Vp(Du− (Du)x0,ρ)| dx +

(ˆ

Bρ(x0)
|Vp(Du− (Du)x0,ρ)|2 dx

) 1
p

≤ cE
1
2 (x0, ρ) + cE

1
p (x0, ρ) ≤ c(M,R)ρ

β
2 (5.3)

while in case p ≥ 2 we use (2.5) thus getting

ˆ

Bρ(x0)
|Du− (Du)x0,ρ| dx ≤

(ˆ

Bρ(x0)
|Du− (Du)x0,ρ|2 dx

) 1
2

≤
(ˆ

Bρ(x0)
|Vp(Du− (Du)x0,ρ)|2 dx

) 1
2

= cE
1
2 (x0, ρ) ≤ c(M,R)ρ

β
2

(5.4)

From estimates (5.3) and (5.4) it is clear that, setting

Ω0 = {x ∈ Ω : sup
r>0

|(Du)x0,r| < ∞ and lim
r→0

E(x0, r) = 0},

Ω0 is an open subset of Ω of full measure and u ∈ C1,γ(Ω0) for every γ < β
2 , and the

conclusion follows since β is any number less than α.
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