Strong density results in trace spaces
of maps between manifolds
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Abstract We deal with strong density results of smooth maps between two manifolds X and Y in the fractional
spaces given by the traces of Sobolev maps in WP,

1 Introduction

In the last years there has been a growing interest in studying the fractional Sobolev spaces of mappings
defined between manifolds, see e.g. [3, 4, 5, 6, 7, 8, 10, 14]. Motivated by these papers, in this note we are
concerned with strong density results of smooth maps between two manifolds X and ) in the fractional
spaces W1=1/PP given by the traces of Sobolev maps in W', for p > 1. We recall that the analogous
strong density problem for Sobolev mappings between manifolds was settled in [2] and [11].

We shall consider smooth, connected, compact Riemannian manifolds & and ) without boundary, that
are isometrically embedded into R! and RY, respectively. We shall equip X and ) with the metric induced
by the Euclidean norms on the ambient spaces, and we let n := dim X.

Let p be a given exponent, 1 < p < oo, and denote by [p] the integer part of p. We recall, see e.g. [1],
that the fractional Sobolev space W/P(X) := W'=1/PP(X) is the Banach space of LP-functions u : X — R
which have finite W' ~1/PP_seminorm
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endowed with the norm
Hl? e = Tl ey + l? (1.1)
WYP(X,RN) is the space of vector valued maps u = (u',...,u") such that v/ € W'/P(X) for every
j=1,...,N. Recall that if X = OM for some smooth manifold M, e.g., X = S™, the unit sphere in R"*+!,

then W/?(OM,RN) can be characterized as the space of functions u that are traces of functions U in the
Sobolev space W1?(M,RY). More generally, since X C R!, denoting by C"*! the cylinder

CHl=XxICcR' xR, I:=]-1,1],

WYP(X,RN) can be seen as the space of functions u that are traces of functions U in the Sobolev space
Wl,p(anrl’ RN)
If Uewhr(Ct! RY), and H* is the k-dimensional Hausdorff measure in C"*!, we will denote by

1 n
&0) = =z [ IDur anis

the p-energy of u. Moreover, we will write T(U) = u if u € WYP(X,RN), U € Wh»(C"* RN) and

U=u on X x{0}. For u € WY?(X,RY), we shall denote by Ext(u) a function in W?(C"** RYN) that

minimizes the p-energy &,(U) among all Sobolev maps U € WHP(C"+1 RY) such that T(U) = u.
Instead of working with the norm (1.1), we shall equip W/?(X,RN) with the equivalent norm given by

ullly/p,2 = lullLe 2y + Ep(Ext(w) .
We shall study strong density results for the class
WP (x,Y) = {ue WYP(X,RY) |u(z) € Y for H™ae. z € X},



for 1 < p < co. We will then denote

HYP(X,Y) = {uec WYP(X,Y) | there exists {ux} C C®(X,))
such that u, — u strongly in W/P} .

It is well-known that
HYP(X,Y)=WYP(x,y) if p>n+1.

This follows from a standard convolution argument if p > n + 1, compare e.g. [5], and was extended by
Bethuel [3] to the critical case p = n + 1. Therefore, from now on we shall always assume that X has
dimension n > p—1 or, equivalently, n > [p].

For n > [p], we let R?7,(X,Y) and R?/p()(, Y) denote, respectively, the set of all maps u € W/P(X,))
which are smooth, respectively continuous, except on a singular set X (u) of the type

S(w)=J%i, reN, (1.2)

where ¥; is a smooth (n — [p])-dimensional subset of B® with smooth boundary, if n > [p] + 1, and ¥; is a
point if n = [p].
Using arguments from [7], in Sec. 2 we will first prove the following

Theorem 1.1 For every 1 < p < n+1, where n = dim(X), the class R‘l’jp(é\f,y) is dense in WYP(X,)).

In the case p = 2, this density result was proved in [14], compare also [5], in dimension n = 2, for X = S?
and with ) = S!, the standard unit circle. For p = 2, it was extended in [7] to the case X = S" in higher
dimension n > 2 and for general target manifolds Y, see also [9].

Moreover, in [3] it was noticed that if 7,_1()) # 0, and n > [p], in general the strict inclusion

HYP(X,) S WP (x,D)

holds. More precisely, there exist functions u € W/?(X,)) which cannot be approximated in W'/? by
sequences of smooth maps in W/P(X, ).
If n <p<n+1, the converse holds true. In fact, we have:

Theorem 1.2 If n<p<n+1, and p > 1, then H;/p(x,y) =WYP(x,Y) if and only if T,_1(Y) =0.

The argument given in [3, Lemma 4] to prove Theorem 1.2 is not clear to us; therefore, in Sec. 2 we shall
give a different proof.

In the case of higher dimension n > p, i.e., n > [p| + 1, in order to remove the (n — [p])-dimensional
singular set of mappings in Rfjp(X ,Y), following observations by Hang-Lin [11], we shall see that the
possibly non-trivial topology of the domain manifold X plays a role.

For our purposes, it is more convenient to consider ”cubeulations” instead of triangulations of A. These
ones can be obtained by taking barycentric subdivisions of the n-simplices of any triangulation.

We let X* denote the k-skeleton of some finite cubeulation X of X. If u € W/P(X,)), possibly
slightly moving the faces of X we may assume that the restriction of u to F belongs to W'/P(F,)) for
every k-face F' of X* where k = [p] —1,...,n. In this case, we will say that X is in generic position with
respect to u. Moreover, if u € RY /p(X , V), and X(u) is the (n — [p])-dimensional singular set of u, compare
(1.2), we say that X is in dual position with respect to u if X is in generic position with respect to u and
XPl=1n Y (u) = 0. Possibly slightly moving the faces of X[PI=1 it turns out that the cubeulation X is in
dual position with respect to wu.

Using arguments from [3], that go back to [16], in Sec. 3 we will prove the following ([p] — 1)-homotopy
type property for the class of maps in R /p(X ,V):

Proposition 1.3 Let n+1 > p > 2. Let uy € R?/p(x,y) and X be a finite cubeulation of X in dual

position with respect to us. Let {u;} € WYP(XPI=1 Y) 0 C>® be a sequence of smooth maps strongly
converging in WP to the restriction Uso|xp1-1 Of Uso TO XMW= Then, we find ko € Nt such that for

every i > ko the maps u; and Uso|XTp)-1 ATE homotopic as maps from XMW= 4o .



As a consequence, in Sec. 4 we shall provide a characterization of strongly approximable R? /p-maps:
Theorem 1.4 Let n+1>p > 1. Let u € R(l)/p(X,y) and let X be a cubeulation of X in dual position
with respect to w. Then, u belongs to Hé/p(/\,’, Y), i.e., u is the strong WP limit of a sequence of smooth
maps in C®(X,)), if and only if the restriction U xiw-1 of u to XPI=1 can be extended to a continuous
map from X into ).

Following Hang-Lin [11], we now recall that X" is said to satisfy the k-extension property with respect to
Y, where k € N, if for any given CW-complex X on X, denoting by X* its k-dimensional skeleton, any
continuous map f : X**' — Y is such that its restriction to X* can be extended to a continuous map
from X into ). We recall that the k-extension property does not depend on the choice of the CW-complex
structure on X, compare [11, Sec. 2.2]. Moreover, we refer to [11, Sec. 5] for examples of manifolds X and
Y such that the k-extension property fails to hold.

As an application of the previous facts, in Sec. 4 we shall then prove the following characterization:

Theorem 1.5 If n > p > 1, smooth maps in C®(X,Y) are sequentially dense in WYP(X,)), i.e.,
Hé/p(X,y) = WYP(X,Y), if and only if we have Tp—1(Y) = 0 and X satisfies the ([p] — 1)-estension
property with respect to ).

We remark that in the case n <p <n+1 and p > 1, Theorem 1.5 is equivalent to Theorem 1.2, as the
(n — 1)-extension property is automatically satisfied if m,_1()) = 0.
In particular, from Theorem 1.5 we deduce:

Corollary 1.6 If n > p > 1 and 7x(Y) =0 for every integer k = [p] —1,...,n — 1, then H;/p(X,y) =
Wr(x,Y).

Corollary 1.7 Let n > p > 2 and k be an integer, with k = 1,...,[p] — 1. If m(X) = 0 for every
i=0,....,k—1 and 7;(¥) =0 for every j=k,...,[p| — 1, then HYP(X,Y)=W'r(X,)).

In the model case X = S", since S™ is (n — 1)-connected, i.e., m;(S*) =0 for ¢ =0,...,n — 1, taking
k = [p] — 1 in Corollary 1.7, on account of Theorem 1.2 we immediately obtain:

Corollary 1.8 If n 41 > p > 1, smooth maps in C>®(S™,)) are sequentially dense in WY/P(X,)), i.e.,
HYP(S™,Y) = WYP(S™, ), if and only if mp—1(Y) = 0.
Finally, we remark that the case of domain manifolds X with non zero smooth boundary can be treated

in a similar way, giving analogous density results, possibly with prescribed Dirichlet conditions, compare [12]
for the case of Sobolev mappings between manifolds.

2 Density results for W/P-maps

In this section we shall prove the theorems 1.1 and 1.2. We shall essentially use arguments given in [7] for
the case p = 2. However, we prefer to give a complete proof.

Since the approximation argument is local, by using of a standard approach based on local coordinate
charts, we deduce that it suffices to prove Theorem 1.1 in the case of maps defined in the unit n-ball B™.
Moreover, since B™ is bilipschitz homeomorphic to the unit open n-cube

Q" =0, 1[",

it suffices to prove Theorem 1.1 in the case of maps defined in Q™. Therefore, in the sequel of this section
we will denote

z=(z,t) = (1,...,%n,t) ER" xR
a point in the cylinder Q" x I, where I =] — 1,1[. If U € W'?(Q" x I,RY) and A is a "smooth”

H*-measurable k-dimensional subset of Q™ x I , we denote

1
£,(U, A) = W/A|DU‘A|dek, E,(U) = £,(U, Q" x I,



the k-dimensional p-energy integral of the restriction U4 of U to A. As in the introduction, we will write
T(U) =u if we WYP(Q" RYN) is the trace of U on Q" x {0}. If v = (v1,...,vx) € R¥, we set

[vllx :== max [vi].
1<i<k
Also, for i =1,...,n4+ 1 and XA € R, we denote by P(\,4) the restriction to Q™ x I of the hyperplane of
R"*1 = R"™ x R containing the point \e; and orthogonal to e;, where {ej,...,e, 1} is the canonical basis

of R"t! ie.,
PM\):={z€ Q" xI|(z—MXe;|ej)pntr =0}.

For m € NT and a = (ay,...,a,) € [1/(4m),3/(4m)]" we denote by L, the grid of R" x R

Loy = U U P(a; +j/m,1) (2.1)
i=1 j=0

and by C’T(,]f ) the k-skeleton of the grid of Q™ given by the intersection of £, with the n-space R™ x {0}.
Moreover, we denote

or = a+]10,(m—1)/m]" 2.2)
s® = oo, k=0,....n :

the closed n-cube of side (m — 1)/m inside Q™ and the part of the k-skeleton C% that is contained in an.

Remark 2.1 For future use, we set

ys = Ue(y) 5

where U.(A) := {y € RY | dist(y, A) < €} is the e-neighborhood of A C RY¥, and we observe that, since )
is smooth and compact, there exists €9 > 0 such that for 0 < ¢ < g the nearest point projection Il of ).
onto ) is a well defined Lipschitz map with Lipschitz constant Lip(Il;) < (1+ce) — 1T as e — 07. Notice
that for 0 < e < ¢, the e-neighborhood ). is equivalent to ) in the sense of the algebraic topology.

Let uw € WYP(Q" V) and U : Q" xI — RY be the extension Ext(u) of u, so that U € WHP(Q"x I, RN)
and T(U) = u. Notice that U is continuous outside Q™ x {0}. Moreover, we denote

U(m) = U\Cf,ffl)xl (23)

the restriction of U to the d-skeleton C ") x I, where d = [p].
In order to prove Theorem 1.1, we first make use of the argument of [3, 2.1], that goes back to [15],

and show that if the restriction U™ belongs to Wl’p(Cfﬁl_l) x I,RYN), then it can be approximated by
continuous maps U }(Lm) such that their traces take values in the neighborhood Y., of ), Proposition 2.2.
Secondly, we will suitably modify the extension U in such a way that it agrees with U }(Lm) on the d-skeleton
ol « I, Proposition 2.4.

Proposition 2.2 Let n+1 > p > 2 and d = [p|. Assume that U™ ¢ Wl’p(C,(ﬁl_l) x I,RN). There
exists a sequence of continuous maps {U}(Lm)}h in Wl’p(Egﬁf_l) x I,RN) such that U}(Lm) — U™ strongly in
Wir(S8Y 5 I,RY) and the traces T(U,(Lm)) e WHr(si=Y Y.y for every h.

Remark 2.3 If 1 < p < 2, since d = [p] = 1, Proposition 2.2 holds true by taking U}(Lm) = U™, see (2.3).

PROOF OF PROPOSITION 2.2: If z = (x,t) € 2V % T and 0< h < 1/(4m) we denote by
C(z,h) :== B"(x,h/2) x [t — h/2,t + h/2]
the cylinder centered at z over the ball of diameter h and height h, and by

%(z,h) == C(z,h) N (CYV x T)



the intersection of the cylinder with the d-skeleton C,(,ffl) x I. Setting then, for z € 2%71) x I,

1

(m) 2) = (m) d - -

/ U™ (y) dH (y),
3(z,h)

it is not difficult to show that U,(Lm) € Wlap(zﬁ,if*” x I,RY) is continuous and that Uhm) — U™ strongly
in WhP as h — 0%,

It remains to show that if « T(U}(Lm)), possibly passing to a subsequence ugn)(ngf—l)) C )Y, for
every h. To this aim, for € > 0 to be determined later, choose h. > 0 small so that for any 0 < h < h,

(m) ._
h T

/ IDUM ()P dHi(y) < e VzexdD xT. (2.4)
3(z,h)

For fixed Py € S0~ Y x {0}, we observe that the connected set (P, h) always contains a d-cube Ry
of side h. More precisely, assume for example Py = (z},...,2%,0), where x} € a; + [0, (m — 1)/m], for
l=1,...,d—1, and :ré =a; + j;/m, for i =d,...,n. Then we have

K
E(P()vh):RlUURia K:(dil)a

=2

where R; is the d-cube

d—1
o= (T~ 12,0+ /20 ) Aot )} % [-0/2,0/2

=1

and R; := R; X [—h/2,h/2] for i =2,..., K, where R; is a possibly degenerate (d — 1)-parallelepiped of
diameter lower than +/d — 1 h, and edges parallel to the coordinate axes. In particular, we have

h? < HYS(Py, h)) < ch?

for some dimensional constant ¢ > 0, not depending on F.
Slicing the d-cube R; with hyperplanes orthogonal to the direction e;, and setting ¢, := 2p~P/2 for
every h < h. we find hy € [z} — h/2,2{ + h/2] such that

2
EUM™, Ry N P(hy, 1) < ﬁgp(U(m),Rl)

< @ DU ()P dHE < ¢, ~ .
h Js(po,m) h

We now choose z € RyNP(hy,1)N(S8 Y x{0}) and set y}(Lm) := U™)(z,) in such a way that y,(lm) ey.
Applying the Sobolev embedding theorem, since Ry N P(hy,1) is a (d — 1)-cube of side h, and d = [p], it

follows that -
UM () — ™) < o pl=d/p /P < o cl/P 2.5
o [U() = gl < Rl < e (2.5)
Moreover, we note that
U™ (Po) = ™| < ][ U™ () = g™ dH (). (2:6)
E(Po,h)

Let n be a positive number to be determined later. We slice the d-dimensional set X(Fp, h) with
hyperplanes orthogonal to the ”vertical” direction e, 1, and denote

Q= X(Po,h) NP ,n+1),  h'e[-h/2,h/2].

Setting
Ap = {0 € [~h/2,h/2] : pP2E,(U™ Q) < en/h}



and By := [~h/2,h/2]\ An, by (2.4) we have L(By) < h/n. Moreover, for every h' the set €, is given
by the connected union of K = ( dfl) parallelepipeds of dimension not greater than d — 1 and diameter
lower than v/d — 1 h. Since h'~%? < 1, by the Sobolev theorem we obtain that for every h' € A,

max UM (2) = U™ (y)| < enl/Pel/r.
z,yEQy,

Note that € intersects Ry N P(hy,1) for every h'. Therefore, combining with (2.5) we obtain

max U™ (y) — y,(lm)| <ec(n/P 1)t/ Vh' e A,. (2.7)
Y&iips

By Fubini theorem we write

[ o=t = [ o) - o a
E(Po,h) By JQp,
+ U™ () — y™ | dHE dR

A, Ja,,

Since ||[U™)||o < Ko < 00 by the compactness of ), whereas £'(By,) < h/n and h? < HY(X(Py, h)) <
ch?, using (2.6) and (2.7) we get

m m K()O
UL R =y e S e (0P 1)t (2.8)

Finally, taking first 7 large so that ¢; Ko, /1 < €0/2, and then ¢ small so that ¢y (n'/? 4+ 1)/ < £4/2, by
the arbitrariness of Py in L4 Y x {0} we conclude that

dist(ugm) (),Y) < eo Ve xldD

for every h < h., which clearly yields the assertion. O

Proposition 2.4 Let n+1>p>1 and d = [p]. Assume that U™ € WLP(C,(nd_l) x I,RN). Then there
exists a sequence of maps {Vh(m)}h in WhP(Qn x I,RYN), continuous out of Q7, x {0}, such that Vh(m) —
Ujgn x1 strongly in Whr(Qn x I,RN), with V}fm)m(dﬂ)” = }(Lm), see Proposition 2.2. In particular we
have

T(Vlfm))\z(d—U € Wl/p(2g71)7 yso) Vh.

PROOF: We first consider the case n = d = [p)].

The case n = d = [p]. Let C,, denote the family of all n-cubes @ of side 1/m with boundary contained in
the (n — 1)-grid 25:;‘1), ie. 9Q C ngf_l), so that

UCnm, = Qo .
Let 0 < & < 1/2 to be fixed later. If @ € C,,, we define Vh(Q) : Qx I — RYN by setting for every (z,t) € Qx I

T—q . 1—¢
U(q—i—,t) if p<
Vi@ ._ 1—¢ 2m (2.9)

' S U w.0) + (L= SN Ut i S <p< L

- 2m

Here p = p(z) := ||x — ¢||n, where ¢ is the center of @, so that p(x) =1/(2m) if z € dQ; moreover




and finally
2m e—1
S(p) = 2T 2.10
(p)=—"p+—, (2.10)
so that S(1/(2m)) = 1 and S((1—¢)/(2m)) = 0. Trivially V;{?) is a function in W#(Qx I,RN), continuous
out of @ x {0}. Moreover, it is readily checked that

DV QP dzdt < (1—e)" P pr/2E,(U,Q x I)

{p(x)<(1—e)/(2m)}xT

and
DV QP de dt < ¢ (m, p) - / U — U ann
[(1-2)/(@m)<p(2)<1/(2m)} x I S oGx1
Fe(m,p)e / (1D, UJP + |D,U™ P) ar,
oQxI

where 7 is an orthonormal frame to ng}fl) x I and ¢ (m,p) > 0 only depends on m and p. Define now
Vh(m) 19 x I — RN by V}fm) (x,t) == Vh(Q) (x,t) if z € @ for some @ € Cp,. Then {Vh(m)}h is a sequence
in WhP(Qn x I,RY), continuous out of Q7 x {0}, such that

V™M Qn xI) < (1—e)"P&,(U, QN x )

1 m
+ o (mp) = U — I dne
€ Jeln=byg
+ ca(m,p)e / (1D-U™ P + |D,U™P) dH™
nn=D oy

see (2.3). Moreover, since U}(I‘m)i—> U™ strongly in WLP(E%L_” x I,RYN), see Proposition 2.2, there exists
h € N such that for every h > h

/ \D,U™ P dH" < 2 / D, U™ P dH".
SR s Uxr
Now, for every j € N* we first choose ¢ =¢; € (0,1/2) small so that £; \, 0,
1
(1—e)" P&, Qp x I) <&,(U, Q,, x I) + 3

and )
3¢ (m,p) aj/ |D, U™ P dH™ < = .
s yr J

Secondly, by the LP-convergence of U;(Lm) to U™ we take h = h; > h large so that hjy1 > h; and

Cl(m7p)€j/2(n_l)>d|U( U dH S

Finally, since by the previous estimates
m n n 3
&V Qo x 1) < E(U, @ x D)+ 5

we relabel {Vj(m)} the subsequence {Vh(;")}7 where € = ¢; in (2.9). Using again the strong convergence of

U}(lm) to U™ in Wl’p(Zsff*l) x I,RN), the Poincaré inequality yields the strong LP-convergence of Vj(m)
to U, and hence the assertion, by uniform convexity.



The case n —1 > d = [p]. We first set Vh(m) = U,(lm) on ZSQH) x I, according to Proposition 2.2.
Arguing by induction on the dimension k = d,...,n, by the inductive hypothesis we have already defined
th) 2% 5 I S RN in such a way that Vh(m) = Uge-v, strongly in lep(ng_l) x I,RY).

We now extend {Vh(m)} to ©) x I as follows. Let F be a k-face of side 1/m of 2% and hence with

)

boundary contained in 25571 . Without loss of generality, we suppose F' oriented by e; A-- - Aeg, and we set

r=(7,2) e RF x R"7F,

Similarly to (2.9), we define V") : F x I — RN by setting for (z,£) € F x I

-G 1-
U(Zj+ xqazjvt) lf p< c
V(F) = 1—¢ 2m
" SOV (y,a0) + (1— SE)Uwd1) if - <p< .
h B B 2m — " T 2m
Here p = p(%) := ||7 — q||x, where (¢,q) € R¥ x R"~* is the center of F'; moreover
~ -~ 1 z-q

and S(p) is given by (2.10).
We then extend V}fm) :2®) I — RN by setting Vh(m)(x, t) = Vh(F)(:z:, t) if x € F for some k-face F' as
above. Similarly to the case n = d = [p], using that Vh(m) — U1, strongly in Wi 1, RY), and

by buitably choosing & = ¢; \, 0, we infer that {th)}h is a sequence in W1P (%, s® T ,R™), continuous out
of Z ) x {0}, such that, possibly passing to a subsequence, V( m o, U‘E(k) ; strongly in wh p(Z(k) xI,RN).
The proof of Proposition 2.4 is complete. O

PROOF OF THEOREM 1.1: Let u € W'/?(Q" ) and U : Q" x I — RY be the extension Ext(u) of u,
so that U € WHP(Q" x I, RY) and T(U) = u. We proceed along the lines of [3, Lemma 5], and we first
consider the case n = [p].

The case n = d = [p]. Let m € N*. Since for i =1,...,n we have
3/(4m) m—1 m—1
[y B P de < 3 U ifm < w S G+ 1))
1/(4m) =0 )
= WU, Q" x1I),

we find a vector a = a(m) € [1/(4m),3/(4m)]" such that
Up(aitj/myi) € WHP(P(a; + j/m,i),RY)
foreveryi=1,...,nand j =0,...,m — 1, and
Ey(U,C Y < ) < em&,(U, Q7 x I). (2.11)

We now apply Propositions 2.2 and 2.4 with a = a(m). Slicing the cylinder Q7 x I with hyperplanes
P(t,n + 1) orthogonal to the ”vertical” direction e,1, since {V}fm)} converges to Ujgn s strongly in
Whr(Qr x I,RY), Proposition 2.4, we may and do choose a, 11 € [1/(4m),3/(4m)] so that

Vh(r;)(anﬂ—j/m,n-i-l) € Wl’p(P(an-&-l - ]/m,n + 1)7RN)

for every h and for j = 0,1, with

S & W, Plansr — j/mon+ 1)) < em &y (U, Qpy x 1) (2.12)
7=0,1



for every h. Let F,, denote the family of (n + 1)-cubes of Q" x I, of side 1/m, whose boundary lies in the
n-skeleton
Ly U U Plaps1 —j/m,n+1),
§=0,1

m—1)"

compare (2.1), and let {C’l}l(:1 be a list of the (n + 1)-cubes in Fy,. Notice that each C; intersects the
n-cube Q™ x {0}.

Recall that V,fm)‘ = U}Sm), where U}(Lm) — U™ strongly in Wl’p(Egﬁ_l) x I,RY), see Proposi-

Y
tions 2.2 and 2.4. Then, as in [3, Lemma 5|, by refining the slicing arguments in (2.11) and (2.12) we in fact
may and do choose (ai,...,an11) € [1/(4m),3/(4m)]"*! in such a way that
(m_l)'ll B
S WM, 00) < em&y(U,Gr) Y >, (2.13)
=1
where

G = Q"x] —10m~, 10m~[.
For every [ let f; be a bilipschitz homeomorphism between C; and [—1/(2m),1/(2m)]" ! such that

fGrn(Q" x{0})) [=1/(2m), 1/(2m)]" x {0}
iGN (Qn x{0})) = 9[=1/(2m),1/(2m)]" x {0}

and | Dfillsc < K, [|Df7 oo < K. We then define W™ on C; by

Wi () = Vi [ (Mglm)} : (2.14)

so that

W™ ) < = &,(v™ acy)

C
m
for every [ and hence, by (2.13),
EW™ UF,n) < CENU,G). (2.15)
Setting
Wi(z) = V(=) Ve (Q x 1)\ UF,

the function W,Em) is continuous on Q7, x I except at one singular point on each Cy, which lies on Q7 x {0}.
Moreover, {W}Em)} is a sequence in W1P(Q" x I,RYN) such that for h large enough

W™ — ™ Qr x 1) < CE,U,Gy)
and therefore, by Proposition 2.4,

limsup £,(W\™, Q" x I) < &,(U, Q7 x I) + C E,(U, Gy) .

h—o00

Remark 2.5 For every (n + 1)-cube C; in F,, we have that Wigm)mcl = Vh(m)\ac,’ where the traces

T(Vém))‘z(ml) belong to I/Vl/p(ngf_l)7 Ve, ), see Proposition 2.4. As a consequence, by the definition (2.14)

we infer that the traces T(W}(Lm)) are functions in W*/?(Qn,,V.,) for every h.

Now, let 1y, : Q" — QF be an affine bijective function such that Lip ¢, = (m—1)/m and ¢, — Idgn
uniformly as m — oo. Setting U,,(z,t) := Wé:)(wm(x),t) for some increasing sequence h,, /" 0o, since
meas(G,,) — 0 as m — oo we easily infer that {U,,}, is a sequence of maps in W1P(Q" x I,RY),
continuous out of a finite number of points, such that U,, — U strongly in WP, Moreover by Remark 2.5
it follows that the traces T(U,,) € W/P(Q",).,) for every m. Therefore, taking wu, () := I, o T(U,,)(x),
compare Remark 2.1, clearly {u,,} € W'/?(Q",)) is continuous out of a discrete set of points and w,, — u



in W/?_ Finally, e.g. as in [2, Appendix], every function u,, can be approximated by maps in RJ9 /p(Q", V).

The case n —1 > d = [p]. By applying iteratively the Fubini theorem, we fist observe that for a.e. a = a(m)

as above, the restriction of U to each k-face F' of C,(,If) belongs to WLP(F,RN), forevery k=d—1,...,n
We then may and do apply Propositions 2.2 and 2.4 with a = a(m).

Let .7-'7(75) be the k-dimensional skeleton of F,,, i.e. the union of the k-faces of the (n+1)-cubes C; of F,.
Since Vh(m) — U in WHP(Qn x I,RY), by using a more refined slicing argument as e.g. in [13, Sec. 4], we
may and do choose (ay,...,a,+1) € [1/(4m),3/(4m)]"*! so that for every h sufficiently large the following
holds:

(i) for every k =d,...,n the restriction of Vh(m) to any k-face @ of .7-'7(75) is a function in WP (Q,RM);

(ii) there exists some absolute constant ¢ > 0, not depending on h, such that for every k=d,...,n
EVI™M FMY < em™ R E,(U,G) - (2.16)

First we let W,Em) = Vh(m) on FP. Arguing by induction on k = d,...,n, we now extend W,Em) to
FED | To this aim, for every (k + 1)-face @ in FED e distinguish two cases.

If @ is "horizontal”, i.e. the direction e, is not spanned by the vector space underlying @), we let
wim =y o Q. (2.17)

If @ is not ”horizontal”, as in the case n = d = [p] we let fg be a bilipschitz homeomorphism between
Q and [—1/(2m), 1/(2m)]**! such that

fo(@N(Q" x{0}))
fo(9Q N (Q" x {0}))

[=1/(2m),1/(2m)]* x {0}
0[=1/(2m),1/(2m)]* x {0}

and ||Dfglle < K, HD]"QlHOO < K. Since we have already defined W on 9Q, we extend W(m) to @ by
setting

W oy — i [ -1 fo(2) 7 2.18
=W {f@ <2m||fQ<z>|\k+1ﬂ (2.18)
so that
EWL™,Q) < — £, (W,™.0Q). (2.19)
Repeating the argument for k = d, ..., n, we then easily estimate
m —~ 1 m

k=d

and hence, by (2.16), we obtain again (2.15). Setting then W,(Lm)(z) = Vh(m)(z) for every z € (QF, x I)\UF,,,
this way W}Em) is continuous on Q7 x I outside an (n — d)-dimensional singular set, which lies on Q7, x {0},
given by the union of a finite number (depending on n, d, and m) of smooth subsets of affine (n — d)-planes
parallel to the coordinate directions in R™ x {0}. Moreover, by the construction we infer that the traces

T(W}Em)) e WHP(Qn  y..) for every m. The rest of the proof follows as in the case n = d = [p]. O

Proor OoF THEOREM 1.2: We have to show that Hl/p(x,y) = Wl/p(/\,’,y) provided that m,_1(}) = 0.
On account of Theorem 1.1, it suffices to prove that R9 /p(X Y)C Hg o/P (X,Y). Moreover, since the argument

is local, without loss of generality we assume that X' = Q" and u € R{Y /p(Q”, Y) is smooth outside the
origin. For 0 < r <1 we denote

Q= [, 7’]"+1 , F.:=Q,N(R"x{0}).
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Let U = Ext(u) € WHP(Q" x I,RY) be the extension of u. For every fixed e > 0let 0 < R = R(¢) < 1 be
such that &,(U,Qr) < e. Since

1 R
Ep(U,Qr\ Qry2) = T/2/ dr/ |DUP dH",
p R/2 Q.

there exists r = r(e) € [R/2, R] such that

1 2 2
V.00, = i [ IDUP A < L EU.Qn\ Qup) < 5 (221)

= n =
Since wjgp, : OF, — ) is a smooth map in Wl/p(aFr7 V) and m,_1(Y) = 0, there exists a smooth extension
uy : F,, — Y of u with finite WP-norm.

Let now QF := {z = (x,t) € Q, | £t > 0} be the upper and lower half (n + 1)-cubes of Q,. Moreover,
let V¥ :QF — RY be a function that minimizes the p-energy on QF among all maps in W'P(QF RY)
satisfying the boundary condition

VE=U on  9QF N{(x,t) |+t >0}
VTjE = Up on F,

and let V; : Q, — RY be given by V,(z) = V.¥(2) if z € QF. Define then W, : Q" x I — RY by

w(gz) it el <6
Wi(2) = U(”) it < el <7
[les)
U i el >

for a suitable 0 < § < r. Since V¥ is continuous, W, € WHP(Q" x I,RY) is continuous and with trace
T(W,) € WY/P(Q",)). We easily estimate

n+1l-—p
(W Q" X 1) < E(U.Q" x D) ergy0Q) + (1) &(0@)

for some absolute constant ¢ > 0, depending on n and p, so that by (2.21), and since r < R,

n+l—p
E(Wy, Q7 x 1) < E,(U, Q" x I) +2ce + (T) &V, Qy)
< &WU, QX I)+ (2c+1)e,

taking 6 = &(r,¢) sufficiently small. Letting € — 0 we infer that W,y — U in WhP(Q" x I,RY) and hence
that T(W,(c)) — uin W/P(Q",Y). Since the trace T(W,) € W/P(Q", ) is continuous, then in a standard
way it can be approximated by smooth maps, as required. O

3 Homotopy type of W1/P-maps

In this section we let n+1>p > 2 and d = [p]. We shall prove the following

Proposition 3.1 Let uw € WYP(X,Y) and X be a finite cubeulation of X in generic position with respect
to u. For any smooth sequence {u;} C WYP(X%1 V)N C> strongly converging to Ulxda-1 N WP, we
find ko € N* such that for every i,j > ko the maps u; and u; are homotopic as maps from X1 to Y.

By the argument of Proposition 3.1 we shall then obtain Proposition 1.3.

PROOF OF PROPOSITION 3.1: Following the notation from Sec. 2, we shall give the proof in the case X = Q"
and X* =% see (2.2), making use of the argument from [3, Lemma 1], that goes back to [16].
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The case of general X is obtained by means of an easy adaptation of the argument below. In fact, the
manifold X being smooth and compact, for any given finite cubeulation X, taking local coordinate charts,
we find a bilipschitz homeomorphism 1, with Lipschitz constants Lipv and Lipt~! bounded by a constant
not depending on the local chart, and a number m € N*, such that in each coordinate chart 1 (X*) = ng)
for every dimension k.

We now let X = Q" and X*:= 2. Let U, € Wl*p(Zggfl) x I,RN) be such that T(U;) = u; and Uj;
minimizes the p-energy among all maps V € WiP(2™Y x I, RN) such that T(V) = u;. Let oo > 0 to be
chosen. By the strong convergence of u; to u, we can find ky € N such that

|U; — Uj”Wl’P(Es,?_l)xI) < 09 Vi,j > ko. (3.1)
If z=(x,t) € S T and 0< h < 1/(4m), we let
1
Ui(h, = ;:][ Us(y) dH(y ::7/ Ui(y) dH(y)
( ) (z,h) ) ) Hd(Z(z,h)) (z,h) w) W)

where the d-dimensional set X(z,h) is defined as in the proof of Proposition 2.2 from Sec. 2. Moreover,
let u;(h,-) = T(U;(h,-)) € Wl/P(Zsfffl),RN). For every 4, we infer that U;(h,z) is continuous, whereas
U;(h,-) tends to U; and w;(h,-) tends to w; uniformly as h — 0. Let &1 > 0 to be chosen. By the
strong convergence of wu; to u, we also may and do fix a positive number hg < 1/(4m) such that for every

z € Z,(ff_l) x I, and for any 0 < h < hg, we have

Ep(Ui, X(2,h)) < &1 Vi. (3.2)
If £:=(z,0) € B« {0}, for i # j we estimate
[ui(ho, ) — uj(ho, )| = |Ui(ho, &) — Uj(ho, &)

1/p
(][ |Ui<ho,f>>—Uj<ho,£>|Pde(y>)
3(&,ho)

IN

1/p
(L w0 -vmraio)
2(&,ho)
1/p
s (f wtes) - v an)
2(&,ho)
p 1/p
s (£ ww-vwrats)
(&;ho)
= Il + IQ + 13 .
Using (3.2) and the Poincaré inequality, we have
Il + I2 § Chép_d)/p 611/p,
whereas by (3.1), using that H?(X(&, ho)) > hd, we infer that if 4,7 > ko

Ig § ho_d/p ||UiijHW1,p(ng_1) S Chad/pao.

xI)

)

Since d < p and hg < 1, we then obtain for every z € nid-t , and for 4,75 > ko,

‘ui(ho,l‘) — Uj(ho,x)‘ <cs3 611/p +c4 had/p o0y - (33)

Let now €9 > 0 be given by Remark 2.1. As in the proof of Proposition 2.2, see (2.8), using that d = [p],
taking first n large so that ¢; K /n < €09/2, we infer that if e; satisfies

Co (ﬁl/p+1)€11/p<€0/2, (34)
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by (3.2) we obtain that for 0 < h < hg and for every 4
dist(u;(h, z),Y) <eo  Va e nd=b, (3.5)

We then fix €, so that both (3.4) and c3&;'/? < g¢/2 hold true, and determine ho by condition (3.2). We
then choose o¢ > 0 small in such a way that c4 had/p oo < £0/2, and select kq. By (3.3) we obtain

lui(ho, ) — uj(ho,x)| <o Vae XD Vij>k. (3.6)
Setting u;(-,0) = u;, on account of (3.5) for every i > kg the homotopy maps
H;i:[0,ho] x 249 3., Hy(h,x) = u(h, )

are well defined. Therefore, the functions u; and w;(ho,-) are homotopic, as maps from Z%il) into Ve,
Moreover, (3.6) says that u;(ho,-) and w;(ho,-) are homotopic in the same sense, for i, > ko. This yields
that u; and u; are homotopic, too, for 7,j > kg, and hence the assertion, by projecting )., onto Y. [

PROOF OF PROPOSITION 1.3: Let Uy, Uso(h,2) and us(h,-) be defined as in the proof of Proposition 3.1,
but for u = us. With our hypotheses, it turns out that U (h, z) is continuous, whereas U (h,-) tends
to Uso and uso(h,-) tends to us uniformly as h — 0. Moreover, we can assume that both (3.1) and (3.2)
hold true also for i = co. The assertion readily follows. |

4 A characterization of approximable W'/P-maps

In this section we shall prove Theorem 1.4 and its consequences, Theorem 1.5 and Corollaries 1.6 and 1.7.

PROOF OF THEOREM 1.4: Let d = [p]. Assume that u € R(lj/p(X, ) is the strong W1/P-limit of a sequence
of smooth maps {u;} in C®(X,Y). Let X be a finite cubeulation of X in dual position with respect to
u. Then, denoting by {%;} € W'/P(X%1 ) the restriction of u; to X% !, possibly slightly moving the
faces of X, by Fubini theorem we have that u; strongly converges to 4 := u|x@-1 in Wir If d > 2,
by Proposition 1.3 we infer that for i sufficiently large w; is homotopically equivalent to u, as maps from
X4=1 to ). Since each ; is the restriction of a smooth map from X to ), and (X, X?™!) satisfies the
so called homotopy extension property, see e.g. [11, Prop. 2.1], this yields that u can be extended to a
continuous map from X into ). The same conclusion holds for any cubeulation X in dual position with
respect to u. Finally, if d =1 the conclusion trivially follows.

We now prove the converse, and assume that the restriction u := u|x (-1 can be extended to a continuous
map from X into ). We distinguish two cases.

The casen = d = [p]. Themap u € R(l)/p(/'l’7 Y) is continuous outside a discrete set X(u). Since the argument

is local, without loss of generality we assume that u € R(l) /p( Q™ Y) and u is smooth outside the origin. We
then argue as in the proof of Theorem 1.2 from Sec. 2. In fact, this time we infer that ujgp, : OF, — Y is

a continuous map in W1/? (0F,,Y) for which we can find a continuous extension w, : F,. — Y with finite
WlP_norm, as required.

The case n — 1 > d = [p]. We use a local argument and return to the proof of Theorem 1.1 from Sec. 2.
Recall that the singular set of the approximating maps W,Em) is contained in Q" x {0} and intersects every
not "horizontal” (k + 1)-cube @ in .7-'7(7?“), for k=d,...,n, on a (k — d)-dimensional set obtained by the
”homogeneous” extension (2.18) of the restriction of Wf(Lm) to the boundary of @. To remove the singular

set, working by induction on k = d,...,n, it then suffices to modify the definition (2.18) to (4.1) below,
where Vo : Q — RY is a suitable smooth extension of the boundary datum.

m d—1 00
sy = U,(L ) where {U,(Lm)} C WLP(E%L ) x LRY)YNnC
is such that U}(Lm) — U strongly in WP, see Propositions 2.2 and 2.4, and the traces T(U,(Lm)) c

To this aim, we now recall that Vh(m)
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Wl/p(Z,(ﬁ*l),yEO) N CY. Since the cubeulation given by C,(,Zf) is in dual position with respect to u, by
Proposition 1.3, applied this time with )., instead of ), see Remark 2.1, we infer that for h large enough

), as maps from E,(ff*l)

T(U}(Lm)) is homotopically equivalent to the restriction Uyssa—1) of u to R
into Ye,. Moreover, by the hypothesis Ujsya-1) can be extended to a continuous map from Q™ into ).

As a consequence, the trace T(U}Em))lszl) of U,Sm) on 253*1) can be extended to a continuous map

) has finite W/P-norm, for every

vp + Q" — Y., such that the restriction of v; to every k-face of zﬁif
k=d,...,n.
First we let Wf(bm) = Vh(m) on f,(,f). Arguing by induction on k = d,...,n, we now extend Wf(Lm) to
.7-}(,? D as follows.
If @ is a "horizontal” (k + 1)-cube in FE define W,Em) as in (2.17).
If @ is not ”horizontal”, we let
F:=Qn[R" x {0})

be the k-face in B4 given by the intersection of Q with Q" x {0}, see (2.2). Moreover, let up p: F — Ve,
be given by the restriction of v, to F, so that uy p € wWl/r(F, V.,)NCO.

Let QF := {z = (x,t) € Q | &t > 0} be the upper and lower half (k + 1)-cubes of Q. Moreover, let
Vét : QY — RV be the function that minimizes the p-energy on Q* among all maps in W1P(Q* RY)
satisfying the boundary condition

VEa=w"  on 9Q*n{(z.t) |+t >0}
Vét = Up,F on F

and let Vg : Q@ — RY be given by Vg(z) = Vét(z) if 2 € QF. If fg is the bilipschitz homeomorphism
between Q and [~1/(2m),1/(2m)]**! defined in the proof of Theorem 1.1, we modify the definition (2.18)
of W}Em) on ) by setting for every z € Q

Vo [fél(J;Qni?)} if ||fo(2)llks1 <0

(m) [ = fo(2) : 1
Wi (50! Grreon)] oS ie@len < 5

wim = (4.1)

Similarly to the proof of Theorem 1.2, we easily infer that (2.19) holds again if 0 < 6 < 1/(2m) is
sufficiently small, whereas this time W,Em) is continuous on @ and with trace T(U,(lm)) in WYP(F,V.,).

We then obtain again (2.20) and hence, by (2.16), we conclude again with (2.15). The rest of the proof
is similar to the one of Theorem 1.1 from Sec. 2. |

PROOF OF THEOREM 1.5: Let d = [p]. Similarly to the proof of [11, Thm. 6.3], if f € Lip(X<~1,)), for
some cubeulation X of X, by means of homogeneous extensions on the k-faces of X*, for k=d,...,n, we
find a map u € R(l)/p(,)(7 Y) such that the restriction u xa-1 agrees with f and X is in dual position with

respect to w. If smooth maps in C*°(X,)) are sequentially dense in W'/?(X,)), by Theorem 1.4 we infer
that uxa-1 = f has a continuous (and hence Lipschitz) extension to a map from X to ). This implies
that mg_1(Y) =0 and that X has the (d — 1)-extension property with respect to Y.

Conversely, let u € R7j (X,Y) and X be in dual position with respect to u. Condition mq—1(Y) =0

yields that the restriction wjxa-1 has a continuous extension g : X4 — Y. Therefore, by the (d — 1)-
extension property, ujxa-1 can be extended to a continuous map from X into ). By Theorem 1.4 we then

obtain that u is the strong W'/P-limit of a smooth sequence in W/?(X,)) N C>. Theorem 1.1 and a
diagonal argument yield the assertion. g

PROOF OF COROLLARY 1.6. Taking d = [p], the hypotheses on Y yield that m4_1()) =0 and that X has
the (d — 1)-extension property with respect to ). O

PROOF OF COROLLARY 1.7: Using the argument from [16, Sec. 6], we recall the following
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Lemma 4.1 Let i € Nt. If M, N are compact and connected Riemannian manifolds, m;(N) = 0, and
g: M — N is a continuous map (i — 1)-homotopic to a constant map, then g is i-homotopic to a constant
map.

Applying first Lemma 4.1 with M = N =X and i =0,...,k— 1, we infer that there exists a continuous
map ¢ : X — X homotopic to the identity map and such that the restriction ¢ xx-1 is constant. Let d = [p]
and f € C(X%Y). Then fo ¢ is homotopic to f and fo @ xr-1 is constant. Applying then Lemma 4.1
with M = X, N =), and i = k,...,d — 1, we infer that f o ¢ xe1 is homotopic to a constant map.
This yields that fjxs-1 can be extended to a continuous map. In conclusion, X has the (d — 1)-extension
property with respect to ), whereas m4_1()) = 0 holds true by the hypothesis. (|
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