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Abstract We deal with strong density results of smooth maps between two manifolds X and Y in the fractional

spaces given by the traces of Sobolev maps in W 1,p.

1 Introduction

In the last years there has been a growing interest in studying the fractional Sobolev spaces of mappings
defined between manifolds, see e.g. [3, 4, 5, 6, 7, 8, 10, 14]. Motivated by these papers, in this note we are
concerned with strong density results of smooth maps between two manifolds X and Y in the fractional
spaces W 1−1/p,p given by the traces of Sobolev maps in W 1,p, for p > 1. We recall that the analogous
strong density problem for Sobolev mappings between manifolds was settled in [2] and [11].

We shall consider smooth, connected, compact Riemannian manifolds X and Y without boundary, that
are isometrically embedded into Rl and RN , respectively. We shall equip X and Y with the metric induced
by the Euclidean norms on the ambient spaces, and we let n := dimX .

Let p be a given exponent, 1 < p < ∞, and denote by [p] the integer part of p. We recall, see e.g. [1],
that the fractional Sobolev space W 1/p(X ) := W 1−1/p,p(X ) is the Banach space of Lp-functions u : X → R
which have finite W 1−1/p,p-seminorm

|u|p1/p,X :=
∫

X

∫

X

|u(x)− u(y)|p
|x− y|n+p−1

dx dy

endowed with the norm
‖u‖p

1/p,X := ‖u‖p
Lp(X ) + |u|p1/p,X . (1.1)

W 1/p(X ,RN ) is the space of vector valued maps u = (u1, . . . , uN ) such that uj ∈ W 1/p(X ) for every
j = 1, . . . , N . Recall that if X = ∂M for some smooth manifold M, e.g., X = Sn, the unit sphere in Rn+1,
then W 1/p(∂M,RN ) can be characterized as the space of functions u that are traces of functions U in the
Sobolev space W 1,p(M,RN ). More generally, since X ⊂ Rl, denoting by Cn+1 the cylinder

Cn+1 := X × I ⊂ Rl × R , I :=]− 1, 1[ ,

W 1/p(X ,RN ) can be seen as the space of functions u that are traces of functions U in the Sobolev space
W 1,p(Cn+1,RN ).

If U ∈ W 1,p(Cn+1,RN ), and Hk is the k-dimensional Hausdorff measure in Cn+1, we will denote by

Ep(U) :=
1

pp/2

∫

Cn+1
|Du(z)|p dHn+1(z)

the p-energy of u. Moreover, we will write T(U) = u if u ∈ W 1/p(X ,RN ), U ∈ W 1,p(Cn+1,RN ) and
U = u on X × {0}. For u ∈ W 1/p(X ,RN ), we shall denote by Ext(u) a function in W 1,p(Cn+1,RN ) that
minimizes the p-energy Ep(U) among all Sobolev maps U ∈ W 1,p(Cn+1,RN ) such that T(U) = u.

Instead of working with the norm (1.1), we shall equip W 1/p(X ,RN ) with the equivalent norm given by

|||u|||1/p,X := ||u||Lp(X ) + Ep(Ext(u)) .

We shall study strong density results for the class

W 1/p(X ,Y) := {u ∈ W 1/p(X ,RN ) | u(x) ∈ Y for Hn-a.e. x ∈ X} ,
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for 1 < p < ∞. We will then denote

H
1/p
S (X ,Y) := {u ∈ W 1/p(X ,Y) | there exists {uk} ⊂ C∞(X ,Y)

such that uk → u strongly in W 1/p} .

It is well-known that
H

1/p
S (X ,Y) = W 1/p(X ,Y) if p ≥ n + 1 .

This follows from a standard convolution argument if p > n + 1, compare e.g. [5], and was extended by
Bethuel [3] to the critical case p = n + 1. Therefore, from now on we shall always assume that X has
dimension n > p− 1 or, equivalently, n ≥ [p].

For n ≥ [p], we let R∞1/p(X ,Y) and R0
1/p(X ,Y) denote, respectively, the set of all maps u ∈ W 1/p(X ,Y)

which are smooth, respectively continuous, except on a singular set Σ(u) of the type

Σ(u) =
r⋃

i=1

Σi , r ∈ N , (1.2)

where Σi is a smooth (n− [p])-dimensional subset of Bn with smooth boundary, if n ≥ [p] + 1, and Σi is a
point if n = [p].

Using arguments from [7], in Sec. 2 we will first prove the following

Theorem 1.1 For every 1 < p < n+1, where n = dim(X ), the class R∞1/p(X ,Y) is dense in W 1/p(X ,Y).

In the case p = 2, this density result was proved in [14], compare also [5], in dimension n = 2, for X = S2

and with Y = S1, the standard unit circle. For p = 2, it was extended in [7] to the case X = Sn in higher
dimension n ≥ 2 and for general target manifolds Y, see also [9].

Moreover, in [3] it was noticed that if π[p]−1(Y) 6= 0, and n ≥ [p], in general the strict inclusion

H
1/p
S (X ,Y) $W 1/p(X ,Y)

holds. More precisely, there exist functions u ∈ W 1/p(X ,Y) which cannot be approximated in W 1/p by
sequences of smooth maps in W 1/p(X ,Y).

If n ≤ p < n + 1, the converse holds true. In fact, we have:

Theorem 1.2 If n ≤ p < n + 1, and p > 1, then H
1/p
S (X ,Y) = W 1/p(X ,Y) if and only if πn−1(Y) = 0.

The argument given in [3, Lemma 4] to prove Theorem 1.2 is not clear to us; therefore, in Sec. 2 we shall
give a different proof.

In the case of higher dimension n > p, i.e., n ≥ [p] + 1, in order to remove the (n − [p])-dimensional
singular set of mappings in R∞1/p(X ,Y), following observations by Hang-Lin [11], we shall see that the
possibly non-trivial topology of the domain manifold X plays a role.

For our purposes, it is more convenient to consider ”cubeulations” instead of triangulations of X . These
ones can be obtained by taking barycentric subdivisions of the n-simplices of any triangulation.

We let Xk denote the k-skeleton of some finite cubeulation X of X . If u ∈ W 1/p(X ,Y), possibly
slightly moving the faces of X we may assume that the restriction of u to F belongs to W 1/p(F,Y) for
every k-face F of Xk, where k = [p]− 1, . . . , n. In this case, we will say that X is in generic position with
respect to u. Moreover, if u ∈ R0

1/p(X ,Y), and Σ(u) is the (n− [p])-dimensional singular set of u, compare
(1.2), we say that X is in dual position with respect to u if X is in generic position with respect to u and
X [p]−1 ∩ Σ(u) = ∅. Possibly slightly moving the faces of X [p]−1, it turns out that the cubeulation X is in
dual position with respect to u.

Using arguments from [3], that go back to [16], in Sec. 3 we will prove the following ([p] − 1)-homotopy
type property for the class of maps in R0

1/p(X ,Y):

Proposition 1.3 Let n + 1 > p ≥ 2. Let u∞ ∈ R0
1/p(X ,Y) and X be a finite cubeulation of X in dual

position with respect to u∞. Let {ui} ⊂ W 1/p(X [p]−1,Y) ∩ C∞ be a sequence of smooth maps strongly
converging in W 1/p to the restriction u∞|X[p]−1 of u∞ to X [p]−1. Then, we find k0 ∈ N+ such that for
every i ≥ k0 the maps ui and u∞|X[p]−1 are homotopic as maps from X [p]−1 to Y.
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As a consequence, in Sec. 4 we shall provide a characterization of strongly approximable R0
1/p-maps:

Theorem 1.4 Let n + 1 > p > 1. Let u ∈ R0
1/p(X ,Y) and let X be a cubeulation of X in dual position

with respect to u. Then, u belongs to H
1/p
S (X ,Y), i.e., u is the strong W 1/p-limit of a sequence of smooth

maps in C∞(X ,Y), if and only if the restriction u|X[p]−1 of u to X [p]−1 can be extended to a continuous
map from X into Y.

Following Hang-Lin [11], we now recall that X is said to satisfy the k-extension property with respect to
Y, where k ∈ N, if for any given CW-complex X on X , denoting by Xk its k-dimensional skeleton, any
continuous map f : Xk+1 → Y is such that its restriction to Xk can be extended to a continuous map
from X into Y. We recall that the k-extension property does not depend on the choice of the CW-complex
structure on X , compare [11, Sec. 2.2]. Moreover, we refer to [11, Sec. 5] for examples of manifolds X and
Y such that the k-extension property fails to hold.

As an application of the previous facts, in Sec. 4 we shall then prove the following characterization:

Theorem 1.5 If n > p > 1, smooth maps in C∞(X ,Y) are sequentially dense in W 1/p(X ,Y), i.e.,
H

1/p
S (X ,Y) = W 1/p(X ,Y), if and only if we have π[p]−1(Y) = 0 and X satisfies the ([p] − 1)-extension

property with respect to Y.

We remark that in the case n ≤ p < n + 1 and p > 1, Theorem 1.5 is equivalent to Theorem 1.2, as the
(n− 1)-extension property is automatically satisfied if πn−1(Y) = 0.

In particular, from Theorem 1.5 we deduce:

Corollary 1.6 If n > p > 1 and πk(Y) = 0 for every integer k = [p] − 1, . . . , n − 1, then H
1/p
S (X ,Y) =

W 1/p(X ,Y).

Corollary 1.7 Let n > p ≥ 2 and k be an integer, with k = 1, . . . , [p] − 1. If πi(X ) = 0 for every
i = 0, . . . , k − 1 and πj(Y) = 0 for every j = k, . . . , [p]− 1, then H

1/p
S (X ,Y) = W 1/p(X ,Y).

In the model case X = Sn, since Sn is (n − 1)-connected, i.e., πi(Sn) = 0 for i = 0, . . . , n − 1, taking
k = [p]− 1 in Corollary 1.7, on account of Theorem 1.2 we immediately obtain:

Corollary 1.8 If n + 1 > p > 1, smooth maps in C∞(Sn,Y) are sequentially dense in W 1/p(X ,Y), i.e.,
H

1/p
S (Sn,Y) = W 1/p(Sn,Y), if and only if π[p]−1(Y) = 0.

Finally, we remark that the case of domain manifolds X with non zero smooth boundary can be treated
in a similar way, giving analogous density results, possibly with prescribed Dirichlet conditions, compare [12]
for the case of Sobolev mappings between manifolds.

2 Density results for W 1/p-maps

In this section we shall prove the theorems 1.1 and 1.2. We shall essentially use arguments given in [7] for
the case p = 2. However, we prefer to give a complete proof.

Since the approximation argument is local, by using of a standard approach based on local coordinate
charts, we deduce that it suffices to prove Theorem 1.1 in the case of maps defined in the unit n-ball Bn.
Moreover, since Bn is bilipschitz homeomorphic to the unit open n-cube

Qn :=]0, 1[n ,

it suffices to prove Theorem 1.1 in the case of maps defined in Qn. Therefore, in the sequel of this section
we will denote

z = (x, t) = (x1, . . . , xn, t) ∈ Rn × R
a point in the cylinder Qn × I, where I =] − 1, 1[. If U ∈ W 1,p(Qn × I,RN ) and A is a ”smooth”
Hk-measurable k-dimensional subset of Qn × I, we denote

Ep(U,A) :=
1

pp/2

∫

A

|DU|A|p dHk , Ep(U) := Ep(U,Qn × I) ,
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the k-dimensional p-energy integral of the restriction U|A of U to A. As in the introduction, we will write
T(U) = u if u ∈ W 1/p(Qn,RN ) is the trace of U on Qn × {0}. If v = (v1, . . . , vk) ∈ Rk, we set

‖v‖k := max
1≤i≤k

|vi| .

Also, for i = 1, . . . , n + 1 and λ ∈ R, we denote by P (λ, i) the restriction to Qn × I of the hyperplane of
Rn+1 = Rn × R containing the point λ ei and orthogonal to ei, where {e1, . . . , en+1} is the canonical basis
of Rn+1, i.e.,

P (λ, i) := {z ∈ Qn × I | (z − λ ei | ei)Rn+1 = 0} .

For m ∈ N+ and a = (a1, . . . , an) ∈ [1/(4m), 3/(4m)]n we denote by Lm the grid of Rn × R

Lm :=
n⋃

i=1

m−1⋃

j=0

P (ai + j/m, i) (2.1)

and by C
(k)
m the k-skeleton of the grid of Qn given by the intersection of Lm with the n-space Rn × {0}.

Moreover, we denote
Qn

m := a + [0, (m− 1)/m]n

Σ(k)
m := C

(k)
m ∩Qn

m , k = 0, . . . , n
(2.2)

the closed n-cube of side (m− 1)/m inside Qn and the part of the k-skeleton C
(k)
m that is contained in Qn

m.

Remark 2.1 For future use, we set
Yε := Uε(Y) ,

where Uε(A) := {y ∈ RN | dist(y, A) < ε} is the ε-neighborhood of A ⊂ RN , and we observe that, since Y
is smooth and compact, there exists ε0 > 0 such that for 0 < ε < ε0 the nearest point projection Πε of Yε

onto Y is a well defined Lipschitz map with Lipschitz constant Lip(Πε) ≤ (1 + c ε) → 1+ as ε → 0+. Notice
that for 0 < ε ≤ ε0, the ε-neighborhood Yε is equivalent to Y in the sense of the algebraic topology.

Let u ∈ W 1/p(Qn,Y) and U : Qn×I → RN be the extension Ext(u) of u, so that U ∈ W 1,p(Qn×I,RN )
and T(U) = u. Notice that U is continuous outside Qn × {0}. Moreover, we denote

U (m) := U|C(d−1)
m ×I

(2.3)

the restriction of U to the d-skeleton C
(d−1)
m × I, where d = [p].

In order to prove Theorem 1.1, we first make use of the argument of [3, 2.1], that goes back to [15],
and show that if the restriction U (m) belongs to W 1,p(C(d−1)

m × I,RN ), then it can be approximated by
continuous maps U

(m)
h such that their traces take values in the neighborhood Yε0 of Y, Proposition 2.2.

Secondly, we will suitably modify the extension U in such a way that it agrees with U
(m)
h on the d-skeleton

C
(d−1)
m × I, Proposition 2.4.

Proposition 2.2 Let n + 1 > p ≥ 2 and d = [p]. Assume that U (m) ∈ W 1,p(C(d−1)
m × I,RN ). There

exists a sequence of continuous maps {U (m)
h }h in W 1,p(Σ(d−1)

m × I,RN ) such that U
(m)
h → U (m) strongly in

W 1,p(Σ(d−1)
m × I,RN ) and the traces T(U (m)

h ) ∈ W 1/p(Σ(d−1)
m ,Yε0) for every h.

Remark 2.3 If 1 < p < 2, since d = [p] = 1, Proposition 2.2 holds true by taking U
(m)
h = U (m), see (2.3).

Proof of Proposition 2.2: If z = (x, t) ∈ Σ(d−1)
m × I and 0 < h < 1/(4m) we denote by

C(z, h) := B
n
(x, h/2)× [t− h/2, t + h/2]

the cylinder centered at z over the ball of diameter h and height h, and by

Σ(z, h) := C(z, h) ∩ (C(d−1)
m × I)
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the intersection of the cylinder with the d-skeleton C
(d−1)
m × I. Setting then, for z ∈ Σ(d−1)

m × I,

U
(m)
h (z) := −

∫

Σ(z,h)

U (m)(y) dHd(y) :=
1

Hd
(
Σ(z, h)

)
∫

Σ(z,h)

U (m)(y) dHd(y) ,

it is not difficult to show that U
(m)
h ∈ W 1,p(Σ(d−1)

m × I,RN ) is continuous and that U
(m)
h → U (m) strongly

in W 1,p as h → 0+.
It remains to show that if u

(m)
h := T(U (m)

h ), possibly passing to a subsequence u
(m)
h (Σ(d−1)

m ) ⊂ Yε0 for
every h. To this aim, for ε > 0 to be determined later, choose hε > 0 small so that for any 0 < h ≤ hε

∫

Σ(z,h)

|DU (m)(y)|p dHd(y) ≤ ε ∀ z ∈ Σ(d−1)
m × I . (2.4)

For fixed P0 ∈ Σ(d−1)
m × {0}, we observe that the connected set Σ(P0, h) always contains a d-cube R1

of side h. More precisely, assume for example P0 = (x1
0, . . . , x

n
0 , 0), where xl

0 ∈ al + [0, (m − 1)/m], for
l = 1, . . . , d− 1, and xi

0 = ai + ji/m, for i = d, . . . , n. Then we have

Σ(P0, h) = R1 ∪
K⋃

i=2

Ri , K =
(

n

d− 1

)
,

where R1 is the d-cube

R1 :=
(d−1∏

l=1

[xl
0 − h/2, xl

0 + h/2]
)
× {(xd

0, . . . , x
n
0 )} × [−h/2, h/2]

and Ri := R̃i × [−h/2, h/2] for i = 2, . . . , K, where R̃i is a possibly degenerate (d − 1)-parallelepiped of
diameter lower than

√
d− 1 h, and edges parallel to the coordinate axes. In particular, we have

hd ≤ Hd(Σ(P0, h)) ≤ c hd

for some dimensional constant c > 0, not depending on P0.
Slicing the d-cube R1 with hyperplanes orthogonal to the direction e1, and setting cp := 2p−p/2, for

every h ≤ hε we find h1 ∈ [x1
0 − h/2, x1

0 + h/2] such that

Ep(U (m), R1 ∩ P (h1, 1)) ≤ 2
h
Ep(U (m), R1)

≤ cp

h

∫

Σ(P0,h)

|DU (m)(y)|p dHd ≤ cp
ε

h
.

We now choose z0 ∈ R1∩P (h1, 1)∩(Σ(d−1)
m ×{0}) and set y

(m)
h := U (m)(z0) in such a way that y

(m)
h ∈ Y.

Applying the Sobolev embedding theorem, since R1 ∩ P (h1, 1) is a (d − 1)-cube of side h, and d = [p], it
follows that

max
z∈R1∩P (h1,1)

|U (m)(z)− y
(m)
h | ≤ c h1−d/p ε1/p ≤ c ε1/p . (2.5)

Moreover, we note that

|U (m)
h (P0)− y

(m)
h | ≤ −

∫

Σ(P0,h)

|U (m)(y)− y
(m)
h | dHd(y) . (2.6)

Let η be a positive number to be determined later. We slice the d-dimensional set Σ(P0, h) with
hyperplanes orthogonal to the ”vertical” direction en+1, and denote

Ωh′ := Σ(P0, h) ∩ P (h′, n + 1) , h′ ∈ [−h/2, h/2] .

Setting
Ah := {h′ ∈ [−h/2, h/2] : pp/2 Ep(U (m),Ωh′) ≤ ε η/h}
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and Bh := [−h/2, h/2] \ Ah, by (2.4) we have L1(Bh) ≤ h/η. Moreover, for every h′ the set Ωh′ is given
by the connected union of K =

(
n

d−1

)
parallelepipeds of dimension not greater than d − 1 and diameter

lower than
√

d− 1 h. Since h1−d/p ≤ 1, by the Sobolev theorem we obtain that for every h′ ∈ Ah

max
z,y∈Ωh′

|U (m)(z)− U (m)(y)| ≤ c η1/p ε1/p .

Note that Ωh′ intersects R1 ∩ P (h1, 1) for every h′. Therefore, combining with (2.5) we obtain

max
y∈Ωh′

|U (m)(y)− y
(m)
h | ≤ c (η1/p + 1) ε1/p ∀h′ ∈ Ah . (2.7)

By Fubini theorem we write
∫

Σ(P0,h)

|U (m)(y)− y
(m)
h | dHd(y) =

∫

Bh

∫

Ωh′
|U (m)(y)− y

(m)
h | dHd−1 dh′

+
∫

Ah

∫

Ωh′
|U (m)(y)− y

(m)
h | dHd−1 dh′ .

Since ‖U (m)‖∞ ≤ K∞ < ∞ by the compactness of Y, whereas L1(Bh) ≤ h/η and hd ≤ Hd(Σ(P0, h)) ≤
c hd, using (2.6) and (2.7) we get

|U (m)
h (P0)− y

(m)
h | ≤ c1

K∞
η

+ c2 (η1/p + 1) ε1/p . (2.8)

Finally, taking first η large so that c1 K∞/η < ε0/2, and then ε small so that c2 (η1/p + 1) ε1/p < ε0/2, by
the arbitrariness of P0 in Σ(d−1)

m × {0} we conclude that

dist
(
u

(m)
h (x),Y)

< ε0 ∀x ∈ Σ(d−1)
m

for every h ≤ hε, which clearly yields the assertion. ¤

Proposition 2.4 Let n + 1 > p > 1 and d = [p]. Assume that U (m) ∈ W 1,p(C(d−1)
m × I,RN ). Then there

exists a sequence of maps {V (m)
h }h in W 1,p(Qn

m × I,RN ), continuous out of Qn
m × {0}, such that V

(m)
h →

U|Qn
m×I strongly in W 1,p(Qn

m × I,RN ), with V
(m)
h |Σ(d−1)

m ×I
= U

(m)
h , see Proposition 2.2. In particular we

have
T(V (m)

h )|Σ(d−1)
m

∈ W 1/p(Σ(d−1)
m ,Yε0) ∀h .

Proof: We first consider the case n = d = [p].

The case n = d = [p]. Let Cm denote the family of all n-cubes Q of side 1/m with boundary contained in
the (n− 1)-grid Σ(n−1)

m , i.e. ∂Q ⊂ Σ(n−1)
m , so that

∪Cm = Qn
m .

Let 0 < ε < 1/2 to be fixed later. If Q ∈ Cm, we define V
(Q)
h : Q×I → RN by setting for every (x, t) ∈ Q×I

V
(Q)
h :=





U

(
q +

x− q

1− ε
, t

)
if ρ ≤ 1− ε

2m

S(ρ)U
(m)
h (y, t) + (1− S(ρ)) U(y, t) if

1− ε

2m
≤ ρ ≤ 1

2m
.

(2.9)

Here ρ = ρ(x) := ‖x− q‖n, where q is the center of Q, so that ρ(x) = 1/(2m) if x ∈ ∂Q; moreover

y = y(x) := q +
1

2m

x− q

ρ(x)
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and finally

S(ρ) :=
2m

ε
ρ +

ε− 1
ε

, (2.10)

so that S
(
1/(2m)

)
= 1 and S

(
(1−ε)/(2m)

)
= 0. Trivially V

(Q)
h is a function in W 1,p(Q×I,RN ), continuous

out of Q× {0}. Moreover, it is readily checked that
∫

{ρ(x)≤(1−ε)/(2m)}×I

|DV
(Q)
h |p dx dt ≤ (1− ε)n−p pp/2 Ep(U,Q× I)

and ∫

{(1−ε)/(2m)≤ρ(x)≤1/(2m)}×I

|DV
(Q)
h |p dx dt ≤ c (m, p)

1
ε

∫

∂Q×I

|U − U
(m)
h |p dHn

+ c (m, p) ε

∫

∂Q×I

(|DτU |p + |DτU
(m)
h |p) dHn ,

where τ is an orthonormal frame to Σ(n−1)
m × I and c (m, p) > 0 only depends on m and p. Define now

V
(m)
h : Qn

m × I → RN by V
(m)
h (x, t) := V

(Q)
h (x, t) if x ∈ Q for some Q ∈ Cm. Then {V (m)

h }h is a sequence
in W 1,p(Qn

m × I,RN ), continuous out of Qn
m × {0}, such that

Ep(V
(m)
h ,Qn

m × I) ≤ (1− ε)n−p Ep(U,Qn
m × I)

+ c1 (m, p)
1
ε

∫

Σ
(n−1)
m ×I

|U (m) − U
(m)
h |p dHn

+ c2 (m, p) ε

∫

Σ
(n−1)
m ×I

(|DτU (m)|p + |DτU
(m)
h |p) dHn ,

see (2.3). Moreover, since U
(m)
h → U (m) strongly in W 1,p(Σ(n−1)

m × I,RN ), see Proposition 2.2, there exists
h ∈ N such that for every h ≥ h

∫

Σ
(n−1)
m ×I

|DτU
(m)
h |p dHn ≤ 2

∫

Σ
(n−1)
m ×I

|DτU (m)|p dHn .

Now, for every j ∈ N+ we first choose ε = εj ∈ (0, 1/2) small so that εj ↘ 0,

(1− εj)n−p Ep(U,Qn
m × I) ≤ Ep(U,Qn

m × I) +
1
j

and

3 c2 (m, p) εj

∫

Σ
(n−1)
m ×I

|DτU (m)|p dHn ≤ 1
j

.

Secondly, by the Lp-convergence of U
(m)
h to U (m), we take h = hj ≥ h large so that hj+1 > hj and

c1 (m, p)
1
εj

∫

Σ
(n−1)
m ×I

|U (m) − U
(m)
hj

|p dHn ≤ 1
j

∀ j .

Finally, since by the previous estimates

Ep(V
(m)
hj

,Qn
m × I) ≤ Ep(U,Qn

m × I) +
3
j

,

we relabel {V (m)
j } the subsequence {V (m)

hj
}, where ε = εj in (2.9). Using again the strong convergence of

U
(m)
h to U (m) in W 1,p(Σ(n−1)

m × I,RN ), the Poincaré inequality yields the strong Lp-convergence of V
(m)
j

to U , and hence the assertion, by uniform convexity.
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The case n − 1 ≥ d = [p]. We first set V
(m)
h = U

(m)
h on Σ(d−1)

m × I, according to Proposition 2.2.
Arguing by induction on the dimension k = d, . . . , n, by the inductive hypothesis we have already defined
V

(m)
h : Σ(k−1)

m × I → RN in such a way that V
(m)
h → U|Σ(k−1)

m ×I
strongly in W 1,p(Σ(k−1)

m × I,RN ).

We now extend {V (m)
h } to Σ(k)

m × I as follows. Let F be a k-face of side 1/m of Σ(k)
m , and hence with

boundary contained in Σ(k−1)
m . Without loss of generality, we suppose F oriented by e1∧ · · · ∧ ek, and we set

x = (x̃, x̂) ∈ Rk × Rn−k .

Similarly to (2.9), we define V
(F )
h : F × I → RN by setting for (x, t) ∈ F × I

V
(F )
h :=





U

(
q̃ +

x̃− q̃

1− ε
, q̂, t

)
if ρ ≤ 1− ε

2m

S(ρ)V
(m)
h

(
y, q̂, t

)
+

(
1− S(ρ)

)
U

(
y, q̂, t

)
if

1− ε

2m
≤ ρ ≤ 1

2m
.

Here ρ = ρ(x̃) := ‖x̃− q̃‖k, where (q̃, q̂) ∈ Rk × Rn−k is the center of F ; moreover

y = y(x̃) := q̃ +
1

2m

x̃− q̃

ρ(x̃)

and S(ρ) is given by (2.10).
We then extend V

(m)
h : Σ(k)

m ×I → RN by setting V
(m)
h (x, t) := V

(F )
h (x, t) if x ∈ F for some k-face F as

above. Similarly to the case n = d = [p], using that V
(m)
h → U|Σ(k−1)

m ×I
strongly in W 1,p(Σ(k−1)

m ×I,RN ), and

by suitably choosing ε = εj ↘ 0, we infer that {V (m)
h }h is a sequence in W 1,p(Σ(k)

m ×I,RN ), continuous out
of Σ(k)

m ×{0}, such that, possibly passing to a subsequence, V
(m)
hj

→ U|Σ(k)
m ×I

strongly in W 1,p(Σ(k)
m ×I,RN ).

The proof of Proposition 2.4 is complete. ¤

Proof of Theorem 1.1: Let u ∈ W 1/p(Qn,Y) and U : Qn × I → RN be the extension Ext(u) of u,
so that U ∈ W 1,p(Qn × I,RN ) and T(U) = u. We proceed along the lines of [3, Lemma 5], and we first
consider the case n = [p].

The case n = d = [p]. Let m ∈ N+. Since for i = 1, . . . , n we have

∫ 3/(4m)

1/(4m)

m−1∑

j=0

Ep(U,P (t + j/m, i)) dt ≤
m−1∑

j=0

Ep(U, {j/m ≤ xi ≤ (j + 1)/m})

= Ep(U,Qn × I) ,

we find a vector a = a(m) ∈ [1/(4m), 3/(4m)]n such that

U|P (ai+j/m,i) ∈ W 1,p(P (ai + j/m, i),RN )

for every i = 1, . . . , n and j = 0, . . . ,m− 1, and

Ep(U,C(n−1)
m × I) ≤ cm Ep(U,Qn

m × I) . (2.11)

We now apply Propositions 2.2 and 2.4 with a = a(m). Slicing the cylinder Qn
m × I with hyperplanes

P (t, n + 1) orthogonal to the ”vertical” direction en+1, since {V (m)
h } converges to U|Qn

m×I strongly in
W 1,p(Qn

m × I,RN ), Proposition 2.4, we may and do choose an+1 ∈ [1/(4m), 3/(4m)] so that

V
(m)
h|P (an+1−j/m,n+1) ∈ W 1,p(P (an+1 − j/m, n + 1),RN )

for every h and for j = 0, 1, with
∑

j=0,1

Ep(V
(m)
h , P (an+1 − j/m, n + 1)) ≤ cm Ep(U,Qn

m × I) (2.12)
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for every h. Let Fm denote the family of (n + 1)-cubes of Qn
m × I, of side 1/m, whose boundary lies in the

n-skeleton
Lm ∪

⋃

j=0,1

P (an+1 − j/m, n + 1) ,

compare (2.1), and let {Cl}(m−1)n

l=1 be a list of the (n + 1)-cubes in Fm. Notice that each Cl intersects the
n-cube Qn × {0}.

Recall that V
(m)
h |Σ(n−1)

m ×I
= U

(m)
h , where U

(m)
h → U (m) strongly in W 1,p(Σ(n−1)

m × I,RN ), see Proposi-
tions 2.2 and 2.4. Then, as in [3, Lemma 5], by refining the slicing arguments in (2.11) and (2.12) we in fact
may and do choose (a1, . . . , an+1) ∈ [1/(4m), 3/(4m)]n+1 in such a way that

(m−1)n∑

l=1

Ep(V
(m)
h , ∂Cl) ≤ cm Ep(U,Gm) ∀h ≥ h , (2.13)

where
Gm := Qn×]− 10m−1, 10m−1[ .

For every l let fl be a bilipschitz homeomorphism between Cl and [−1/(2m), 1/(2m)]n+1 such that

fl(Cl ∩ (Qn × {0})) = [−1/(2m), 1/(2m)]n × {0}
fl(∂Cl ∩ (Qn × {0})) = ∂[−1/(2m), 1/(2m)]n × {0}

and ‖Dfl‖∞ ≤ K, ‖Df−1
l ‖∞ ≤ K. We then define W

(m)
h on Cl by

W
(m)
h (z) := V

(m)
h

[
f−1

l

( fl(z)
2m‖fl(z)‖n+1

)]
, (2.14)

so that
Ep(W

(m)
h , Cl) ≤ c

m
Ep(V

(m)
h , ∂Cl)

for every l and hence, by (2.13),
Ep(W

(m)
h ,∪Fm) ≤ C Ep(U,Gm) . (2.15)

Setting
W

(m)
h (z) = V

(m)
h (z) ∀ z ∈ (Qn

m × I) \ ∪Fm ,

the function W
(m)
h is continuous on Qn

m×I except at one singular point on each Cl, which lies on Qn
m×{0}.

Moreover, {W (m)
h } is a sequence in W 1,p(Qn

m × I,RN ) such that for h large enough

Ep(W
(m)
h − V

(m)
h ,Qn

m × I) ≤ C Ep(U,Gm)

and therefore, by Proposition 2.4,

lim sup
h→∞

Ep(W
(m)
h ,Qn

m × I) ≤ Ep(U,Qn
m × I) + C Ep(U,Gm) .

Remark 2.5 For every (n + 1)-cube Cl in Fm we have that W
(m)
h |∂Cl

= V
(m)
h |∂Cl

, where the traces

T(V (m)
h )|Σ(n−1)

m
belong to W 1/p(Σ(n−1)

m ,Yε0), see Proposition 2.4. As a consequence, by the definition (2.14)

we infer that the traces T(W (m)
h ) are functions in W 1/p(Qn

m,Yε0) for every h.

Now, let ψm : Qn → Qn
m be an affine bijective function such that Lip ψm = (m−1)/m and ψm → IdQn

uniformly as m → ∞. Setting Um(x, t) := W
(m)
hm

(ψm(x), t) for some increasing sequence hm ↗ ∞, since
meas(Gm) → 0 as m → ∞ we easily infer that {Um}m is a sequence of maps in W 1,p(Qn × I,RN ),
continuous out of a finite number of points, such that Um → U strongly in W 1,p. Moreover by Remark 2.5
it follows that the traces T(Um) ∈ W 1/p(Qn,Yε0) for every m. Therefore, taking um(x) := Πε0 ◦T(Um)(x),
compare Remark 2.1, clearly {um} ⊂ W 1/p(Qn,Y) is continuous out of a discrete set of points and um → u
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in W 1/p. Finally, e.g. as in [2, Appendix], every function um can be approximated by maps in R∞1/p(Qn,Y).

The case n− 1 ≥ d = [p]. By applying iteratively the Fubini theorem, we fist observe that for a.e. a = a(m)
as above, the restriction of U to each k-face F of C

(k)
m belongs to W 1,p(F,RN ), for every k = d−1, . . . , n.

We then may and do apply Propositions 2.2 and 2.4 with a = a(m).
Let F (k)

m be the k-dimensional skeleton of Fm, i.e. the union of the k-faces of the (n+1)-cubes Cl of Fm.
Since V

(m)
h → U in W 1,p(Qn

m × I,RN ), by using a more refined slicing argument as e.g. in [13, Sec. 4], we
may and do choose (a1, . . . , an+1) ∈ [1/(4m), 3/(4m)]n+1 so that for every h sufficiently large the following
holds:

(i) for every k = d, . . . , n the restriction of V
(m)
h to any k-face Q of F (k)

m is a function in W 1,p(Q,RN );

(ii) there exists some absolute constant c > 0, not depending on h, such that for every k = d, . . . , n

Ep(V
(m)
h ,F (k)

m ) ≤ cmn+1−k Ep(U,Gm) . (2.16)

First we let W
(m)
h ≡ V

(m)
h on F (d)

m . Arguing by induction on k = d, . . . , n, we now extend W
(m)
h to

F (k+1)
m . To this aim, for every (k + 1)-face Q in F (k+1)

m we distinguish two cases.
If Q is ”horizontal”, i.e. the direction en+1 is not spanned by the vector space underlying Q, we let

W
(m)
h ≡ V

(m)
h on Q . (2.17)

If Q is not ”horizontal”, as in the case n = d = [p] we let fQ be a bilipschitz homeomorphism between
Q and [−1/(2m), 1/(2m)]k+1 such that

fQ(Q ∩ (Qn × {0})) = [−1/(2m), 1/(2m)]k × {0}
fQ(∂Q ∩ (Qn × {0})) = ∂[−1/(2m), 1/(2m)]k × {0}

and ‖DfQ‖∞ ≤ K, ‖Df−1
Q ‖∞ ≤ K. Since we have already defined W

(m)
h on ∂Q, we extend W

(m)
h to Q by

setting

W
(m)
h (z) = W

(m)
h

[
f−1

Q

( fQ(z)
2m‖fQ(z)‖k+1

)]
, (2.18)

so that
Ep(W

(m)
h , Q) ≤ c

m
Ep(W

(m)
h , ∂Q) . (2.19)

Repeating the argument for k = d, . . . , n, we then easily estimate

Ep(W
(m)
h ,∪Fm) ≤ C(n, p)

n∑

k=d

1
mn+1−k

Ep(V
(m)
h ,F (k)

m ) (2.20)

and hence, by (2.16), we obtain again (2.15). Setting then W
(m)
h (z) = V

(m)
h (z) for every z ∈ (Qn

m×I)\∪Fm,
this way W

(m)
h is continuous on Qn

m× I outside an (n− d)-dimensional singular set, which lies on Qn
m×{0},

given by the union of a finite number (depending on n, d, and m) of smooth subsets of affine (n− d)-planes
parallel to the coordinate directions in Rn × {0}. Moreover, by the construction we infer that the traces
T(W (m)

h ) ∈ W 1/p(Qn
m,Yε0) for every m. The rest of the proof follows as in the case n = d = [p]. ¤

Proof of Theorem 1.2: We have to show that H
1/p
S (X ,Y) = W 1/p(X ,Y) provided that πn−1(Y) = 0.

On account of Theorem 1.1, it suffices to prove that R∞1/p(X ,Y) ⊂ H
1/p
S (X ,Y). Moreover, since the argument

is local, without loss of generality we assume that X = Qn and u ∈ R∞1/p(Qn,Y) is smooth outside the
origin. For 0 < r < 1 we denote

Qr := [−r, r]n+1 , Fr := Qr ∩ (Rn × {0}) .
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Let U = Ext(u) ∈ W 1,p(Qn × I,RN ) be the extension of u. For every fixed ε > 0 let 0 < R = R(ε) ¿ 1 be
such that Ep(U,QR) ≤ ε. Since

Ep(U,QR \QR/2) =
1

pp/2

∫ R

R/2

dr

∫

∂Qr

|DU |p dHn ,

there exists r = r(ε) ∈ [R/2, R] such that

Ep(U, ∂Qr) :=
1

pp/2

∫

∂Qr

|DU |p dHn ≤ 2
R
Ep(U,QR \QR/2) ≤

2 ε

R
. (2.21)

Since u|∂Fr
: ∂Fr → Y is a smooth map in W 1/p(∂Fr,Y) and πn−1(Y) = 0, there exists a smooth extension

ur : Fr → Y of u with finite W 1,p-norm.
Let now Q±r := {z = (x, t) ∈ Qr | ±t ≥ 0} be the upper and lower half (n + 1)-cubes of Qr. Moreover,

let V ±
r : Q±

r → RN be a function that minimizes the p-energy on Q±
r among all maps in W 1,p(Q±

r ,RN )
satisfying the boundary condition

{
V ±

r = U on ∂Q±
r ∩ {(x, t) | ±t > 0}

V ±
r = ur on Fr

and let Vr : Qr → RN be given by Vr(z) = V ±
r (z) if z ∈ Q±r . Define then Wr : Qn × I → RN by

Wr(z) :=





Vr

(
r

δ
z

)
if ‖z‖n+1 ≤ δ

U

(
r z

‖z‖n+1

)
if δ ≤ ‖z‖n+1 ≤ r

U(z) if ‖z‖n+1 ≥ r

for a suitable 0 < δ < r. Since V ±
r is continuous, Wr ∈ W 1,p(Qn × I,RN ) is continuous and with trace

T(Wr) ∈ W 1/p(Qn,Y). We easily estimate

Ep(Wr,Qn × I) ≤ Ep(U,Qn × I) + c r Ep(U, ∂Qr) +
(

δ

r

)n+1−p

Ep(Vr, Qr)

for some absolute constant c > 0, depending on n and p, so that by (2.21), and since r < R,

Ep(Wr,Qn × I) ≤ Ep(U,Qn × I) + 2 c ε +
(

δ

r

)n+1−p

Ep(Vr, Qr)

≤ Ep(U,Qn × I) + (2c + 1) ε ,

taking δ = δ(r, ε) sufficiently small. Letting ε → 0 we infer that Wr(ε) → U in W 1,p(Qn× I,RN ) and hence
that T(Wr(ε)) → u in W 1/p(Qn,Y). Since the trace T(Wr) ∈ W 1/p(Qn,Y) is continuous, then in a standard
way it can be approximated by smooth maps, as required. ¤

3 Homotopy type of W 1/p-maps

In this section we let n + 1 > p ≥ 2 and d = [p]. We shall prove the following

Proposition 3.1 Let u ∈ W 1/p(X ,Y) and X be a finite cubeulation of X in generic position with respect
to u. For any smooth sequence {ui} ⊂ W 1/p(Xd−1,Y) ∩ C∞ strongly converging to u|Xd−1 in W 1/p, we
find k0 ∈ N+ such that for every i, j ≥ k0 the maps ui and uj are homotopic as maps from Xd−1 to Y.

By the argument of Proposition 3.1 we shall then obtain Proposition 1.3.

Proof of Proposition 3.1: Following the notation from Sec. 2, we shall give the proof in the case X = Qn

and Xk := Σ(k)
m , see (2.2), making use of the argument from [3, Lemma 1], that goes back to [16].
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The case of general X is obtained by means of an easy adaptation of the argument below. In fact, the
manifold X being smooth and compact, for any given finite cubeulation X, taking local coordinate charts,
we find a bilipschitz homeomorphism ψ, with Lipschitz constants Lip ψ and Lip ψ−1 bounded by a constant
not depending on the local chart, and a number m ∈ N+, such that in each coordinate chart ψ(Xk) = Σ(k)

m

for every dimension k.
We now let X = Qn and Xk := Σ(k)

m . Let Ui ∈ W 1,p(Σ(d−1)
m × I,RN ) be such that T(Ui) = ui and Ui

minimizes the p-energy among all maps V ∈ W 1,p(Σ(d−1)
m × I,RN ) such that T(V ) = ui. Let σ0 > 0 to be

chosen. By the strong convergence of ui to u, we can find k0 ∈ N such that

‖Ui − Uj‖W 1,p(Σ
(d−1)
m ×I)

< σ0 ∀ i, j ≥ k0 . (3.1)

If z = (x, t) ∈ Σ(d−1)
m × I and 0 < h < 1/(4m), we let

Ui(h, z) := −
∫

Σ(z,h)

Ui(y) dHd(y) :=
1

Hd
(
Σ(z, h)

)
∫

Σ(z,h)

Ui(y) dHd(y) ,

where the d-dimensional set Σ(z, h) is defined as in the proof of Proposition 2.2 from Sec. 2. Moreover,
let ui(h, ·) := T(Ui(h, ·)) ∈ W 1/p(Σ(d−1)

m ,RN ). For every i, we infer that Ui(h, z) is continuous, whereas
Ui(h, ·) tends to Ui and ui(h, ·) tends to ui uniformly as h → 0. Let ε1 > 0 to be chosen. By the
strong convergence of ui to u, we also may and do fix a positive number h0 < 1/(4m) such that for every
z ∈ Σ(d−1)

m × I, and for any 0 < h ≤ h0, we have

Ep(Ui, Σ(z, h)) ≤ ε1 ∀ i . (3.2)

If ξ := (x, 0) ∈ Σ(d−1)
m × {0}, for i 6= j we estimate

|ui(h0, x)− uj(h0, x)| = |Ui(h0, ξ)− Uj(h0, ξ)|
=

(
−
∫

Σ(ξ,h0)

|Ui(h0, ξ))− Uj(h0, ξ)|p dHd(y)
)1/p

≤
(
−
∫

Σ(ξ,h0)

|Ui(h0, ξ))− Ui(y)|p dHd(y)
)1/p

+
(
−
∫

Σ(ξ,h0)

|Uj(h0, ξ))− Uj(y)|p dHd(y)
)1/p

+
(
−
∫

Σ(ξ,h0)

|Ui(y)− Uj(y)|p dHd(y)
)1/p

=: I1 + I2 + I3 .

Using (3.2) and the Poincaré inequality, we have

I1 + I2 ≤ c h
(p−d)/p
0 ε1

1/p ,

whereas by (3.1), using that Hd(Σ(ξ, h0)) ≥ hd
0, we infer that if i, j ≥ k0

I3 ≤ h
−d/p
0 ‖Ui − Uj‖W 1,p(Σ

(d−1)
m ×I)

≤ C h
−d/p
0 σ0 .

Since d ≤ p and h0 < 1, we then obtain for every x ∈ Σ(d−1)
m , and for i, j ≥ k0,

|ui(h0, x)− uj(h0, x)| ≤ c3 ε1
1/p + c4 h

−d/p
0 σ0 . (3.3)

Let now ε0 > 0 be given by Remark 2.1. As in the proof of Proposition 2.2, see (2.8), using that d = [p],
taking first η large so that c1 K∞/η < ε0/2, we infer that if ε1 satisfies

c2 (η1/p + 1) ε1
1/p < ε0/2 , (3.4)
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by (3.2) we obtain that for 0 < h ≤ h0 and for every i

dist(ui(h, x),Y) < ε0 ∀x ∈ Σ(d−1)
m . (3.5)

We then fix ε1 so that both (3.4) and c3 ε1
1/p ≤ ε0/2 hold true, and determine h0 by condition (3.2). We

then choose σ0 > 0 small in such a way that c4 h
−d/p
0 σ0 ≤ ε0/2, and select k0. By (3.3) we obtain

|ui(h0, x)− uj(h0, x)| < ε0 ∀x ∈ Σ(d−1)
m , ∀ i, j ≥ k0 . (3.6)

Setting ui(·, 0) = ui, on account of (3.5) for every i ≥ k0 the homotopy maps

Hi : [0, h0]× Σ(d−1)
m → Yε0 , Hi(h, x) := ui(h, x)

are well defined. Therefore, the functions ui and ui(h0, ·) are homotopic, as maps from Σ(d−1)
m into Yε0 .

Moreover, (3.6) says that ui(h0, ·) and uj(h0, ·) are homotopic in the same sense, for i, j ≥ k0. This yields
that ui and uj are homotopic, too, for i, j ≥ k0, and hence the assertion, by projecting Yε0 onto Y. ¤

Proof of Proposition 1.3: Let U∞, U∞(h, z) and u∞(h, ·) be defined as in the proof of Proposition 3.1,
but for u = u∞. With our hypotheses, it turns out that U∞(h, z) is continuous, whereas U∞(h, ·) tends
to U∞ and u∞(h, ·) tends to u∞ uniformly as h → 0. Moreover, we can assume that both (3.1) and (3.2)
hold true also for i = ∞. The assertion readily follows. ¤

4 A characterization of approximable W 1/p-maps

In this section we shall prove Theorem 1.4 and its consequences, Theorem 1.5 and Corollaries 1.6 and 1.7.

Proof of Theorem 1.4: Let d = [p]. Assume that u ∈ R0
1/p(X ,Y) is the strong W 1/p-limit of a sequence

of smooth maps {ui} in C∞(X ,Y). Let X be a finite cubeulation of X in dual position with respect to
u. Then, denoting by {ũi} ⊂ W 1/p(Xd−1,Y) the restriction of ui to Xd−1, possibly slightly moving the
faces of X, by Fubini theorem we have that ũi strongly converges to ũ := u|X(d−1) in W 1/p. If d ≥ 2,
by Proposition 1.3 we infer that for i sufficiently large ũi is homotopically equivalent to ũ, as maps from
Xd−1 to Y. Since each ũi is the restriction of a smooth map from X to Y, and (X , Xd−1) satisfies the
so called homotopy extension property, see e.g. [11, Prop. 2.1], this yields that ũ can be extended to a
continuous map from X into Y. The same conclusion holds for any cubeulation X in dual position with
respect to u. Finally, if d = 1 the conclusion trivially follows.

We now prove the converse, and assume that the restriction ũ := u|X(d−1) can be extended to a continuous
map from X into Y. We distinguish two cases.

The case n = d = [p]. The map u ∈ R0
1/p(X ,Y) is continuous outside a discrete set Σ(u). Since the argument

is local, without loss of generality we assume that u ∈ R0
1/p(Qn,Y) and u is smooth outside the origin. We

then argue as in the proof of Theorem 1.2 from Sec. 2. In fact, this time we infer that u|∂Fr
: ∂Fr → Y is

a continuous map in W 1/p(∂Fr,Y) for which we can find a continuous extension ur : Fr → Y with finite
W 1,p-norm, as required.

The case n − 1 ≥ d = [p]. We use a local argument and return to the proof of Theorem 1.1 from Sec. 2.
Recall that the singular set of the approximating maps W

(m)
h is contained in Qn

m×{0} and intersects every
not ”horizontal” (k + 1)-cube Q in F (k+1)

m , for k = d, . . . , n, on a (k − d)-dimensional set obtained by the
”homogeneous” extension (2.18) of the restriction of W

(m)
h to the boundary of Q. To remove the singular

set, working by induction on k = d, . . . , n, it then suffices to modify the definition (2.18) to (4.1) below,
where VQ : Q → RN is a suitable smooth extension of the boundary datum.

To this aim, we now recall that V
(m)
h |Σ(d−1)

m ×I
= U

(m)
h , where {U (m)

h } ⊂ W 1,p(Σ(d−1)
m × I,RN ) ∩ C∞

is such that U
(m)
h → U (m) strongly in W 1,p, see Propositions 2.2 and 2.4, and the traces T(U (m)

h ) ∈
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W 1/p(Σ(d−1)
m ,Yε0) ∩ C0. Since the cubeulation given by C

(k)
m is in dual position with respect to u, by

Proposition 1.3, applied this time with Yε0 instead of Y, see Remark 2.1, we infer that for h large enough
T(U (m)

h ) is homotopically equivalent to the restriction u|Σ(d−1)
m

of u to Σ(d−1)
m , as maps from Σ(d−1)

m

into Yε0 . Moreover, by the hypothesis u|Σ(d−1)
m

can be extended to a continuous map from Qn into Y.

As a consequence, the trace T(U (m)
h )|Σ(d−1)

m
of U

(m)
h on Σ(d−1)

m can be extended to a continuous map

vh : Qn → Yε0 such that the restriction of vh to every k-face of Σ(k)
m has finite W 1/p-norm, for every

k = d, . . . , n.
First we let W

(m)
h ≡ V

(m)
h on F (d)

m . Arguing by induction on k = d, . . . , n, we now extend W
(m)
h to

F (k+1)
m as follows.

If Q is a ”horizontal” (k + 1)-cube in F (k+1)
m define W

(m)
h as in (2.17).

If Q is not ”horizontal”, we let
F := Q ∩ (Rn × {0})

be the k-face in Σ(k)
m given by the intersection of Q with Qn × {0}, see (2.2). Moreover, let uh,F : F → Yε0

be given by the restriction of vh to F , so that uh,F ∈ W 1/p(F,Yε0) ∩ C0.
Let Q± := {z = (x, t) ∈ Q | ±t ≥ 0} be the upper and lower half (k + 1)-cubes of Q. Moreover, let

V ±
Q : Q± → RN be the function that minimizes the p-energy on Q± among all maps in W 1,p(Q±,RN )

satisfying the boundary condition
{

V ±
Q = W

(m)
h on ∂Q± ∩ {(x, t) | ±t > 0}

V ±
Q = uh,F on F

and let VQ : Q → RN be given by VQ(z) = V ±
Q (z) if z ∈ Q±. If fQ is the bilipschitz homeomorphism

between Q and [−1/(2m), 1/(2m)]k+1 defined in the proof of Theorem 1.1, we modify the definition (2.18)
of W

(m)
h on Q by setting for every z ∈ Q

W
(m)
h :=





VQ

[
f−1

Q

(fQ(z)
2mδ

)]
if ‖fQ(z)‖k+1 ≤ δ

W
(m)
h

[
f−1

Q

( fQ(z)
2m‖fQ(z)‖k+1

)]
if δ ≤ ‖fQ(z)‖k+1 ≤ 1

2m
.

(4.1)

Similarly to the proof of Theorem 1.2, we easily infer that (2.19) holds again if 0 < δ < 1/(2m) is
sufficiently small, whereas this time W

(m)
h is continuous on Q and with trace T(U (m)

h ) in W 1/p(F,Yε0).
We then obtain again (2.20) and hence, by (2.16), we conclude again with (2.15). The rest of the proof

is similar to the one of Theorem 1.1 from Sec. 2. ¤

Proof of Theorem 1.5: Let d = [p]. Similarly to the proof of [11, Thm. 6.3], if f ∈ Lip(Xd−1,Y), for
some cubeulation X of X , by means of homogeneous extensions on the k-faces of Xk, for k = d, . . . , n, we
find a map u ∈ R0

1/p(X ,Y) such that the restriction u|Xd−1 agrees with f and X is in dual position with
respect to u. If smooth maps in C∞(X ,Y) are sequentially dense in W 1/p(X ,Y), by Theorem 1.4 we infer
that u|Xd−1 = f has a continuous (and hence Lipschitz) extension to a map from X to Y. This implies
that πd−1(Y) = 0 and that X has the (d− 1)-extension property with respect to Y.

Conversely, let u ∈ R∞1/p(X ,Y) and X be in dual position with respect to u. Condition πd−1(Y) = 0
yields that the restriction u|Xd−1 has a continuous extension g : Xd → Y . Therefore, by the (d − 1)-
extension property, u|Xd−1 can be extended to a continuous map from X into Y. By Theorem 1.4 we then
obtain that u is the strong W 1/p-limit of a smooth sequence in W 1/p(X ,Y) ∩ C∞. Theorem 1.1 and a
diagonal argument yield the assertion. ¤

Proof of Corollary 1.6. Taking d = [p], the hypotheses on Y yield that πd−1(Y) = 0 and that X has
the (d− 1)-extension property with respect to Y. ¤

Proof of Corollary 1.7: Using the argument from [16, Sec. 6], we recall the following
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Lemma 4.1 Let i ∈ N+. If M , N are compact and connected Riemannian manifolds, πi(N) = 0, and
g : M → N is a continuous map (i− 1)-homotopic to a constant map, then g is i-homotopic to a constant
map.

Applying first Lemma 4.1 with M = N = X and i = 0, . . . , k−1, we infer that there exists a continuous
map φ : X → X homotopic to the identity map and such that the restriction φ|Xk−1 is constant. Let d = [p]
and f ∈ C(Xd,Y). Then f ◦ φ is homotopic to f and f ◦ φ|Xk−1 is constant. Applying then Lemma 4.1
with M = X , N = Y, and i = k, . . . , d − 1, we infer that f ◦ φ|Xd−1 is homotopic to a constant map.
This yields that f|Xd−1 can be extended to a continuous map. In conclusion, X has the (d− 1)-extension
property with respect to Y, whereas πd−1(Y) = 0 holds true by the hypothesis. ¤
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