Strong density results in trace spaces of maps between manifolds

Domenico Mucci

Abstract We deal with strong density results of smooth maps between two manifolds \mathcal{X} and \mathcal{Y} in the fractional spaces given by the traces of Sobolev maps in $W^{1,p}$.

1 Introduction

In the last years there has been a growing interest in studying the fractional Sobolev spaces of mappings defined between manifolds, see e.g. [3, 4, 5, 6, 7, 8, 10, 14]. Motivated by these papers, in this note we are concerned with strong density results of smooth maps between two manifolds \mathcal{X} and \mathcal{Y} in the fractional spaces $W^{1-1/p,p}$ given by the traces of Sobolev maps in $W^{1,p}$, for p > 1. We recall that the analogous strong density problem for Sobolev mappings between manifolds was settled in [2] and [11].

We shall consider smooth, connected, compact Riemannian manifolds \mathcal{X} and \mathcal{Y} without boundary, that are isometrically embedded into \mathbb{R}^l and \mathbb{R}^N , respectively. We shall equip \mathcal{X} and \mathcal{Y} with the metric induced by the Euclidean norms on the ambient spaces, and we let $n := \dim \mathcal{X}$.

Let p be a given exponent, 1 , and denote by <math>[p] the integer part of p. We recall, see e.g. [1], that the fractional Sobolev space $W^{1/p}(\mathcal{X}) := W^{1-1/p,p}(\mathcal{X})$ is the Banach space of L^p -functions $u : \mathcal{X} \to \mathbb{R}$ which have finite $W^{1-1/p,p}$ -seminorm

$$|u|_{1/p,\mathcal{X}}^p := \int_{\mathcal{X}} \int_{\mathcal{X}} \frac{|u(x) - u(y)|^p}{|x - y|^{n+p-1}} \, dx \, dy$$

endowed with the norm

$$\|u\|_{1/p,\mathcal{X}}^{p} := \|u\|_{L^{p}(\mathcal{X})}^{p} + |u|_{1/p,\mathcal{X}}^{p}.$$
(1.1)

 $W^{1/p}(\mathcal{X}, \mathbb{R}^N)$ is the space of vector valued maps $u = (u^1, \ldots, u^N)$ such that $u^j \in W^{1/p}(\mathcal{X})$ for every $j = 1, \ldots, N$. Recall that if $\mathcal{X} = \partial \mathcal{M}$ for some smooth manifold \mathcal{M} , e.g., $\mathcal{X} = \mathbb{S}^n$, the unit sphere in \mathbb{R}^{n+1} , then $W^{1/p}(\partial \mathcal{M}, \mathbb{R}^N)$ can be characterized as the space of functions u that are *traces* of functions U in the Sobolev space $W^{1,p}(\mathcal{M}, \mathbb{R}^N)$. More generally, since $\mathcal{X} \subset \mathbb{R}^l$, denoting by \mathcal{C}^{n+1} the cylinder

$$\mathcal{C}^{n+1} := \mathcal{X} \times I \subset \mathbb{R}^l \times \mathbb{R}, \qquad I :=]-1, 1[,$$

 $W^{1/p}(\mathcal{X}, \mathbb{R}^N)$ can be seen as the space of functions u that are traces of functions U in the Sobolev space $W^{1,p}(\mathcal{C}^{n+1}, \mathbb{R}^N)$.

If $U \in W^{1,p}(\mathcal{C}^{n+1},\mathbb{R}^N)$, and \mathcal{H}^k is the k-dimensional Hausdorff measure in \mathcal{C}^{n+1} , we will denote by

$$\mathcal{E}_p(U) := \frac{1}{p^{p/2}} \int_{\mathcal{C}^{n+1}} |Du(z)|^p \, d\mathcal{H}^{n+1}(z)$$

the *p*-energy of *u*. Moreover, we will write $\mathbf{T}(U) = u$ if $u \in W^{1/p}(\mathcal{X}, \mathbb{R}^N)$, $U \in W^{1,p}(\mathcal{C}^{n+1}, \mathbb{R}^N)$ and U = u on $\mathcal{X} \times \{0\}$. For $u \in W^{1/p}(\mathcal{X}, \mathbb{R}^N)$, we shall denote by $\operatorname{Ext}(u)$ a function in $W^{1,p}(\mathcal{C}^{n+1}, \mathbb{R}^N)$ that minimizes the *p*-energy $\mathcal{E}_p(U)$ among all Sobolev maps $U \in W^{1,p}(\mathcal{C}^{n+1}, \mathbb{R}^N)$ such that $\mathbf{T}(U) = u$.

Instead of working with the norm (1.1), we shall equip $W^{1/p}(\mathcal{X},\mathbb{R}^N)$ with the equivalent norm given by

$$|||u|||_{1/p,\mathcal{X}} := ||u||_{L^p(\mathcal{X})} + \mathcal{E}_p(\operatorname{Ext}(u))$$

We shall study strong density results for the class

$$W^{1/p}(\mathcal{X}, \mathcal{Y}) := \left\{ u \in W^{1/p}(\mathcal{X}, \mathbb{R}^N) \mid u(x) \in \mathcal{Y} \quad \text{for } \mathcal{H}^n\text{-a.e. } x \in \mathcal{X} \right\},$$

for 1 . We will then denote

$$H_S^{1/p}(\mathcal{X}, \mathcal{Y}) := \{ u \in W^{1/p}(\mathcal{X}, \mathcal{Y}) \mid \text{ there exists } \{u_k\} \subset C^{\infty}(\mathcal{X}, \mathcal{Y}) \\ \text{ such that } u_k \to u \text{ strongly in } W^{1/p} \}.$$

It is well-known that

$$H_S^{1/p}(\mathcal{X}, \mathcal{Y}) = W^{1/p}(\mathcal{X}, \mathcal{Y}) \quad \text{if} \quad p \ge n+1.$$

This follows from a standard convolution argument if p > n + 1, compare e.g. [5], and was extended by Bethuel [3] to the critical case p = n + 1. Therefore, from now on we shall always assume that \mathcal{X} has dimension n > p - 1 or, equivalently, $n \ge [p]$.

For $n \ge [p]$, we let $R^{\infty}_{1/p}(\mathcal{X}, \mathcal{Y})$ and $R^{0}_{1/p}(\mathcal{X}, \mathcal{Y})$ denote, respectively, the set of all maps $u \in W^{1/p}(\mathcal{X}, \mathcal{Y})$ which are smooth, respectively continuous, except on a singular set $\Sigma(u)$ of the type

$$\Sigma(u) = \bigcup_{i=1}^{r} \Sigma_i, \qquad r \in \mathbb{N}, \qquad (1.2)$$

where Σ_i is a smooth (n - [p])-dimensional subset of B^n with smooth boundary, if $n \ge [p] + 1$, and Σ_i is a point if n = [p].

Using arguments from [7], in Sec. 2 we will first prove the following

Theorem 1.1 For every $1 , where <math>n = \dim(\mathcal{X})$, the class $R^{\infty}_{1/p}(\mathcal{X}, \mathcal{Y})$ is dense in $W^{1/p}(\mathcal{X}, \mathcal{Y})$.

In the case p = 2, this density result was proved in [14], compare also [5], in dimension n = 2, for $\mathcal{X} = \mathbb{S}^2$ and with $\mathcal{Y} = \mathbb{S}^1$, the standard unit circle. For p = 2, it was extended in [7] to the case $\mathcal{X} = \mathbb{S}^n$ in higher dimension $n \ge 2$ and for general target manifolds \mathcal{Y} , see also [9].

Moreover, in [3] it was noticed that if $\pi_{[p]-1}(\mathcal{Y}) \neq 0$, and $n \geq [p]$, in general the strict inclusion

$$H^{1/p}_S(\mathcal{X},\mathcal{Y}) \subsetneqq W^{1/p}(\mathcal{X},\mathcal{Y})$$

holds. More precisely, there exist functions $u \in W^{1/p}(\mathcal{X}, \mathcal{Y})$ which cannot be approximated in $W^{1/p}$ by sequences of smooth maps in $W^{1/p}(\mathcal{X}, \mathcal{Y})$.

If $n \le p < n + 1$, the converse holds true. In fact, we have:

Theorem 1.2 If $n \leq p < n+1$, and p > 1, then $H_S^{1/p}(\mathcal{X}, \mathcal{Y}) = W^{1/p}(\mathcal{X}, \mathcal{Y})$ if and only if $\pi_{n-1}(\mathcal{Y}) = 0$.

The argument given in [3, Lemma 4] to prove Theorem 1.2 is not clear to us; therefore, in Sec. 2 we shall give a different proof.

In the case of higher dimension n > p, i.e., $n \ge [p] + 1$, in order to remove the (n - [p])-dimensional singular set of mappings in $R^{\infty}_{1/p}(\mathcal{X}, \mathcal{Y})$, following observations by Hang-Lin [11], we shall see that the possibly non-trivial topology of the domain manifold \mathcal{X} plays a role.

For our purposes, it is more convenient to consider "cubeulations" instead of triangulations of \mathcal{X} . These ones can be obtained by taking barycentric subdivisions of the *n*-simplices of any triangulation.

We let X^k denote the k-skeleton of some finite cubeulation X of \mathcal{X} . If $u \in W^{1/p}(\mathcal{X}, \mathcal{Y})$, possibly slightly moving the faces of X we may assume that the restriction of u to F belongs to $W^{1/p}(F, \mathcal{Y})$ for every k-face F of X^k , where $k = [p] - 1, \ldots, n$. In this case, we will say that X is in generic position with respect to u. Moreover, if $u \in R^0_{1/p}(\mathcal{X}, \mathcal{Y})$, and $\Sigma(u)$ is the (n - [p])-dimensional singular set of u, compare (1.2), we say that X is in *dual position* with respect to u if X is in generic position with respect to u and $X^{[p]-1} \cap \Sigma(u) = \emptyset$. Possibly slightly moving the faces of $X^{[p]-1}$, it turns out that the cubeulation X is in dual position with respect to u.

Using arguments from [3], that go back to [16], in Sec. 3 we will prove the following ([p] - 1)-homotopy type property for the class of maps in $R^0_{1/p}(\mathcal{X}, \mathcal{Y})$:

Proposition 1.3 Let $n + 1 > p \ge 2$. Let $u_{\infty} \in R^0_{1/p}(\mathcal{X}, \mathcal{Y})$ and X be a finite cubulation of \mathcal{X} in dual position with respect to u_{∞} . Let $\{u_i\} \subset W^{1/p}(X^{[p]-1}, \mathcal{Y}) \cap C^{\infty}$ be a sequence of smooth maps strongly converging in $W^{1/p}$ to the restriction $u_{\infty|X^{[p]-1}}$ of u_{∞} to $X^{[p]-1}$. Then, we find $k_0 \in \mathbb{N}^+$ such that for every $i \ge k_0$ the maps u_i and $u_{\infty|X^{[p]-1}}$ are homotopic as maps from $X^{[p]-1}$ to \mathcal{Y} .

As a consequence, in Sec. 4 we shall provide a characterization of strongly approximable $R^0_{1/p}$ -maps:

Theorem 1.4 Let n + 1 > p > 1. Let $u \in R^0_{1/p}(\mathcal{X}, \mathcal{Y})$ and let X be a cubulation of \mathcal{X} in dual position with respect to u. Then, u belongs to $H^{1/p}_S(\mathcal{X}, \mathcal{Y})$, i.e., u is the strong $W^{1/p}$ -limit of a sequence of smooth maps in $C^{\infty}(\mathcal{X}, \mathcal{Y})$, if and only if the restriction $u_{|X^{[p]-1}}$ of u to $X^{[p]-1}$ can be extended to a continuous map from \mathcal{X} into \mathcal{Y} .

Following Hang-Lin [11], we now recall that \mathcal{X} is said to satisfy the *k*-extension property with respect to \mathcal{Y} , where $k \in \mathbb{N}$, if for any given CW-complex X on \mathcal{X} , denoting by X^k its *k*-dimensional skeleton, any continuous map $f: X^{k+1} \to \mathcal{Y}$ is such that its restriction to X^k can be extended to a continuous map from \mathcal{X} into \mathcal{Y} . We recall that the *k*-extension property does not depend on the choice of the CW-complex structure on \mathcal{X} , compare [11, Sec. 2.2]. Moreover, we refer to [11, Sec. 5] for examples of manifolds \mathcal{X} and \mathcal{Y} such that the *k*-extension property fails to hold.

As an application of the previous facts, in Sec. 4 we shall then prove the following characterization:

Theorem 1.5 If n > p > 1, smooth maps in $C^{\infty}(\mathcal{X}, \mathcal{Y})$ are sequentially dense in $W^{1/p}(\mathcal{X}, \mathcal{Y})$, i.e., $H_S^{1/p}(\mathcal{X}, \mathcal{Y}) = W^{1/p}(\mathcal{X}, \mathcal{Y})$, if and only if we have $\pi_{[p]-1}(\mathcal{Y}) = 0$ and \mathcal{X} satisfies the ([p] - 1)-extension property with respect to \mathcal{Y} .

We remark that in the case $n \le p < n+1$ and p > 1, Theorem 1.5 is equivalent to Theorem 1.2, as the (n-1)-extension property is automatically satisfied if $\pi_{n-1}(\mathcal{Y}) = 0$.

In particular, from Theorem 1.5 we deduce:

Corollary 1.6 If n > p > 1 and $\pi_k(\mathcal{Y}) = 0$ for every integer $k = [p] - 1, \ldots, n - 1$, then $H_S^{1/p}(\mathcal{X}, \mathcal{Y}) = W^{1/p}(\mathcal{X}, \mathcal{Y})$.

Corollary 1.7 Let $n > p \ge 2$ and k be an integer, with $k = 1, \ldots, [p] - 1$. If $\pi_i(\mathcal{X}) = 0$ for every $i = 0, \ldots, k - 1$ and $\pi_j(\mathcal{Y}) = 0$ for every $j = k, \ldots, [p] - 1$, then $H_S^{1/p}(\mathcal{X}, \mathcal{Y}) = W^{1/p}(\mathcal{X}, \mathcal{Y})$.

In the model case $\mathcal{X} = \mathbb{S}^n$, since \mathbb{S}^n is (n-1)-connected, i.e., $\pi_i(\mathbb{S}^n) = 0$ for $i = 0, \ldots, n-1$, taking k = [p] - 1 in Corollary 1.7, on account of Theorem 1.2 we immediately obtain:

Corollary 1.8 If n + 1 > p > 1, smooth maps in $C^{\infty}(\mathbb{S}^n, \mathcal{Y})$ are sequentially dense in $W^{1/p}(\mathcal{X}, \mathcal{Y})$, i.e., $H_S^{1/p}(\mathbb{S}^n, \mathcal{Y}) = W^{1/p}(\mathbb{S}^n, \mathcal{Y})$, if and only if $\pi_{[p]-1}(\mathcal{Y}) = 0$.

Finally, we remark that the case of domain manifolds \mathcal{X} with non zero smooth boundary can be treated in a similar way, giving analogous density results, possibly with prescribed Dirichlet conditions, compare [12] for the case of Sobolev mappings between manifolds.

2 Density results for $W^{1/p}$ -maps

In this section we shall prove the theorems 1.1 and 1.2. We shall essentially use arguments given in [7] for the case p = 2. However, we prefer to give a complete proof.

Since the approximation argument is *local*, by using of a standard approach based on local coordinate charts, we deduce that it suffices to prove Theorem 1.1 in the case of maps defined in the unit *n*-ball B^n . Moreover, since B^n is bilipschitz homeomorphic to the unit open *n*-cube

$$\mathcal{Q}^n :=]0,1[^n,$$

it suffices to prove Theorem 1.1 in the case of maps defined in Q^n . Therefore, in the sequel of this section we will denote

$$z = (x, t) = (x_1, \dots, x_n, t) \in \mathbb{R}^n \times \mathbb{R}$$

a point in the cylinder $\mathcal{Q}^n \times I$, where I =]-1, 1[. If $U \in W^{1,p}(\mathcal{Q}^n \times I, \mathbb{R}^N)$ and A is a "smooth" \mathcal{H}^k -measurable k-dimensional subset of $\mathcal{Q}^n \times I$, we denote

$$\mathcal{E}_p(U,A) := \frac{1}{p^{p/2}} \int_A |DU_{|A}|^p \, d\mathcal{H}^k \,, \qquad \mathcal{E}_p(U) := \mathcal{E}_p(U,\mathcal{Q}^n \times I) \,,$$

the k-dimensional p-energy integral of the restriction $U_{|A|}$ of U to A. As in the introduction, we will write $\mathbf{T}(U) = u$ if $u \in W^{1/p}(\mathcal{Q}^n, \mathbb{R}^N)$ is the trace of U on $\mathcal{Q}^n \times \{0\}$. If $v = (v_1, \ldots, v_k) \in \mathbb{R}^k$, we set

$$\|v\|_k := \max_{1 \le i \le k} |v_i|.$$

Also, for i = 1, ..., n + 1 and $\lambda \in \mathbb{R}$, we denote by $P(\lambda, i)$ the restriction to $\mathcal{Q}^n \times I$ of the hyperplane of $\mathbb{R}^{n+1} = \mathbb{R}^n \times \mathbb{R}$ containing the point λe_i and orthogonal to e_i , where $\{e_1, \ldots, e_{n+1}\}$ is the canonical basis of \mathbb{R}^{n+1} , i.e.,

$$P(\lambda, i) := \{ z \in \mathcal{Q}^n \times I \mid (z - \lambda e_i \mid e_i)_{\mathbb{R}^{n+1}} = 0 \}.$$

For $m \in \mathbb{N}^+$ and $a = (a_1, \ldots, a_n) \in [1/(4m), 3/(4m)]^n$ we denote by \mathcal{L}_m the grid of $\mathbb{R}^n \times \mathbb{R}$

$$\mathcal{L}_m := \bigcup_{i=1}^n \bigcup_{j=0}^{m-1} P(a_i + j/m, i)$$
(2.1)

and by $C_m^{(k)}$ the k-skeleton of the grid of \mathcal{Q}^n given by the intersection of \mathcal{L}_m with the n-space $\mathbb{R}^n \times \{0\}$. Moreover, we denote

$$\begin{array}{lcl}
\mathcal{Q}_{m}^{n} & := & a + [0, (m-1)/m]^{n} \\
\Sigma_{m}^{(k)} & := & C_{m}^{(k)} \cap \mathcal{Q}_{m}^{n}, & k = 0, \dots, n
\end{array}$$
(2.2)

the closed *n*-cube of side (m-1)/m inside Q^n and the part of the k-skeleton $C_m^{(k)}$ that is contained in Q_m^n .

Remark 2.1 For future use, we set

$$\mathcal{Y}_{\varepsilon} := \overline{U_{\varepsilon}(\mathcal{Y})} \,,$$

where $U_{\varepsilon}(A) := \{y \in \mathbb{R}^N \mid \text{dist}(y, A) < \varepsilon\}$ is the ε -neighborhood of $A \subset \mathbb{R}^N$, and we observe that, since \mathcal{Y} is smooth and compact, there exists $\varepsilon_0 > 0$ such that for $0 < \varepsilon < \varepsilon_0$ the nearest point projection Π_{ε} of $\mathcal{Y}_{\varepsilon}$ onto \mathcal{Y} is a well defined Lipschitz map with Lipschitz constant $\operatorname{Lip}(\Pi_{\varepsilon}) \leq (1 + c \varepsilon) \to 1^+$ as $\varepsilon \to 0^+$. Notice that for $0 < \varepsilon \leq \varepsilon_0$, the ε -neighborhood $\mathcal{Y}_{\varepsilon}$ is equivalent to \mathcal{Y} in the sense of the algebraic topology.

Let $u \in W^{1/p}(\mathcal{Q}^n, \mathcal{Y})$ and $U: \mathcal{Q}^n \times I \to \mathbb{R}^N$ be the extension $\operatorname{Ext}(u)$ of u, so that $U \in W^{1,p}(\mathcal{Q}^n \times I, \mathbb{R}^N)$ and $\mathbf{T}(U) = u$. Notice that U is continuous outside $\mathcal{Q}^n \times \{0\}$. Moreover, we denote

$$U^{(m)} := U_{|C_m^{(d-1)} \times I} \tag{2.3}$$

the restriction of U to the d-skeleton $C_m^{(d-1)} \times I$, where d = [p]. In order to prove Theorem 1.1, we first make use of the argument of [3, 2.1], that goes back to [15], and show that if the restriction $U^{(m)}$ belongs to $W^{1,p}(C_m^{(d-1)} \times I, \mathbb{R}^N)$, then it can be approximated by continuous maps $U_h^{(m)}$ such that their traces take values in the neighborhood $\mathcal{Y}_{\varepsilon_0}$ of \mathcal{Y} , Proposition 2.2. Secondly, we will suitably modify the extension U in such a way that it agrees with $U_h^{(m)}$ on the d-skeleton $C_m^{(d-1)} \times I$, Proposition 2.4.

Proposition 2.2 Let $n + 1 > p \ge 2$ and d = [p]. Assume that $U^{(m)} \in W^{1,p}(C_m^{(d-1)} \times I, \mathbb{R}^N)$. There exists a sequence of continuous maps $\{U_h^{(m)}\}_h$ in $W^{1,p}(\Sigma_m^{(d-1)} \times I, \mathbb{R}^N)$ such that $U_h^{(m)} \to U^{(m)}$ strongly in $W^{1,p}(\Sigma_m^{(d-1)} \times I, \mathbb{R}^N)$ and the traces $\mathbf{T}(U_h^{(m)}) \in W^{1/p}(\Sigma_m^{(d-1)}, \mathcal{Y}_{\varepsilon_0})$ for every h.

Remark 2.3 If 1 , since <math>d = [p] = 1, Proposition 2.2 holds true by taking $U_h^{(m)} = U^{(m)}$, see (2.3).

PROOF OF PROPOSITION 2.2: If $z = (x, t) \in \Sigma_m^{(d-1)} \times I$ and 0 < h < 1/(4m) we denote by

$$C(z,h) := \overline{B}^n(x,h/2) \times [t-h/2,t+h/2]$$

the cylinder centered at z over the ball of diameter h and height h, and by

$$\Sigma(z,h) := C(z,h) \cap (C_m^{(d-1)} \times I)$$

the intersection of the cylinder with the *d*-skeleton $C_m^{(d-1)} \times I$. Setting then, for $z \in \Sigma_m^{(d-1)} \times I$,

$$U_h^{(m)}(z) := \int_{\Sigma(z,h)} U^{(m)}(y) \, d\mathcal{H}^d(y) := \frac{1}{\mathcal{H}^d\big(\Sigma(z,h)\big)} \int_{\Sigma(z,h)} U^{(m)}(y) \, d\mathcal{H}^d(y) \, ,$$

it is not difficult to show that $U_h^{(m)} \in W^{1,p}(\Sigma_m^{(d-1)} \times I, \mathbb{R}^N)$ is continuous and that $U_h^{(m)} \to U^{(m)}$ strongly in $W^{1,p}$ as $h \to 0^+$.

It remains to show that if $u_h^{(m)} := \mathbf{T}(U_h^{(m)})$, possibly passing to a subsequence $u_h^{(m)}(\Sigma_m^{(d-1)}) \subset \mathcal{Y}_{\varepsilon_0}$ for every h. To this aim, for $\varepsilon > 0$ to be determined later, choose $h_{\varepsilon} > 0$ small so that for any $0 < h \leq h_{\varepsilon}$

$$\int_{\Sigma(z,h)} |DU^{(m)}(y)|^p \, d\mathcal{H}^d(y) \le \varepsilon \qquad \forall \, z \in \Sigma_m^{(d-1)} \times I \,.$$
(2.4)

For fixed $P_0 \in \Sigma_m^{(d-1)} \times \{0\}$, we observe that the connected set $\Sigma(P_0, h)$ always contains a *d*-cube R_1 of side *h*. More precisely, assume for example $P_0 = (x_0^1, \ldots, x_0^n, 0)$, where $x_0^l \in a_l + [0, (m-1)/m]$, for $l = 1, \ldots, d-1$, and $x_0^i = a_i + j_i/m$, for $i = d, \ldots, n$. Then we have

$$\Sigma(P_0,h) = R_1 \cup \bigcup_{i=2}^K R_i, \qquad K = \binom{n}{d-1},$$

where R_1 is the *d*-cube

$$R_1 := \left(\prod_{l=1}^{d-1} [x_0^l - h/2, x_0^l + h/2]\right) \times \{(x_0^d, \dots, x_0^n)\} \times [-h/2, h/2]$$

and $R_i := \widetilde{R}_i \times [-h/2, h/2]$ for i = 2, ..., K, where \widetilde{R}_i is a possibly degenerate (d - 1)-parallelepiped of diameter lower than $\sqrt{d-1}h$, and edges parallel to the coordinate axes. In particular, we have

$$h^d \leq \mathcal{H}^d(\Sigma(P_0, h)) \leq c h^d$$

for some dimensional constant c > 0, not depending on P_0 .

2

Slicing the *d*-cube R_1 with hyperplanes orthogonal to the direction e_1 , and setting $c_p := 2p^{-p/2}$, for every $h \leq h_{\varepsilon}$ we find $h_1 \in [x_0^1 - h/2, x_0^1 + h/2]$ such that

$$\begin{aligned} \mathcal{E}_p(U^{(m)}, R_1 \cap P(h_1, 1)) &\leq & \frac{2}{h} \mathcal{E}_p(U^{(m)}, R_1) \\ &\leq & \frac{c_p}{h} \int_{\Sigma(P_0, h)} |DU^{(m)}(y)|^p \, d\mathcal{H}^d \leq c_p \, \frac{\varepsilon}{h} \,. \end{aligned}$$

We now choose $z_0 \in R_1 \cap P(h_1, 1) \cap (\Sigma_m^{(d-1)} \times \{0\})$ and set $y_h^{(m)} := U^{(m)}(z_0)$ in such a way that $y_h^{(m)} \in \mathcal{Y}$. Applying the Sobolev embedding theorem, since $R_1 \cap P(h_1, 1)$ is a (d-1)-cube of side h, and d = [p], it follows that

$$\max_{z \in R_1 \cap P(h_1, 1)} |U^{(m)}(z) - y_h^{(m)}| \le c \, h^{1 - d/p} \, \varepsilon^{1/p} \le c \, \varepsilon^{1/p} \, .$$
(2.5)

Moreover, we note that

$$|U_h^{(m)}(P_0) - y_h^{(m)}| \le \int_{\Sigma(P_0,h)} |U^{(m)}(y) - y_h^{(m)}| \, d\mathcal{H}^d(y) \,.$$
(2.6)

Let η be a positive number to be determined later. We slice the *d*-dimensional set $\Sigma(P_0, h)$ with hyperplanes orthogonal to the "vertical" direction e_{n+1} , and denote

$$\Omega_{h'} := \Sigma(P_0, h) \cap P(h', n+1), \qquad h' \in [-h/2, h/2]$$

Setting

$$A_h := \{ h' \in [-h/2, h/2] : p^{p/2} \mathcal{E}_p(U^{(m)}, \Omega_{h'}) \le \varepsilon \eta/h \}$$

and $B_h := [-h/2, h/2] \setminus A_h$, by (2.4) we have $\mathcal{L}^1(B_h) \leq h/\eta$. Moreover, for every h' the set $\Omega_{h'}$ is given by the connected union of $K = \binom{n}{d-1}$ parallelepipeds of dimension not greater than d-1 and diameter lower than $\sqrt{d-1}h$. Since $h^{1-d/p} \leq 1$, by the Sobolev theorem we obtain that for every $h' \in A_h$

$$\max_{z,y\in\Omega_{h'}} |U^{(m)}(z) - U^{(m)}(y)| \le c \eta^{1/p} \varepsilon^{1/p}.$$

Note that $\Omega_{h'}$ intersects $R_1 \cap P(h_1, 1)$ for every h'. Therefore, combining with (2.5) we obtain

$$\max_{y \in \Omega_{h'}} |U^{(m)}(y) - y_h^{(m)}| \le c \left(\eta^{1/p} + 1\right) \varepsilon^{1/p} \qquad \forall h' \in A_h.$$
(2.7)

By Fubini theorem we write

$$\int_{\Sigma(P_0,h)} |U^{(m)}(y) - y_h^{(m)}| \, d\mathcal{H}^d(y) = \int_{B_h} \int_{\Omega_{h'}} |U^{(m)}(y) - y_h^{(m)}| \, d\mathcal{H}^{d-1} \, dh' + \int_{A_h} \int_{\Omega_{h'}} |U^{(m)}(y) - y_h^{(m)}| \, d\mathcal{H}^{d-1} \, dh'.$$

Since $||U^{(m)}||_{\infty} \leq K_{\infty} < \infty$ by the compactness of \mathcal{Y} , whereas $\mathcal{L}^{1}(B_{h}) \leq h/\eta$ and $h^{d} \leq \mathcal{H}^{d}(\Sigma(P_{0},h)) \leq ch^{d}$, using (2.6) and (2.7) we get

$$|U_h^{(m)}(P_0) - y_h^{(m)}| \le c_1 \, \frac{K_\infty}{\eta} + c_2 \, (\eta^{1/p} + 1) \, \varepsilon^{1/p} \,.$$
(2.8)

Finally, taking first η large so that $c_1 K_{\infty}/\eta < \varepsilon_0/2$, and then ε small so that $c_2 (\eta^{1/p} + 1) \varepsilon^{1/p} < \varepsilon_0/2$, by the arbitrariness of P_0 in $\Sigma_m^{(d-1)} \times \{0\}$ we conclude that

$$\operatorname{dist}\left(u_{h}^{(m)}(x),\mathcal{Y}\right) < \varepsilon_{0} \qquad \forall x \in \Sigma_{m}^{(d-1)}$$

for every $h \leq h_{\varepsilon}$, which clearly yields the assertion.

Proposition 2.4 Let n+1 > p > 1 and d = [p]. Assume that $U^{(m)} \in W^{1,p}(C_m^{(d-1)} \times I, \mathbb{R}^N)$. Then there exists a sequence of maps $\{V_h^{(m)}\}_h$ in $W^{1,p}(\mathcal{Q}_m^n \times I, \mathbb{R}^N)$, continuous out of $\mathcal{Q}_m^n \times \{0\}$, such that $V_h^{(m)} \to U_{|\mathcal{Q}_m^n \times I}$ strongly in $W^{1,p}(\mathcal{Q}_m^n \times I, \mathbb{R}^N)$, with $V_h^{(m)}|_{\Sigma_m^{(d-1)} \times I} = U_h^{(m)}$, see Proposition 2.2. In particular we have

$$\mathbf{T}(V_h^{(m)})_{|\Sigma_m^{(d-1)}|} \in W^{1/p}(\Sigma_m^{(d-1)}, \mathcal{Y}_{\varepsilon_0}) \qquad \forall h$$

PROOF: We first consider the case n = d = [p].

The case n = d = [p]. Let C_m denote the family of all *n*-cubes Q of side 1/m with boundary contained in the (n-1)-grid $\Sigma_m^{(n-1)}$, i.e. $\partial Q \subset \Sigma_m^{(n-1)}$, so that

$$\cup \mathcal{C}_m = \mathcal{Q}_m^n$$
.

Let $0 < \varepsilon < 1/2$ to be fixed later. If $Q \in \mathcal{C}_m$, we define $V_h^{(Q)} : Q \times I \to \mathbb{R}^N$ by setting for every $(x, t) \in Q \times I$

$$V_h^{(Q)} := \begin{cases} U\left(q + \frac{x - q}{1 - \varepsilon}, t\right) & \text{if } \rho \le \frac{1 - \varepsilon}{2m} \\ S(\rho) U_h^{(m)}(y, t) + (1 - S(\rho)) U(y, t) & \text{if } \frac{1 - \varepsilon}{2m} \le \rho \le \frac{1}{2m} . \end{cases}$$
(2.9)

Here $\rho = \rho(x) := ||x - q||_n$, where q is the center of Q, so that $\rho(x) = 1/(2m)$ if $x \in \partial Q$; moreover

$$y = y(x) := q + \frac{1}{2m} \frac{x - q}{\rho(x)}$$

_	_
г	
L .	

and finally

$$S(\rho) := \frac{2m}{\varepsilon} \rho + \frac{\varepsilon - 1}{\varepsilon} , \qquad (2.10)$$

so that S(1/(2m)) = 1 and $S((1-\varepsilon)/(2m)) = 0$. Trivially $V_h^{(Q)}$ is a function in $W^{1,p}(Q \times I, \mathbb{R}^N)$, continuous out of $Q \times \{0\}$. Moreover, it is readily checked that

$$\int_{\{\rho(x) \le (1-\varepsilon)/(2m)\} \times I} |DV_h^{(Q)}|^p \, dx \, dt \le (1-\varepsilon)^{n-p} \, p^{p/2} \, \mathcal{E}_p(U, Q \times I)$$

and

$$\begin{split} \int\limits_{\{(1-\varepsilon)/(2m) \leq \rho(x) \leq 1/(2m)\} \times I} &|DV_h^{(Q)}|^p \, dx \, dt \leq c \, (m,p) \, \frac{1}{\varepsilon} \int\limits_{\partial Q \times I} |U - U_h^{(m)}|^p \, d\mathcal{H}^n \\ &+ c \, (m,p) \, \varepsilon \int\limits_{\partial Q \times I} \left(|D_\tau U|^p + |D_\tau U_h^{(m)}|^p \right) d\mathcal{H}^n \,, \end{split}$$

where τ is an orthonormal frame to $\Sigma_m^{(n-1)} \times I$ and c(m,p) > 0 only depends on m and p. Define now $V_h^{(m)} : \mathcal{Q}_m^n \times I \to \mathbb{R}^N$ by $V_h^{(m)}(x,t) := V_h^{(Q)}(x,t)$ if $x \in Q$ for some $Q \in \mathcal{C}_m$. Then $\{V_h^{(m)}\}_h$ is a sequence in $W^{1,p}(\mathcal{Q}_m^n \times I, \mathbb{R}^N)$, continuous out of $\mathcal{Q}_m^n \times \{0\}$, such that

$$\begin{split} \mathcal{E}_{p}(V_{h}^{(m)},\mathcal{Q}_{m}^{n}\times I) &\leq (1-\varepsilon)^{n-p} \, \mathcal{E}_{p}(U,\mathcal{Q}_{m}^{n}\times I) \\ &+ c_{1}\left(m,p\right) \frac{1}{\varepsilon} \int_{\Sigma_{m}^{(n-1)}\times I} |U^{(m)} - U_{h}^{(m)}|^{p} \, d\mathcal{H}^{n} \\ &+ c_{2}\left(m,p\right) \varepsilon \int_{\Sigma_{m}^{(n-1)}\times I} (|D_{\tau}U^{(m)}|^{p} + |D_{\tau}U_{h}^{(m)}|^{p}) \, d\mathcal{H}^{n} \end{split}$$

see (2.3). Moreover, since $U_h^{(m)} \to U^{(m)}$ strongly in $W^{1,p}(\Sigma_m^{(n-1)} \times I, \mathbb{R}^N)$, see Proposition 2.2, there exists $\overline{h} \in \mathbb{N}$ such that for every $h \ge \overline{h}$

$$\int_{\Sigma_m^{(n-1)} \times I} |D_\tau U_h^{(m)}|^p \, d\mathcal{H}^n \le 2 \int_{\Sigma_m^{(n-1)} \times I} |D_\tau U^{(m)}|^p \, d\mathcal{H}^n$$

Now, for every $j \in \mathbb{N}^+$ we first choose $\varepsilon = \varepsilon_j \in (0, 1/2)$ small so that $\varepsilon_j \searrow 0$,

$$(1 - \varepsilon_j)^{n-p} \mathcal{E}_p(U, \mathcal{Q}_m^n \times I) \le \mathcal{E}_p(U, \mathcal{Q}_m^n \times I) + \frac{1}{j}$$

and

$$3 c_2(m,p) \varepsilon_j \int_{\Sigma_m^{(n-1)} \times I} |D_{\tau} U^{(m)}|^p d\mathcal{H}^n \leq \frac{1}{j}$$

Secondly, by the L^p -convergence of $U_h^{(m)}$ to $U^{(m)}$, we take $h = h_j \ge \overline{h}$ large so that $h_{j+1} > h_j$ and

$$c_1(m,p) \frac{1}{\varepsilon_j} \int_{\Sigma_m^{(n-1)} \times I} |U^{(m)} - U_{h_j}^{(m)}|^p \, d\mathcal{H}^n \le \frac{1}{j} \qquad \forall j.$$

Finally, since by the previous estimates

$$\mathcal{E}_p(V_{h_j}^{(m)}, \mathcal{Q}_m^n \times I) \leq \mathcal{E}_p(U, \mathcal{Q}_m^n \times I) + \frac{3}{j},$$

we relabel $\{V_j^{(m)}\}$ the subsequence $\{V_{h_j}^{(m)}\}$, where $\varepsilon = \varepsilon_j$ in (2.9). Using again the strong convergence of $U_h^{(m)}$ to $U^{(m)}$ in $W^{1,p}(\Sigma_m^{(n-1)} \times I, \mathbb{R}^N)$, the Poincaré inequality yields the strong L^p -convergence of $V_j^{(m)}$ to U, and hence the assertion, by uniform convexity.

The case $n-1 \ge d = [p]$. We first set $V_h^{(m)} = U_h^{(m)}$ on $\Sigma_m^{(d-1)} \times I$, according to Proposition 2.2. Arguing by induction on the dimension $k = d, \ldots, n$, by the inductive hypothesis we have already defined $V_h^{(m)} : \Sigma_m^{(k-1)} \times I \to \mathbb{R}^N$ in such a way that $V_h^{(m)} \to U_{|\Sigma_m^{(k-1)} \times I}$ strongly in $W^{1,p}(\Sigma_m^{(k-1)} \times I, \mathbb{R}^N)$.

We now extend $\{V_h^{(m)}\}$ to $\Sigma_m^{(k)} \times I$ as follows. Let F be a k-face of side 1/m of $\Sigma_m^{(k)}$, and hence with boundary contained in $\Sigma_m^{(k-1)}$. Without loss of generality, we suppose F oriented by $e_1 \wedge \cdots \wedge e_k$, and we set

$$x = (\widetilde{x}, \widehat{x}) \in \mathbb{R}^k \times \mathbb{R}^{n-k}$$

Similarly to (2.9), we define $V_h^{(F)}: F \times I \to \mathbb{R}^N$ by setting for $(x,t) \in F \times I$

$$V_h^{(F)} := \begin{cases} U\left(\tilde{q} + \frac{\tilde{x} - \tilde{q}}{1 - \varepsilon}, \hat{q}, t\right) & \text{if } \rho \leq \frac{1 - \varepsilon}{2m} \\ S(\rho) V_h^{(m)}(y, \hat{q}, t) + (1 - S(\rho)) U(y, \hat{q}, t) & \text{if } \frac{1 - \varepsilon}{2m} \leq \rho \leq \frac{1}{2m} \,. \end{cases}$$

Here $\rho = \rho(\widetilde{x}) := \|\widetilde{x} - \widetilde{q}\|_k$, where $(\widetilde{q}, \widehat{q}) \in \mathbb{R}^k \times \mathbb{R}^{n-k}$ is the center of F; moreover

$$y = y(\widetilde{x}) := \widetilde{q} + \frac{1}{2m} \frac{\widetilde{x} - \widetilde{q}}{\rho(\widetilde{x})}$$

and $S(\rho)$ is given by (2.10).

We then extend $V_h^{(m)}: \Sigma_m^{(k)} \times I \to \mathbb{R}^N$ by setting $V_h^{(m)}(x,t) := V_h^{(F)}(x,t)$ if $x \in F$ for some k-face F as above. Similarly to the case n = d = [p], using that $V_h^{(m)} \to U_{|\Sigma_m^{(k-1)} \times I}$ strongly in $W^{1,p}(\Sigma_m^{(k-1)} \times I, \mathbb{R}^N)$, and by suitably choosing $\varepsilon = \varepsilon_j \searrow 0$, we infer that $\{V_h^{(m)}\}_h$ is a sequence in $W^{1,p}(\Sigma_m^{(k)} \times I, \mathbb{R}^N)$, continuous out of $\Sigma_m^{(k)} \times \{0\}$, such that, possibly passing to a subsequence, $V_{h_j}^{(m)} \to U_{|\Sigma_m^{(k)} \times I}$ strongly in $W^{1,p}(\Sigma_m^{(k)} \times I, \mathbb{R}^N)$. The proof of Proposition 2.4 is complete.

PROOF OF THEOREM 1.1: Let $u \in W^{1/p}(\mathcal{Q}^n, \mathcal{Y})$ and $U : \mathcal{Q}^n \times I \to \mathbb{R}^N$ be the extension $\operatorname{Ext}(u)$ of u, so that $U \in W^{1,p}(\mathcal{Q}^n \times I, \mathbb{R}^N)$ and $\mathbf{T}(U) = u$. We proceed along the lines of [3, Lemma 5], and we first consider the case n = [p].

The case n = d = [p]. Let $m \in \mathbb{N}^+$. Since for $i = 1, \ldots, n$ we have

$$\int_{1/(4m)}^{3/(4m)} \sum_{j=0}^{m-1} \mathcal{E}_p(U, P(t+j/m, i)) dt \leq \sum_{j=0}^{m-1} \mathcal{E}_p(U, \{j/m \le x_i \le (j+1)/m\}) = \mathcal{E}_p(U, \mathcal{Q}^n \times I),$$

we find a vector $a = a(m) \in [1/(4m), 3/(4m)]^n$ such that

$$U_{|P(a_i+j/m,i)} \in W^{1,p}(P(a_i+j/m,i),\mathbb{R}^N)$$

for every i = 1, ..., n and j = 0, ..., m - 1, and

$$\mathcal{E}_p(U, C_m^{(n-1)} \times I) \le c \, m \, \mathcal{E}_p(U, \mathcal{Q}_m^n \times I) \,. \tag{2.11}$$

We now apply Propositions 2.2 and 2.4 with a = a(m). Slicing the cylinder $\mathcal{Q}_m^n \times I$ with hyperplanes P(t, n + 1) orthogonal to the "vertical" direction e_{n+1} , since $\{V_h^{(m)}\}$ converges to $U_{|\mathcal{Q}_m^n \times I}$ strongly in $W^{1,p}(\mathcal{Q}_m^n \times I, \mathbb{R}^N)$, Proposition 2.4, we may and do choose $a_{n+1} \in [1/(4m), 3/(4m)]$ so that

$$V_{h|P(a_{n+1}-j/m,n+1)}^{(m)} \in W^{1,p}(P(a_{n+1}-j/m,n+1),\mathbb{R}^N)$$

for every h and for j = 0, 1, with

$$\sum_{j=0,1} \mathcal{E}_p(V_h^{(m)}, P(a_{n+1} - j/m, n+1)) \le c \, m \, \mathcal{E}_p(U, \mathcal{Q}_m^n \times I)$$
(2.12)

for every h. Let \mathcal{F}_m denote the family of (n+1)-cubes of $\mathcal{Q}_m^n \times I$, of side 1/m, whose boundary lies in the n-skeleton

$$\mathcal{L}_m \cup \bigcup_{j=0,1} P(a_{n+1} - j/m, n+1),$$

compare (2.1), and let $\{C_l\}_{l=1}^{(m-1)^n}$ be a list of the (n+1)-cubes in \mathcal{F}_m . Notice that each C_l intersects the *n*-cube $\mathcal{Q}^n \times \{0\}$.

Recall that $V_h^{(m)}|_{\Sigma_m^{(n-1)}\times I} = U_h^{(m)}$, where $U_h^{(m)} \to U^{(m)}$ strongly in $W^{1,p}(\Sigma_m^{(n-1)} \times I, \mathbb{R}^N)$, see Propositions 2.2 and 2.4. Then, as in [3, Lemma 5], by refining the slicing arguments in (2.11) and (2.12) we in fact may and do choose $(a_1, \ldots, a_{n+1}) \in [1/(4m), 3/(4m)]^{n+1}$ in such a way that

$$\sum_{l=1}^{m-1)^n} \mathcal{E}_p(V_h^{(m)}, \partial C_l) \le c \, m \, \mathcal{E}_p(U, G_m) \qquad \forall \, h \ge \overline{h} \,, \tag{2.13}$$

where

$$G_m := \mathcal{Q}^n \times] - 10m^{-1}, 10m^{-1}[$$

For every l let f_l be a bilipschitz homeomorphism between C_l and $[-1/(2m), 1/(2m)]^{n+1}$ such that

$$f_l(C_l \cap (\mathcal{Q}^n \times \{0\})) = [-1/(2m), 1/(2m)]^n \times \{0\}$$

$$f_l(\partial C_l \cap (\mathcal{Q}^n \times \{0\})) = \partial [-1/(2m), 1/(2m)]^n \times \{0\}$$

and $\|Df_l\|_{\infty} \leq K$, $\|Df_l^{-1}\|_{\infty} \leq K$. We then define $W_h^{(m)}$ on C_l by

$$W_h^{(m)}(z) := V_h^{(m)} \left[f_l^{-1} \left(\frac{f_l(z)}{2m \| f_l(z) \|_{n+1}} \right) \right],$$
(2.14)

so that

$$\mathcal{E}_p(W_h^{(m)}, C_l) \le \frac{c}{m} \, \mathcal{E}_p(V_h^{(m)}, \partial C_l)$$

for every l and hence, by (2.13),

$$\mathcal{E}_p(W_h^{(m)}, \cup \mathcal{F}_m) \le C \,\mathcal{E}_p(U, G_m) \,. \tag{2.15}$$

Setting

$$W_h^{(m)}(z) = V_h^{(m)}(z) \qquad \forall z \in (\mathcal{Q}_m^n \times I) \setminus \cup \mathcal{F}_m$$

the function $W_h^{(m)}$ is continuous on $\mathcal{Q}_m^n \times I$ except at one singular point on each C_l , which lies on $\mathcal{Q}_m^n \times \{0\}$. Moreover, $\{W_h^{(m)}\}$ is a sequence in $W^{1,p}(\mathcal{Q}_m^n \times I, \mathbb{R}^N)$ such that for h large enough

$$\mathcal{E}_p(W_h^{(m)} - V_h^{(m)}, \mathcal{Q}_m^n \times I) \le C \,\mathcal{E}_p(U, G_m)$$

and therefore, by Proposition 2.4,

$$\limsup_{h \to \infty} \mathcal{E}_p(W_h^{(m)}, \mathcal{Q}_m^n \times I) \le \mathcal{E}_p(U, \mathcal{Q}_m^n \times I) + C \,\mathcal{E}_p(U, G_m)$$

Remark 2.5 For every (n + 1)-cube C_l in \mathcal{F}_m we have that $W_h^{(m)}|_{\partial C_l} = V_h^{(m)}|_{\partial C_l}$, where the traces $\mathbf{T}(V_h^{(m)})|_{\Sigma_m^{(n-1)}}$ belong to $W^{1/p}(\Sigma_m^{(n-1)}, \mathcal{Y}_{\varepsilon_0})$, see Proposition 2.4. As a consequence, by the definition (2.14) we infer that the traces $\mathbf{T}(W_h^{(m)})$ are functions in $W^{1/p}(\mathcal{Q}_m^n, \mathcal{Y}_{\varepsilon_0})$ for every h.

Now, let $\psi_m : \mathcal{Q}^n \to \mathcal{Q}_m^n$ be an affine bijective function such that $\operatorname{Lip} \psi_m = (m-1)/m$ and $\psi_m \to Id_{\mathcal{Q}^n}$ uniformly as $m \to \infty$. Setting $U_m(x,t) := W_{h_m}^{(m)}(\psi_m(x),t)$ for some increasing sequence $h_m \nearrow \infty$, since $\operatorname{meas}(G_m) \to 0$ as $m \to \infty$ we easily infer that $\{U_m\}_m$ is a sequence of maps in $W^{1,p}(\mathcal{Q}^n \times I, \mathbb{R}^N)$, continuous out of a finite number of points, such that $U_m \to U$ strongly in $W^{1,p}$. Moreover by Remark 2.5 it follows that the traces $\mathbf{T}(U_m) \in W^{1/p}(\mathcal{Q}^n, \mathcal{Y}_{\varepsilon_0})$ for every m. Therefore, taking $u_m(x) := \prod_{\varepsilon_0} \circ \mathbf{T}(U_m)(x)$, compare Remark 2.1, clearly $\{u_m\} \subset W^{1/p}(\mathcal{Q}^n, \mathcal{Y})$ is continuous out of a discrete set of points and $u_m \to u$ in $W^{1/p}$. Finally, e.g. as in [2, Appendix], every function u_m can be approximated by maps in $R^{\infty}_{1/p}(\mathcal{Q}^n, \mathcal{Y})$.

The case $n-1 \ge d = [p]$. By applying iteratively the Fubini theorem, we fist observe that for a.e. a = a(m)as above, the restriction of U to each k-face F of $C_m^{(k)}$ belongs to $W^{1,p}(F,\mathbb{R}^N)$, for every $k = d-1, \ldots, n$. We then may and do apply Propositions 2.2 and 2.4 with a = a(m).

Let $\mathcal{F}_m^{(k)}$ be the k-dimensional skeleton of \mathcal{F}_m , i.e. the union of the k-faces of the (n+1)-cubes C_l of \mathcal{F}_m . Since $V_h^{(m)} \to U$ in $W^{1,p}(\mathcal{Q}_m^n \times I, \mathbb{R}^N)$, by using a more refined slicing argument as e.g. in [13, Sec. 4], we may and do choose $(a_1, \ldots, a_{n+1}) \in [1/(4m), 3/(4m)]^{n+1}$ so that for every h sufficiently large the following holds:

- (i) for every k = d, ..., n the restriction of $V_h^{(m)}$ to any k-face Q of $\mathcal{F}_m^{(k)}$ is a function in $W^{1,p}(Q, \mathbb{R}^N)$;
- (ii) there exists some absolute constant c > 0, not depending on h, such that for every $k = d, \ldots, n$

$$\mathcal{E}_p(V_h^{(m)}, \mathcal{F}_m^{(k)}) \le c \, m^{n+1-k} \, \mathcal{E}_p(U, G_m) \,. \tag{2.16}$$

First we let $W_h^{(m)} \equiv V_h^{(m)}$ on $\mathcal{F}_m^{(d)}$. Arguing by induction on $k = d, \ldots, n$, we now extend $W_h^{(m)}$ to $\mathcal{F}_m^{(k+1)}$. To this aim, for every (k+1)-face Q in $\mathcal{F}_m^{(k+1)}$ we distinguish two cases. If Q is "horizontal", i.e. the direction e_{n+1} is not spanned by the vector space underlying Q, we let

$$W_h^{(m)} \equiv V_h^{(m)}$$
 on Q . (2.17)

If Q is not "horizontal", as in the case n = d = [p] we let f_Q be a bilipschitz homeomorphism between Q and $[-1/(2m), 1/(2m)]^{k+1}$ such that

$$\begin{aligned} f_Q(Q \cap (\mathcal{Q}^n \times \{0\})) &= [-1/(2m), 1/(2m)]^k \times \{0\} \\ f_Q(\partial Q \cap (\mathcal{Q}^n \times \{0\})) &= \partial [-1/(2m), 1/(2m)]^k \times \{0\} \end{aligned}$$

and $\|Df_Q\|_{\infty} \leq K$, $\|Df_Q^{-1}\|_{\infty} \leq K$. Since we have already defined $W_h^{(m)}$ on ∂Q , we extend $W_h^{(m)}$ to Q by setting

$$W_h^{(m)}(z) = W_h^{(m)} \left[f_Q^{-1} \left(\frac{f_Q(z)}{2m \| f_Q(z) \|_{k+1}} \right) \right],$$
(2.18)

so that

$$\mathcal{E}_p(W_h^{(m)}, Q) \le \frac{c}{m} \,\mathcal{E}_p(W_h^{(m)}, \partial Q) \,. \tag{2.19}$$

Repeating the argument for $k = d, \ldots, n$, we then easily estimate

$$\mathcal{E}_p(W_h^{(m)}, \cup \mathcal{F}_m) \le C(n, p) \sum_{k=d}^n \frac{1}{m^{n+1-k}} \mathcal{E}_p(V_h^{(m)}, \mathcal{F}_m^{(k)})$$
(2.20)

and hence, by (2.16), we obtain again (2.15). Setting then $W_h^{(m)}(z) = V_h^{(m)}(z)$ for every $z \in (\mathcal{Q}_m^n \times I) \setminus \cup \mathcal{F}_m$, this way $W_h^{(m)}$ is continuous on $\mathcal{Q}_m^n \times I$ outside an (n-d)-dimensional singular set, which lies on $\mathcal{Q}_m^n \times \{0\}$, given by the union of a finite number (depending on n, d, and m) of smooth subsets of affine (n-d)-planes parallel to the coordinate directions in $\mathbb{R}^n \times \{0\}$. Moreover, by the construction we infer that the traces $\mathbf{T}(W_h^{(m)}) \in W^{1/p}(\mathcal{Q}_m^n, \mathcal{Y}_{\varepsilon_0})$ for every *m*. The rest of the proof follows as in the case n = d = [p].

PROOF OF THEOREM 1.2: We have to show that $H_S^{1/p}(\mathcal{X}, \mathcal{Y}) = W^{1/p}(\mathcal{X}, \mathcal{Y})$ provided that $\pi_{n-1}(\mathcal{Y}) = 0$. On account of Theorem 1.1, it suffices to prove that $R_{1/p}^{\infty}(\mathcal{X}, \mathcal{Y}) \subset H_S^{1/p}(\mathcal{X}, \mathcal{Y})$. Moreover, since the argument is local, without loss of generality we assume that $\mathcal{X} = \mathcal{Q}^n$ and $u \in R_{1/p}^{\infty}(\mathcal{Q}^n, \mathcal{Y})$ is smooth outside the origin. For 0 < r < 1 we denote

$$Q_r := [-r, r]^{n+1}, \qquad F_r := Q_r \cap (\mathbb{R}^n \times \{0\}).$$

Let $U = \text{Ext}(u) \in W^{1,p}(\mathcal{Q}^n \times I, \mathbb{R}^N)$ be the extension of u. For every fixed $\varepsilon > 0$ let $0 < R = R(\varepsilon) \ll 1$ be such that $\mathcal{E}_p(U, Q_R) \le \varepsilon$. Since

$$\mathcal{E}_p(U, Q_R \setminus Q_{R/2}) = \frac{1}{p^{p/2}} \int_{R/2}^R dr \int_{\partial Q_r} |DU|^p \, d\mathcal{H}^n$$

there exists $r = r(\varepsilon) \in [R/2, R]$ such that

$$\mathcal{E}_p(U, \partial Q_r) := \frac{1}{p^{p/2}} \int_{\partial Q_r} |DU|^p \, d\mathcal{H}^n \le \frac{2}{R} \, \mathcal{E}_p(U, Q_R \setminus Q_{R/2}) \le \frac{2\varepsilon}{R} \,. \tag{2.21}$$

Since $u_{|\partial F_r} : \partial F_r \to \mathcal{Y}$ is a smooth map in $W^{1/p}(\partial F_r, \mathcal{Y})$ and $\pi_{n-1}(\mathcal{Y}) = 0$, there exists a smooth extension $u_r : F_r \to \mathcal{Y}$ of u with finite $W^{1,p}$ -norm.

Let now $Q_r^{\pm} := \{z = (x,t) \in Q_r \mid \pm t \ge 0\}$ be the upper and lower half (n+1)-cubes of Q_r . Moreover, let $V_r^{\pm} : Q_r^{\pm} \to \mathbb{R}^N$ be a function that minimizes the *p*-energy on Q_r^{\pm} among all maps in $W^{1,p}(Q_r^{\pm}, \mathbb{R}^N)$ satisfying the boundary condition

$$\left\{ \begin{array}{ll} V_r^\pm = U & \text{ on } & \partial Q_r^\pm \cap \{(x,t) \mid \pm t > 0\} \\ V_r^\pm = u_r & \text{ on } & F_r \end{array} \right.$$

and let $V_r: Q_r \to \mathbb{R}^N$ be given by $V_r(z) = V_r^{\pm}(z)$ if $z \in Q_r^{\pm}$. Define then $W_r: \mathcal{Q}^n \times I \to \mathbb{R}^N$ by

$$W_r(z) := \begin{cases} V_r\left(\frac{r}{\delta}z\right) & \text{if} \quad \|z\|_{n+1} \le \delta \\ U\left(\frac{rz}{\|z\|_{n+1}}\right) & \text{if} \quad \delta \le \|z\|_{n+1} \le r \\ U(z) & \text{if} \quad \|z\|_{n+1} \ge r \end{cases}$$

for a suitable $0 < \delta < r$. Since V_r^{\pm} is continuous, $W_r \in W^{1,p}(\mathcal{Q}^n \times I, \mathbb{R}^N)$ is continuous and with trace $\mathbf{T}(W_r) \in W^{1/p}(\mathcal{Q}^n, \mathcal{Y})$. We easily estimate

$$\mathcal{E}_p(W_r, \mathcal{Q}^n \times I) \le \mathcal{E}_p(U, \mathcal{Q}^n \times I) + c \, r \, \mathcal{E}_p(U, \partial Q_r) + \left(\frac{\delta}{r}\right)^{n+1-p} \mathcal{E}_p(V_r, Q_r)$$

for some absolute constant c > 0, depending on n and p, so that by (2.21), and since r < R,

$$\begin{aligned} \mathcal{E}_p(W_r, \mathcal{Q}^n \times I) &\leq \mathcal{E}_p(U, \mathcal{Q}^n \times I) + 2 c \varepsilon + \left(\frac{\delta}{r}\right)^{n+1-p} \mathcal{E}_p(V_r, Q_r) \\ &\leq \mathcal{E}_p(U, \mathcal{Q}^n \times I) + (2c+1) \varepsilon \,, \end{aligned}$$

taking $\delta = \delta(r, \varepsilon)$ sufficiently small. Letting $\varepsilon \to 0$ we infer that $W_{r(\varepsilon)} \to U$ in $W^{1,p}(\mathcal{Q}^n \times I, \mathbb{R}^N)$ and hence that $\mathbf{T}(W_{r(\varepsilon)}) \to u$ in $W^{1/p}(\mathcal{Q}^n, \mathcal{Y})$. Since the trace $\mathbf{T}(W_r) \in W^{1/p}(\mathcal{Q}^n, \mathcal{Y})$ is continuous, then in a standard way it can be approximated by smooth maps, as required.

3 Homotopy type of $W^{1/p}$ -maps

In this section we let $n+1 > p \ge 2$ and d = [p]. We shall prove the following

Proposition 3.1 Let $u \in W^{1/p}(\mathcal{X}, \mathcal{Y})$ and X be a finite cubeulation of \mathcal{X} in generic position with respect to u. For any smooth sequence $\{u_i\} \subset W^{1/p}(X^{d-1}, \mathcal{Y}) \cap C^{\infty}$ strongly converging to $u_{|X^{d-1}}$ in $W^{1/p}$, we find $k_0 \in \mathbb{N}^+$ such that for every $i, j \geq k_0$ the maps u_i and u_j are homotopic as maps from X^{d-1} to \mathcal{Y} .

By the argument of Proposition 3.1 we shall then obtain Proposition 1.3.

PROOF OF PROPOSITION 3.1: Following the notation from Sec. 2, we shall give the proof in the case $\mathcal{X} = \mathcal{Q}^n$ and $X^k := \Sigma_m^{(k)}$, see (2.2), making use of the argument from [3, Lemma 1], that goes back to [16]. The case of general X is obtained by means of an easy adaptation of the argument below. In fact, the manifold \mathcal{X} being smooth and compact, for any given finite cubeulation X, taking local coordinate charts, we find a bilipschitz homeomorphism ψ , with Lipschitz constants Lip ψ and Lip ψ^{-1} bounded by a constant not depending on the local chart, and a number $m \in \mathbb{N}^+$, such that in each coordinate chart $\psi(X^k) = \Sigma_m^{(k)}$ for every dimension k.

We now let $\mathcal{X} = \mathcal{Q}^n$ and $X^k := \Sigma_m^{(k)}$. Let $U_i \in W^{1,p}(\Sigma_m^{(d-1)} \times I, \mathbb{R}^N)$ be such that $\mathbf{T}(U_i) = u_i$ and U_i minimizes the *p*-energy among all maps $V \in W^{1,p}(\Sigma_m^{(d-1)} \times I, \mathbb{R}^N)$ such that $\mathbf{T}(V) = u_i$. Let $\sigma_0 > 0$ to be chosen. By the strong convergence of u_i to u, we can find $k_0 \in \mathbb{N}$ such that

$$\|U_i - U_j\|_{W^{1,p}(\Sigma_m^{(d-1)} \times I)} < \sigma_0 \qquad \forall i, j \ge k_0.$$
(3.1)

If $z = (x, t) \in \Sigma_m^{(d-1)} \times I$ and 0 < h < 1/(4m), we let

$$U_i(h,z) := \int_{\Sigma(z,h)} U_i(y) \, d\mathcal{H}^d(y) := \frac{1}{\mathcal{H}^d\big(\Sigma(z,h)\big)} \int_{\Sigma(z,h)} U_i(y) \, d\mathcal{H}^d(y) = \frac{1}{\mathcal{H}^d\big(\Sigma(z,h)\big)} \int_{\Sigma(z,h)} U_i(y) \, d\mathcal{H}^d(y) = \frac{1}{\mathcal{H}^d(\Sigma(z,h))} \int_{\Sigma(z,h)} U_i(y) \, d\mathcal{H}^d(y$$

where the d-dimensional set $\Sigma(z, h)$ is defined as in the proof of Proposition 2.2 from Sec. 2. Moreover, let $u_i(h, \cdot) := \mathbf{T}(U_i(h, \cdot)) \in W^{1/p}(\Sigma_m^{(d-1)}, \mathbb{R}^N)$. For every *i*, we infer that $U_i(h, z)$ is continuous, whereas $U_i(h, \cdot)$ tends to U_i and $u_i(h, \cdot)$ tends to u_i uniformly as $h \to 0$. Let $\varepsilon_1 > 0$ to be chosen. By the strong convergence of u_i to u, we also may and do fix a positive number $h_0 < 1/(4m)$ such that for every $z \in \Sigma_m^{(d-1)} \times I$, and for any $0 < h \le h_0$, we have

$$\mathcal{E}_p(U_i, \Sigma(z, h)) \le \varepsilon_1 \qquad \forall i.$$
(3.2)

If $\xi := (x,0) \in \Sigma_m^{(d-1)} \times \{0\}$, for $i \neq j$ we estimate

$$\begin{aligned} |u_{i}(h_{0}, x) - u_{j}(h_{0}, x)| &= |U_{i}(h_{0}, \xi) - U_{j}(h_{0}, \xi)| \\ &= \left(\int_{\Sigma(\xi, h_{0})} |U_{i}(h_{0}, \xi)) - U_{j}(h_{0}, \xi)|^{p} \, d\mathcal{H}^{d}(y) \right)^{1/p} \\ &\leq \left(\int_{\Sigma(\xi, h_{0})} |U_{i}(h_{0}, \xi)) - U_{i}(y)|^{p} \, d\mathcal{H}^{d}(y) \right)^{1/p} \\ &+ \left(\int_{\Sigma(\xi, h_{0})} |U_{j}(h_{0}, \xi)) - U_{j}(y)|^{p} \, d\mathcal{H}^{d}(y) \right)^{1/p} \\ &+ \left(\int_{\Sigma(\xi, h_{0})} |U_{i}(y) - U_{j}(y)|^{p} \, d\mathcal{H}^{d}(y) \right)^{1/p} \\ &=: I_{1} + I_{2} + I_{3} \,. \end{aligned}$$

Using (3.2) and the Poincaré inequality, we have

$$I_1 + I_2 \le c h_0^{(p-d)/p} \varepsilon_1^{1/p}$$

whereas by (3.1), using that $\mathcal{H}^d(\Sigma(\xi, h_0)) \geq h_0^d$, we infer that if $i, j \geq k_0$

$$I_3 \le h_0^{-d/p} \|U_i - U_j\|_{W^{1,p}(\Sigma_m^{(d-1)} \times I)} \le C h_0^{-d/p} \sigma_0.$$

Since $d \leq p$ and $h_0 < 1$, we then obtain for every $x \in \Sigma_m^{(d-1)}$, and for $i, j \geq k_0$,

$$|u_i(h_0, x) - u_j(h_0, x)| \le c_3 \varepsilon_1^{1/p} + c_4 h_0^{-d/p} \sigma_0.$$
(3.3)

Let now $\varepsilon_0 > 0$ be given by Remark 2.1. As in the proof of Proposition 2.2, see (2.8), using that d = [p], taking first η large so that $c_1 K_{\infty}/\eta < \varepsilon_0/2$, we infer that if ε_1 satisfies

$$c_2 \left(\eta^{1/p} + 1\right) \varepsilon_1^{1/p} < \varepsilon_0/2,$$
 (3.4)

by (3.2) we obtain that for $0 < h \le h_0$ and for every *i*

$$\operatorname{dist}(u_i(h, x), \mathcal{Y}) < \varepsilon_0 \qquad \forall \, x \in \Sigma_m^{(d-1)} \,. \tag{3.5}$$

We then fix ε_1 so that both (3.4) and $c_3 \varepsilon_1^{1/p} \leq \varepsilon_0/2$ hold true, and determine h_0 by condition (3.2). We then choose $\sigma_0 > 0$ small in such a way that $c_4 h_0^{-d/p} \sigma_0 \leq \varepsilon_0/2$, and select k_0 . By (3.3) we obtain

$$|u_i(h_0, x) - u_j(h_0, x)| < \varepsilon_0 \qquad \forall x \in \Sigma_m^{(d-1)}, \quad \forall i, j \ge k_0.$$
(3.6)

Setting $u_i(\cdot, 0) = u_i$, on account of (3.5) for every $i \ge k_0$ the homotopy maps

$$H_i: [0, h_0] \times \Sigma_m^{(d-1)} \to \mathcal{Y}_{\varepsilon_0}, \qquad H_i(h, x) := u_i(h, x)$$

are well defined. Therefore, the functions u_i and $u_i(h_0, \cdot)$ are homotopic, as maps from $\Sigma_m^{(d-1)}$ into $\mathcal{Y}_{\varepsilon_0}$. Moreover, (3.6) says that $u_i(h_0, \cdot)$ and $u_j(h_0, \cdot)$ are homotopic in the same sense, for $i, j \geq k_0$. This yields that u_i and u_j are homotopic, too, for $i, j \geq k_0$, and hence the assertion, by projecting $\mathcal{Y}_{\varepsilon_0}$ onto \mathcal{Y} . \Box

PROOF OF PROPOSITION 1.3: Let U_{∞} , $U_{\infty}(h, z)$ and $u_{\infty}(h, \cdot)$ be defined as in the proof of Proposition 3.1, but for $u = u_{\infty}$. With our hypotheses, it turns out that $U_{\infty}(h, z)$ is continuous, whereas $U_{\infty}(h, \cdot)$ tends to U_{∞} and $u_{\infty}(h, \cdot)$ tends to u_{∞} uniformly as $h \to 0$. Moreover, we can assume that both (3.1) and (3.2) hold true also for $i = \infty$. The assertion readily follows.

4 A characterization of approximable $W^{1/p}$ -maps

In this section we shall prove Theorem 1.4 and its consequences, Theorem 1.5 and Corollaries 1.6 and 1.7.

PROOF OF THEOREM 1.4: Let d = [p]. Assume that $u \in R^0_{1/p}(\mathcal{X}, \mathcal{Y})$ is the strong $W^{1/p}$ -limit of a sequence of smooth maps $\{u_i\}$ in $C^{\infty}(\mathcal{X}, \mathcal{Y})$. Let X be a finite cubculation of \mathcal{X} in dual position with respect to u. Then, denoting by $\{\tilde{u}_i\} \subset W^{1/p}(X^{d-1}, \mathcal{Y})$ the restriction of u_i to X^{d-1} , possibly slightly moving the faces of X, by Fubini theorem we have that \tilde{u}_i strongly converges to $\tilde{u} := u_{|X^{(d-1)}|}$ in $W^{1/p}$. If $d \geq 2$, by Proposition 1.3 we infer that for i sufficiently large \tilde{u}_i is homotopically equivalent to \tilde{u} , as maps from X^{d-1} to \mathcal{Y} . Since each \tilde{u}_i is the restriction of a smooth map from \mathcal{X} to \mathcal{Y} , and (\mathcal{X}, X^{d-1}) satisfies the so called *homotopy extension property*, see e.g. [11, Prop. 2.1], this yields that \tilde{u} can be extended to a continuous map from \mathcal{X} into \mathcal{Y} . The same conclusion holds for any cubculation X in dual position with respect to u. Finally, if d = 1 the conclusion trivially follows.

We now prove the converse, and assume that the restriction $\tilde{u} := u_{|X^{(d-1)}}$ can be extended to a continuous map from \mathcal{X} into \mathcal{Y} . We distinguish two cases.

The case n = d = [p]. The map $u \in R^0_{1/p}(\mathcal{X}, \mathcal{Y})$ is continuous outside a discrete set $\Sigma(u)$. Since the argument is local, without loss of generality we assume that $u \in R^0_{1/p}(\mathcal{Q}^n, \mathcal{Y})$ and u is smooth outside the origin. We then argue as in the proof of Theorem 1.2 from Sec. 2. In fact, this time we infer that $u_{|\partial F_r} : \partial F_r \to \mathcal{Y}$ is a continuous map in $W^{1/p}(\partial F_r, \mathcal{Y})$ for which we can find a continuous extension $u_r : F_r \to \mathcal{Y}$ with finite $W^{1,p}$ -norm, as required.

The case $n-1 \ge d = [p]$. We use a local argument and return to the proof of Theorem 1.1 from Sec. 2. Recall that the singular set of the approximating maps $W_h^{(m)}$ is contained in $\mathcal{Q}_m^n \times \{0\}$ and intersects every not "horizontal" (k+1)-cube Q in $\mathcal{F}_m^{(k+1)}$, for $k = d, \ldots, n$, on a (k-d)-dimensional set obtained by the "homogeneous" extension (2.18) of the restriction of $W_h^{(m)}$ to the boundary of Q. To remove the singular set, working by induction on $k = d, \ldots, n$, it then suffices to modify the definition (2.18) to (4.1) below, where $V_Q: Q \to \mathbb{R}^N$ is a suitable smooth extension of the boundary datum.

To this aim, we now recall that $V_h^{(m)}|_{\Sigma_m^{(d-1)}\times I} = U_h^{(m)}$, where $\{U_h^{(m)}\} \subset W^{1,p}(\Sigma_m^{(d-1)} \times I, \mathbb{R}^N) \cap C^{\infty}$ is such that $U_h^{(m)} \to U^{(m)}$ strongly in $W^{1,p}$, see Propositions 2.2 and 2.4, and the traces $\mathbf{T}(U_h^{(m)}) \in U_h^{(m)}$

 $W^{1/p}(\Sigma_m^{(d-1)}, \mathcal{Y}_{\varepsilon_0}) \cap C^0$. Since the cubeulation given by $C_m^{(k)}$ is in dual position with respect to u, by Proposition 1.3, applied this time with $\mathcal{Y}_{\varepsilon_0}$ instead of \mathcal{Y} , see Remark 2.1, we infer that for h large enough $\mathbf{T}(U_h^{(m)})$ is homotopically equivalent to the restriction $u_{|\Sigma_m^{(d-1)}}$ of u to $\Sigma_m^{(d-1)}$, as maps from $\Sigma_m^{(d-1)}$ into $\mathcal{Y}_{\varepsilon_0}$. Moreover, by the hypothesis $u_{|\Sigma_m^{(d-1)}}$ can be extended to a continuous map from \mathcal{Q}^n into \mathcal{Y} . As a consequence, the trace $\mathbf{T}(U_h^{(m)})_{|\Sigma_m^{(d-1)}}$ of $U_h^{(m)}$ on $\Sigma_m^{(d-1)}$ can be extended to a continuous map $v_h: \mathcal{Q}^n \to \mathcal{Y}_{\varepsilon_0}$ such that the restriction of v_h to every k-face of $\Sigma_m^{(k)}$ has finite $W^{1/p}$ -norm, for every $k = d, \ldots, n$.

First we let $W_h^{(m)} \equiv V_h^{(m)}$ on $\mathcal{F}_m^{(d)}$. Arguing by induction on $k = d, \ldots, n$, we now extend $W_h^{(m)}$ to $\mathcal{F}_m^{(k+1)}$ as follows.

If Q is a "horizontal" (k+1)-cube in $\mathcal{F}_m^{(k+1)}$ define $W_h^{(m)}$ as in (2.17).

If Q is not "horizontal", we let

$$F := Q \cap (\mathbb{R}^n \times \{0\})$$

be the k-face in $\Sigma_m^{(k)}$ given by the intersection of Q with $Q^n \times \{0\}$, see (2.2). Moreover, let $u_{h,F}: F \to \mathcal{Y}_{\varepsilon_0}$ be given by the restriction of v_h to F, so that $u_{h,F} \in W^{1/p}(F, \mathcal{Y}_{\varepsilon_0}) \cap C^0$.

Let $Q^{\pm} := \{z = (x,t) \in Q \mid \pm t \geq 0\}$ be the upper and lower half (k+1)-cubes of Q. Moreover, let $V_Q^{\pm} : Q^{\pm} \to \mathbb{R}^N$ be the function that minimizes the *p*-energy on Q^{\pm} among all maps in $W^{1,p}(Q^{\pm}, \mathbb{R}^N)$ satisfying the boundary condition

$$\begin{cases} V_Q^{\pm} = W_h^{(m)} & \text{on} \quad \partial Q^{\pm} \cap \{(x,t) \mid \pm t > 0\} \\ V_Q^{\pm} = u_{h,F} & \text{on} \quad F \end{cases}$$

and let $V_Q : Q \to \mathbb{R}^N$ be given by $V_Q(z) = V_Q^{\pm}(z)$ if $z \in Q^{\pm}$. If f_Q is the bilipschitz homeomorphism between Q and $[-1/(2m), 1/(2m)]^{k+1}$ defined in the proof of Theorem 1.1, we modify the definition (2.18) of $W_h^{(m)}$ on Q by setting for every $z \in Q$

$$W_{h}^{(m)} := \begin{cases} V_{Q} \left[f_{Q}^{-1} \left(\frac{f_{Q}(z)}{2m\delta} \right) \right] & \text{if } \|f_{Q}(z)\|_{k+1} \le \delta \\ W_{h}^{(m)} \left[f_{Q}^{-1} \left(\frac{f_{Q}(z)}{2m\|f_{Q}(z)\|_{k+1}} \right) \right] & \text{if } \delta \le \|f_{Q}(z)\|_{k+1} \le \frac{1}{2m} \,. \end{cases}$$

$$(4.1)$$

Similarly to the proof of Theorem 1.2, we easily infer that (2.19) holds again if $0 < \delta < 1/(2m)$ is sufficiently small, whereas this time $W_h^{(m)}$ is continuous on Q and with trace $\mathbf{T}(U_h^{(m)})$ in $W^{1/p}(F, \mathcal{Y}_{\varepsilon_0})$.

We then obtain again (2.20) and hence, by (2.16), we conclude again with (2.15). The rest of the proof is similar to the one of Theorem 1.1 from Sec. 2. \Box

PROOF OF THEOREM 1.5: Let d = [p]. Similarly to the proof of [11, Thm. 6.3], if $f \in \operatorname{Lip}(X^{d-1}, \mathcal{Y})$, for some cubculation X of \mathcal{X} , by means of homogeneous extensions on the k-faces of X^k , for $k = d, \ldots, n$, we find a map $u \in R^0_{1/p}(\mathcal{X}, \mathcal{Y})$ such that the restriction $u_{|X^{d-1}}$ agrees with f and X is in dual position with respect to u. If smooth maps in $C^{\infty}(\mathcal{X}, \mathcal{Y})$ are sequentially dense in $W^{1/p}(\mathcal{X}, \mathcal{Y})$, by Theorem 1.4 we infer that $u_{|X^{d-1}} = f$ has a continuous (and hence Lipschitz) extension to a map from \mathcal{X} to \mathcal{Y} . This implies that $\pi_{d-1}(\mathcal{Y}) = 0$ and that \mathcal{X} has the (d-1)-extension property with respect to \mathcal{Y} .

Conversely, let $u \in R^{\infty}_{1/p}(\mathcal{X}, \mathcal{Y})$ and X be in dual position with respect to u. Condition $\pi_{d-1}(\mathcal{Y}) = 0$ yields that the restriction $u_{|X^{d-1}}$ has a continuous extension $g : X^d \to \mathcal{Y}$. Therefore, by the (d-1)extension property, $u_{|X^{d-1}}$ can be extended to a continuous map from \mathcal{X} into \mathcal{Y} . By Theorem 1.4 we then obtain that u is the strong $W^{1/p}$ -limit of a smooth sequence in $W^{1/p}(\mathcal{X}, \mathcal{Y}) \cap C^{\infty}$. Theorem 1.1 and a diagonal argument yield the assertion.

PROOF OF COROLLARY 1.6. Taking d = [p], the hypotheses on \mathcal{Y} yield that $\pi_{d-1}(\mathcal{Y}) = 0$ and that \mathcal{X} has the (d-1)-extension property with respect to \mathcal{Y} .

PROOF OF COROLLARY 1.7: Using the argument from [16, Sec. 6], we recall the following

Lemma 4.1 Let $i \in \mathbb{N}^+$. If M, N are compact and connected Riemannian manifolds, $\pi_i(N) = 0$, and $g: M \to N$ is a continuous map (i-1)-homotopic to a constant map, then g is i-homotopic to a constant map.

Applying first Lemma 4.1 with $M = N = \mathcal{X}$ and $i = 0, \ldots, k-1$, we infer that there exists a continuous map $\phi : \mathcal{X} \to \mathcal{X}$ homotopic to the identity map and such that the restriction $\phi_{|X^{k-1}}$ is constant. Let d = [p]and $f \in C(X^d, \mathcal{Y})$. Then $f \circ \phi$ is homotopic to f and $f \circ \phi_{|X^{k-1}}$ is constant. Applying then Lemma 4.1 with $M = \mathcal{X}$, $N = \mathcal{Y}$, and $i = k, \ldots, d-1$, we infer that $f \circ \phi_{|X^{d-1}}$ is homotopic to a constant map. This yields that $f_{|X^{d-1}}$ can be extended to a continuous map. In conclusion, \mathcal{X} has the (d-1)-extension property with respect to \mathcal{Y} , whereas $\pi_{d-1}(\mathcal{Y}) = 0$ holds true by the hypothesis.

References

- [1] Adams, R. A.: Sobolev spaces, Academic Press, New York, 1975.
- [2] Bethuel, F.: The approximation problem for Sobolev maps between manifolds, Acta Math. 167 (1992) 153-206.
- [3] Bethuel, F.: Approximations in trace spaces defined between manifolds, Nonlinear Analysis 24 (1995), 121–130.
- [4] Bourgain, J., Brezis, H., Mironescu, P.: On the structure of the Sobolev space H^{1/2} with values into the circle, C.R. Acad. Sci. Paris 331 (2000), 119–124.
- [5] Bourgain, J., Brezis, H., Mironescu, P.: H^{1/2} maps with values into the circle: minimal connections, lifting, and the Ginzburg Landau equation, Publ. Math. Inst. Hautes Études Sci. 99 (2004), 1–115.
- [6] Giaquinta, M., Modica G., Souček, J.: On sequences of maps into S¹ with equibounded W^{1/2} energies, Selecta Math. (N. S.) 10 (2004), 359−375.
- [7] Giaquinta, M., Mucci, D.: Density results for the W^{1/2} energy of maps into a manifold, Math. Z. 251 (2003), 535–549.
- [8] Giaquinta, M., Mucci, D.: On sequences of maps into a manifold with equibounded $W^{1/2}$ -energies, J. Funct. Anal. **225** (2005), 94–146.
- [9] Giaquinta, M., Mucci, D.: Maps into manifolds and currents: area and W^{1,2}-, W^{1/2}-, BV-energies, Edizioni della Normale, C.R.M. Series, Sc. Norm. Sup. Pisa, 2006.
- [10] Hang, F., Lin, F.: A remark on the Jacobians, Comm. Contemp. Math. 2 (2000), 35–46.
- [11] Hang, F., Lin, F.: Topology of Sobolev mappings. II, Acta Math. 191 (2003), 55–107.
- [12] Hang, F., Lin, F.: Topology of Sobolev mappings. IV, Discrete Cont. Dyn. Sist. 13 (2005), 1097–1124.
- [13] Mucci, D.: A characterization of graphs which can be approximated in area by smooth graphs, J. Eur. Math. Soc. (JEMS) 3 (2001), 1–38.
- [14] Rivière, T.: Dense subsets of $H^{1/2}(\mathbb{S}^2; \mathbb{S}^1)$, Ann. Global Anal. Geom. 18 (2000), 517–528.
- [15] Schoen, R., Uhlenbeck, K.: Boundary regularity and the Dirichlet problem for harmonic maps, J. Diff. Geom. 18 (1983) 253–268.
- [16] White, B.: Infima of energy functionals in homotopy classes, J. Diff. Geom. 23 (1986), 127–142.

D. Mucci: Dipartimento di Matematica dell'Università di Parma, Viale G. P. Usberti 53/A, I-43100 Parma, E-mail: domenico.mucci@unipr.it