Graphs of Wl l-maps with values into S':
relaxed energies, minimal connections and lifting
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The aim of this paper is to link the analytic results of [6] [7] [19] relative to W'l-mappings from B™ into
S1 to the measure theoretical geometric results in [12] [15]. The paper also contains a few remarks about
mappings in WP, p > 2, with values into S2.

1 The relaxed energy of Wll-maps

Let © be a simply connected, smooth, n-dimensional domain. For simplicity, we take = B", the n-
dimensional unit ball, and we let B™ be the unit ball of radius 2, so that B™ CC B". Also, let SlcR?2~C
be the unit sphere. For any non-negative integer k and for U = B™ or B" x S', we will denote by D*(U)
the class of smooth compactly supported k-forms in U and by Dy(U) the usual class of k-dimensional
currents in U, i.e., the dual of D*(U). Moreover, R;(U) denotes the subclass of k-dimensional integer
multiplicity (say i.m.) rectifiable currents in U, compare [8] [10] [13]. We set

WULH(B™, 8Y) := {u e WHY(B™,R?) : |u(z)| = 1 for ae. z € B"}

and, in the sequel, ¢ : B" — S! being a given smooth W'1-map, we set

W;’l(E",Sl) = {ue W-Y(B",8) : u=¢ in B"\B"}.
ci(B,8Y) = {ueCYB",S') :u=¢ in B"\B"}.

Also, m: B" xS — B" and 7 : B" x S — S! will denote the projections onto the first and second factor,
respectively. Finally, we denote by wg: the volume 1-form on S' C R?

wgr = yldy?® — y2dyt .

GRAPHS OF W1Y1-MAPS. We recall from [13] that the im. rectifiable current G, € R,(B™ x S)
associated to the "graph” of a function u € WH1(B" S1) is defined in an approzimate sense by

Gy = (Id=u)4[B"], (1.1)

where (Id < u)(x) := (z,u(x)), u standing for the restriction of u to the set of approzimate differentiability
of wu, i.e.

Gu(w) := / (Id=<u)#w, weD"(B"xS).
B7l
THE SINGULAR SET. Following [13, Vol. II], for any u € W;’l(E”,Sl) we define the (n — 2)-current

P(u) € Dy_o(B™) by 27 - P(u) := —7m4(8G,) L 7#wg1, so that for every & € D"2(B")

P(u)(§) = —%aGu(%#wy /\7T#§) = %/g uFwg AdE. (1.2)

Since u = ¢ outside En, and ¢ is smooth, we infer that P(u) is a boundaryless current supported in the
closure of B™,

OP(u) =0, sptP(u) ¢ B".



Define now the (n — 1)-current D(u) € D,_1(B™) by 27 - D(u) := m4(Gy L7#wg1), so that for every
Y e DL (B
1 1

D(u)(y) == %Gu(%#WSI AT#y) = o /~ ufwgr Ay,

Since u = ¢ on B"\ B", we have spt(D(u) — D(p)) C B". Moreover,
P(u) = 0(D(u) — D(p)) .- (1.3)

In fact, since ¢ is smooth, dp*wg1 = p#dwg1 =0 and hence d(p*wg1 A €) = —pFwgt A dE, which yields

/ uwgr A dE —l—/ o wgr AdE
5" B\B"

/ ufwgr AdE — ~ d(eFwgt A €) (1.4)
n Bn\En

/ uwgr A dE +/ oFwgr NE
n oB"™
for every &€ € D"2(B"). On the other hand, we compute

2m9(D(u) —D(p))(§) = 2m (D(u) —D(p))(dE)
| uFwg AdE — /7 § oFwgr AdE

= f u#wSl A d€ +/B d(cp#w51 A g)

= f U#wSl A df +f @#wsl A g .
B oB"

REAL AND INTEGRAL MASSES. We now recall the following

2m P(u) ()

Definition 1.1 Let 0 < k < n—2. For every k-dimensional current I' € Dy, (E”), with support sptI' C En,
we denote by B -
mi(T) == inf{M(L) | L € Rp;1(B"), sptLcCB', OL=T}

the integral mass of I' and by
my(T) := inf{M(D) | D € Dys1(B"), sptDcC B", 0D=T}

the real mass of I'. Moreover, in case m;(I") < oo, we say that an i.m. rectifiable current L € Rk+1(§")
is an integral minimal connection of ' if L =T, sptL C B", and M(L) = m;(T).

Of course, m,(I") < oo if M(I") < co and OI' = 0. Moreover, in the definition of integral and real mass,
respectively, the infimum is actually a minimum, provided that the set on the right-hand side is non-empty.
Now, if k=n—2 and T =P(u) for some u € W' (B" S"), by (1.3) we infer that the real mass is finite,

mr(P(u)) < M(D(u) —D(p)) < oo (1.5)

We recall that in general
m,(T) < my(T), (1.6)

and the strict inequality may occur if 1 < k < n — 3, compare [20] [27]. However, as shown by Federer [9],
and by Hardt-Pitts [17], equality holds in (1.6) if T' has dimension zero or if k = n — 2. In particular, we
obtain _

my(P(w)) = m;(P(u)) Yu e W;’I(B",Sl) (1.7)

and hence that the integral minimal connection of the singularities of any map u € Wé’l(én, S1) s finite
provided we are able to show that P(u) is an integral flat chain, i.e., P(u) is the boundary of an im.
rectifiable current with finite mass.



THE RELAXED W '-ENERGY. For Q = B" or B", denote
Eua(w = [ [Vulds,  we WE(B"SY),
Q
and consider the lower semicontinuous envelope of the functional

Vuldz  if ue CL(B",SY)
Q

K(U,Q) = B
+00 elsewhere in W1 !(B",S).

(1.8)

More precisely, we define the relaved W l-energy u — g;(u, Q) as the greatest functional on Wé’l(én, Sh)
which is lower than or equal to u — & 1(u, ) and is lower semicontinuous with respect to the strong L*-
convergence. Of course, for every u € Wé’l(B”, S1) we have

a/l(u,Q) = inf {lihminf/ [Vup|de : {up} C C;(En’sl)’ Up — U a.e.} .
— 00 Q
It is well-known that

E11(u,Q) < E1(w, Q) Yue WH(B",SY). (1.9)
However, since 7 (S') # 0, in general the strict inequality ”<” may hold in (1.9), see e.g. [13].

CARTESIAN CURRENTS. In order to analyze the structure property of the relaxed Wl energy, we recall
from [13] some facts concerning the class of Cartesian currents cart(B™ x S1).

Definition 1.2 We let
cart(B™ x S1) := {T € cart(B" x R?) | spt T C B" x S'}

and
cart,(B" x §') := {T € cart(B" x $*) | TL (B"\ B") x ' = G, (B"\ B") x S'},

where cart(é” x RN) is defined as the class of i.m. rectifiable currents T in Rn(E” x RN) which have
no inner boundary, OT'L B™ X RN = 0, have finite mass, M(T) < oo, and are such that ||T||; < oo,
4T =[B"] and T >0, where

||y = sup{T(p(z, y)ly| dz) | ¢ € C2(B" x RY), || <1},
and T is the Radon measure in B" x RN given by
T®(p(2,y) = Tlp(x,y)dz) Yo € CUB" xRY).
Then, to any T € cart(‘p(gn x S1) we may associate a function uz € BVW(E”, S1), where
BV,(B",5") :={ue BV(B",R?) : |u(z)| =1 ae. and u=¢ in B"\B"},
such that

T(6(ay)do) = [ 6w ur(x)) de (1.10)

for all ¢ € CO(B™ x R?) such that |¢(z,y)| < C (1 + |y|), and for any ¢ € C1(B") and for j = 1,2

(=)™ T (4p(w)dz A dy?) = (Do, ) ::-/~ (@) - Dot(x) da (1.11)

n

where

—

dzt :i=da' A Ad T AdETTE A A da™ .



Moreover, if the corresponding BV -function ur belongs to the Sobolev class Wé’l(gn, S1), we have
T=G., +Lx[S'], (1.12)

where [S1] is the 1-current integration of 1-forms on S!, with respect to the counterclockwise orientation,
and L is an (n — 1)-dimensional i.m. rectifiable current in R,,_1(B™) with finite mass, M(L) < oo, and
support in B, spt L C B . Now, since T satisfies the null-boundary condition

OT L B" x S =0,

ie., T(dw) =0 for all w € D" Y(B" x §1), if w = 7#& A7#wg for some & € D" 2(B"), since dw =
TFdE NTHwer = (—1)" 7% wg A 77 dE, whereas

(L x [S"(r#de ATHwsr) = L(dE) - [ S J(wsr) = 2m OL(E) ,

we infer that 1
OL(€) = (-1)" 5 Gur (@Fwsr AT#dE) = (=1)" P(ur)(€).

In conclusion, L satisfies the boundary condition

OL = (—1)" P(ur). (1.13)

On the other hand, if L is an i.m. rectifiable current in R,_2(B™), hence with finite mass, such that
spt L ¢ B", satisfying (1.13), the corresponding current (1.12) belongs to the class cart,(B"™ x S1).
Denote now for any u € W1 *(B",S") by

7o = {T € cart,(B" x S?) | ur = u} (1.14)

the class of Cartesian currents 7' in cartq,(gn x S') such that the underlying BV -function ur is equal to
u. By the previous discussion we have

T ={Gu+Lx[S']:LeR,_1(B"), sptLCB", L= (-1)" P(u)}. (1.15)

THE DENSITY RESULT OF BETHUEL. If n > 2, we denote by ;ﬁa(én, S1) the set of all the maps
URS Wé’l(én, S1) which are smooth except on a singular set %(u) of the type

S(w)=J%i, reN, (1.16)

where ¥; is a smooth (n — 2)-dimensional subset of B" with smooth boundary, if n > 3, and 3; is a point
if n = 2. The following density result appears in [4].

Theorem 1.3 Rff’ga(E",Sl) is strongly dense in Wé*l(E",Sl).

Theorem 1.3 yields, in particular, see [11], that P(u) is an integral flat chain. Thus by (1.7) we readily
obtain the following

Corollary 1.4 For any u € Wé’l(E”,Sl) the class 7T, is non-empty.
Moreover, the following density result holds true, see e.g. [15].

Proposition 1.5 Let n > 2 and let T € T, satisfy (1.12) for some u € Wé’l(én,sl). There exists
a smooth sequence {up} C C’é(é",Sl) such that Gy, — T as h — oo weakly in D,(B™ x SY), i.e.,
G, (W) = T(w) for all w e D"(B™ x S1), and

lim [Vup|de =E1(T) = /~ |Vu|dz + 2r M(L) .
B’!L

h—oo [Bn



We now recall that the weak convergence G,, — T yields the convergence of u; to ur weakly in the
BV-sense, that the energy T — &;1(T) is lower semicontinuous with respect to the weak convergence as

currents, and that the class cart¢(§" x S1) is closed. As a consequence, compare [15], from the above
density result we readily obtain the following

Proposition 1.6 For any n > 2 and u € W;’l(én,sl) we have é’:(u,én) < 00. Moreover, the relazed
energy of uw is given by

E1(u,BY) = inf{&1(T)|T €T}
= /~ [Vu| dz + 27 m; (P(u))

= ﬁ |Vu|dz 4+ 2m inf{M(L) : L € Rn_1(B"), sptL c B", 0L = (—1)" P(u)} .
Bn

2 Flat norm and minimal connections

In this section we write more explicitly the action of the current P(u) associated to the singular set of a
Sobolev map u € T/Vé’l(B”7 S1), and recover in the case n =2 some results from [6].

THE SINGULAR SET AS A DISTRIBUTION. We will denote by Lip(B™, A*T'B™) the class of k-forms
in B™ with coefficients in Lip(B"), for every k =0,...,n. Every (n —2)-form ¢ € Lip(B", A"~2TB") will

be written as
(=Y (Mdatd, (2.1)

1<i<j<n

where (% € Lip(B™;R) and
drid = dzt A Ada Tt AdaTE A Aded U A deI T A A dan
Let g € WH(B",R?) N L. For any i < j introduce the distribution 7; ;(g) € D'(B"™,R) given by
Tij(9) == —(9 X gz;)a; + (9 X 9u; ) (2.2)

where for every 1
9% 9u, =992, — 9%,
that is,
(Tij(9),¢") = / ((9 % 92,) &7 = (9 % 92,) 7 ) dw V(™ € Lip(B™,R).

n

Definition 2.1 Let n > 2. To any g € WH1(B",R?) N L™ we associate the distribution T(g) of order
(n —2) defined by

(T(9),Q) == > (=)™ YT ;(9),¢") V¢ e€Lip(B", A" °TB"),

1<i<j<n
where ¢ is decomposed as in (2.1).
Viewing the target space S! as a subspace of C, from Definition 2.1 we readily obtain
Proposition 2.2 Let n > 2. We have:
(a) T(g) = —T(g) for all g € WH1(B™ R?*) N L>;

(b) T(gh) =T(g9) +T(h) for all g,h € WH1(B",St).



PROOF: Property (a) is trivial, (b) follows arguing as in [6]. O
For any n > 2 and g € Wh1(B",R?) N L, defining

gXx v.g = (gxgzla"'agxgzn)a
we can write

(Swxar@)an v e L T,

i=1

FQi= 30 (0= 30 (0l

1<h<i i<h<n
¢ being decomposed as in (2.1). Therefore, setting F(¢) := (F1((),..., F"(()), we have

T@.0) = [

Bn

where for every fixed ¢

T6.0) = [ (9xV9)-FQ)d V¢ Lip(B" A>T,
Notice that, if n =2,
F(C) = VLC = (C:ma _Cwl)a
so that, as in [6], we have
T(0).0= [ (9 V0)- VECdr  ¥C e Lin(BR),

THE LINK BETWEEN T(u) AND P(u). Suppose now that u € W11(B" S!). By the dominated
convergence theorem, the action of the current G, see (1.1), extends e.g. to forms w = T#wg A 77 d(,
where ¢ € Lip(B", A"~2TB"), so that

n

Gu(@*wgr A#d¢) = / uwgr AdC.
If ¢ is given by (2.1), since for every i < j
doi Adzid = (—1)"V ded  and  dad Adaid = (1) dat
we have o~ LT~
A=Y ((-1)7'¢ dai + (—1)7¢) dat) .
1<i<j<n

Consequently, since dz" A dzh = (=1)""tdx! A --- A dz™, we have

ufwg ANd¢ = (uldu? — u?du') AdC
Z (1)1 ((u % ug,) C;J] — (u X ug,) ) dzt A Ada™
1<i<j<n

Therefore, for every ¢ € Lip(B™, A"~2TB") satisfying (2.1) we have

Gu(%#ws1 A w#df) = Z (*1)i+j71<ﬂ,j(u),gi’j>,

1<i<j<n

On account of Definition 2.1, we conclude that

5 (L), Q) =P)() V(e Lip(B",A""*T'B"). (2.3)

THE FLAT NORM. Let T € Dk(én) with sptI' C B", and suppose that T is the boundary of a
(k + 1)-dimensional current D € Dy 1(B™), with spt D € B". The flat norm of T' is defined by

Fpn (L) := sup{T'(¢) | € € DX(B"), max{[|¢], [l dé]|} <1 in B"}.



Taking k = n — 2, we now define for any n > 2
L(w) i= Py (B(w)),  ue WhI(E",SY), (2.4)

so that for every u € Wé’l(én, S1) we have

B = splpO) € € DB, max((] gl < 1 in )
- = sup{ [ s nde | €€ DB, max{el gy < 1 in B"}.

We now observe that by (1.4) and (2.3) we have

P)(€) = (T(up),€) - / Fug NE (2.5)

oBn

where u|pn is the restriction of u to B". In order to write explicitly the boundary term, we notice that

j>i = dal Adzid = (~1)) do?

h<i = dzhAdahi=(-1)"1dat.
Therefore, if

€= > dati, £ eC(B),
1<i<j<n
we have
pFwst A€ = (p'de® — QPdp" ) NE = Ai(x) da?,
i=1

where for every i

Ai(m) =D (=179 (o x u) + D (=DM (o x s,

G>i h<i

We then obtain

n

/ ofwgt A€ = ZAZ-(QC) doi = / (F,v)ydH" ™,
oBn 8B i, B

where v is the outward unit normal to dB™ and F(z) = (F',..., F")(x) is the vector field of components
Fi(a) = (=1)7 Ai(2) = Y (=171 (0 x pu,) + D (1) (9 x ) - (2.6)
J>i h<i

Remark 2.3 Notice that the above boundary term depends only on the tangential components of the
derivatives of ¢, i.e., it can be expressed in terms of (¢ X ¢r,) = (@ @2 —%pL ), where 71,...,7,_1 is any
orthonormal frame tangent to dB™ such that (71,...,7,—1,7) is a positively oriented orthonormal frame
to R™. In particular, it is zero if e.g. the boundary datum ¢ is constant on dB™. Moreover, in the simpler
case n = 2 we have

Fl(.r):f(ng(pwz), FQ(x):—ﬁ(goxgom),
so that for every ¢ € C2°(B?)

/ prwsi NE= ED(p) -vdH',
082 oB?

where D(¢) := (¢ X @z,, —p X ¢, ). Equivalently, if (7,v) is positively oriented, we may write

/ eFwer NE=— E(px pr)dH.
0B2 0B2



In conclusion, we infer that for every u € W;’l(grﬂ St

Lu) = % max{(T(uBn),Q — /8 . (F,v)ydH™ ' | (e Lip(B",A""2TB"),

max{[¢loe, [VCloc} < 1 in B"}

where F' = F((, ) is the vector field given by (2.6), with & = ¢, and

[Clloo = sup 1€ oo, [V loo = sup [ V¢ |oo
1<J i<j

if ¢ is decomposed as in (2.1). Moreover, in the case n = 2 the above formula simplifies to

1

L) = 5 max{ (T )+ | (e x ) a1 ¢ € Lip(E), max{[Clos [V€le} <1 in B .

If g€ WHi(S™ SY), with a similar computation we obtain

Llg) = 5 wox{ (T(0).€) | € € Lin(s". A" 2T8"), [Vl < 1}

This last formula has been used in [6], in dimension n = 2, as definition of minimal connection of the
singularities of g. Of course, the formula for L(u) makes sense for any function u € Wl'(B™ R?) N L.
Moreover, by the definition of T'(u) we readily obtain the following

Proposition 2.4 Let n > 2. We have:

(¢) L(u) < ullws (o) lull Lo (o) + Vol L2 o) for all we WEH(B™, R2) N L>;

o (
(d) if up,u € W;J(E",RQ) N L* are such that up, — u in WHl and |lup|le < C, then L(up) — L(u).

PROOF: Property (c) is trivial whereas, since

(T 6) = (T O < € ([ (96 = 0|96l + [ fun = ol [Vl [V d )

where C > 0 is an absolute constant, and the boundary term in (2.5) does not depend on uj;, or u, we have
|L(un) = L(w)| < C ([lun — ullwrapny + [[(un —u) Vul| g (n))
and (d) follows from the dominated convergence theorem. ]

FLAT NORM AND REAL MASS. The following property goes back to Federer [9].

Proposition 2.5 Let I' € Dy(B") and D € Dy1(B") be such that sptI’ ¢ B", sptD C B", and
0D =T, with M(D) < co. We have
Fgn(I') = m,(I).

PRrROOF: Trivially

Fgn(T) < sup{D(d¢) | £ € D*(B™), |d¢| <1 in B"} <M(D),

hence Fgn(I') < m,(I'). Conversely, consider the seminorm v(n) := supgn ||n|, for n € DF1(B"). By
means of the linear map ¢ — d¢ from DF (gn) to Dk+1(§"), we may regard I' as a linear functional T on
the subspace of exact forms in D¥+1(B"), endowed with the sup-norm. Of course, I'(d¢) < Fgn (T) v(d€)
for every £ € Dk(én). Therefore, by Hahn-Banach theorem, we can extend T to a linear functional S on



DF1(B™) such that S = I' on exact forms in D**1(B"), and such that S(n) < Fgn(T)v(n) for every
n € DF1(B™). Since &S =T and spt.S C B, we obtain the assertion. O

Now, taking k =n —2, T' =P(u) and D = (D(u) — D(p)), see (1.3), Proposition 2.5 yields
L(u) =m,(P(u)) VYue W:,’l(E",Sl).
Moreover, by Definition 1.1 we have
my(P(u)) < M(D(u) - D(¢)) -

Since (D(u) — D(g)) = (D(u) — D(p))L B", and by the definition of mass, for v = u, ¢,

—n 1
M(D(v)LB") = o sup{/’ vFwgt Ay 1y € DVYBMY, |y < 1}
Zn

1
< -

< 5 [ Iveld,

we conclude that
1 ~
L(u) = m-(P(u)) < o (/ |Vu| dx +/ [Vl dx) Vu€ Wéﬁl(Bn’ s, (2.7)
n B'Vl

FLAT NORM AND INTEGRAL MASS. By (1.7), on account of Definition 1.1, we also infer that
L(u) = my(P(u)) := inf{M(L) : L € Ru_1(B"), sptL C B", 0L = (—1)" P(u)} (2.8)

for every u € W;’l(fﬁ’”, S1). We thus obtain that for every n > 2 and u € Wé’l(én, S1) there exists an i.m.

rectifiable current L € Ry_1(B"), hence with finite mass, such that sptL C B and (—1)"0L = 21 T(u),
compare [6, Thm. 3] for the case n = 2.

We notice that in [1] it is proved that the converse holds true. More precisely, for any i.m. rectifiable
current L € R,,_1(B™), with spt L C B", there exists a function u € Wé’l(én, S1) such that (—1)"0L =
27 T'(u).

We also recall that by the boundary rectifiability theorem, see e.g. [25, Thm. 30.3], if L € Rn_l(én)

has boundary of finite mass, M(OL) < oo, then dL is an i.m. rectifiable current in R,_2(B™). Due to
(2.3) we thus obtain

Corollary 2.6 Let n>2 and u € W;’l(én, S1). The distribution T(u) is a measure of finite mass if and
only if the current P(u) is i.m. rectifiable in Ry_o(B™).

In the case n = 2, this yields the representation

M
T(u) =2m Z(éph, — 0N s
h=1

where dp is the unit Dirac mass at P and the sum is finite.

Finally, as a consequence of Proposition 1.6, by (2.8) we obtain the following link between the relaxed
energy & 1(u) and the minimal connection L(u).

Corollary 2.7 Let n > 2. For every u € Wé’l(E",Sl) and for Q= B"™ or B™ we have
Eﬁ(u,ﬂ) — / |Vu|dz =27 - L(u).
Q

Therefore, by (2.7) we conclude with the following:



Corollary 2.8 Let n > 2. For every u € Wé’l(E”,Sl) and for ) = B"™ or B™ we have

a:(u,Q)S/ |Vu|d:r+/ |Vu\dx+/ V| dz.
Q B Bn

In particular, if ¢ is constant on 0B™ we have

E11(u, B") < 2/ V| dz.

n

THE CASE WITH NO BOUNDARY DATA. In a similar way, we argue as follows. Let T' € Dy(B"), and
suppose that I" is the boundary in B™ of a (k+1)-dimensional current D € Dy (B"), i.e., (0D)L B™ =T,
with M(D) < oo. The flat norm of T' is defined by

Fpa (L) :=sup{T'(¢) | £ € D*(B"), [|d¢|| < 1}
Moreover, we denote respectively by

mipn(T) = inf{M(L) | L € Rps1(B"), (L)L B" =T}
my.pe(T) = inf{M(D)|D € Dp41(B"), (D)L B" =T}

the integral and real mass of T' in B™. Also, in case m; p»(I') < oo, we say that an i.m. rectifiable
current L € Ryy1(B™) is an integral minimal connection of T' allowing connections to the boundary if
(OL)LB™ =T and M(L) = m; g~ (I'). Similarly to Proposition 2.5, we have
FBn (F) - man (F) .
Taking k =n — 2, we now define for any n > 2
L(u) i= Fgn(Bw)),  ue WUI(B",SY),
so that we obtain

L(w) = 5 max{(T'(u),¢} | ¢ € Lip(B", A"*TB"), V(] <1}

Setting now
&1 (u) := inf {lihminf/ |Vup|dz @ {up} c CH(B™, S8, wu, —u a.e.} ,
— 00 Bn
we obtain for every u € Wh(B", S1)

g;(u) = /n |Vu| dx + 27 m; gn (P(u))

Vu|dz + 27 inf{M(L) : L € R,,_1(B"), (OL)L B" = (~1)" P(u)}.
o

Moreover, since

s

L{u) = o () = s o (P()) < o [ [Vulde,

we obtain that
Era(u) < 2/ Vuldz  YueWL(B",SY).

n

Finally, a statement analogous to Proposition 3.7 below holds true. In particular,

Eia(u) =E1(u) < G, €cart(B" x S') < T(u) =0 < L(u) =0
<= u belongs to the strong W1l-closure of C>°(B",S!).
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DISTRIBUTIONAL MINORS. Let G = (G!) be a (2 x n)-matrix, e.g., G = Vu for some u €
Whi(B™" R?). For 1 < i < j < n, we denote by G,; the (2 x 2)-submatrix obtained by selecting the
columns by ¢ and j. We will also denote by M; ;(G) its determinant

Mi’j(G) ;= det Gi,j .
We recall that the matriz of the adjoints of G; ; is defined by the formula

(adj Gy )i =G5,  (adjGij)} = —G7, (2.9)
(aCL] Gl,j)? = —G% s (adJ Gi,j)j = G;l . ’
Definition 2.9 Let v € WH1(B" R?) N L. The distributional minor of indices 1 <i < j <n of Vu is
defined by

2

Det Vi ju = L z( a‘;( (o) (0 T0)5)) + 5 (00 (0 T )

More explicitly, since G = V,u" if G =Vu, by (2.9) we have

1/ 0 0
Det Vm-u = (arz (uluQ — u2uij) aq;j (U,1U2 — UQU; ))
i.e., for every (¢ € Lip(B"),

(Det V; ju, () = —% ((u X Uy, ) Di¢ — (u X ug,) DjC) . (2.10)

In particular, if n =2 we infer that Det V1 ou = Det Vu, the distributional determinant of Vu. Moreover,
by (2.2) we also have that
T; i(u) =2Det V, ju.

Notice that if uw € W(B™, R?)NL> issmooth, then Det V; ;u coincides with the pointwise determinant

0
M; ;(Vu). In fact by (2.9) we have 6—((adj Vau); )+ ——((adj Vu); J) = 0, so that Laplace’s formulas
L4

ox
for h = 1,2 yield .
0 (.n ) Y 1 O (yh o yh = O o e U o
g ) (VD) + (0 (Pl = i (Pl + i (Vo)
+ uh (8x ((adj Vu)i,j)? + 87((3(1‘] Vu)i7j)?>
i J
= Mm—(Vu) .

Of course, if u € Lip(B™, S1), the area formula yields that M; ;(Vu) = 0.

Let now u € WH(B™",R?) N L> be such M; ;j(Vu) € L*(B™) for every i < j. Suppose in addition
that the boundary of the graph dG, has finite mass in B™ x R?, i.e., T'(u) is a bounded measure, compare
Corollary 2.6. With these hypotheses, in [21] it is shown that for every i < j the distributional minor
Det V; ju is a signed Radon measure with finite total variation, the density of its absolute continuous part
is equal to the pointwise determinant M; ;(Vu)

Det Vi,ju = MZJ(VU) -dL" + (Det Vm-u)s 5 (Det Vi’ju)s Lrcr 3 (211)

moreover, the singular part (Det V; ju)® is supported on a countably H"~?-rectifiable set, possibly with
unbounded ‘H" ?-measure. In particular, (DetV; ;u)® does not contain any Cantor type mass and, in
dimension n = 2, we have

(Det Vu)® Zch Th s cp, €R,

where the sum is possibly infinite, but satisfying Z i len| < oo. Finally, if n = 2, notice that if the boundary
0G,, has infinite mass, it may happen that the singular part of the distributional determinant is supported
on a Cantor-type set of Hausdorff dimension d €]0, 2], compare [13] [22].
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3 Lifting

In this section we extend to any dimension n > 2 a result from [6], proved in dimension n = 2, about the
interpretation of the minimal connection L(u) in terms of the L!-distance of the vector field u x Vu to the
class of gradient maps, where

U X VU= (U X Ugyy .oy X Uy, ). (3.1)

More precisely, we will prove in any dimension n > 2 the following
Theorem 3.1 For any u € W;’l(ﬁmsl) we have

1
L(u) = — i YVu — Dy|(B™).
(w) =5 et o lu x Vu — Dy[(B™)

In order to prove Theorem 3.1, we recall some results from [12] about the existence of a lifting of
currents in cart,(B™ x S*). To this aim we first recall, see [13], that the current subgraph of an L'-function
€ LY(B™,R) is the (n + 1)-dimensional current in D, 1(B™ x R) defined by

P(z) ~
Sy (6(w, t)da A dt) = / (/0 (1) dt) de, 6ecC®(B"xR). (3.2)

B
Moreover, in the sequel we will denote by 1 : B" xR — B" x S! the map
i(x,t) := (z,cost,sint),

and by G4, the current in DH(E" x S1) integration over the graph of the constant map go(z) = (1,0). In
[12], see also [13, Vol. II, Sec. 6.2.2], the following is proved:

Proposition 3.2 Let T € cartw(én x S1). The following facts hold:
i) There exists a current % € Dyyq(B™ x 1) such that

T -Gy = (—1)"0%. (3.3)

ii) There exists a function i € BV(E",R) such that ¥ =ix4S8Gy, i.e.,

T — Gy = (—1)"ix05Gy . (3.4)
In particular, M(90SGy) = M(T') + Lr(B") < co.

i) If ur € BV@(B”, S1) is the BV -function corresponding to T, then
up = e L"-a.e. on B". (3.5)
Remark 3.3 In [15] it is shown that for every u € BV, (B™,S') there exists a current T’ € cartw(én x Sh)
such that ur = u. As a consequence, from Proposition 3.2 we infer that every BV -function u € BV,(B", S
has a lift ¢ in BV (B",R). Notice that in general the lift of a W' !-function in W1!(B",S') is not a
Sobolev function in Wl’l(én, R), but only a BV -function. However, the existence of a lifting in the sense of
(3.5) is not very useful, even if up belongs to Wl'(B",S"). In fact, to recover homological and topological

properties from the lifting, the right condition is (3.4). As we shall see in Proposition 3.7 below, nice
properties are recovered if the lifting 1 is a Sobolev map ¥ € W11(B" R).

Remark 3.4 From (3.4) it readily follows that the area of the graph of ¢ is equal to the mass of T,
| VIFIOR da + |Du|(B) + 1DCw|(BY) = M(T),
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where V1), D74 and D% denote the approximate gradient, the jump part and the Cantor part of the
distributional derivative of 1, see e.g. [3] [13]. In particular, if ur belongs to the Sobolev class W1 (B", S'),

and L € Rn—1(§”) is given by (1.12), we have
|DY|(B™) = /~ |Vur|dz + 27 M(L).
B’!L

Remark 3.5 The formula (3.4) clearly yields that if ur € Wé’l(E”, S1), the derivative D1 of the lifting 9
has a null Cantor part. However, in general, the lifting v of a function v € Wé’l(gn, S1) is not a Sobolev
function in Wé’l(én, R), think for instance of n =2 and u(zx) := z/|z|. However, if the graph of u has no

inner boundary, i.e., if G, belongs to cart@(gn x S1), the existence of a lifting 9 € T/Vl’l(E"7 R) satisfying
(3.4) with T = G,, is provided. In fact, we have

Corollary 3.6 Let n > 2 and let u € W;’l(én,sl). Suppose that G, = 0 on D"(B" x SY), i.e.,
G, € cartw(gn x SY). There exists a function ¢ € WH(B",R) such that

Gy — Gqy = (—1)"i408Gy . (3.6)
Moreover, u=¢€" a.e. on B" and
Dy =V dL" = (u x Vu)dL",
where u x Vu is the L'-vector field given by (3.1).
Proposition 3.7 Let n > 2 and let u € Wé’l(é”,sl). The following facts are equivalent:

(a) Gy € cart<p(§" x S1);

(d) there exists a function ¢ € WHL(B™R) such that (3.6) holds and u = ¢ a.e. on B";
(€) u belongs to the strong Whl-closure of smooth maps in C:;O(E", S1).
The equivalence (b) <= (d) <= (e) was first proved in [7] for Sobolev maps in WP see also [5].
OPTIMAL LIFTING. Following [6], we finally consider the energy
E11(u, Q) :=inf{|DY|(Q) : ¥ € BV(ALR), u=¢" ae. onQ},
where Q0 = B" or B". Since () is simply connected, arguing exactly as in [6, Prop. 2] we obtain that
Eia(u,Q) =Ei(u,Q)  Yue WH(B", 8.
Therefore, by Corollary 2.7 we obtain that for every n > 2 and u € Wé*l(én, S
E11(u, Q) 7/Q|Vu|dz =21 - L(u).

Moreover, if ¢ is constant on 9B™, by Corollary 2.8 we have

E11(u, B") < 2/ Vu|dx .

n

13



In particular, since L(u) =0 <= T(u) =0, by Proposition 3.7 we infer that
VueW;’l(E”,Sl), a(u,ﬂ):/g|Vu|dx = Gu€cart¢,(§" x S,

PROOF OF THEOREM 3.1: We recall that for any u € W;;l(grﬂ S1) we have (1.15), see (1.14). This yields
for the integral mass
m;(u) = inf{M(Lr) | Gy + Ly x [S'] € 7.}, (3.7)

compare (2.8). Moreover, by Proposition 3.2, to any T € 7,, it corresponds a function ¥p € BV(E”,R)
such that B
Gu+ Ly x [S'] = Gy = (—=1)"i40SGy,  on D"(B™ x S*). (3.8)

Let w e ’D”(E” x S1) be given by w = m#wy A 7#wg1, where wy € D"‘l(E”) is given by

n

wo =Y (1) @)dat, 6= (¢",...,0") € CF(B"R). (3.9)

i=1
In the sequel we omit to write the action of the projection maps 7 and 7. Since

we ANufwgt = Z(—l)i_1¢icl/95\i A (utdu® — uPdu')
i=1

(—=1)nt Zd)i (u X ug, ) dz,
i=1

we have
Gulwy ANwgr) = /~ wg ANufwg = (—1)"* /~ (u x Vu, @) dx, (3.10)
B" Bn
whereas
Ly x [$'](wg Awg1) = Lr(wy) - [S* J(ws1) = 27 L (wg)
and

qu(w¢Aw51) =0. (3.11)

Moreover, since dwy = divdr and
i*d(wg Awgr) = i (dwy A wgr) = i (divp de Awgr) = dive dr A dt,

on account of (3.2) we have

Z‘#aSquT (w¢ ANwgt) = i#SG¢T (divo(x)dx A wgr)
= SGy,(divg(z)dz A dt) (3.12)
— [ divs(o) (br(o) ~ 0) do = ~(Dir.0).
B’V'L
By (3.8) we have thus obtained
(—1)" 27 Lp(wy) = [ (ux Vu,¢)dz — (Dipp,¢)  Vp e CZ(B",R").
Moreover, since T'= G, on (B"\ B") x S, we have Dipy = ¢ x Vo on B™\ B" and hence
1
M(Lr) := sup{Lr(wp) | [#lloc <1} = o—fux Vu — Dyr|(B").

In conclusion, by (3.7) and (2.8) we obtain the assertion. O
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PRrROOF OF COROLLARY 3.6: By Proposition 3.2 we find the existence of a function ¢ € BV(E’HR) such
that
Gy — Gy = (—1)"i405Gy ,

see (3.4). Taking w = 7#wy A THwg: € D"(B™ x S'), where wg is given by (3.9), using (3.10), (3.11), and
(3.12) we obtain that

/~ (ux Vu,¢)dx = (DY, ¢)  Vée C°(B",R").
B
Therefore, since u x Vu € L'(B™, R™), we obtain Dt = (u x Vu)dL" and hence the assertion. O

PROOF OF PROPOSITION 3.7: If (a) holds, then 0G,, = 0, hence by (1.2) we have P(u) = 0, which yields
T(u) = 0, by (2.3). Conversely, if T'(u) = 0, we have 0G, = 0, and hence (a) <= (b). The equivalence
(a) <= (c) is a trivial consequence of definition (2.4). If (a) holds, we obtain (d) by Corollary 3.6. If (d)
holds, and {14}, C C°°(B™,R) is such that ¢, — ¢ strongly in W1, with ¢ = ¢» on B"\ B" for
any h, setting u; := e'¥* we clearly have {u,} C C:ZO(E”,Sl) and u, — u strongly in W1(B" R2).
Finally, if (d) holds, since by Stokes theorem 0G,, =0 on D”*I(E" x S1) if wy, is smooth, and the strong
Wl convergence yields the weak convergence G, — G, in the sense of currents in D, (B" x S1), we find

that dG, =0 on D"~ 1(B" x §'), ie., G, € cart,(B" x S). O

4 Examples

THE CASE n = 2. Let ax := (0,41/2) and consider the W'l-maps

W) = o (o) w(‘) |

)
T — ayl

where 1 : ST — S is given by 9¥(y1,92) := (y1,—¥2). Since ui has degree 41, we may and do find a
smooth Whl-map ¢ : (EZ \ (B(ay,1/4) U B(a_,1/4)) — S! satisfying

Plapz = (1,0),  @oB(as,1/4) = Ut PlaB(a_,1/4) = U -
Define u: B° — S by
up(z) if  |x—aq] <1/4
(

w(z):=< u_(x) i |z—ay|<1/4
#(x)  elsewhere on B2

and set u = ¢ = (1,0) in B2\ B2, so that u € W$’2(§27Sl).
Remark 4.1 For future use, we also may and do define ¢ so that
—2

u(zy, —x2) = u(x1,x2) V(z1,22) € B .

Following Sec. 3.2.2 in [13, Vol. I], we have
8G, L B? x §* = (8, — 3., ) x [S'].

This yields that

g;(mgg) = / |Du|dx + 27 lay —a—]|.

B2

In fact, the current T of minimal mass in cart(p(g2 x S1) satisfying ur = u is given by

T:=G,+[a_,ay]x[S"],
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where [a_,ay] is the l-current integration on the positively oriented segment connecting a_ to ay, so
that d[a—,a+] = 04, — dq_. Moreover, see (1.13), we have

ay
P(u) = da, — 6a_, T(u) =27 (6ay — 0a_), L(u) = lay —a—|.

THE CASE n > 3. If n =3, define u : B’ = S as the Whlmap given by the rotation on the z-axis

of the map defined as in the case n =2 on the 2-disk B ~B'n {z3 = 0}. By induction on the dimension
n, define u: B" — S' as the Whl-map given by the rotation on the xi-axis of the map defined as in the

case n — 1 on the (n — 1)-disk B ' ~B"n {zn, = 0}. By Remark 4.1, in the case n = 3, and by the
inductive argument, we infer that w is smooth outside the (n—2)-sphere A := {z € B" | 1 =0, |2| = 1/2}.
Moreover, setting again u = ¢ = (1,0) in B™\ B", this time we have

G, _B" x S' = —[A] x [5'],
where [A] € R,—2(B"™) is the (n — 2)-current integration on the (n — 2)-sphere A, oriented in the natural
way. Notice that O[] A] = 0. Moreover, we have

£ (u, B") :/ \Duldz + 20 H"=(D)

n

where D := {x € B" | 1 = 0, |x| < 1/2}. In fact, the current T of minimal mass in cartw(gn x S1)
satisfying up = u is given by
T:=G,+[D]x[S'],

where [ D] is the (n—1)-current integration on the positively oriented (n—1)-disk D, so that [ D] =[A].
Finally, according to (1.13), we have

P(u) = (-)"[A],  T()=(-D"2r[A],  L(u)=H""(D).

5 The relaxed energy of WlP-maps into S!
Let p>1 and u € W;vp(én,sl), where
1p/pn Qly . 1p/pn o2\ . _ s opn _ : nn\ /"
WoP(B",S7) == {ue W"P(B",R?) : Ju(z)| =1ae. in B", u=¢ in B"\B }.

We now briefly discuss the relaxed W'P-energy, defined for u € W;’p (E", S1) by

h—o0

é;,(u) =: inf{liminf ~|Vup|Pdx s {up} C C;(E",Sl), Up — U a.e.} .
B7l
It is well-known that

p>2 = éTp(u):/~ |Vul? dx VuGW;’p(E”,Sl).

n

This property follows from standard argument for p > n and by Schoen-Uhlenbeck density theorem [24] in
the critical case p = n. Since the higher order homotopy groups of the 1-sphere are all trivial, 7;(S') =0
for all 4 > 2, this property follows from Bethuel’s theorem [4] in the case 2 < p < n.

We now prove the following

Theorem 5.1 Let 1 <p <2 and u € Wé’p(én,sl). Then

Erp(u) = /§n|v“|pd“7 if T(u) =0
+oo if T(u)#0

where T(u) is given by Definition 2.1.
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This answers the Open Problems 1 and 2 stated in [6].

Notice that in [7] it is proved that for 1 < p < 2 a Sobolev map u € Wé’p(E",SI) can be strongly
approximated in WP by a smooth sequence in C’j,(é", S1) if and only if T'(u) = 0. Therefore, we obtain
that for every p > 1 a map in Wé’p(B”, S1) belongs to the sequential weak WP-closure of smooth maps,
ie., g;,(u) < 00, if and only if it belongs to the strong W' P-closure of smooth maps from B" into S'.

This is false in the case p = 1. In fact, by Proposition 1.6 we know that Elvl(u) < oo for every

u € W;’l(én, S1), whereas u belongs to the strong W!!-closure of smooth maps from B" into S' if and
only if T'(u) = 0.

PROOF OF THEOREM 5.1: Assume that g;,(u) < oo and let {up} C C’é(é",Sl) be a smooth sequence
satisfying sup, ||un|lwir < 0o and up, — u € Wé’p(gn, S1) a.e.. Possibly passing to a subsequence, by [13]

we infer that G, weakly converges in D, (B™ x §1) to some current T’ € cart,(B" x S1) satisfying (1.12).
Let £ be a compact subset of set(L), the set of points of L which have non-zero density, £ with positive
H" l-measure. For any x € £ we denote by I, the intersection with B™ of the straight line containing
x and orthogonal to the approximate tangent (n — 1)-space to £ at . Since £ is compact, for H" !-a.e.
x € L, the 1-dimensional restriction of G, to I, is a sequence of graphs of smooth functions wuy;, with
equibounded W'P-energies. For any z1,xs € I, let [z1, 23] denote the line segment with end points z1, 5.
Now, in dimension one, if p > 1 the Holder inequality yields

1/p _
/ Vuups, | dHE < ( / Vuuns, |de1> oy — o'V < Ol — VP
[ZL’l,JL’Q] [$15I2

where C is an absolute constant, depending on the uniform upper bound for the energies |, 1 NVuy, P dH*.
This is in contradiction to the fact that, by a slicing argument, the 1-dimensional currents Gy, , have to
converge “near” the point = to the graph Gu‘ ,, of the restriction w7, plus a vertical part of the type

8z % [S*]. In conclusion, we have shown that if T'(u) # 0, then %(u) = +o00. The assertion follows from
[7], see also [5]. O

6 The relaxed energy of W!%-maps into S2

In this section we collect a few remarks about the Dirichlet energy of W2 maps with values into S2, the
unit sphere in R3. Let ¢ : B" — S? be a given smooth W'2-function. For X := W12, WP (C! or BV,
we set

X, (B",S?%) = {ue X(B",R®) : |u(z)| =1ae in B", u=¢ in B"\B"}.
Similarly to Sec. 1, if u € Wé*z(én, $2), the i.m. rectifiable current G, € R,,(B™ x $2) is defined in an
approximate sense by (1.1). Moreover, if n > 3 we define the (n — 3)-current P(u) € D,_3(B™) by

1 1
P(u) (o) := EﬁGu(%#wSQ AT P) = o /gn uFwg2 Ado (6.1)

for every ¢ € D"3(B™), where wg2 is the volume 2-form on S% C R3,
wgz = yldy?® A dy® + y2dy® A dyt + y3dyt A dy?,

and the (n — 2)-current D(u) € D,,_2(B™) by
1 - 1
D(“)(’Y) = EGu(ﬂ-#wS? A 7T#’Y) = e /gn U#wsz Ny

for every € D"2(B™). Again we have that sptP(u) C B", dP(u) = 0 and (1.3) holds true. For Q = B"
or B™, denote by

1 ~
D(u, Q) = /Q|Vu|2d:1:, uwe Wi*(B", 8%,
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the Dirichlet energy of u and consider the relazed W1 2-energy
D(u, Q) := inf {lihminfD(uh,Q) s {un} C C’;(E",Sz), up, — U a.e.} .
—00

Moreover, we let
cart,(B" x §%) := {T € cart(B" x R®) | spt T € B" x §, T =G, in (B"\B") x §?}.

As in Sec. 1, to any T € cartw(én x S§%) we can associate a function ur € BVW(E", S?) such that (1.10)

and (1.11) holds true. In particular, if the corresponding BV-function u belongs to W2 (B™, 52), we infer
that
T=G,+Lx[S*], (6.2)

where this time L € R,,_2 (E")7 with M(L) < co and spt L C B". Moreover, the null-boundary condition
OT = 0 applied to the forms w = 77 ¢ A T#wg: for some ¢ € D"~3(B"), yields that
1 ~
OL(9) = —1-GulF*uss A m#ds) = —P(u)(9).
Therefore, L satisfies the boundary condition
OL = —P(u) (6.3)

and, conversely, if L is an i.m. rectifiable current in Rn_z(én) with spt L C En, hence with finite mass,
satisfying (6.3), the corresponding current (6.2) belongs to the class cart,(B™ x S?). Finally, denote

T.,={T ¢ cart@(g” x S?) | up = u}, u € W;’2(§"752) , (6.4)
so that we have
T, ={Gu+Lx[S?] : LeR,_»(B"), sptL C B", 0L = —P(u)}.
The following density result was proved in [14].
Theorem 6.1 Let n > 3 and let T € car%(é" x S?) satisfy (6.2) for some u € W;VQ(E",SQ). There
exists a smooth sequence {uy} C CL(B",S?) such that Gy, —T as h — oo weakly in D,(B™ x 5?) and

Jim D(up, B") = D(T) := D(u, B") + 47 M(L) .

Remark 6.2 We notice that by (1.3) we have m,.(P(u)) < oo, more precisely

m,(P(u)) < C (/ |Vu|2dx+/ |V<p|2dx) Vue Wh?(B", 8%,
n BTL

where C' > 0 is an absolute constant, compare (2.7). Also, in the case of dimension n = 3, as a consequence
of [4] one sees that P(u) is an integral flat chain, thus by (1.7) we conclude again that the integral mass
m;(P(u)) is finite for every u € W;’Q(E?’, S?%). This is not trivial, if n > 4. In fact, in [1] it is proved that
for any i.m. rectifiable current L € R, _o(B™), with spt L C B", there exists a function u € Wé’z(én, S?)
such that 0L = —4m P(u). Therefore, on account of the counterexamples from [20] and [27], we infer that
if n >4, there exist Sobolev maps u € W;’Q(E", S?) such that

my(P(u)) < mi(P(u)).
However, we have

Proposition 6.3 For any n >3 and u € W;’Q(E",SQ) the class T, is non-empty. As a consequence, the

integral mass m;(P(u)) < oo and the relazed energy D(u,Q) < co.
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PROOF: Denote by (B” S52) the set of all the maps u € W} 2(B", §%) which are smooth except on a
singular set X(u) of the type (1.16), where this time ¥; is a smooth (n — 3)-dimensional subset of B" with
smooth boundary, if n > 4, and ¥; is a point if n = 3. Let {up} C R w(B" S?) be such that up, — u
strongly in W12 see [4]. By the "smoothness” of wuy, arguing as in [26] see [2] for the case n = 3, we
obtain that the integral mass

mi(B(un) < - (D(un, BY) + D(p, B")) < 0.

Let now T}, := G, + Ly x [ S?], where L, € Rn_g(én) is such that sptL, C B", dL;, = —P(up), and
M(Lp) < mi(P(un)) + 1/h. The sequence {T},} belongs to cart, (B™ x $2) and has equibounded Dirichlet
energies, sup, D(7}) < oo. By closure-compactness, and since the Dirichlet energy T +— D(T) is lower
semicontinuous with respect to the weak convergence as currents, possibly passing to a subsequence we
obtain that Tj, — T weakly in D, (B™ x $2) to some T € cart (B” x S?) with D(T) < co. As up, — u
strongly in W2 we infer that T' € 7,,, whence m;(P(u)) < oo. Finally7 since 7, is nonempty, on account
of Theorem 6.1 we readily conclude that D(u, Q) < occ. O

In particular, for every n > 3 the class W;’Q(f?”, S?) agrees with the weak sequential closure of smooth

maps in Wé*Q(E", S?), see [23] for a more general result.

Remark 6.4 We point out that the strong W2-convergence of ”smooth” sequences {uy} C Rg?w(én, S?)
yields that M(D(up) —D(u)) — 0 and hence, by (1.3), that the real mass m,(P(uz) —P(u)) — 0. However,
see Remark 6.2, differently to what happens for maps in W(;’l(f?", S1), a part from the easier case n = 3,
this does not yield that the integral mass m;(P(up) — P(u)) — 0. This is one of the crucial points in the
proof of Theorem 6.1.

As a consequence, from the above results we readily obtain the following representation.

Proposition 6.5 For any n >3 and u € Wé*Q(E", S2), the relaved energy is given by

D(u, ) inf{D(T) | T € T,}
= D(u,Q) +4r inf{M(L) : L € R,_o(B"), sptL C B", OL = —P(u)}

= D(u, Q) +4mm;(P(u)) .

Arguing as in [26], we finally obtain
Corollary 6.6 For any n >3 and u € Wé’Q(E",S2), we have
D(u,) < D(u,Q) + D(u, B") + D(p, B").
In particular, if ¢ is constant on OB™ we have
D(u, B") < 2D(u, B").
THE RELAXED W'P-ENERGY. Let us finally consider the case p > 2, and introduce the relaxed

WLP_energy of maps u in Wé’p(én, S?), given by

a;(u) = inf{hmmf/~ [Vup|Pdex @ {un} C Ci,(é”,Sz), Up — U a.e.} .

h—oo

In [16] it is shown that if p is not an integer, p ¢ Z, a map in lep(B” S?) belongs to the sequential
weak WP closure of smooth maps if and only if it belongs to the strong WtP_closure of smooth maps from
B™ into S2. Moreover, if 2<p <3 and u € Wl’p(B” S?), arguing as in Theorem 5.1 we infer that

E1p(u) = / Vul?dzif P(u) =0
+oo if P(u) #£0
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where P(u) is given by (6.1).

However, if p = 3, the situation is totally different from the one about the relaxed energy of Sobolev

maps into S!, see the previous section. This is due to the fact that the higher order homotopy groups of
the 2-sphere are not all trivial, e.g., m3(S?) = Z. If h: S® — S? is the Hopf map, namely the one that
generates the third homotopy group of S2, and u : B* — S? is given by u(zx) := h(x/|z|), then u belongs
to WhP(B*,82) for every p < 4 and the graph of u has no interior boundary, i.e., G, B* x §% = 0.
In particular, P(u) = 0. However, the topological singularity at the origin is relevant, even if it cannot be
treated by means of a homological theory as above, compare [18].
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References

(1]

2]

8l

(4]

(14]

(15]

(16]

ALBERTI G.,. BALDO S., Orlandi G., Functions with prescribed singularities. J. Eur. Math. Soc. 5 (2003),
275-311.

ALMGREN F.J., BROWDER W., LIEB E.H., Co-area, liquid crystals, and minimal surfaces. In Partial Dif-
ferential equations, Springer Lecture Notes in Math. 1306 (1988) 1-22.

AMBROSIO L., FUSCO N., PALLARA D., Functions of bounded variation and free discontinuity problems.
Oxford Math. Monographs, Oxford (2000).

BETHUEL F., The approximation problem for Sobolev maps between manifolds. Acta Math. 167 (1992) 153~
206.

BETHUEL F., CORON J.M., DEMENGEL F., HELEIN F.; A cohomological criterium for density of smooth
maps in Sobolev spaces between two manifolds. In Nematics, Mathematical and Physical Aspects, edited by
Coron J.M., Ghidaglia J.M., Helein F., NATO ASI Series C, 332, pp. 15-23. Kluwer Academic Publishers,
Dordrecht (1991).

BREZIS H., MIRONESCU P., PONCE A., W '-maps with value into S*. Geometric Analysis of PDE and Sev-
eral Complex Variables (S. Chanillo, P. Cordaro, N. Hanges and A. Meziani, eds.), Contemporary Mathematics,
368. American Mathematical Society, Providence, RI (2005), 69-100.

DEMENGEL F., A characterization of maps in Wl’p(BN, S') that can be approximated by smooth maps, C.
R. Acad. Sci. Paris Sr. I Math. 310 (1990), 553-557.

FEDERER H., Geometric measure theory. Grundlehren math. wissen. 153. Springer-Verlag, New York (1969).
FEDERER H., Real flat chains, cochains and variational problems. Indiana Univ. Math. J. 24 (1974), 351-407.
FEDERER H., FLEMING W., Normal and integral currents. Ann. of Math. 72 458-520, (1960).

GIAQUINTA M., MODICA G., SOUCEK J., Cartesian currents and variational problems for mappings into
spheres. Ann. Sc. Norm. Sup. Pisa 16 393-485, (1989).

GIAQUINTA M., MODICA G., SOUCEK J., Variational problems for maps of bounded variations with values
in S*. Cale. Var. 1 (1993) 87-121.

GIAQUINTA M., MODICA G., SOUCEK J., Cartesian currents in the calculus of variations, voll. I, II. Ergeb-
nisse Math. Grenzgebiete (III Ser), 37, 38, Springer, Berlin (1998).

GIAQUINTA M., MUCCI D., Density results relative to the Dirichlet energy of mappings into a manifold.
Preprint Univ. Parma (2005). To appear on Comm. Pure Appl. Math.

GIAQUINTA M., MUCCI D., The BV-energy of maps into a manifold: relaxation and density results. Preprint
Univ. Parma (2005).

HANG F., LIN F., Topology of Sobolev mappings III. Comm. Pure Appl. Math. 56 no. 10 (2003), 1383-1415.

20



[17] HARDT B., PITTS J., Solving the Plateau’s problem for hypersurfaces without the compactness theorem for
integral currents. In Geometric Measure Theory and the Calculus of Variations, edited by Allard W.K. and
Almgren F.J.. Proc. Symp. Pure Math. 44. Am. Math. Soc., Providence (1996), 255-295.

[18] HARDT B., RIVIERE T., Connecting topological Hopf singularities. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5)
2 no. 2 (2003), 287-344.

[19] IGNAT R., The space BV (S?;S'): minimal connections and optimal liftings. Annales de UInstitut Henri
Poincaré. Analyse Non Linéaire 22 n. 3 (2005), 283-302.

[20] MORGAN F., Area minimizing currents bounded by multiples of curves. Rend. Circ. Mat. Palermo, 33, (1984)
37-46.

[21] MUCCI D., Fractures and vector valued maps. Calc. Var. 22, (2005) 321-420.

[22] MULLER S., On the singular support of the distributional determinant. Ann. Inst. H. Poincaré Anal. Non
Linéaire 10 (1993) 657-696.

[23] PAKZAD M.R., RIVIERE T., Weak density of smooth maps for the Dirichlet energy between manifolds. Geom.
Funct. Anal. 13 223-257 (2001).

[24] SCHOEN R., UHLENBECK, K., Boundary regularity and the Dirichlet problem for harmonic maps. J. Diff.
Geom. 18 (1983) 253-268.

[25] SIMON L., Lectures on geometric measure theory. Proc. of the Centre for Math. Analysis, Vol 3, Australian
National University, Canberra, (1983).

[26] TARP-FICENC U., On the minimizers of the relaxed energy functionals of mappings from higher dimensional
balls into S?. Calc. Var. 23 (2005) 451-467.

[27] WHITE B., The least area bounded by multiples of a curve. Proc. Am. Math. Soc. 98 (1984) 230-232.

M. GIAQUINTA: SCUOLA NORMALE SUPERIORE, P1AzzA DEI CAVALIERI 7, I-56100 PisA,
E-MAIL: GIAQUINTAQSNS.IT

D. Muccr: DIPARTIMENTO DI MATEMATICA DELL'UNIVERSITA DI PARMA, VIALE G. P. USBERTI 53/A,
1-43100 PARMA, E-MAIL: DOMENICO.MUCCIQUNIPR.IT

21



