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1 Introduction

After an initial development of a strategy for proving the log-Sobolev inequality
for infinite dimensional Hörmander type generators L symmetric in L2(μ) defined
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with a suitable nonproduct measure μ ([22], [18], [20], [19]), one can envisage an
extension of the established strategy (see e.g. [25]) for proving strong pointwise
ergodicity for the corresponding Markov semigroups Pt ≡ etL, (or in case of the
compact spaces even in the uniform norm as in [14] and references therein). Still
to obtain a fully fledged theory, which could include for example configuration
spaces given by general noncompact nilpotent Lie groups other than Heisenberg
type groups, one needs to conquer a (finite dimensional) problem of sub-Laplacian
bounds (of the corresponding control distance). Unfortunately this is a VP-hard
problem which will likely stay with us for more than quite a while. The other
motivation for our work comes also from a desire to get a strategy for studying
Markov semigroups of the above mentioned type which are not symmetric with
respect to some a priori given reference measure in cases where the underlying
configuration space is infinite dimensional and noncompact. In finite dimensions
an interesting analysis in the L2 framework with respect to a reference measure
in particular involving the long time behaviour was provided in [24]. In a num-
ber of recent works an interesting progress has been made in understanding the
sub-gradient bounds on finite dimensional sub-Riemaniann manifolds provided by
compact and noncompact Lie groups. Many of the related works (as e.g. [9], [10],
[23], [16] see also references therein) are heavily based on complicated stochastic
analysis methods with sharp results obtained for Heisenberg type groups. Another
insight and complementary understanding were achieved via a more analytic route
one can find in [3] and [21] ([18]). In particular such bounds involving the length
of the sub-gradient offer a nice way of getting smoothing and spectral properties
as well as other interesting features coming from related entropy bounds for the
heat kernel. In [4] an analog of the Orstein-Uhlenbeck processes was proposed
and studied with the drift term provided by the logarithmic derivative of heat
kernels on groups with some general theory involving L2 subgradient bounds and
a related Poincaré inequality. In [5] some stochastic analysis (in a Hilbert space
along ideas [8]) is studied for certain infinite dimensional models of financial math-
ematics. The analysis there concentrates however on hypoellipticity aspects. For
some other directions involving a hypoellipticity theme in infinite dimensions see
e.g. also [6], [15] and references therein.
In this paper we construct and study Markov semigroups on infinite dimensional
spaces provided for example as an infinite product of noncompact Lie groups (as
e.g. nilpotent free groups), and formulate an effective condition for their expo-
nential ergodicity in supremum norm. Our main tool is provided by a complete
gradient bound, where the square of the gradient (or subgradient) is replaced by
similar objects but with a family of fields which is closed with respect to taking
commutators with the fields appearing in the definition of our Markov genera-
tor. We assume that our theory is furnished with some natural dilation operator
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which when included in the generator with sufficiently large coefficient assures the
exponential dumping. The use of a complete gradient, while it may not provide
us with smoothing information, it proves to be very effective when the long time
behaviour is concerned, giving also some extra information about the equilibrium
measure. In a finite dimensional setup it provides an alternative view to [4]. On
the other hand in a general situation when working in infinite dimensions we have
no a priori reference measure and so no natural L2 approach can be used.
The organisation of the paper is as follows. In section 2 we present the general
framework with a number of simple examples, presenting a general idea in finite di-
mensions. In section 3 we construct a Markov semigroup in an infinite dimensional
setup proving a strong approximation property (or as it is sometimes called a finite
speed of propagation of information). This approximation is later used together
with square of the (complete) gradient bounds to obtain the exponential decay
to equilibrium in the supremum norm for a large class of initial configurations.
Finally we conclude with a Poincaré type inequality with complete gradient form
which allows us via general arguments to obtain exponential moments estimates
for suitable (generalised) Lipschitz variables.

2 Finite-dimensional case

Consider smooth vector fields X1, . . . , XM on RN , satisfying the Hörmander con-
dition with step K > 1. For n ≥ N, by (Zk)

n
k=1 we denote an adapted family of

fields, containing a basis for the related sub-Riemannian geometry. So Zk = Xk,
for k = 1, . . . ,M, while the remaining ZM+1, . . . , Zn are ordered commutators of
length between 2 and K.
For m ≤ M , we consider the following operator:

L := L + LG + Lα

L :=
m∑

i=1

X2
i − βD

LG :=
m∑

i,j=1

Gi,j(x)XiXj

Lα :=
m∑

i=1

αi(x)Xi

(1)

where β ∈ (0,∞) is a constant, D is a first order dilations generator satisfying

esDZke
−sD = esλkZk and [Zk, D] = λkZk for some λk > 0, (2)
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for k = 1, .., n, and α(x) = (α1(x), . . . , αm(x)) is a smooth function, while G(x) =(
Gi,j(x)

)m
i,j=1

is an m × m-matrix, satisfying, for any x ∈ RN ,

G∗(x) + I > 0, with G∗
ij(x) ≡

1

2
(Gij(x) + Gji(x)) , (3)

where I is the m × m-identity-matrix.
Let us introduce the following condition on the geometry of the vector fields:

∃ ckjl ∈ R such that [Zk, Xj ] =
n∑

l=1

ckjlZl, (4)

for any k = 1, . . . , n and j = 1, . . . ,m.

Remark 2.1. Note that condition (4) is stronger than the Hörmander condition
which implies a similar expression, but in general with non-constant coefficients
ckjl.

Example 2.2. Here we give some examples of sub-Riemannian geometries which
fit in the above framework and where condition (4) holds:

(1) The Heisenberg group: X1 = (1, 0,−y
2
)T and X2 = (0, 1, x

2
)T on (x, y, z) ∈ R3.

In this case Z1 = X1, Z2 = X2 and Z3 = Z := [X1, X2] = (0, 0, 1)T . The family
{Z1, Z2, Z3} forms a basis for the Lie algebra (here n = N). One can calculate
that ckjl = 0 for any (k, j, l) 6= (1, 2, 3) ∨ (2, 1, 3) while c123 = 1 and c213 = −1.

(2) The Grušin plane: X1 = (1, 0)T and X2 = (0, x)T on (x, y) ∈ R2. In this
case Z1 = X1, Z2 = X2 and Z3 = Z := [X1, X2] = (0, 1)T and ckjl = 0 for any
(k, j, l) 6= (1, 2, 3) ∨ (2, 1, 3) while c123 = 1 and c213 = −1. The family {Z1, Z2, Z3}
contains a basis for the Lie algebra, given by {Z1, Z3}.

(3) The Martinet distribution: X1 = (1, 0,−y2)T and X2 = (0, 1, 0)T on (x, y, z) ∈
R3. In this case Z1 = X1, Z2 = X2, Z3 = Z := [X1, X2] = (0, 0, 2y)T and Z4 =
[Z,X2] = (0, 0,−2)T . Then ckjl = 0 for any (k, j, l) 6= (1, 2, 3) ∨ (2, 1, 3) ∨ (3, 2, 4)
while c123 = c324 = 1 and c213 = −1.

Note that the last example (Martinet distribution) is a step 3 distribution while all
the others are step 2, and it is the easiest sub-Riemannian geometry where normal
geodesics occur.

For smooth functions f , we define

Γ(f) :=
n∑

k=1

|Zkf |
2, (5)
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which we call the complete gradient form (as opposed, for example, to the sub-
gradient of a Lie group). Note here that in general it may be convenient later to
include more fields Zk than it would be necessary just to span the tangent space
at any given point. The corresponding quadratic form is given by

Γ(f, g) =
n∑

k=1

(
Zkf

)(
Zkg

)
.

2.1 Associated Stochastic Differential Equation

Here we want to write the Stochastic Differential Equation having the operator L
as generator. The SDE has the general form

dξ(t) = μ(ξ(t))dt + A(ξ(t)) ◦ dW (t),

where μ(ξ(t)) ∈ Rn is the so called drift part while A(ξ(t)) is a N × m matrix,
W is an m-dimensional Brownian motion and by ◦ we mean the Stratonovich
differential.
It is known that, given a second-order differential operator, it is possible to find
a SDE having such an operator as generator, whenever the second-order part can
be expressed as trace. In general the first-order part of the operator is related
to the drift-part (i.e. the deterministic part of the SDE) while the second-order
part is related to the stochastic part of the equation. In particular, the stochastic
part has to be written as a Stratonovich differential whenever there is an explicit
dependence on the space. We also recall that the Stratonovich differential can be
always written in Itô formulation as follows:

A(ξ(t)) ◦ dW (t) = A(ξ(t))dW (t) +
m∑

i=1

∇AiAi(ξ(t)) dt, (6)

where Ai are rows of the matrix A and ∇AiAj is the derivative of the vector field
Aj along the vector field Ai, for any i, j. Our operator can be written as

L =

(
m∑

i=1

X2
i +

m∑

i,j=1

Gi j(x)XiXj

)

+

(
m∑

i=1

αi(x)Xi − βD

)

=: L
II-order

+ L
I-order

.

Note that to write the associated SDE, we do not need any assumption on D while
we need to assume condition (3).
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We denote by σ(x) the n×m matrix whose rows are the vector fields X1(x), . . . , Xm(x).
We first write the drift part which comes from the first-order part of the operator,
that is, for any smooth function f ,

L
I-order

f =
m∑

i=1

αi(x)Xi(f) − βD = αT (x)σT (x)∇f − βDT∇f.

Note that σT (x)∇f =: DXf is the horizontal gradient of f (or to be more precise
is the coordinate-vector of the horizontal gradient X f written in the basis of the
vector fields X1, . . . , Xm). The drift part for the associated SDE is:

μ(ξ(t)) = α(ξ(t))σ(ξ(t)) − βD(ξ(t)).

Now we want to write explicitly the stochastic part of the equation. Let us first
assume that G is symmetric (i.e. G = G∗ ) and introduce

B(x) :=
√

I + G(x),

where I is the m × m-identity-matrix. Note that B = (Bij)
m
i,j=1 is well-defined

since I + G is symmetric and we have assumed condition (3). We are going to
show that

L
II-order

:=
m∑

i=1

X2
i +

m∑

i,j=1

Gi j(x)XiXj

is the generator of

dξ(t) = σ(ξ(t))B(ξ(t)) ◦ dW (t) =

(
m∑

i,j=1

Bj i(ξ(t))X
l
j(ξ(t)) ◦ dWi

)N

l=1

=
m∑

i=1

Yi ◦ dWi,

with Wi the standard Brownian motion and denoting Yi :=
∑m

j=1 Bj iXj . It is
known (see e.g. [12], [11]) that the generator of the stochastic equation dξi =
Yi ◦ dWi is given by

∑
i Y

2
i , so we rest just to calculate it:

∑

i

Y 2
i =

∑

i

(
∑

j

BijXj

)2

=
∑

i

∑

lm

BilXlBimXm =
∑

lm

∑

i

BilBilXlXm

=
∑

lm

(B Bt)lmXlXm.

Using the fact that G is symmetric, we get
∑

i

Y 2
i =

∑

lm

(B2)lmXlXm =
∑

lm

(I + G)lmXlXm =
∑

l

X2
l +

∑

lm

GlmXlXm

= L
II-order

.

6



Therefore, under the assumption that G is symmetric (and so is B), the associated
SDE is

dξ(t) =
(
α(ξ(t))σ(ξ(t)) − βD(ξ(t))

)
dt + σ(ξ(t))

(
I + G(ξ(t))

)
◦ dW (t). (7)

Let us now see what happens when the matrix G is not symmetric. Note that

∑

i,j

GijXiXj =
∑

i,j

(
Gij + Gji

2

)

XiXj +
∑

i,j

(
Gij − Gji

2

)

XiXj

≡
∑

i,j

G∗
ijXiXj +

∑

i,j

GaSym
ij XiXj .

Since for GaSym, the antisymmetric part of G, we have

∑

i,j

GaSym
ij XiXj =

1

2

∑

i,j

GaSym
ij [Xi, Xj],

therefore the antisymmetric part of G gives an extra first order part (i.e. an extra
term in the drift part) depending on the commutators. Thus, under assumption
(3), the SDE associated to the operator L is

dξ(t)=

{

α(ξ(t))σ(ξ(t)) − βD(ξ(t))+
1

2

m∑

i,j=1

GaSym
ij

[
Xi(ξ(t)), Xj(ξ(t))

]
}

dt

+ σ(ξ(t))
(
I + G∗(ξ(t))

)
◦ dW (t). (8)

Remark 2.3. Without assumption (3) the II-order part of the operator cannot be
written as a trace and therefore is not a generator of a stochastic process. The
same condition will arise in order to find an exponential decay for the semigroup
associated to the operator.

2.2 Existence of a limit measure

Let (Pt)t≥0 denote the semigroup generated by L, where L is given by (1). We
show that one can extract a subsequence (Ptk)

∞
k=1 which converges weakly to a

probability measure on RN . Here and in the sequel we use the notation d(x) =
d(x, 0), where d is a metric on RN .

Lemma 2.4. Let ρ be a smooth function such that ρ(x) = 0 for d(x) < 1 and
ρ → ∞ as d(x) → ∞. Assume

1.
∑m

i=1 X2
i ρ +

∑m
i,j=1 GijXiXjρ ≤ C1
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2.
∑m

i=1 |Xiρ|2 ≤ C2

3. Ptρ ≤ c1PtDρ + c2

for some constants C1, C2, c1, c2 > 0. Then there exists a constant K ∈ (0,∞)
such that Ptρ ≤ K for all t > 0.

Proof. We have

∂tPtρ = PtLρ

= Pt

m∑

i=1

X2
i ρ − βPtDρ + Pt

m∑

i=1

αiXiρ + Pt

m∑

i,j=1

GijXiXjρ

≤ C1 −
β

c1

Ptρ −
c2β

c1

+ max
i

‖αi‖∞
√

nC2

using our assumptions. Integrating this inequality we get

Ptρ ≤ e−ηtρ +
β

c1η

(
1 − e−ηt

)

with η = C1 −
c2β
c1

+ maxi ‖αi‖∞
√

nC2, which is bounded for all t > 0.

Remark 2.5. The first two assumptions of Lemma 2.4 can be relaxed to

1.
∑m

i=1 X2
i ρ +

∑m
i,j=1 GijXiXjρ ≤ C1ρ + C̃1 and

2.
∑m

i=1 |Xiρ|2 ≤ C2ρ + C̃2

respectively, for some constants C1, C̃1, C2, C̃2 > 0, at the expense of having to take
β large enough to ensure that the coefficient of Ptρ in the proof is negative.

The function ρ can be thought of as a cut-off of an appropriate distance function.

Example 2.6. We illustrate this in case of a Lie group of Heisenberg type G =(
Rm+l, ◦, δλ

)
, with left-invariant vector fields X1, . . . , Xm. Such a group is natu-

rally equipped with dilations δλ(x, t) = (λx, λ2t), where (x, t) ∈ Rm × Rl, which
form a 1-parameter family of homomorphisms. Here, one may define the following
smooth homogeneous gauge (also known as the Folland-Kaplan gauge, see e.g. [7])

N(x, t) =
(
|x|4 + 16|t|2

) 1
4 , (9)

where | ∙ | denotes the Euclidean norm. A computation then shows that the sub-
gradient and the sub-Laplacian of this gauge function read

m∑

i=1

|XiN |2 =
|x|2

N2
(10)
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and
m∑

i=1

X2
i N = 3

|x|2

N3
(11)

respectively, while the dilation operator is the generator of (δλ)λ>0 given by

D = ∂λ |
λ=1

δλ(x, t)

=
m∑

i=1

xi∂xi
+ 2

n∑

i=1

ti∂ti .

Since ∂xi
N = N−3|x|2xi and ∂tiN = 8N−3ti, we have

DN = N−3
(
|x|4 + 16|t|2

)
= N

and therefore PtN = PtDN . Moreover, if we introduce a cut-off function g : R→
R such that g(x) = 0 on [0, 1], g(x) = x for x ≥ 2 and g is continuous and smooth
on (1, 2), then the function N̂(x, t) = g(N(x, t)) is such that

∑m
i=1 X2

i N̂ + |XiN̂ |2

is bounded, since |x| ≤ N(x, t). Hence, in this case, a function satisfying the
assumptions of Lemma 2.4 exists.

Similarly one can construct suitable ρ for other (noncompact) homogeneous Lie
groups using a smooth (outside the origin) homogeneous norm (of [17], [7]).

Theorem 2.7. There exists a sequence {tk}∞k=1 ⊂ R and a probability measure ν
on Rn such that for all bounded and Lipschitz f

Ptkf →
∫

fdν

as k → ∞.

Proof. For L > 0, we define sets ΥL = {ρ ≤ L} for which we have, by Markov’s
inequality and Lemma 2.4,

Pt(ΥL) ≥ 1 −
K

L
,

for some constant K > 0. Therefore (Pt)t>0 represents a tight family of measures
on RN and we deduce from Prokhorov’s Theorem that there exists a convergent
subsequence Ptk → limk→∞ Ptk =: ν in the weak sense.

2.3 Complete Gradient Bounds

We start by proving the following bound for the semigroup Pt and the complete
gradient Γ defined in (5).
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Theorem 2.8. Let L be the operator defined in (1), under the assumptions (2)
and (3) and let Pt be the semigroup associated to L. Let us also assume that Gij

is constant and ‖Zkαi‖∞ < ∞ for all k = 1 . . . n and i, j = 1 . . .m. If (4) holds,
then there exists κ ∈ R such that

Γ(Ptf) ≤ e−κtPtΓ(f). (12)

Moreover, there exists b0 ∈ (0,∞) such that for all β > b0 we have κ ∈ (0,∞).

Proof. The proof follows the Bakry-Emery type strategy (see e.g. [1], [2]) with
suitable modifications required by our setup. Let us set fs := Psf . Note that it is
sufficient to prove that

d

ds
Pt−sΓ(fs) ≤ −κ Pt−sΓ(fs), (13)

which gives estimate (12) after integration over s ∈ [0, t].
To prove (13), we remark that

d

ds
Pt−sΓ(fs) = Pt−s

(
− LΓ(fs) + 2Γ(fs,Lfs)

)
,

since Γ(f, g) is defined as a bilinear form.
Using the explicit expressions for Γ(f) and L, the previous relation becomes:

d

ds
Pt−sΓ(fs) = Pt−s

∑

k

(

− L|Zkfs|
2 + 2(Zkfs)(ZkLfs)

)

= Pt−s

∑

k

(

− L|Zkfs|
2 + 2(Zkfs)(LZkfs) + 2(Zkfs)

(
[Zk,L]fs

)
)

.

We note that

Ik :=−L|Zkfs|
2 + 2(Zkfs)(LZkfs)=−2

∑

j

|XjZkfs|
2 − 2

∑

i,j

Gij(XiZkfs)(XjZkfs)

= −2
∑

i,j

(
Gij + δij

)
(XiZkfs)(XjZkfs), (14)

where δij = 0, for i 6= j and δii = 1, for any i, j = 1, . . . ,m.
The third term is more difficult to estimate since it depends on the commutators.
For this purpose, we need to use assumption (4). Let us set

Jk := 2(Zkfs)
(
[Zk,L]fs

)
,
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and calculate the commutators [Zk,L]fs, i.e.

[Zk,L]fs = [Zk, L]fs + [Zk, LG]fs + [Zk, Lα]fs.

Recalling the definition of L and noting that [Z, Y 2]f = [Z, Y ]Y f + Y [Z, Y ]f ,
using assumption (2), for the operator L we get

[Zk, L]fs =
∑

j

[Zk, X
2
j ]fs − βλk(Zkfs)

=
∑

j

{
[Zk, Xj ](Xjfs) + Xj [Zk, Xj ]fs

}
− βλk(Zkfs).

Using condition (4), we obtain

[Zk, L]fs =
∑

j,l

ckjl

{
(ZlXjfs) + (XjZlfs)

}
− βλk(Zkfs).

We are going to use the negative term Ik, in order to control mixed terms like
(Zkfs)(XjZkfs). To this end we have to rewrite the term (ZlXjfs) in a more
suitable form, using once more assumption (4), i.e.

∑

j,l

ckjl

{
(ZlXjfs) + (XjZlfs)

}
=
∑

j,l

ckjl

{
2(XjZlfs) + [Zl, Xj ]fs

}

= 2
∑

j,l

ckjl(XjZlfs) +
∑

j,l,n

ckjlcljn(Znfs),

Hence, summing up we get
∑

k

Jk = − 2β
∑

k

λk|Zkfs|
2 + 4

∑

k,j,l

ckjl(Zkfs)(XjZlfs) (15)

+ 2
∑

k,j,l,n

ckjlcljn(Zkfs)(Znfs) + 2
∑

k

(Zkfs)
{
[Zk, LG]fs + [Zk, Lα]fs

}
.

(16)

We can now similarly estimate the remaining terms. Note that

[Z,XY ]f = [Z,X ]Y f + X[Z, Y ]f ,

and thus

[Zk, LG]fs =
∑

i,j

Gij

{
[Zk, Xi](Xjfs) + Xi[Zk, Xj]fs

}

=
∑

i,j,l

(Gij + Gji)ckil(XjZlfs) +
∑

i,j,l,n

Gijckilcljn(Znfs).
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Moreover,

[Zk, Lα]fs =
∑

i

(Zkαi)Xifs +
∑

i

αi[Zk, Xi]fs

=
∑

i

(Zkαi)Xifs +
∑

i,l

αickil(Zlfs).

Therefore,

2
∑

k

(Zkfs)[Zk, Lα]fs = 2
∑

k,i

(Zkfs)(Zkαi)(Xifs) + 2
∑

k,i,l

αickil(Zkfs)(Zlfs)

≤
∑

k,i

‖Zkαi‖∞
(
|Zkfs|

2 + |Xifs|
2
)

+ 2
∑

k,i,l

αickil(Zkfs)(Zlfs)

≤ max
k

∑

i

‖Zkαi‖∞Γ(fs) + max
i

∑

k

‖Zkαi‖∞Γ(fs)

+ 2
∑

k,i,l

αickil(Zkfs)(Zlfs),

where we used Young’s inequality to estimate the first term. Combining the above,
(15) becomes

∑

k

Jk = − 2β
∑

k

λk|Zkfs|
2 + 4

∑

k,j,l

ckjl(Zkfs)(XjZlfs)+

+ 2
∑

k,j,l,n

ckjlcljn(Zkfs)(Znfs) + 2
∑

k,i,j,l

(Gij + Gji)ckil(Zkfs)(XjZlfs)

+ 2
∑

k,i,j,l,n

Gijckilcljn(Zkfs)(Znfs) + 2
∑

k,i,l

αickil(Zkfs)(Zlfs) + ηΓ(fs),

(17)

with η = maxk

∑
i ‖Zkαi‖∞ + maxi

∑
k ‖Zkαi‖∞. We start by estimating the

terms in (17) where (XjZlfs) does not appear. Let us set λ∗ := mink λk > 0, then
−2β

∑
k λk|Zkfs|2 ≤ −2βλ∗Γ(fs) (recalling that β > 0). The other terms can be

treated similarly. Recalling that αi, Gij and ckjl are in general non positive, we
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get:

2
∑

k,j,l,n

ckjlcljn(Zkfs)(Znfs) + 2
∑

k,i,j,l,n

Gijckilcljn(Zkfs)(Znfs)

= 2
∑

k,i,j,l,n

(
Gij + δij

)
ckilcljn(Zkfs)(Znfs)

≤
∑

k,i,j,l,n

∣
∣Gij + δij

∣
∣|ckil||cljn|

{
|Znfs|

2 + |Zkfs|
2
}

≤ sup
k

∑

n,i,j,l

∣
∣Gij + δij

∣
∣{|ckil||cljn| + |cnil||cljk|

}
Γ(fs) =: C1Γ(fs)

and

2
∑

k,i,l

αickil(Zkfs)(Zlfs) ≤ sup
k

∑

i,l

|αi|
(
|ckil| + |clik|

)
Γ(fs) =: C2Γ(fs).

By (14) and (17), we have the following estimate:

d

ds
Pt−sΓ(fs) =

∑

k

(Ik + Jk)

≤
(
− 2βλ∗ + C1 + C2 + η

)
Γ(fs) + 4

∑

k,j,l

ckjl(Zkfs)(XjZlfs)

+ 2
∑

k,i,j,l

(Gij + Gji)ckil(Zkfs)(XjZlfs)

− 2
∑

k,i,j

(
Gij + δij

)
(XiZkfs)(XjZkfs).

The idea is to use Young’s inequality to estimate the remaining terms with a non-
positive part depending on (XiZkfs) and a positive part depending just on Γ(fs).
Let us recall that DXZkfs = (X1Zkfs, . . . , X1Zkfs) ∈ Rm is the horizontal gradient
of Zkfs, then

∑

k

Ik =−2
∑

k,i,j

(
Gij +δij

)
(XiZkfs)(XjZkfs) =−2

∑

k

〈
(
G∗+I)DXZkfs, DXZkfs

〉

,

since
〈
Aa, a

〉
= 0, for any a ∈ Rm, whenever A is an antisymmetric matrix (recall

G∗
ij =

Gij+Gji

2
).

Analogously,

4
∑

k,j,l

ckjl(Zkfs)(XjZlfs) + 2
∑

k,i,j,l

(Gij + Gji) ckil(Zkfs)(XjZlfs)

= 4
∑

k,i,j,l

(δij + G∗
ij) ckil(Zkfs)(XjZlfs) =: I ′.

13



For the sake of simplicity, let us denote ajl :=
∑

k,i(δij + G∗
ij)ckil(Zkfs) and bjl :=

(XjZlfs). Young’s inequality tells that ajlbjl ≤
εa2

jl

2
+

b2jl

2ε
, for any ε > 0. Thus

I ′ ≤ 2
∑

jl



ε

(
∑

k,i

(δij + G∗
ij) ckil(Zkfs)

)2

+
|XjZlfs|2

ε



 .

We can estimate the first part as follows:

2ε
∑

jl

2

(
∑

k,i

(δij + G∗
ij) ckil(Zkfs)

)2

= 2ε
∑

j,l

(
∑

k,n

[
∑

i

(
δij + G∗

ij

)
ckil(Znfs)

][
∑

i

(
δij + G∗

ij

)
cnil(Zkfs)

])

≤ ε
∑

j,l,k,n






[
∑

i

(
δij + G∗

ij

)
ckil

]2

|Znfs|
2 +

[
∑

i

(
δij + G∗

ij

)
cnil

]2

|Zkfs|
2






= 2ε
∑

k,l,j

[
∑

i

(
δij + G∗

ij

)
ckil

]2

Γ(fs) =: ε C3Γ(fs),

while

2
∑

jl

|XjZlfs|2

ε
= 2

∑

k

〈
1

ε
DXZkfs, DXZkfs

〉

.

Therefore we can conclude

d

ds
Pt−sΓ(fs) =

∑

k

(Ik + Jk)

≤
(
− 2βλ∗ + C1 + C2 + ε C3

)
Γ(fs)− 2

∑

k

〈(

G∗ + I −
I

ε

)

DXZkfs, DXZkfs

〉

.

By assumption (3), there exists δ > 0 such that

G∗ + I ≥ δI. (18)

Choosing ε = 1
δ
, where δ is (the biggest number) such that (18) holds, the inner

product in the above estimate is non-negative. Therefore

d

ds
Pt−sΓ(fs) ≤

(

−2βλ∗ + C1 + C2 + η +
1

δ
C3

)

Γ(fs),

14



which gives the theorem with

κ :=2βλ∗ − C1 − C2 − η −
1

δ
C3

=2β min
k

λk − sup
k

∑

n,i,j,l

∣
∣Gij + δij

∣
∣{|ckil||cljn| + |cnil||cljk|

}

− sup
k

∑

i,l

|αi|
(
|ckil| + |clik|

)
− max

k

∑

i

‖Zkαi‖∞ − max
i

∑

k

‖Zkαi‖∞

−
2

δ

∑

k,l,j

[
∑

i

(
δij + G∗

ij

)
ckil

]2

. (19)

Finally, by choosing β > 1
2λ∗

(
C1 + C2 + η + 1

δ
C3

)
we can ensure that κ > 0.

Remark 2.9. More generally, for a non-constant matrix G = G(x) the theorem
continues to hold under the additional assumption that the quantities ‖ZkGij‖∞
are bounded for all k = 1 . . . n and i, j = 1 . . .m.

Remark 2.10 (Case G = 0). Whenever G = 0, we can choose δ = 1 in the
constant κ. Then

κ =2β min
k

λk − max
k

∑

i

‖Zkαi‖∞ − max
i

∑

k

‖Zkαi‖∞

− sup
k

{
∑

n,j,l

{
|ckjl||cljn| + |cnjl||cljk|

}
−
∑

i,l

|αi|
(
|ckil| + |clik|

)
}

− 2
∑

k,l,j

c2
kjl.

Remark 2.11 (Optimal constant in the case G = 0). The constant found is
a priori not always optimal. In fact, to deduce constant C1 and C3 we used two
different estimates: 2μνab ≤ μν(a2+b2) for the first constant, 2μνab ≤ μ2a2+ν2b2

for the second one.
It is possible to give examples when the first estimate is optimal (i.e. if a = b but
μ 6= ν e.g. μ = ν−1) and examples when the second one is the optimal one (i.e.
μa = νb but a 6= b e.g. a = b−1). Therefore we could use both estimates, finding
two different constants:

C ′
1 = 2

∑

kjl

c2
kjl = C2,

C ′
2 = 2 sup

n

∑

kjl

ckjlcnjl.

It is clear that C2 < C ′
2 (taking k = n in C ′

2) while C1 is often smaller than C ′
1

because in general very few ckjl are different from 0. Therefore in C1 many terms

15



vanish, but it is not a always true. Therefore in the case Gij = 0, the optimal
constant is given by κ := 2βλ∗ − C1 − C2 − C3 − η, with C1 := min{C1, C

′
1}. In

the same way, one could write the optimal constant in the case Gij 6= 0.

Example 2.12. (1) In the Heisenberg group, one can consider the operator D :=
xX1 + yX2 + 2zZ = x∂x + y∂y + 2z∂z which satisfies assumption (2) with λ1 = 1,
λ2 = 1 and λ3 = 2; therefore λ∗ := mink λk = 1. In the simplest case where
αi ≡ Gij ≡ 0, using Remark 2.10 and recalling that c123 = 1 = −c213 and ckjl = 0
otherwise, we see that κ = 2β − 4 so that κ > 0 for any β > 2.
(2) In the Grušin plane the dilation operator is given by D := x∂x + 2y∂y. As-
sumption (2) is satisfied with λ1 = λ2 = 1 and λ3 = 2 and thus λ∗ = 1 as in the
Heisenberg group.
(3) The dilation operator for the Martinet distribution is D := x∂x + y∂y + 3z∂z

so λ1 = λ2 = 1, while λ3 = 2 and λ4 = 3. Hence λ∗ = 1.

If we do not assume (4), then by the Hörmander condition we know that

∃ ckjl ∈ C∞(Rn) such that [Zk, Xj ] =
n∑

l=1

ckjl(x)Zl. (20)

Looking at the above calculations, we get and extra term in
∑

k Jk where the
horizontal derivatives of the coefficients appear, more precisely

2
∑

k,j,l

(Xjckjl)(Zlfs)(Zkfs) ≤ sup
k

∑

jl

{
|Xjckjl(x)|+|Xjcljk(x)|}Γ(fs) =: C4(x)Γ(fs).

This implies that:

d

ds
Pt−sΓ(fs) ≤

(

−2βλ∗ + C1(x) + C2(x) + η +
1

δ
C3(x) + C4(x)

)

Γ(fs),

Therefore Theorem 2.13 holds in a stronger form since the exponential in the
estimate depends now on time and space.

Theorem 2.13. Let X1, . . . , Xm be smooth vector fields satisfying the Hörmander
condition, L the operator defined in (1), satisfying the assumptions (2) and (3),
and let Pt be the associated semigroup. Let us also assume that Gij is constant and
‖Zkαi‖∞ < ∞ for all k = 1 . . . n and i, j = 1 . . .m. Then there exists a smooth
function κ(x) such that

Γ(Ptf) ≤ e−κ(x)tPtΓ(f). (21)

Moreover, under the additional assumption that the functions ckjl(x) and their

horizontal derivatives Xjckjl(x) are bounded in x ∈ Rn, there exists b̂0 ∈ (0,∞)

such that for all β > b̂0 we have κ > 0.
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The following result provides an extension of Theorem 2.8 to an lq-gradient bound.

Theorem 2.14. Let q > 1. Under the assumptions of Theorem 2.8, there exists a
constant κ′ ∈ R such that

Γ(Ptf)
q
2 ≤ e−κ′tPtΓ(f)

q
2 .

Moreover, there exists b′0 > 0 such that for β > b′0 we have κ′ > 0.

Proof. As before, we follow the strategy outlined in [1]. For simplicity we treat
the case LG = Lα = 0. The proof of the general case follows from the proof of
Theorem 2.8 and arguments similar to the ones below. We aim to show that

d

ds
Pt−sΓ(fs)

q
2 ≤ −κ′Pt−sΓ(f)

q
2

with fs = Psf as above. To this end, we note that

d

ds
Pt−sΓ(fs)

q
2 = Pt−s

(
−LΓ(fs)

q
2 + qΓ(fs)

q
2
−1Γ(fs,Lfs)

)

= Pt−s

(

−
q

2

LΓ(fs)

Γ(fs)
1− q

2

+
q

2

(
1 −

q

2

) Γ̄(Γ(fs))

Γ(fs)
2− q

2

+ q
Γ(fs,Lfs)

Γ(fs)
1− q

2

)

where we made use of the diffusion property for the generator L and set 2Γ̄(f) :=
L(f 2) − 2fLf =

∑m
i=1 |Xif |2. In what follows, the variables i, k in the sums run

over the ranges {1, . . .m} and {1, . . . , n} respectively. For the first term, we have

LΓ(fs) =
∑

i,k

X2
i (Zkfs)

2 − β
∑

k

D(Zkfs)
2

= 2
∑

i,k

|XiZkfs|
2 + 2

∑

k

(Zkfs)(LZkfs).

On the other hand, the second term can be estimated as follows:

Γ̄(Γ(fs)) =
∑

i

(

Xi

(
∑

k

(Zkfs)
2

))2

= 4
∑

i

(
∑

k

(Zkfs)(XiZkfs)

)2

≤ 4

(
∑

k

|Zkfs|
2

)(
∑

i,k

|XiZkfs|
2

)

= 4Γ(fs)

(
∑

i,k

|XiZkfs|
2

)

.

Finally

Γ(fs,Lfs) =
∑

i,k

(Zkfs)(ZkX
2
i fs) − β

∑

k

(Zkfs)(ZkDfs)

=
∑

k

(Zkfs)(LZkfs) +
∑

k

(Zkfs)([Zk,L]fs),
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Combining the above, we obtain

d

ds
Pt−sΓ(fs)

q
2 ≤

Pt−s



−q

(∑
i,k |XiZkfs|2 +

∑
i,k(Zkfs)(LZkfs)

)

Γ(fs)
1− q

2





+ Pt−s



q

(∑
i,k(Zkfs)(ZkLfs)

)

Γ(fs)
1− q

2



+ Pt−s

(

q(2 − q)

∑
i,k |XiZkfs|2

Γ(fs)
1− q

2

)

=Pt−s




q
(∑

i,k ((Zkfs)[Zk, X
2
i ]fs + (1 − q)|XiZkfs|2) − β

∑
k(Zkfs)[Zk, D]fs

)

Γ(fs)
1− q

2





≤Pt−s

(
q

Γ(fs)
1− q

2

∑

i,k

(Zkfs)[Zk, X
2
i ]fs − βλ∗q|∇fs|

q −
q(q − 1)

Γ(fs)
1− q

2

∑

i,k

|XiZkfs|
2

)

,

where we made use of assumption (2) and λ∗ = infk λk. The fact that q > 1
is crucial, since this makes the coefficient in front of the last term in the above
expression non-zero, hence allowing us to use it to control the mixed derivatives
coming from the first term as follows. Observe that using assumption (4), we can
write

∑

i,k

(Zkfs)([Zk, X
2
i ]fs) =

∑

i,k

(Zkfs) ([Zk, Xi](Xifs) + Xi[Zk, Xi]fs)

=
∑

i,k

(Zkfs)

(
∑

l

ckil (ZlXifs + XiZlfs)

)

=
∑

i,k

(Zkfs)

(
∑

l

ckil(2XiZlfs + [Zl, Xi]fs)

)

=
∑

i,k

(Zkfs)

(
∑

l

2ckilXiZlfs +
∑

l,m

ckilclimZmfs

)

≤ 2
∑

i,k,l

ckil(Zkfs)(XiZlfs)

+
∑

i,k,l,m

|ckilclim|

(
|Zkfs|2 + |Zmfs|2

2

)

,
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where in the last step we used the Cauchy-Schwarz inequality. Thus

d

ds
Pt−sΓ(fs)

q
2 ≤

Pt−s

(
q

Γ(fs)
1− q

2

∑

i,k,l,m

(

2ckil(Zkfs)(XiZlfs) + |ckilclim|

(
|Zkfs|2 + |Zmfs|2

2

)))

− Pt−s

(

βλ∗qΓ(fs)
q
2 +

q(q − 1)

Γ(fs)
1− q

2

∑

i,k

|XiZkfs|
2

)

≤Pt−s

(
q

Γ(fs)
1− q

2

∑

i,k,l

2cikl(Zkfs)(XiZlfs) −
q(q − 1)

∑
i,k |XiZkfs|2

Γ(fs)
1− q

2

+ C1Γ(fs)
q
2

)

where C1 = q
(

1
2
maxk

∑
i,l,m |ckilclim| + 1

2
maxm

∑
i,l,k |ckilclim| − βλ∗

)
. Using the

inequality

q

Γ(fs)
1− q

2

∑

i,k,l

2cikl(Zkfs)(XiZlfs) ≤ C2Γ(fs)
q
2 +

q(q − 1)

Γ(fs)
1− q

2

∑

i,k

|XiZkfs|
2.

with C2 = q
q−1

(
maxk

∑
i,l c

2
ikl

)
, we get

d

ds
Pt−sΓ(fs)

q
2 ≤ −κ′Pt−sΓ(fs)

q
2

with κ′ = −C1 − C2 which is strictly positive for

β >
1

λ∗

(
1

2
max

k

∑

i,l,m

|ckilclim| +
1

2
max

m

∑

i,l,k

|ckilclim| +
1

q − 1

(

max
k

∑

i,l

c2
ikl

))

.

Integration of the above differential inequality ends the proof.

Summarising, the key idea of our estimates is contained in the assumption of
completeness of the set of fields {Zk} in the sense that their commutators with
the fields appearing in the generator do not give essentially new fields. In case
of free nilpotent Lie groups ([13]) they can be chosen simply by taking all the
fields generated by the fields defining the generator. In some cases (as for example
groups of rank 2, when the fields have linear coefficients) our procedure will work
with the usual square of the gradient form. Then our method applied to the
complete gradient {Zk} provides some other useful information on monotonicity
of derivatives.
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3 Extension to infinite dimensions

Let Λ b Zd be a finite subset of the d-dimensional lattice. For each k ∈ Zd, we
consider isomorphic copies of the vector fields Z1, . . . , Zn denoted by Zk,1, . . . , Zk,n

(and similarly the isomorphic copies of Xi = Zi, i = 1, . . . ,m). As in the finite
dimensional case, let

L(1)
k =

m∑

i=1

X2
k,i − βDk +

m∑

i,i′=1

Gii′Xk,iXk,i′ ,

L(2)
k =

m∑

i=1

αk,iXk,i,

where G = (Gij) is a constant matrix satisfying (3) and αk,i = αk,i(ω), ω ∈ (RN )Z
d
.

We will work under the additional assumption that the range of interaction is finite.
In other words αk,i will depend only on coordinates around k, i.e. Zk,iαj,r = 0
whenever |k − j| > R. Here, the distance of two points on the lattice is defined
as |k − j| =

∑d
l=1 |kl − jl|, where k = (k1, . . . kl) and j = (j1, . . . jl). For k ∈ Zd,

Λ ⊂ Zd, we set dist(k, Λ) ≡ inf{|k − l|) : l ∈ Λ} . In addition, we will assume
that the quantities ‖Zk,rαj,i‖∞ are uniformly bounded in k, j ∈ Zd. By Λ(f) we
will denote a localisation set for a function f , meaning that f depends only on
coordinates indexed by points in Λ(f).
We consider a Markov semigroup PΛ

t , defined via its generator

LΛ =
∑

k∈Zd

L(1)
k +

∑

k∈Λ

L(2)
k

and we define Γk =
∑n

r=1 |Zk,rf |2, ΓΛ =
∑

k∈Λ Γk and Γ =
∑

k∈Zd Γk. This defini-
tion is motivated by the fact that the generators LΛ approximate, as Λ ↑ Zd, the
infinite dimensional generator

L =
∑

k∈Zd

(
L(1)

k + L(2)
k

)
≡
∑

k∈Zd

Lk.

This construction, the details of which are presented below, allows us to approx-
imate the infinite dimensional semigroup (etL)t≥0 by Markov semigroups, which
are easier to study.
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3.1 Strong Approximation Property

Given a finite set Λ ⊂ Zd, for a cylinder function f such that Λ(f) ⊂ Λ we
introduce fs = PΛ

s f and start similarly as before by considering

∂sP
Λ
t−sΓk(fs) = PΛ

t−s (−LΛΓk(fs) + 2Γk(fs,LΛfs))

= PΛ
t−s

n∑

r=1

(
−LΛ|Zk,r(fs)|

2 + 2(Zk,rfs)LΛZk,rfs + 2(Zk,rfs)[Zk,r,LΛ]fs

)

= PΛ
t−s

n∑

r=1

(
−2Γ̄(Zk,rfs) + 2(Zk,rfs)[Zk,r,LΛ]fs

)

where Γ̄(f) =
∑

j∈Zd

(∑m
i,i′=1(Gii′ + δii′)(Xj,if)(Xj,i′f)

)
. Next, we notice that

[Zk,r,LΛ] =
∑

j∈Zd

m∑

i=1

[
Zk,r, X

2
j,i − βDj

]
+
∑

j∈Zd

m∑

i,i′=1

[Zk,r, Gii′Xj,iXj,i′ ]

+
∑

j∈Λ

m∑

i=1

[Zk,r, αj,iXj,i]

=
m∑

i=1

(
[Zk,r, X

2
k,i − βDk] + αk,i[Zk,rXk,i]

)

+
m∑

i,i′=1

[Zk,r, Gii′Xk,iXk,i′ ] +
∑

j∈Λ

m∑

i=1

(Zk,rαj,i)Xj,i,

because Zk,r and Xj,i commute when j 6= k for all r, i. Combining the above, we
arrive at

∂sP
Λ
t−sΓk(fs) = 2PΛ

t−s

n∑

r=1

(

−Γ̄(Zk,rfs) +
m∑

i=1

(Zk,rfs)[Zk,r, X
2
k,i − βDk]fs

+
m∑

i,i′=1

(Zk,rfs)[Zk,r, Gii′Xk,iXk,i′ ]fs +
m∑

i=1

αk,i(Zk,rfs)[Zk,rXk,i]fs

)

+ 2PΛ
t−s

∑

j∈Λ

m∑

i=1

n∑

r=1

(Zk,rfs)(Zk,rαj,i)(Xj,ifs)

≤ 2(−βλ∗ + C̃)PΛ
t−sΓk(fs) + 2PΛ

t−s

∑

j∈Λ

m∑

i=1

n∑

r=1

(Zk,rfs)(Zk,rαj,i)(Xj,ifs),
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with some constant C̃ dependent only on the structure constants ckjl, Gij and
||αk,i||. For the last sum, we use Young’s inequality to get

2
∑

j∈Λ

m∑

i=1

n∑

r=1

(Zk,rfs)(Zk,rαj,i)(Xj,ifs) ≤

m∑

i=1

n∑

r=1

|Zk,rαk,i|
(
|Zk,rfs|

2 + |Xk,ifs|
2
)

+
∑

j∈Λ,j 6=k

m∑

i=1

n∑

r=1

|Zk,rαj,i|
(
|Zk,rfs|

2 + |Xj,ifs|
2
)

≤ AkΓk(fs) +
∑

j∈Λ,j 6=k

Mk,jΓj(fs)

with

Ak = max
r=1,...,n

m∑

i=1

‖Zk,rαk,i‖∞ + max
i=1,...,m

n∑

r=1

‖Zk,rαk,i‖∞

+
∑

j∈Λ,j 6=k

max
r=1,...,n

m∑

i=1

‖Zk,rαj,i‖∞,

Mk,j = max
i=1,...,m

(
n∑

r=1

‖Zk,rαj,i‖∞

)

,

which are finite quantities by our assumptions. We therefore arrive at

∂sP
Λ
t−sΓk(fs) ≤ −κ̄PΛ

t−sΓk(fs) +
∑

j∈Λ,j 6=k

Mk,jP
Λ
t−sΓj(fs) (22)

with
C ≡ C̃ + sup

k∈Zd

Ak and κ̄ ≡ 2(βλ∗ − C).

Solving this differential inequality, we obtain the following bound:

Lemma 3.1. There exists constants κ̄ ∈ R and Mk,j ∈ (0,∞), Mk,j ≡ 0 for
|j − k| > R, such that for any Λ ⊂ Zd and any smooth cylinder function f with
Λ(f) ⊂ Λ, we have

Γk(P
Λ
t f) ≤ e−κ̄tPΛ

t Γk(f) +
∑

j∈Λ,j 6=k

Mk,j

∫ t

0

ds e−κ̄(t−s) PΛ
t−sΓj(P

Λ
s f). (23)

Remark 3.2. One can use this lemma to get gradient bounds in lq, q ≥ 1 norms
for vectors Γk, k ∈ Zd.
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Remark 3.3. For a matrix Ĝ = ((Ĝkk′

ii′ )m
i,i′=1)k,k′∈Zd satisfying Ĝ∗ + I ≥ 0 and

∑
k,k′∈Zd

∑m
i,i′=1 |Ĝ

kk′

ii′ | < ∞, it is possible to repeat the above argument for the
generator given by

L̂Λ = LΛ +
∑

k,k′∈Zd

m∑

i,i′=1

Ĝkk′

ii′ Xk,iXk′,i′ .

Proposition 3.4 (Finite speed of propagation of information). Let f be a smooth
function and assume Λ(f) ⊂ Λ b Zd. For k /∈ Λ(f), we have

‖Γk(P
Λ
t f)‖∞ ≤ eNk(log C−log Nk+2+log t)+Ct

∑

j∈Zd

‖Γjf‖∞,

where Nk =
[

dist(k,Λ(f))
R

]
and C > 0 is a constant. Hence, for any σ > 0 there

exists τ > 1 such that if Nk ≥ τt

‖Γk(P
Λ
t f)‖∞ ≤ e−σt−σNk

∑

j∈Zd

‖Γjf‖∞.

Proof. We argue similarly as in [14] (see also references given there). From Lemma
3.1, we have

||Γk(P
Λ
t f)||∞ ≤ e−κ̄t||Γk(f)||∞ +

∑

j∈Λ,j 6=k

Mk,j

∫ t

0

ds e−κ̄(t−s) ||Γj(P
Λ
s f)||∞

with Mkj ≡ 0, |j − k| ≥ R and κ ∈ (0,∞). This implies

‖Γk(Ptf)‖∞ ≤ ‖Γkf‖∞ +
∑

j∈Λ

Mkj

∫ t

0

‖Γj(fs)‖∞ds

=
∑

j∈Λ

Mkj

∫ t

0

‖Γj(fs)‖∞ds,

since k /∈ Λ(f). We may iterate the above to get

‖Γk(Ptf)‖∞ ≤ CNk
tNk

Nk!
eCt
∑

j∈Zd

‖Γjf‖∞,

with some constant C > 0 and Nk =
[

dist(k,Λ(f))
R

]
. Since Nk! > eNk log Nk−2Nk ,

‖Γk(Ptf)‖∞ ≤ eNk(log C−log Nk+2+log t)+Ct
∑

j∈Zd

‖Γjf‖∞.
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Now, given σ > 0, we may choose τ ≥ 1 large enough so that log C
τ

+2+ C
τ
≤ −2σ.

If Nk ≥ τt, we then get

Nk (log C − log Nk + 2 + log t) + Ct ≤ Nk

(

log
C

τ
+ 2 +

C

τ

)

≤ Nk(−2σ) ≤ −σNk − σt,

as required.

Theorem 3.5. For any t > 0 and any continuous function f the following limit
exists in the uniform norm

lim
Λ↑Zd

PΛ
t f =: Ptf

and defines a Markov semigroup.

Proof. It is sufficient to prove the existence of the limit for smooth cylinder func-
tions. To this end pick Λ1,Λ2 b Zd such that Λ(f) ⊂ Λ1 ⊂ Λ2 and choose a
sequence Λ(n) such that Λ(0) = Λ1, Λ(N ) = Λ2 and Λ(n+1) \ Λ(n) = {jn} is a
singleton for any n = 0, . . . ,N − 1. Using the Fundamental Theorem of Calculus
and the fact that PΛ(n)

t is contractive, we have

∥
∥PΛ2

t f − PΛ1
t f

∥
∥
∞

≤
N−1∑

n=0

∥
∥
∥PΛ(n)

t f − PΛ(n+1)

t f
∥
∥
∥
∞

≤
N−1∑

n=0

∫ t

0

∥
∥
∥PΛ(n)

t−s (LΛ(n) − LΛ(n+1))PΛ(n+1)

s f
∥
∥
∥
∞

ds

≤
N−1∑

n=0

∫ t

0

∥
∥
∥(LΛ(n) − LΛ(n+1))PΛ(n+1)

s f
∥
∥
∥
∞

ds

≤
N−1∑

n=0

∫ t

0

∥
∥
∥
∥
∥

m∑

i=1

αjn,iXjn,iP
Λ(n+1)

s f

∥
∥
∥
∥
∥
∞

ds

≤
N−1∑

n=0

∫ t

0

∥
∥
∥
∥
∥

m∑

i=1

α2
jn,i

∥
∥
∥
∥
∥

1
2

∞

∥
∥
∥
∥
∥

m∑

i=1

∣
∣
∣Xjn,iP

Λ(n+1)

s f
∣
∣
∣
2

∥
∥
∥
∥
∥

1
2

∞

ds.

≤ m
N−1∑

n=0

∫ t

0

‖αjn,i‖∞
√
‖Γjn(PΛ(n+1)

s f)‖∞ds
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Let σ > 0. Since jn /∈ Λ1, we can apply Lemma 3.4 to conclude that

∥
∥PΛ2

t f − PΛ1
t f

∥
∥
∞

≤ m
N−1∑

n=0

‖αjn,i‖∞

∫ t

0

e−σs−σNjn

√∑

j∈Zd

‖Γjf‖∞ds

≤ mN e−σN 1 − e−σt

σ
max

n=1,...,N−1
‖αjn,i‖∞

√∑

j∈Zd

‖Γjf‖∞ds (24)

provided that Njn =
[

dist(jn,Λ(f))
R

]
≥ N ≥ τt for some τ > 1 large enough, where

N =
[

dist(Λ1,Λ(f))
R

]
. We have therefore established that if (Λn b Zd)∞n=0 is a

sequence such that Λn ↑ Zd as n → ∞, then (PΛn
t f)∞n=0 is a Cauchy sequence.

3.2 Existence of a limit measure

Let ζ ∈ N be such that
∑

k∈Zd(1 + |k|)−ζ < ∞. For K ∈ N, define sets

ΩK =

{

ω ∈ (RN)Z
d

:
∑

k∈Zd

(1 + |k|)−ζd(ωk) < K

}

and let

Ω := ∪K ∈N(ΩK ) =

{

ω ∈ (RN )Z
d

:
∑

k∈Zd

(1 + |k|)−ζd(ωk) < ∞

}

.

For j ∈ Zd and ω ∈ (RN )Z
d

we consider the (semi-)distance dj(ω) ≡ d(ωj) (recall
that we write d(x, 0) = d(x) where d is a metric on RN ). The corresponding cut-off
ρj then satisfies, (similarly as in Lemma 2.4),

PΛ
t

∑

j∈Λ

ρj ≤ KΛ

for some constant KΛ > 0 and all t > 0. If we define ΥΛ
L = {

∑
j∈Λ ρj ≤ L},

arguing as in Section 2.2, we can extract a convergent subsequence PΛ
tk

such that
for all bounded continuous f and ω ∈ Ω we have PΛ

tk
f(ω) → νΛ,ω(f).

3.3 Ergodicity of the semigroup

By Section 3.2 and Theorem 3.5 we have that for ω ∈ Ω there exists a measure νω

such that
PΛ

tk
f(ω) → νω(f)
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as k → ∞ and Λ ↑ Zd. Moreover, by Markov’s inequality, for all ω ∈ Ω

νω(ΩK ) ≥ 1 −
1

K
sup
k∈Zd

(∫
d(xk)νω(dx)

)∑

k∈Zd

(1 + |k|)−ζ

and thus νω(Ω) = 1. We will show the following result.

Theorem 3.6. There exists t0 > 0 such that for t > t0, bounded smooth cylinder
function f and any ω, ω̃ ∈ Ω,

|Ptf(ω) − Ptf(ω̃)| ≤ C(f, ω, ω̃)e−$t,

where $ > 0 is a constant and C(f, ω, ω̃) depends only on f, ω and ω̃.

Proof. We choose Λ = Λ(t) such that diam(Λ) = κt for some κ > 0 to be
determined later, and order the elements of Λ lexicographically. For ω, ω̃ ∈ Ω we
can choose a suitable sequence (ωk)k∈Zd that interpolates between ω and ω̃ and
such that each element differs from the previous one only in single coordinate.
Moreover for all Λ b Zd,

|Ptf(ω) − Ptf(ω̃)| ≤|Ptf(ω) − PΛ
t f(ω)| + |PΛ

t f(ω) − PΛ
t f(ω̃)|

+ |Ptf(ω̃) − PΛ
t f(ω̃)|.

By the proof of Theorem 3.5 and the fact that diam(Λ) = κt, we can find T > 0
such that t > T/κ implies

∣
∣Ptf(ω) − PΛ

t f(ω)
∣
∣+
∣
∣Ptf(ω̃) − PΛ

t f(ω̃)
∣
∣ ≤ C1(f, ω, ω̃)e−θt/2,

where θ ∈ (0,∞) and C1(f, ω, ω̃) is a finite constant depending on the cylinder
function f and configurations ω, ω̃. We also have

∣
∣PΛ

t f(ω) − PΛ
t f(ω̃)

∣
∣ ≤

∑

k∈ΛR

∣
∣PΛ

t f(ωk+1) − PΛ
t f(ωk)

∣
∣ ,

with ΛR = {k ∈ Zd : dist(k,Λ) ≤ R} where R is the range of interaction. Let
γ : [0, tk] → Ω be an admissible path connecting ωk to ωk+1, such that γ̇s = 1
(recall that ωk and ωk+1 differ only in the kth coordinate, so tk = d(ωk, ω̃k)). The
differential inequality (22) implies that

∂sP
Λ
t−sΓk(P

Λ
s f) ≤ −(κ̄ − max

j∈Zd
Mk,j)P

Λ
t−sΓΛ(PΛ

s f)

(recall that Mk,j ≡ 0 when |j − k| > R), which after integration gives

Γk(P
Λ
t f) ≤ e−ςtPΛ

t (ΓΛf)
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with some ς ∈ R which is positive for large β and can be made independent of k by
our assumption that the quantities ‖Zk,rαj,i‖∞ are uniformly bounded in k, j ∈ Zd.
This observation together with contractivity property of PΛ

t imply

∑

k∈ΛR

∣
∣PΛ

t f(ωk+1) − PΛ
t f(ωk)

∣
∣ ≤

∑

k∈ΛR

∫ tk

0

√
Γk(PΛ

t f(γs))ds

≤
∑

k∈ΛR

(d(ωk) + d(ω̃k))
∥
∥Γk(P

Λ
t f)

∥
∥

1
2

∞
≤
∑

k∈ΛR

(d(ωk) + d(ω̃k))e
− ςt

2 ‖ΓΛ(f)‖
1
2
∞

≤ e−
ςt
2

(
∑

k∈Zd

‖Γk(f)‖∞

) 1
2 ∑

k∈ΛR

(d(ωk) + d(ω̃k)) (25)

≤ e−
ςt
2

(
∑

k∈Zd

‖Γk(f)‖∞

) 1
2

(Cω + Cω̃)(1 + κt)ζ

using that |k| ≤ κt since k ∈ Λ, with Cω ≡
∑

k∈RZd (1 + |k|)−ζd(ωk) which is finite
since ω ∈ Ω (and similarly for Cω̃). Hence there exists a constant C2(f, ω, ω̃) such
that ∣

∣PΛ
t f(ω) − PΛ

t f(ω̃)
∣
∣ ≤ C2(f, ω, ω̃)(1 + κt)ζe−ςt/2.

Combining the above we conclude that t > T/κ ≡ t0 implies

|Ptf(ω) − Ptf(ω̃)| ≤ C(f, ω, ω̃)e−$t,

for some constants $ > 0 and C(f, ω, ω̃) depending only on the cylinder function
f and configurations ω, ω̃.

Remark 3.7. We note that in fact the estimate (25) is sufficiently strong to
include the configurations with exponential growth for which

∑
k e−γ|k|d(ωk) < ∞

with any γ < ς/2 which is much more than a set of measure one.

3.4 Properties of the Invariant Measure

Recall the following representation of a covariance

Ptf
2 − (Ptf)2 = 2

∫ t

0

∂sPsΓ̄(Pt−sf)ds (26)

Since Γ̄ ≤ Γ, if we have the following bound

Γ(Pτf) ≤ e−κτPτΓ(f)

then (26) implies the following result
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Theorem 3.8. Under the conditions on the generator L there exists β0 ∈ (0,∞)
such that for all β > β, any differentiable function f , at any t > 0

Ptf
2 − (Ptf)2 ≤

2

κ
(1 − e−κt) PtΓ(f). (27)

Hence the unique Pt-invariant measure ν satisfies

ν(f − νf)2 ≤
2

κ
νΓ(f).

We mention that by abstract arguments, (see e.g. [14], Exercise 2.9, and references
therein), the Poincaré type inequality (27) implies a uniform in t > 0 exponential
bound

Pte
δf < Const e

δ2

κ
Γ(f)eδPtf (28)

provided
δ2

κ
||Γ(f)||∞ ≤ 1. (29)

Application of this property yields the following exponential bound result:

Corollary 3.9. Under the condition of the Theorem 3.8 the invariant measure ν
satisfies the following exponential bound

ν
(
eδf
)

< Const e
δ2

κ
Γ(f)eδν(f)

for any function f satisfying (27) and for which νf is well defined.

Remark An interesting question arises, which was also a part of motivation to
our work, whether the measure ν can satisfy stronger coercive inequalities as for
example Log-Sobolev inequality. The known strategy of [2] to obtain log-Sobolev
requires bounds with Γ1 and and unfortunately fails in cases of interest to us in
this paper.

Remark Note that knowing a bit of regularity one can slightly optimize (26) as
follows. First we use

Ptf
2 − (Ptf)2 ≤

∫ t−ε

0

ds2PsΓ(Pt−sf) +

∫ t

t−ε

ds2PsΓ(Pt−sf)

If one would have the following regularity estimate

Γ(Pεf) ≤ c̄(ε)Γ1(f)

then we get
∫ t−ε

0

ds2PsΓ(Pt−sf) =

∫ t−ε

0

ds2PsΓ(Pt−ε−sPεf) ≤ 2c̄(ε)

∫ t−ε

0

dse−κ(t−ε−s)Pt−εΓ1(f)
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≤
2

κ
c̄(ε)(1 − e−κ(t−ε))Pt−εΓ1(f) ≤

2

κ
c̄(ε)Pt−εΓ1(f)

On the other hand we have
∫ t

t−ε

ds2PsΓ(Pt−sf) ≤
2

κ
(1 − e−κε)PtΓ(f) ≤ ε

2

κ
εPtΓ(f)

Hence, with γ(ε) given as an inverse function of c(ε) ≡ 2
κ
c̄(κ

2
ε), we obtain

Ptf
2 − (Ptf)2 ≤ εPt−εΓ1(f) + γ(ε)PtΓ(f)

After passing with time to infinity we obtain

ν(f − νf)2 ≤ ενΓ1(f) + γ(ε)νΓ(f)

which after optimisation with respect to the free parameter ε implies a generalised
Nash type inequality.
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