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Abstract. We prove some comparison principles for viscosity solutions of
fully nonlinear degenerate elliptic equations that satisfy conditions of partial

non-degeneracy instead of the usual uniform ellipticity or strict monotonicity.

These results are applied to the well-posedness of the Dirichlet problem under
suitable conditions at the characteristic points of the boundary. The examples

motivating the theory are operators of the form of sum of squares of vector
fields plus a nonlinear first order Hamiltonian and the Pucci operator over the

Heisenberg group.

1. Introduction. In this paper we study the comparison, uniqueness, and exis-
tence of viscosity solutions to the Dirichlet problem for some second order, fully
nonlinear equations

F (x, u, Du,D2u) = 0, in Ω, (1)
where Ω is an open bounded domain of IRn and F : Ω×IR×IRn×Sn → IR satisfies
the standard continuity assumptions of [13] (Sn denotes the set of n×n symmetric
matrices).

The classical comparison principle between viscosity sub- and supersolutions was
obtained by Jensen [24, 25] and by Ishii-Lions [23] when either (i) F is degenerate
elliptic and strictly increasing in u, or (ii) F is uniformly elliptic and nondecreasing
in u.

The goal of this paper is to weaken the uniform ellipticity to various forms of
partial nondegeneracy. Let us illustrate them in the case the PDE has no 0-th order
terms, that is, F = F (x, p,M) is independent of u. Recall that (1) is uniformly
elliptic if there is a constant η > 0 such that

F (x, p,M + N) ≤ F (x, p,M)− ηtrN, ∀N ≥ 0.

We say the equation is non-totally degenerate if for some η > 0

F (x, p,M + rI) ≤ F (x, p,M)− ηr, ∀r > 0,

where I is the identity matrix. This minimal nondegeneracy assumption is enough
for proving the comparison principle if F is Lipschitz in p with small Lipschitz
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constant compared to η (e.g., F = F (x,M)). On the other hand, the smallness
condition on the Lipschitz constant can be dropped if F is nondegenerate in a fixed
direction, that is, for some j ∈ {1, ..., n},

F (x, p, M + rDj) ≤ F (x, p,M)− ηr, ∀r > 0,

where Dj is the diagonal matrix whose only non-null element is Dj
jj = 1. We also

prove a comparison principle for equations of the form

G(x, σT (x)D(u), σT (x)D2u σ(x)) = 0, (2)

where σ(·) is an n ×m matrix-valued Lipschitz function with tr(σT σ) ≥ η and G
is uniformly elliptic on Ω × IRm × Sm. In Sections 2 and 3 the three comparison
principles are stated and proved in the general case of F depending on u in a
nondecreasing way, and the nondegeneracy assumptions are made only at the points
where F fails to be strictly increasing in u. The proofs are based on the observation
in [23, 13] that the strict monotonicity of F with respect to u is not needed if any
subsolution can be perturbed to a strict subsolution.

The nondegeneracy conditions are better understood if one checks them in the
special case of quasilinear equations of the form

−tr(A(x)D2u) + H(x, Du) = 0,

with A(x) ≥ 0. Here uniform ellipticity means that the minimal eigenvalue of
A is bounded away from 0, whereas non-total degeneracy says that the maximal
eigenvalue is bounded away from 0, and non-degeneracy in a fixed direction states
that, for some j, ajj(x) > 0 for all x ∈ Ω.

Our motivations are the Hamilton-Jacobi-Bellman and Isaacs equations and the
subelliptic nonlinear equations. In the theory of stochastic control and differential
games the uniform ellipticity of the Bellman-Isaacs equation means that the whole
system is disturbed by a nondegenerate noise, whereas in practice only some com-
ponents are in fact affected by noise (e.g., acceleration but not velocity, see the
example on Kolmogorov equations in Section 4). On the other hand, the strict
monotonicity in u in the Bellman-Isaacs equation holds if the cost functional is an
integral containing a discount factor with nonvanishing discount rate, which is not
the case in many interesting problems, such as time-optimal control. We refer to
[29, 17] for more informations on this matter.

In the theory of subelliptic equations one is given a family of smooth vector fields
X1, ..., Xm and looks at equations of the form

G(x, u, DXu, (D2
Xu)∗) = 0, (3)

where DXu = (X1u, ..., Xmu) is the intrinsic (or horizontal) gradient, (D2
Xu)ij =

Xi(Xju) is the intrinsic Hessian, (·)∗ denotes the symmetrized matrix, and G is
uniformly elliptic on Ω × IR × IRm × Sm. If we take the matrix σ whose columns
are the coefficients of X1, ..., Xm, we see that, for any smooth u

DXu = σT (x)Du, (D2
Xu)∗ = σT (x)D2u σ(x) + 1-st order terms,

and the 1-st order terms are null in some interesting cases, such as the Heisenberg
group. This motivates the study of equations of the form (2). In a sequel of
this paper we study the Dirichlet problem for general fully nonlinear subelliptic
equations of the form (3). Here we limit ourselves to two classes of examples. The
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first is the quasilinear equation

−
m∑

i,j=1

aij(x)XiXju + H(x,Du) = 0 (4)

with the matrix of the coefficients aij uniformly positive definite. The second is the
fully nonlinear equation

P+(σT D2u σ) + H(x, Du) = 0, (5)

where P+ is the Pucci operator on Sm (see Example 4.5 for the definition). Both
of them are non-totally degenerate for any family of vector fields satisfying the
classical Hörmander condition [22]. They are nondegenerate in a fixed direction if
X1, ..., Xm are generators of a Carnot group [18]. In this last case, for instance, we
get the comparison principle for both (4) and (5) if the Hamiltonian H is Lipschitz
continuous in p and such that, for some modulus ω,

|H(x, p)−H(y, p)| ≤ ω(|x− y|(1 + |p|)).

Nonlinear subelliptic equations in variational form were considered since the early
1990s [34]. The study of the fully nonlinear case began recently, see the lecture
notes of Manfredi [30], the papers [7, 8, 35, 14], and the references therein.

In Sections 5, 6, and 7 we study the existence of solutions by the Perron-Wiener-
Brelot method. A generalized (possibly discontinuous) viscosity solution is obtained
under general conditions, whereas for the existence of a continuous solution one has
to analyze the operator near the characteristic points of the boundary ∂Ω. Here
we give some simple results by constructing explicit barriers. Two examples where
we obtain the well-posedness of the Dirichlet problem are{

−∆Hu + H(x,Du) = 0, in Ω,
u = 0, on ∂Ω,

where ∆H is the Heisenberg Laplacian, and{
P+((D2

Hu)∗) + H(x, Du) = 0, in Ω,
u = 0, on ∂Ω,

where D2
Hu is the Heisenberg Hessian. In both cases H is required to satisfy the

conditions above, H(x, 0) ≤ 0, and H(x, p) ≥ −K, whereas Ω is a domain of
classical solvability for the linear problem

−∆Hu = 0 in Ω, u = g on ∂Ω, g ∈ C(∂Ω),

e.g., any domain with C2 boundary. The boundedness from below of H rules
out equations containing linear 1-st order terms. An alternative result weakens
the condition H ≥ −K to H(x, p) ≥ Hhom(x, p)−K with Hhom(x, ·) positively 1-
homogenous, by adding the following assumption at any characteristic point z ∈ ∂Ω:

−∆HΦ(z) + Hhom(z,DΦ(z)) > 0,

where Φ ∈ C2 is such that Ω = {x : Φ(x) > 0}, DΦ 6= 0 on ∂Ω. The geometric
meaning of this condition is illustrated in the case Ω is the Koranyi or the euclidean
ball.

Comparison principles for viscosity solutions without strict monotonicity and
uniform ellipticity were proved for different equations such as the infinity-Laplace
equation and by different methods in [26, 6, 7, 35], see also [2] and the references
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therein for first order equations. Strong maximum principles were studied in [28,
3, 4, 5].

The solvability of the Dirichlet problem and the boundary behaviour of solutions
for linear subelliptic equations have a long history, see, e.g., [10, 32, 20, 19, 21, 27,
31, 33, 12]; for the semilinear case we refer to [9] and the references therein.

The paper is organized as follows. In Section 2 we list some basic assumptions.
Section 3 contains the three comparison theorems. Section 4 is devoted to several
examples. In Section 5 we give a general existence result by the PWB method. In
Section 6 we give sufficient conditions for the continuity of the generalized solution.
Section 7 contains some explicit results of well-posedness of the Dirichlet problem
for quasilinear and fully nonlinear equations on the Heisenberg group.

2. Assumptions. Let us list the assumptions on F . We denote with Sn the set of
the symmetric n × n matrices, with ≤ the usual partial order, with I the identity
matrix, and with trM the trace of a square matrix M . Throughout the paper
Ω ⊆ IRn is open and bounded.

F : Ω× IR× IRn × Sn → IR is continuous;
F (x, u− r, p,M + N) ≤ F (x, u, p,M), ∀N ≥ 0, ∀r ≥ 0;
for all x, y ∈ Ω, u ∈ IR, X, Y ∈ Sn, α > 0 such that

−3α

(
I 0
0 I

)
≤

(
X 0
0 −Y

)
≤ 3α

(
I −I
−I I

)
,

F (y, u, α(x− y), Y )− F (x, u, α(x− y), X) ≤ ω(α|x− y|2 + |x− y|),
where ω : [0,+∞[→ [0,+∞[ satisfies ω(0+) = 0.

(6)

There exists η(x) ∈ C(Ω), η ≥ 0, such that: (7)
F (x, u, p,M + rI) ≤ F (x, u, p,M)− η(x)r,

∀x ∈ Ω, u ∈ IR, p ∈ IRn,M ∈ Sn, r > 0.

There exists h(x) ∈ C(Ω), h ≥ 0, such that: (8)
F (x, u− r, p,M) ≤ F (x, u, p,M)− h(x)r,

∀x ∈ Ω, u ∈ IR, p ∈ IRn,M ∈ Sn, r > 0.

There exists K ≥ η > 0 such that: η ≤ h(x) + η(x) ≤ K, ∀x ∈ Ω. (9)

There exists L ≥ 0, such that: (10)
|F (x, u, p + q, M)− F (x, u, p,M)| ≤ L|q|,
∀x ∈ Ω, u ∈ IR, p, q ∈ IRn,M ∈ Sn.

The first assumption (6) collects the structural conditions on F that are com-
monly used in the viscosity theory [13].

The next condition (7) means that equation (1) is non-totally degenerate at the
points where η(x) > 0. In the quasilinear case F (x, u, p,M) = −tr(A(x)M) +
H(x, u, p), A ∈ Sn is positive semidefinite by (6), and condition (7) is equivalent
to trA(x) ≥ η(x), so at the points where η(x) > 0 there exists at least one positive
eigenvalue of A(x). In this case, (7) coincides with the definition of non-total
degeneracy given by Bony in [10] (there exists an element aij of the matrix A such
that aij(x) 6= 0).
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The third condition (8) says that F is strictly monotone in u at the points where
h(x) > 0. The next assumption (9) states that the operator is either non-totally
degenerate or strictly monotone everywhere in Ω and uniformly.

Finally, condition (10) is the Lipschitz continuity of F with respect to p, uni-
formly in the other entries.

In the next section we prove comparison results for the equation (1) under these
assumptions or variants of them.

3. Comparison principles. As usual, in the theory of viscosity solutions, we say
that F satisfies the comparison principle if for any u, v : Ω → IR, u upper semi-
continuous and viscosity subsolution of (1), v lower semicontinuous and viscosity
supersolution of (1), such that u ≤ v on ∂Ω, we have u ≤ v in Ω.

The first comparison result holds under the assumptions of the previous section
and if F has a weak dependence on the gradient p of the solution at points where
it is not strictly increasing with respect to u.

Theorem 3.1. Assume (6), (7), (8), (9), (10) and

L|x| ≤ η

2
, ∀x ∈ Ω such that h(x) ≤ η

4
. (11)

where η is the constant appearing in (9). Then the comparison principle holds.

Proof. From standard viscosity solutions theory [23, 13], we know that, under the
structural conditions 6, the comparison principle holds between a supersolution v
and a strict subsolution uε, i.e., an u.s.c. function in Ω satisfying F (x, uε, Duε, D

2uε) ≤
α(x) in Ω, with α(x) ∈ C(Ω) and α(x) < 0. If, in addition, uε(x) → u(x) for all x
as ε → 0, then we obtain u ≤ v in Ω. Therefore we consider, for a given viscosity
subsolution u,

uε(x) := u(x) + ε(e
|x|2
2 − λ)

and we want to show that it is a strict subsolution for λ >> 1, independent of

ε > 0. First we choose λ ≥ e
|x|2
2 for all x ∈ Ω, and this implies uε(x) ≤ u(x).

Moreover
∂uε

∂xi
=

∂u

∂xi
+ εxie

|x|2
2 ,

∂2uε

∂xi∂xj
=

∂u

∂xi∂xj
+ εe

|x|2
2 (δij + xixj),

hence
D2uε = D2u + εe

|x|2
2 (I + x⊗ x) ≥ D2u + εe

|x|2
2 I ≥ D2u. (12)

(Here δij is the Kronecker symbol, I is the identity matrix, and (x⊗ x)ij = xixj).
Now we fix x ∈ Ω. We have two cases:
i) h(x) ≤ η

4 ; ii) h(x) > η
4 .

Case i): h(x) ≤ η
4 . From assumption (9), we have η(x) ≥ 3

4η. Since uε ≤ u and F
is proper

F (x, uε, Duε, D
2uε) ≤ F (x, u, Du + εxe

|x|2
2 , D2u + εe

|x|2
2 I).

Now, by (7) and (10) we have

F (x, u, Du + εxe
|x|2
2 , D2u + εe

|x|2
2 I) ≤ F (x, u, Du,D2u) + εe

|x|2
2 (L|x| − η(x)).

By (11) L|x| − η(x) ≤ η
2 −

3
4η, so u subsolution implies

F (x, uε, Duε, D
2uε) ≤ −εe

|x|2
2

η

4
≤ −ε

η

4
=: α(x).
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Case ii): h(x) > η
4 . From (12), since F is proper:

F (x, uε, Duε, D
2uε) ≤ F (x, uε, Du + εxe

|x|2
2 , D2u).

From (8), (9), and (10)

F (x, uε, Du + εxe
|x|2
2 , D2u) ≤ F (x, u, Du,D2u) + ε[h(x)(e

|x|2
2 − λ) + L|x|e

|x|2
2 ]

≤ ε[−λ
η

4
+ e

|x|2
2 (K + L|x|)] ≤ −ε

η

4
=: α(x)

if we take λη
4 − e

|x|2
2 (K + L|x|) ≥ η

4 , i.e. λ− 1 ≥ 4
η e

|x|2
2 (K + L|x|). �

Now we drop the condition (11) of weak dependence on Du for equations of the
form

G(x, u, σT D(u), σT D2u σ) = 0, in Ω, (13)
with σ(·) a nonvanishing Lipschitz continuous n×m matrix valued function and G
uniformly elliptic. More precisely, let F satisfy the basic assumptions (6) and let it
be of the form

F (x, u, p,M) = G(x, u, σT (x)p, σT (x)Mσ(x)), (14)

where G : Ω× IR× IRm × Sm → IR satisfies, for some ν > 0,

G(x, u, p,M + N) ≤ G(x, u, p,M)− νtrN, (15)

for all x ∈ Ω, u ∈ IR, p ∈ IRm,M,N ∈ Sm, N ≥ 0, and the matrix σ is non-totally
degenerate in the sense that tr(σT σ) does not vanish wherever F is not strictly
increasing in u. In the next result we take η defined by

η(x) := νtr(σT σ)(x) (16)

and get the non-total degeneracy condition (7):

F (x, u, p,M + rI) = G(x, u, σT p, σT (M + rI)σ) ≤
G(x, u, σT p, σT Mσ)− rνtr(σT σ) = F (x, u, p,M)− rη(x).

Theorem 3.2. Consider the equation (13), i.e., (1) where F satisfies (6), (8), and
it is of the form (14), with G uniformly elliptic (15) and σ(·) a Lipschitz continuous
n×m matrix valued function. Assume that for some L ≥ 0

|G(x, u, p + q, M)−G(x, u, p,M)| ≤ L|q|
for all entries x, u, p, q,M , and that (9) holds with η defined by (16). Then the
comparison principle holds.

Proof. First of all we prove an inequality that will be useful in the sequel of the
proof. For any x, u, p, q,M , r > 0, µ > 0, from assumptions (6), (15), and the
Lipschitz continuity of G with respect to p we have

F (x, u, p + q, M + rI + rµx⊗ x) (17)
≤ F (x, u, p,M) + L|σT q| − νrtr(σT σ)(x)− νrµtr(σT (x⊗ x)σ).

Since

tr(σT (x⊗ x)σ) =
∑
i,j,k

σikxixjσjk =
∑

k

(
∑

i

σikxi)(
∑

j

σjkxj)

=
∑

k

(σT x)2k = |σT x|2,
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the inequality (17) becomes

F (x, u, p + q, M + rI + rµx⊗ x) (18)
≤ F (x, u, p,M) + L|σT q| − νrη(x)− νrµ|σT x|2.

We now prove that, if u is a viscosity subsolution, then uε(x) = u(x)+ ε(eµ
|x|2
2 −λ)

is a strict subsolution for a choice λ >> µ >> 1, independent of ε > 0. As in

the proof of Theorem (3.1) we choose λ, µ such that λ ≥ eµ
|x|2
2 for all x ∈ Ω and

compute

Duε = Du + εµxeµ
|x|2
2 , D2uε = D2u + εµeµ

|x|2
2 (I + µx⊗ x).

We consider two cases.
Case i): h(x) ≤ η

4 . From (18) and uε ≤ u we get

F (x, uε, Duε, D
2uε) ≤ F (x, u, Du,D2u)+εµeµ

|x|2
2 (L|σT x|−η(x)−µν|σT x|2). (19)

In this case, η(x) ≥ 3η
4 , then

L|σT x| − η(x)− µν|σT x|2 ≤

 −η
2 , if |σT x| ≤ η

4L ,

|σT x|(L− µν|σT x|), if |σT x| > η
4L .

Choosing now µ > 8L2

ην , for |σT x| > η
4L , we have

|σT x|(L− µν|σT x|) < −L
η

4L
= −η

4
.

Then
L|σT x| − η(x)− µν|σT x|2 ≤ −η

4
, ∀x ∈ Ω.

Therefore, plugging this inequality into (19),

F (x, uε, Duε, D
2uε) ≤ −εµeµ

|x|2
2

η

4
≤ −εµ

η

4
=: α(x) < 0.

Case ii): h(x) > η
4 . Then, by (8),

F (x, uε, Duε, D
2uε) ≤ ε

[
h(x)(eµ

|x|2
2 − λ) + Lµ|σT x|eµ

|x|2
2

]
≤ ε

[
− λη

4 + eµ
|x|2
2 (K + µL|σT x|)

]
≤ −εµη

4 = α(x),

if we choose
λ

η

4
− eµ

|x|2
2 (K + µL|σT x|)] ≥ µ

η

4
,

i.e., if

λ− µ ≥ 4
η
eµ

|x|2
2 (K + µL|σT x|)

and this is possible for λ >> µ, because Ω is bounded. �

Remark 3.1. From this proof we see that the comparison principle holds for F not
necessarily of the form (14), provided it satisfies (18). The property (18) implies
(7) by taking q = 0 and µ = 0. Note that, the presence of the term −νrµ|σT x|2 in
(18) allows to avoid assumption (11).
Minor modifications of the proof give the statement of Theorem 3.2 also for equa-
tions of the form G(x, u, σT Du, σσT D2u).
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The last result of this section is a comparison principle where we avoid condition
(11) at the price of strengthening (7) to the following assumption of non-degeneracy
in a fixed direction.

Let Dj be the n× n diagonal matrix with Dj
jj = 1 and (20)

Dj
ii = 0, if i 6= j, i.e. Dj

ii = δij .

There exists a function η(x) ∈ C(Ω), η ≥ 0, such that

F (x, u, p,M + rDj) ≤ F (x, u, p,M)− η(x)r, ∀x, u, p,M, r > 0.

Theorem 3.3. Assume (6), (8), (10), (20) for at least one j ∈ {1, ...., n}, and (9)
with η given by (20). Then the comparison principle holds.

Proof. The proof follows the lines of the previous two, but now we take uε(x) :=
u(x) + ε(eµxj − λ). In this case

∂uε

∂xi
=

∂u

∂xi
+ εµδije

µxj , D2uε = D2u + εµ2eµxj Dj ≥ D2u.

Case i): h(x) ≤ η
4 . From assumption (9), we have η(x) ≥ 3η

4 .
Since F is proper and λ is chosen such that uε ≤ u, by (7) and (10) we have:

F (x, uε, Duε, D
2uε) ≤ F (x, u, Du,D2u) + εµeµxj (L− η(x)µ).

Since L− η(x)µ ≤ L− µ3η
4 ,

F (x, uε, Duε, D
2uε) ≤ −εµeµxj (µ

3η

4
− L) ≤ −ε

η

4
=: α(x)

for µ sufficiently large.
Case ii): h(x) > η

4 . From (6), (8), and (10)

F (x, uε, Duε, D
2uε) ≤ F (x, u, Du,D2u) + ε[h(x)(eµxj − λ) + Lµeµxj ]

≤ ε[−λ
η

4
+ eµxj (K + Lµ)] ≤ −ε

η

4
= α(x),

where the last inequality is obtained by taking λη
4 −eµxj (K +Lµ) ≥ η

4 , i.e., λ−1 ≥
4
η eµxj (K + Lµ). �

4. Some examples.

Example 4.1. Quasilinear Bellman-Isaacs equations. Consider quasilinear
degenerate elliptic equations of the form

−tr(σσT (x)D2u) + H(x, u, Du) = 0 in Ω, (21)

with a Hamiltonian H satisfying

H : Ω× IR× IRn → IR, continuous;
u → H(x, u, p) nondecreasing ∀x, p; (22)
|H(x, u, p + q)−H(x, u, p)| ≤ L|q|, ∀x, u, p, q;
|H(x, u, α(x− y))−H(y, u, α(x− y))| ≤ ω(α|x− y|2 + |x− y|),

for all α > 0 and all x, y, where ω is a modulus, as in (6). They arise in stochastic
optimal control and differential games with systems whose diffusion term is not
affected by the controls, see Example 4.6 below for the general case.

We will write H = H(x, u, σT (x)Du) to mean that there exists H̃ : Ω × IR ×
IRm → IR such that H(x, u, p) = H̃(x, u, σT (x)p) for all x, u, p.
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Corollary 4.1. Let σ(x) be a Lipschitz continuous n×m matrix valued function,
and H satisfies (22). Then the comparison principle holds for equation (21) if
either ∑

i,k

σ2
ik(x) > 0, ∀x ∈ Ω, and H = H(x, u, σT (x)Du), (23)

or
there exists a j :

∑
k

σ2
jk(x) > 0, ∀x ∈ Ω. (24)

Proof. The structural condition (6) is satisfied by the Lipschitz continuity of σ and
(22), in view of the Example 3.6 in [13]. If (23) holds, we observe that

tr(σσT M) =
∑
i,k,l

σikσlkmli =
∑
i,k,l

σikmilσlk = tr(σT Mσ) ∀M ∈ Sn,

so we can apply Theorem 3.2. In the case of (24) we compute

tr(σσT (x)Dj) =
∑

k

σ2
jk(x) =: η(x),

and we use Theorem 3.3 with this choice of η. �

Remark 4.1. The hypotheses (23) and (24) of the corollary can be rewritten in
terms of the eigenvalues {λi(x)} of σ(x)σT (x), i = 1, . . . n, as follows

either
n∑

i=1

λi(x) > 0, ∀x ∈ Ω and H = H(x, u, σT (x)Du), (25)

or there exists a j such that λj(x) > 0, ∀x ∈ Ω. (26)

Example 4.2. Quasilinear subelliptic equations. Consider the uniformly
subelliptic quasilinear equation

−
m∑

i,j=1

aij(x)XiXju + H(x, u, Du) = 0 in Ω, (27)

where Xj = σj · ∇, j = 1, ...,m, are n−dimensional vector fields and the matrix
a(x) ∈ Sm of the coefficients is positive definite, i.e., for some ν > 0

a(x) ≥ νI ∀x ∈ Ω. (28)

Corollary 4.2. Suppose a(·) is Lipschitz continuous and verifies (28) and H sat-
isfies (22). Assume the vector fields Xj = σj · ∇ are of class C1,1(Ω) and for some
coordinate axis at all points x ∈ Ω at least one field does not vanish in the direction
of that axis, i.e.,

∃i∗ ∈ {1, ..., n} :
m∑

k=1

(
σk

i∗(x)
)2

> 0 ∀x ∈ Ω. (29)

Then the comparison principle holds for equation (27).

Proof. Let σ be the n×m matrix with columns σj , i.e., σij = σj
i . We compute, for

u smooth,

XiXju =
∑

k

σi
k(σj ·Du)xk

=
∑
k,l

σkiσljuxlxk
+

∑
k,l

σki(σlj)xk
uxl

= (σT D2u σ)ij +
(
Dσj σi

)
·Du,
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where Dσj denotes the Jacobian matrix of σj . Therefore the PDE (27) can be
rewritten as

−tr
(
aσT D2u σ

)
−

m∑
i,j=1

aij

(
Dσj σi

)
·Du + H(x, u, Du) = 0 in Ω. (30)

We want to apply Theorem 3.3 and we first check condition (20) for the matrix
Di∗ , that is, Di∗

lk = 1 if l = k = i∗ and is null in all other cases. We observe that

tr
(
σT Di∗ σ

)
=

∑
k

σ2
i∗k > 0 in Ω

and define η(x) := ν
∑

k σ2
i∗k. Then, for M ∈ Sn, r > 0,

− tr
(
aσT

(
M + rDi∗

)
σ
)

+ tr
(
aσT M σ

)
= −rtr

(
aσT Di∗ σ

)
≤ −rνtr

(
σT Di∗σ

)
= −rη(x),

where the inequality follows from (28) and σT Di∗σ ≥ 0.
It remains to check the structural conditions (6). The first order part of the

operator in (30) clearly satisfies the assumption. Now take τ(x) ∈ Sn a square root
of a(x), i.e., a = ττT , and recall that from (28) τ(·) is Lipschitz continuous. By a
straightforward matrix calculation, for all M ∈ Sn

tr
(
ττT σT M σ

)
= tr

(
στ(στ)T M

)
,

so also the second order part of the operator in (30) verifies (6) in view of the
Example 3.6 in [13]. �

Example 4.3. Sum of squares of vector fields. Here we consider the following
quasilinear perturbation of a sum of squares of vector fields

−
m∑

j=1

X2
j u + H(x, u, Du) = 0 in Ω. (31)

This is clearly a special case of the last Example 4.2, it is enough to take a(X) ≡ I
in (27). It is also a special case of the first Example 4.1, as we show next. We write
Xj = σj · ∇,with σj ∈ C1,1(Ω, IRn) and take the matrix σ with σij = σj

i . By the
calculations in the previous proofs we see that (31) can be rewritten as

−tr
(
σσT D2u

)
−

m∑
j=1

(
Dσj σj

)
·Du + H(x, u, Du) = 0 in Ω, (32)

where Dσj denotes the Jacobian matrix of σj , which fits into the form (21). There-
fore, if (29) and (22) hold, we have the comparison principle by either Corollary
4.1 or Corollary 4.2.

The non-degeneracy condition in a fixed direction (29) is satisfied by many in-
teresting examples, for instance by all families X1, ..., Xm of generators of a Carnot
group (see also the examples below). It is not satisfied, however, by all families
satisfying the classical Hörmander condition (i.e., X1, ..., Xm and their commuta-
tors of any order span IRn at each point of Ω [22]). In this case only the non-total
degeneracy condition ∑

i,k

σ2
ik(x) > 0, in Ω (33)
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is always true, because at no point of Ω all vector fields can vanish. Then Corollary
4.1 gives the comparison principle under the further conditions

m∑
j=1

Dσj(x)σj(x) = 0 and H = H(x, u, σT (x)Du) in Ω. (34)

Although restrictive, the former assumption is satisfied in some interesting cases,
e.g., generators of Carnot groups of step 2 ([30]) and the three examples below.
The latter condition is very natural for subelliptic equations since it states that H
depends only on the intrinsic (or horizontal) gradient (X1u, ..., Xmu).

Another comparison principle for (31) and (32) when the mere non-total degen-
eracy (33) holds is obtained from Theorem 3.1 under the additional assumption
that the first order part is small with respect to the trace of σσT , namely,

max
x∈Ω

|x|

L + max
x∈Ω

|
m∑

j=1

Dσj(x)σj(x)|

 ≤ min
x∈Ω

∑
i,k

σ2
ik(x)/2,

where L is the constant in (22).
We conclude this subsection with three examples that satisfy both the non-

degeneracy condition in a fixed direction (29) and the first assumption in (34).

• The Heisenberg operator. In IR3 write x = (x1, x2, t), and take

σ =

 1 0
0 1

2x2 −2x1

 . (35)

The Heisenberg Laplacian is

∆Hu := tr(σσT (x)D2u) = ux1x1 +ux2x2 +4(x2
1 +x2

2)utt +4x2ux1t− 4x1ux2t, (36)

and the equations (31) and (32) become

−∆Hu + H(x, u, Du) = 0. (37)

The matrix σ satisfies (24), hence, under assumptions (22), the comparison principle
holds.

• The Grushin operator. Here σ =
[
1 0
0 x1

]
and the equations (31) and (32)

become

−ux1x1 − x2
1ux2x2 + H(x, u, Du) = 0, x = (x1, x2). (38)

Hence (24) holds and, under assumptions (22), equation (38) satisfies the compar-
ison principle.

• A hypoelliptic non-Hörmander operator. The equation

−ux1x1 − e−1/x2
1ux2x2 + H(x, u, Du) = 0, x = (x1, x2), (39)

comes from (21) by taking σ =

[
1 0

0 e
− 1

2x2
1

]
. The operator in (39) does not satisfy

the Hörmander condition but (24) holds.



12 MARTINO BARDI, PAOLA MANNUCCI

Example 4.4. Kolmogorov type equations. Consider the following stochastic
equation

ẍ = f(x, ẋ, α) +
dw

dt
, (40)

where x(t) ∈ IR3, w(t) is a 3-dimensional standard Brownian motion, and the
acceleration f depends on the control α. If we write (40) in the form:{

ẋ = y,
dy = f(x, y, α)dt + dw,

we see that the 3× 6 dispersion matrix σT is

σT =
[
0 I

]
.

The Bellman equation associated to an optimal control problem of this system with
cost functional E

∫ τ

0
l(x(t), y(t), α(t)) dt, where E denotes the expectation and τ the

exit time of (x(t), y(t)) from the domain Ω, is

−∆yu− y ·Dxu + max
α
{−f(x, y, α) ·Dyu− l(x, y, α)} = 0, Ω ⊂ IR6. (41)

More in general, we can consider the stationary Kolmogorov-type equation:

−∆yu− y ·Dxu + H(x, y, u,Du) = 0 in Ω ⊂ IR2m. (42)

Also in this case, if H satisfies (22), we have a comparison principle because (24)
holds.

Note that the principal part of the equations in this example is much more
degenerate than a hypoelliptic operator.

Example 4.5. Pucci-type operators for subelliptic diffusions. Fix 0 < λ ≤
Λ. For any X ∈ Sm, the Pucci’s extremal operators are defined as

P+(X) := −λ
∑
ei>0

ei − Λ
∑
ei<0

ei,

P−(X) := −Λ
∑
ei>0

ei − λ
∑
ei<0

ei,

where ei are the eigenvalues of X, or, equivalently,

P+(X) = sup{−tr(MX) : M ∈ Sm, λI ≤ M ≤ ΛI}, (43)
P−(X) = inf{−tr(MX) : M ∈ Sm, λI ≤ M ≤ ΛI}. (44)

We consider equations involving the Pucci operators associated to a n×m dis-
persion matrix σ(x), namely,

P±(σT D2uσ) + H(x, u, Du) = 0. (45)

They are special cases of Hamilton-Jacobi-Bellman equations (see the Example 4.6).
They arise also in the study of the Pucci operator relative to a family of vector fields
X1, ..., Xm, namely,

P±((D2
Xu)∗), (D2

Xu)∗ij := (XiXju + XjXiu)/2.

In particular, if the vector fields generate the Heisenberg group, i.e., σ is given by
(35), the horizontal Hessian is (D2

Xu)∗ = σT D2u σ for all smooth u. In the general
case there is a first order correction that can be added to the term H in (45).

From Theorems 3.2 we obtain the following result.
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Corollary 4.3. Let σ(·) be a Lipschitz continuous n × m matrix-valued function
and H satisfy (22).Then the comparison principle holds for equation (45) if either
i) tr(σT σ(x)) =

∑
i,k σ2

ik(x) > 0, ∀x ∈ Ω and H = H(x, u, σT (x)Du),
or
ii) there exists a j:

∑
k σ2

jk(x) > 0, ∀x ∈ Ω.

Proof. It is known that P+ is uniformly elliptic of constant λ, so in case i) the
equation has the form (14), (15) and we can apply Theorem 3.2.

In case ii)

P+(σT (M + rDj)σ) ≤ P+(σT Mσ)− λrtr(σT Djσ),

and we can use Theorem 3.3 with η(x) = λ
∑

k σ2
jk(x).

It remains to check the structural condition (6). By the representation (43) it
is enough to consider tr(MσT Xσ) for X ∈ Sn,M ∈ Sm, λI ≤ M ≤ ΛI. We take
τ ∈ Sm such that M = ττT and compute tr(MσT Xσ) = tr(στ(στ)T X), which fits
into the theory of [13] because στ is Lipschitz continuous.

The proof for P− is the same. �

As observed in the quasilinear Example 4.3, the condition on σ in i) is verified if
the columns of σ satisfy Hörmander’s condition, and in many interesting cases the
stronger condition in ii) is also true.

Example 4.6. Fully nonlinear Bellman-Isaacs equations. We may apply the
comparison theorems of Section 3 also to the Bellman-Isaacs equations arising in
stochastic control and differential games with dynamics governed by the stochastic
differential equation

dxt = fdt + σdwt,

with σ = σ(x, α, β), f = f(x, α, β), where α and β are controls taking values in
some compacts sets A and B, respectively, and wt, is an m-dimensional Brownian
motion. If we consider an integral cost functional with running cost l(x, α, β) and
discount rate c(x, α, β), then the PDE associated to the value function is

max
α∈A

min
β∈B

{−tr(σσT D2u)− f ·Du + cu− l} = 0. (46)

This equation satisfies the structural assumption (6) if all data are continuous and
bounded, c ≥ 0, and σ and f are also Lipschitz in x uniformly in α, β. It satisfies
the non-total degeneracy condition if

η(x) := min
α,β

∑
j,k

σ2
jk(x, α, β) > 0, ∀x ∈ Ω,

i.e., for all controls the dispersion matrix does not vanish at any point. Then
Theorem 3.1 applies if the drift f is null, or small compared to η:

max
x∈Ω

|x|max
x,α,β

|f(x, α, β)| ≤ min
x∈Ω

η(x)/2.

On the other hand, the condition of non-degeneracy in a fixed direction of The-
orem 3.3 holds if there exists a j such that

η(x) := min
α,β

∑
k

σ2
jk(x, α, β) > 0, ∀x ∈ Ω,

that is, at least one component of the system is affected by a nondegenerate noise.
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Note that the case of uncontrolled diffusion σ = σ(x) leads to quasilinear equa-
tions of the form (21), whereas we obtain the subelliptic Pucci equation (45) with
the operator P+ if A is a singleton, σ(x, β) = σ(x)β, and B = {β ∈ Sm :

√
λI ≤

β ≤
√

ΛI}, and with the operator P− by reversing the roles of the controls.

Example 4.7. A case of non-uniqueness. If the equation is totally degenerate
there are known examples where the comparison principle is not valid. For instance,
the eikonal equation |Du| = l(x) in the ball {x ∈ IRn : |x| < 1}, with l(x) = 2|x|,
has two classical solutions null on the boundary, namely, |x|2 − 1 and 1− |x|2, and
infinitely many viscosity solutions. The comparison principle holds if l > 0, see [2].

5. Existence of generalized solutions to the Dirichlet problem. In this
section we consider the following Dirichlet problem{

F (x, u, Du,D2u) = 0, in Ω,
u = g, on ∂Ω,

(47)

where Ω is an open bounded domain of IRn, g(x) is a continuous function on ∂Ω.
Besides the hypotheses listed in Section 3, we assume:

there exists M > 0 : −M ≤ F (x, 0, 0, 0) ≤ M, ∀x ∈ Ω. (48)

We denote by S, Z the sets of subsolutions and supersolutions of (47):

S := {w ∈ BUSC(Ω) : w subsolution of F = 0 in Ω, w ≤ g, on ∂Ω},

Z := {W ∈ BLSC(Ω) : W supersolution of F = 0 in Ω, W ≥ g, on ∂Ω},
where BUSC (resp. BLSC) means bounded and upper (resp. lower) semicontin-
uous functions.The Perron-Ishii method proposes as candidate solutions of (47)

u(x) := sup
w∈S

w(x), u(x) := inf
W∈Z

W (x), x ∈ Ω.

If
u(x) = u(x) =: u,

u is the natural generalized solution of (47). It coincides with the Perron-Wiener-
Brelot solution if the equation is linear, and it is also called envelope viscosity
solution ([2], [1]).

Definition 5.1. We say that w is a lower (respectively upper) barrier for problem
(47) at a point x ∈ ∂Ω if w ∈ S (respectively w ∈ Z) and

lim
y→x

w(y) = g(x).

Theorem 5.1. Suppose (48) and that the hypotheses of Theorem 3.1 or 3.2 or 3.3
hold. Then
i) u and u are finite and solve the PDE in (47) in the sense that their l.s.c. envelope
is a supersolution and the u.s.c. envelope is a subsolution;
ii) if for all x ∈ ∂Ω there is a lower (resp., upper) barrier, then u(x) = u(x) and it
is the minimal element of Z (resp., the maximal element of S);
iii) if for all x ∈ ∂Ω there is a lower and an upper barrier, then u = u is the
continuous viscosity solution of (47).
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Proof. By the results of Section 3 the comparison principle between viscosity sub-
and supersolutions holds. Therefore, if we prove that both sets S and Z are
nonempty, all statements follow from standard viscosity solutions theory [13] (for
ii) see Theorem 2 in [1]).

To prove that the sets S and Z are nonempty we find explicitely a subsolution
and a supersolution. As in the proof of Theorem 3.1 we consider

w = k(e
|x|2
2 − λ)

and we want to prove that it is a subsolution to (47), for k ≥ 1 and λ >> 1

independent of k. First we choose λ ≥ (e
|x|2
2 + max∂Ω |g|), ∀x ∈ ∂Ω, and this

implies w ≤ g on ∂Ω. Under the hypotheses of either Theorem 3.1 or 3.2

F (x, w,Dw,D2w) ≤ F (x, 0, 0, 0)− ke
|x|2
2 (η(x)− h(x)− L|x|)− kλh(x)

≤ M − ke
|x|2
2 (η(x)− h(x)− L|x|)− kλh(x).

Then we apply the same procedure as in the proof of Theorem 3.1 to obtain that

−ke
|x|2
2 (η(x)− h(x)− L|x|)− kλh(x) ≤ −k

η

4
, (49)

thus, by taking k ≥ 4M
η ∨ 1, we obtain F (x, w,Dw,D2w) ≤ M − k η

4 ≤ 0, in Ω.
Analogously, we prove that

W = k(λ− e
|x|2
2 ),

with k and λ sufficiently large, is a supersolution:

F (x, W,DW, D2W ) ≥ F (x, 0, 0, 0) + ke
|x|2
2 (η(x)− h(x)− L|x|) + kλh(x)

≥ −M + ke
|x|2
2 (η(x)− h(x)− L|x|) + kλh(x) ≥ 0,

by (49).
If, instead, the assumptions of Theorem 3.3 hold, we proceed in a similar way

by taking the functions
w,W = ±k(eµxj − λ),

and checking they are sub- and supersolutions for suitable k, µ, λ. �

Remark 5.1. We refer to [1] for the properties of continuous dependence of the
envelope viscosity solution of point ii) with respect to the uniform convergence of
the boundary data g and of the operator F .

6. Continuity at the boundary. The theorem in the previous section provides
the existence of a generalized solution when the assumptions of one of the Theorems
3.1, 3.2 or 3.3 are satisfied. Now we want to investigate if this solution is continuous
up to the boundary. We first study general fully nonlinear equations and then
specialize the result to the quasilinear case and to equations involving the Pucci
operator. For simplicity we solve the Dirichlet problem with g = 0:{

F (x, u, Du,D2u) = 0, in Ω,
u = 0, on ∂Ω.

(50)

The problem with a general continuous g can be treated along the same lines.



16 MARTINO BARDI, PAOLA MANNUCCI

Throughout this section we assume Ω smooth, i.e. we suppose that there exists
a Φ(x) ∈ C2 such that

Ω = {x ∈ IRn : Φ(x) > 0}, DΦ(x) 6= 0 ∀x ∈ ∂Ω. (51)

We denote by n(z) = −DΦ(z)/|DΦ(z)| the outer unit normal to Ω at z ∈ ∂Ω.

6.1. A general result.

Theorem 6.1. Suppose F (x, 0, 0, 0) ≤ 0 and that the hypotheses of Theorem 3.1 or
3.2 or 3.3 hold. Suppose that there exists Fhom : Ω×IR×IRn×Sn → IR, continuous,
positively 1-homogeneous in (u, p,X) (i.e. Fhom(x, ρu, ρp, ρX) = ρFhom(x, u, p,X),
∀ρ > 0) such that

F (x, u, p,X) ≥ Fhom(x, u, p,X)−M, M > 0. (52)

Assume that, for any z ∈ ∂Ω, either

sup
µ>0

Fhom(z, 0,−n(z), X − µn(z)⊗ n(z)) > 0, ∀X, (53)

or

Fhom(z, 0,−n(z), X − µn(z)⊗ n(z)) = Fhom(z, 0,−n(z), X), ∀X, ∀µ > 0, (54)
and there exists λ > 0 such that Fhom(z, 0, DΦ(z), D2Φ(z) + λI) > 0. (55)

Then there exists a unique viscosity solution u ∈ C(Ω) of (47).

Remark 6.1. By analogy with the quasilinear case we call a point z ∈ ∂Ω char-
acteristic for F if it satisfies (54) and non-characteristic for F if it satisfies (53),
although in the fully nonlinear generality there might be points of ∂Ω that do not
satisfy either condition.

Proof. From F (x, 0, 0, 0) ≤ 0 we have that u = 0 is a lower barrier to problem (50).
If we find an upper barrier we can conclude, by applying iii) of Theorem 5.1.

First of all we find a strict upper local barrier to the problem{
Fhom(x, u, Du,D2u) = 0, in Ω,
u = 0, on ∂Ω.

(56)

By strict upper local barrier at a point z ∈ ∂Ω, we mean a function W ∈ BLSC
(B(z, r) ∩ Ω), r > 0, W ≥ 0, such that Fhom(x,W,DW, D2W ) > 0 in B(z, r) ∩ Ω,
limx→z W (x) = 0 and W (x) ≥ δ > 0, for all |x− z| = r.

Let us consider

W (x) = 1− e−µ(Φ(x)+ λ
2 |x−z|2), z ∈ ∂Ω, µ, λ > 0, (57)

where Φ is defined in (51). Then W (z) = 0 and W (x) > 0 for any x ∈ Ω and for
any x ∈ ∂Ω, x 6= z. Moreover

Wxi
(x) = e−µ(Φ(x)+ λ

2 |x−z|2)µ(Φxi
+ λ(xi − zi)).

Wxixj
(x) = e−µ(Φ(x)+ λ

2 |x−z|2)µ(Φxixj
− µΦxi

Φxj
+

+λδij − µλΦxj
(xi − zi)− µλΦxi

(xj − zj)− µλ2(xi − zi)(xj − zj)),

so, in particular,

Wxi(z) = µΦxi(z),
Wxixj

(z) = µΦxixj
(z)− µ2Φxi

Φxj
(z) + µλδij .



NON-TOTALLY DEGENERATE ELLIPTIC EQUATIONS 17

Then, since DΦ(z) = −n(z)|DΦ(z)|, we have:

Fhom(z, 0, DW,D2W )
= Fhom(z, 0, µDΦ(z), µ(D2Φ(z)− µDΦ(z)⊗DΦ(z) + λI))
= µFhom(z, 0,−n(z)|DΦ(z)|, D2Φ(z)− µ|DΦ(z)|2n(z)⊗ n(z) + λI).

If condition (53) holds, then there exists µ > 0 such that

Fhom(z, 0, DW,D2W ) > 0.

By continuity
Fhom(x, W,DW, D2W ) > 0

in B(z, r)∩Ω for r small enough, so W is a strict upper local barrier in z to problem
(56).

If, instead, conditions (54) and (55) hold, then there exists λ > 0 such that

Fhom(z, 0, DW,D2W ) = µFhom(z, 0, DΦ(z), D2Φ(z) + λI) > 0,

i.e., also in this case W is a strict upper local barrier in z.
With W we can construct an upper barrier to problem (50) following the proce-

dure used in [1] to prove Proposition 5:
let w ∈ Z, define

V =
{

min{ρW (x), w(x)}, if x ∈ B(z, r) ∩ Ω,
w(x), otherwise.

(58)

We prove that V is an upper barrier in z for ρ sufficiently large. It is obvious that
V ≥ 0 on ∂Ω and V (z) = 0. In Ω \ B(z, r), V is a supersolution. In ∂B(z, r) ∩ Ω,
since W (x) ≥ δ > 0, for all |x−z| = r, we can choose a ρ sufficiently large such that
V = w, then also in this case V is a supersolution. In B(z, r) ∩Ω, if we check that
ρW (x) is a supersolution we have that also V is a supersolution. From assumption
(52):

F (x, ρW,DρW, D2ρW ) ≥ ρFhom(x, W,DW, D2W )−M.

Since Fhom(x, W,DW, D2W ) > 0 in B(z, r) ∩ Ω, we can choose a ρ large enough
such that F (x, ρW,DρW, D2ρW ) ≥ 0 in B(z, r) ∩ Ω . �

Remark 6.2. Assumption (52) holds for Bellman-Isaacs equations (46) with boun-
ded running costs l(x, α, β). In this context the assumption F (x, 0, 0, 0) ≤ 0 be-
comes l ≥ 0, which is very natural in time-optimal control.

6.2. The quasilinear case. We now apply the previous general theorem to the
quasilinear problem{

−tr(A(x)D2u) + H(x, u, Du) = 0, in Ω,
u = 0, on ∂Ω.

(59)

We recall that the assumptions needed to prove Corollary 4.1 and Theorem 6.1 are
(51) and

A = σσT , σ(x) Lipschitz continuous n×m matrix,
H : Ω× IR× IRn → IR, continuous,
u → H(x, u, p) nondecreasing,
|H(x, u, p + q)−H(x, u, p)| ≤ L|q|,
|H(x, u, α(x− y))−H(y, u, α(x− y))| ≤ ω(α|x− y|2 + |x− y|).

(60)
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H(x, u, p) ≥ Hhom(x, u, p)−M,
Hhom continuous and positively 1-homogeneous. (61)

Corollary 6.1. Suppose that (51), (60), (61) hold and that H(x, 0, 0) ≤ 0. Suppose
that either the hypothesis (23) or (24) of Corollary 4.1 hold. If, for any z ∈ ∂Ω,
either ∑

ij

Aij(z)ni(z)nj(z) > 0, (62)

or
−tr(A(z)D2Φ(z)) + Hhom(z, 0, DΦ(z)) > 0 (63)

then there exists a unique viscosity solution u ∈ C(Ω) of (59).

Remark 6.3. The condition (62) says that z is a non-characteristic point in the
classical sense of linear theory. The assumption (63) is a natural counterpart for
quasilinear equation of the conditions for boundary regularity of linear equations
by Fichera [15, 16, 32].

The condition (63) at the characteristic points is satisfied if Ω is convex and
Hhom(z, 0,−n(z)) > 0, because Φ can be chosen concave, so −tr(A(z)D2Φ(z)) ≥ 0.
The condition on the first order terms can be relaxed to Hhom(z, 0,−n(z)) ≥ 0 if
D2Φ(z) ≤ −νI because −tr(A(z)D2Φ(z)) ≥ ν

∑
i,k σ2

ik > 0.

Proof. From Corollary 4.1 the comparison principle holds. We are going to check
that the other conditions of Theorem 6.1 are verified. We take

Fhom(x, u, p,X) = −tr(A(x)X) + Hhom(x, u, p).

If z ∈ ∂Ω satisfies (62)

|σT (z)n(z)|2 =
∑
ij

Aij(z)ni(z)nj(z) > 0.

Then

Fhom(z, 0,−n(z), X − µn(z)⊗ n(z)) = −tr(AX) + µ|σT n|2 + Hhom(z, 0,−n(z)),

and we can choose a sufficiently large µ such that condition (53) is satisfied.
Next we consider the case

∑
ij Aij(z)ni(z)nj(z) = |σT (z)n(z)|2 = 0, so (63)

holds. Then

Fhom(z, 0, DΦ(z), D2Φ+λI) = −tr(A(z)D2Φ(z))−λtrA(z)+Hhom(z, 0, DΦ(z)) > 0

for λ small enough. Therefore in this case condition (55) holds and we can apply
Theorem 6.1 to complete the proof. �

6.3. Pucci operators. Now we derive from Corollary 6.1 the existence of a con-
tinuous viscosity solution to the following nonlinear problems involving the Pucci
extremal operators introduced in Section 4{

P+(σT D2u σ) + H(x, u, Du) = 0, in Ω,
u = 0, on ∂Ω,

(64)

where P+(X) is defined in (43).

Corollary 6.2. Under the assumptions of Corollary 6.1 with (63) replaced by

−Λtr(σT (z)D2Φ(z)σ(z)) + Hhom(z, 0, DΦ(z)) > 0, (65)

there exists a unique viscosity solution u ∈ C(Ω) of problem (64).
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Proof. We denote by ei the eigenvalues of the matrix of X and observe that

P+(X) := −λ
∑
ei>0

ei − Λ
∑
ei<0

ei ≥ −Λtr(X).

Then, for all X and p,

P+(σT (x)Xσ(x)) + H(x, u, p) ≥ −Λtr(σT (x)Xσ(x)) + H(x, u, p). (66)

Since H
Λ satisfies the hypotheses (60), (61), and H

Λ (x, 0, 0) ≤ 0, Corollary 6.1 holds
for the problem{

−Λtr(σT D2u σ) + H(x, u, Du) = 0, in Ω,
u = 0, on ∂Ω.

Then the solution u of this problem is an upper barrier for problem (64). Since the
constant 0 is a lower barrier we can conclude by Theorem 5.1. �

7. The Dirichlet problem for nonlinear equations on the Heisenberg
group. In this section we give some explicit examples of Dirichlet problems where
the theory of the previous sections apply and we get the existence of a continuous
viscosity solution.

7.1. The quasilinear Laplace-Heisenberg equation. Let us consider the ho-
mogeneous Dirichlet problem for the quasilinear equation on the Heisenberg group
introduced in Section 4, namely,{

−∆Hu + H(x, u, Du) = 0, in Ω,
u = 0, on ∂Ω.

(67)

First we give an existence result for problem (67) in the Koranyi’s ball

BH = {x = (x1, x2, t) : (x2
1 + x2

2)
2 + t2 < 1}

and in the Euclidean ball of IR3

BE = {x = (x1, x2, t) : x2
1 + x2

2 + t2 < 1}

that follows directly from Corollary 6.1. Then we will prove a result for much more
general domains that relies on the existence theory for linear equations, under
different conditions on the Hamiltonian H.

Corollary 7.1. Let Ω be BH or BE . Assume that H(x, u, p) satisfies (60), (61),
and H(x, 0, 0) ≤ 0. Suppose that, for z = n(z) = (0, 0,±1),

Hhom(z, 0,−n(z)) > 0, if Ω = BH, (68)

Hhom(z, 0,−n(z)) > −2, if Ω = BE . (69)

Then there exists a unique viscosity solution u ∈ C(Ω) of (67).

Proof. If Ω = BH, (51) holds with

Φ(x) = 1− (x2
1 + x2

2)
2 − t2.

For problem (67) the characteristic points of ∂BH (i.e. the points that satisfy
σT (z)n(z) = 0) are (0, 0,±1). If z 6= (0, 0,±1) then condition (62) holds. If
z = (0, 0,±1)

−tr(A(z)D2Φ(z)) = −∆HΦ(z) = 24(x2
1 + x2

2) = 0.
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From assumption (68) we have that condition (63) holds. Therefore Corollary 6.1
gives the existence of a unique continuous viscosity solution to (67) in BH.

If Ω = BE and Φ(x) = 1 − x2
1 − x2

2 − t2 the characteristic points are the same.
Now −∆HΦ(z) = 4 so condition (63) becomes (69). �

Examples. The previous result can be applied to the linear equation

−∆Hu + b(x) · ∇u + c(x)u = f(x), (70)

with c and f continuous, b Lipschitz, 0 ≤ f(x) ≤ M , c(x) ≥ 0. In this case,
condition (68) reads b(z) · n(z) < 0 in z = n(z) = (0, 0,±1), and (69) becomes
b(z) · n(z) < 2 (which holds, e.g., if |b(z)| < 2).

A simple nonlinear example is

−∆Hu + G(∇u) = f(x), (71)

with f as above and G(·) Lipschitz continuous, 1-homogeneous, and satisfying
G(0, 0,±1) > 0 if Ω = BH, G(0, 0,±1) > −2 if Ω = BE .

Remark 7.1. Both BH and BE are strictly convex, but D2Φ(z) is negative definite
in the euclidean case, wheras for the Koranyi ball it degenerates in the horizontal
directions. For this reason in the latter case we need the more restrictive condition
(68), stating the non-degeneracy of Hhom at the characteristic points of BH with
an appropriate sign. If the nondegeneracy has the opposite sign, i.e.,

Hhom(z, 0,−n(z)) < 0, z = n(z) = (0, 0,±1),

one expects that the generalized solution of Theorem 5.1 ii) does not attain the
boundary data at z. This is suggested by Gaveau’s theory [20, 21] in the linear case
(70), and by stochastic control considerations in the case of a Hamiltonian H of
Bellman type. If Hhom degenerates at z, i.e., Hhom(z, 0,−n(z)) = 0, the problem
remains open. This is the case when Hhom depends only on the horizontal gradient
σT (x)Du. The Corollary 7.2 below gives an answer under different conditions that
do not include the linear case (70) with b not identically 0.

The next result is an existence theorem to problem (67) in a general bounded
open set Ω (not necessarily with smooth boundary), provided that it is a domain of
solvability for the Heisenberg Laplacian (see the precise definition below). Instead
of making a non degeneracy assumption on Hhom at the characteristic points, we
suppose that H is bounded from below.

Definition 7.1. The bounded open set Ω is called domain of solvability for ∆H if
the Dirichlet problem {

∆Hu = 0, in Ω,
u = g, on ∂Ω,

(72)

has a solution, continuous on Ω, for any g continuous function on ∂Ω.

Remark 7.2. Ω is a domain of solvability for ∆H if the following conditions are
satisfied.

1. A probabilistic definition of regular points of ∂Ω was introduced by Gaveau
[20] and it was proved in [21] that if all points of ∂Ω are regular then Ω is a
domain of solvability for ∆H.
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2. A result of Gallardo in [19] shows that, if for any x ∈ ∂Ω there exists an
intrinsic exterior cone to Ω, then all points of ∂Ω are regular and then, from
1), Ω is a domain of solvability for ∆H.

3. Any smooth domain Ω, i.e., satisfying (51) for some Φ ∈ C2, is a domain
of solvability for ∆H. In fact, for any point of the boundary of a smooth
domain, there exists an intrinsic exterior cone [27]. Then 2) implies that all
these points are regular.

The next result is obtained in a domain Ω ⊆ IR3 of solvability for ∆H, and hence,
from point 3 of the previous remark, it is valid for any bounded smooth domain.

Corollary 7.2. Let Ω be a domain of solvability for ∆H. Assume that H(x, u, p)
satisfies (60), H(x, 0, 0) ≤ 0 and H(x, u, p) ≥ −K, K > 0, ∀x ∈ Ω, u ∈ IR, p ∈ IRn.
Then there exists a unique viscosity solution u ∈ C(Ω) of problem (67).

Proof. Since 0 is a lower barrier, it is enough to find an upper barrier to get the
conclusion from Theorem 5.1. From the definition of domain of solvability, there
exists v, continuous in Ω, solution of{

∆Hv = 0, in Ω,

v = x2
1
2 , on ∂Ω.

(73)

Hence w = λ(v − x2
1
2 ), λ > K can be taken as upper barrier, because w = 0 on ∂Ω

and −∆Hw + H(x, w,Dw) = λ + H(x,w,Dw) ≥ λ−K > 0. �

Example. The result applies to the example (71) if f ∈ C2(Ω) satisfies
0 ≤ f(x) ≤ M and G is Lipschitz, positively 1-homogeneous, and G(p) ≥ 0 for all
p ∈ IRn.

7.2. Fully nonlinear equations on the Heisenberg group. The results of the
previous subsection can be used to give some more explicit results on the solvability
of {

P+(σT (x)D2u σ(x)) + H(x, u, Du) = 0, in Ω,
u = 0, on ∂Ω,

(74)

for the Heisenberg diffusion matrix σ defined by (35) and the Pucci operator P+(X)
defined in (43).

Corollary 7.3. Let Ω = BH. Under the assumptions of Corollary 7.1 there exists
an unique continuous viscosity solution of problem (74).

Proof. Using (66) and Corollary 7.1, the solution of{
−Λ∆Hu + H(x, u, Du) = 0, in BH,
u = 0, on ∂BH.

is an upper barrier to (74). �

The same argument and Corollary 7.2 give the following.

Corollary 7.4. Let Ω be a domain of solvability for ∆H. Under assumptions of
Corollary 7.2, there exists an unique continuous viscosity solution of problem (74).
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Remark 7.3. Taking H(x, 0, 0) ≥ 0, replacing (61) with H ≤ Hhom + M , with
Hhom 1-homogeneous, M > 0 and replacing (68) with Hhom(z, 0, n(z)) < 0, in
z = n(z) = (0, 0,±1), we can solve also{

P−(σT (x)D2u σ(x)) + H(x, u, Du) = 0, in BH,
u = 0, on ∂BH,

(75)

In this case the function u = 0 is an upper barrier and the solution of{
−λ∆Hu + H(x, u, Du) = 0, in BH,
u = 0, on ∂BH.

is a lower barrier.
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