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Abstract

Semilinear elliptic PDEs are dealt with, either in the halfspace or in overdetermined
settings.

We obtain several new results and also give new proofs of celebrated theorems by
exploiting some geometric analysis of level sets, a geometric inequality and a pointwise
gradient estimate.

1 Introduction

In this paper, we will consider several geometric features of the solutions of some semilinear
elliptic PDEs.

The boundary value problems we consider are of the type















∆u + f(u) = 0
u > 0

in Ω,

u = 0 on ∂Ω,

where Ω is either a halfspace or an unbounded epigraph, in which case a second boundary
condition ∂νu = const on ∂Ω is imposed.

We provide a geometric formula for monotone solutions in domains with boundary, a pointwise
gradient estimate for the halfspace, several rigidity results for unbounded domains and an
application to overdetermined problems inspired by Schiffer’s conjecture.

The main motivation for our results arises from the following natural question. If Ω is an
unbounded “nice” domain in R

n and u is a solution of the problem























∆u + f(u) = 0
u > 0

in Ω,

u = 0
∂νu = c

on ∂Ω,

(1.1)

are there “natural” geometric assumptions under which one can conclude that Ω is necessarily
a halfspace and u is necessarily a function of only one variable?
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Note that problem (1.1) is “overdetermined”, that is both Dirichlet and Neumann boundary
conditions are prescribed (as usual, in (1.1), ν denotes the exterior normal of ∂Ω and c is a
constant). Also, the PDE in (1.1) is elliptic and semilinear.

To the best of our knowledge, there are no results in the literature for unbounded domains Ω
which answer the above natural question. One of the main scopes of this paper is thus to
develop a geometric approach for problem (1.1), which will allow us to obtain new results
in that direction and also to give new proofs, under weaker assumptions, of some previous
related results of [BCN97b, AAC01]. Our study will be possible via a suitable weighted
Poincaré-type inequality, inspired by the one of [SZ98a, SZ98b]: these weights are related to
the curvatures of u and they will encode valuable information on the symmetry of both the
solution u and of the domain Ω.

Following are the details of the assumptions we take and of the results we obtain.

1.1 A general geometric formula

Given a smooth function v, one may consider the level sets {v = c}.
In the vicinity of {∇v 6= 0}, these level sets are smooth manifolds, so one can introduce the
principal curvatures

κ1, . . . , κn−1

at any point of such manifolds.

We set

K :=
√

κ2
1 + · · · + κ2

n−1.

Also, it is customary to consider the tangential gradient along level sets of v at these points,
that is

∇T g := ∇g −
(

∇g · ∇v

|∇v|

) ∇v

|∇v| .

Using this notation, we provide here the following general geometric result for solutions of
semilinear elliptic PDEs:

Theorem 1.1. Let Ω be an open subset of R
n with C3 boundary and let ν be its exterior

normal.

Suppose that u ∈ C2(Ω) satisfies

∆u(x) + f(u(x)) = 0,

with f locally Lipschitz, and
∂nu(x) > 0

for any x ∈ Ω.

Assume also that
u is constant on ∂Ω. (1.2)

Then,
∫

Ω

[

|∇ϕ|2 − f ′(u)
∂nuϕ2

ε + ∂nu

]

−
∫

∂Ω

ϕ2

ε + ∂nu
∇∂nu · ν ≥ 0, (1.3)

for any ϕ ∈ W 1,∞
0 (K), for any compact set K ⊂ R

n and for any ε > 0.
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Moreover,

∫

Ω

(

|∇u|2K2 + |∇T |∇u||2
)

ϕ2

+ lim sup
ε→0+

∫

∂Ω

ϕ2

ε + ∂nu

(

|∇u|2∂2
n,νu − ∂2

i,νu∂iu∂nu
)

≤
∫

Ω
|∇u|2|∇ϕ|2

(1.4)

for any ϕ ∈ W 1,∞
0 (K), for any compact set K ⊂ R

n.

If, in addition, either Ω = R
n
+ or ∂νu is constant on ∂Ω, then

∫

Ω

(

|∇u|2K2 + |∇T |∇u||2
)

ϕ2 ≤
∫

Ω
|∇u|2|∇ϕ|2 (1.5)

for any ϕ ∈ W 1,∞
0 (K), for any compact set K ⊂ R

n.

The above result may be seen as a generalization of the geometric formula of [SZ98a, SZ98b].
Notice, in particular, that (1.3) is a more general version of the classical stability condition
(see, for instance, [AAC01, FSV08]), while (1.4) is a Poincaré-type inequality, in which a
suitably weighted L2-norm of any test function is controlled by a suitably weighted L2-
norm of the gradient. Remarkably, the weights have a nice geometric meaning, which makes
inequality (1.4) very feasible for applications, as we will see in what follows.

Moreover, such Poincaré-type inequalities may be seen as extensions of the stability condition
for minimal surfaces, in which the L2-norm of any test function, weighted by the curvature,
is controlled by the L2-norm of the gradient (see, for instance, formula (10.20) in [Giu84]).

Differently from [SZ98a, SZ98b], here we will exploit (1.4) by keeping track of some relevant
boundary terms, by allowing the supports our test functions to meet the boundary of the
domain (notice, indeed that, in the statement of Theorem 1.1, we allow that K ∩ ∂Ω 6= ∅).
We will use Theorem 1.1 in concrete cases. In particular, we will give new proofs, with differ-
ent methods and under weaker assumptions, of some results first proven in [BCN97b, AAC01]
and we will show new symmetry and rigidity properties in halfspaces and overdetermined
problems.

The results obtained will be different, according to the dimension of the space, to the shape
of the domain, to the properties of the nonlinearity and to the boundary conditions.

1.2 The case of dimension n = 2

First, we provide new, and simpler, proofs of a rigidity result of [BCN97b].

For this, we use the standard notation Rn
+ := Rn−1 × (0,+∞).

Theorem 1.2. Let Ω be an open, connected subset of R
2 with C3 boundary. Let f be a locally

Lipschitz function. Suppose that u ∈ C2(Ω), with |∇u| ∈ L∞(Ω), satisfies

∆u(x) + f(u(x)) = 0, and ∂2u(x) > 0

for any x ∈ Ω, with u = 0 on ∂Ω.
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Assume also that either Ω is a halfplane or that ∂νu is constant on ∂Ω.

Then, Ω must be a halfplane and there exist ω ∈ S1 and uo : R → (0,+∞) in such a way that
ω is normal to ∂Ω and u(x) = uo(ω · x) for any x ∈ Ω.

Theorem 1.3. Let f be a locally Lipschitz function. Suppose that u ∈ C 2(R2
+), with |∇u| ∈

L∞(R2
+), satisfies

∆u(x) + f(u(x)) = 0 and u(x) > 0

for any x ∈ R
2
+, with

u(x1, 0) = 0 for any x1 ∈ R.

Then, there exists uo : (0,+∞) → (0,+∞) in such a way that

u(x1, x2) = uo(x2) for any (x1, x2) ∈ R
2
+. (1.6)

We observe that when |∇u| is not bounded Theorems 1.2 and 1.3 do not hold (a counterex-
ample is u(x1, x2) = x2e

x1).

Theorem 1.3 was first proven in [BCN97b] (see in particular Theorem 1.5 there). The proof
we give here is new, somewhat simpler, and it relies on geometric inequalities.

In fact, a slight improvement of Theorem 1.5 of [BCN97b] is given by Theorem 1.3 here, since
the solution was assumed to be bounded in [BCN97b], while the weaker condition of having
a bounded gradient is enough for our Theorem 1.3 (indeed, we recall that bounded solutions
of semilinear PDEs have a bounded gradient, due to standard elliptic estimates, see [GT83],
but the converse is not necessarily true, as the linear functions show).

1.3 A pointwise gradient bound in the halfspace

In order to deal with semilinear PDEs in R
n
+, the following pointwise gradient estimate turns

out to be quite useful:

Theorem 1.4. Let n ≥ 1. Let F ∈ C1,1
loc (R), with

F ′(0) ≥ 0. (1.7)

Let u ∈ C2(Rn
+)∩L∞(Rn

+) be a solution of ∆u+F ′(u) = 0 in R
n
+, with u ≥ 0 in R

n
+ and u = 0

on ∂R
n
+.

Then,
1

2
|∇u(x)|2 ≤ sup

r∈[0,‖u‖L∞(Rn
+

)]
F (r) − F (u(x)), (1.8)

for any x ∈ R
n
+.

Also,
sup

r∈[0,‖u‖L∞(Rn
+

)]
F (r) = F

(

‖u‖L∞(Rn
+)

)

(1.9)

and, if u does not vanish identically, then

sup
r∈[0,‖u‖L∞(Rn

+
)]

F (r) > F (t) (1.10)

for any t ∈
[

0, ‖u‖L∞(Rn
+)

)

.
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The pointwise estimate of Theorem 1.4 may be seen as an extension of the one obtained
in [Mod85], where a similar result was proven in the case of solutions in the entire space R

n.

An important strengthening of the work of [Mod85] was also performed in [CGS94], where
singular and degenerate operators were considered (still in the whole space R

n).

With respect to [Mod85, CGS94], here we need to take into account the presence of the
boundary terms on ∂R

n, and this will provide several technical complications in the proof.

For our paper, Theorem 1.4 will play a crucial role in the proof of the subsequent Theorem 1.5.

1.4 The case of the halfspace in dimension n = 3

Under suitable conditions, it is possible to extend Theorem 1.3 to higher dimension. We start
with n = 3, in which we give a new proof of the following result, which was first proved in
[BCN97b], under a stronger assumption on the regularity of the nonlinearity:

Theorem 1.5. Let f be locally Lipschitz.

Suppose that u ∈ C2(R3
+) ∩ L∞(R3

+) satisfies

∆u(x) + f(u(x)) = 0 and u(x) > 0

for any x ∈ R
3
+, with

u(x′, 0) = 0 for any x′ ∈ R
2.

Assume that f(0) ≥ 0.

Then, there exists uo : (0,+∞) → (0,+∞) in such a way that

u(x′, x3) = uo(x3) for any (x′, x3) ∈ R
3
+.

We remark that when u is not bounded Theorem 1.5 does not hold (a counterexample for
Theorem 1.5 would be u(x1, x2, x3) = x3e

x1). For results related to our Theorem 1.5 see also
Theorem 1.5 in [BCN97b] and Corollary 1.3 in [FSV08].

Theorem 1.5 was first proven in [BCN97b]. Again, the proof we give here is new and it does
not use the technology of [BCN93, BCN97b].

Also, differently from [BCN97b], Theorem 1.5 here above does not require f to be C 1(R),
and this does not seem to be possible with the techniques of [BCN97b].

We would like to recall that the extension to locally Lipschitz nonlinearities is not of merely
academic interest, since several physical applications deal with locally Lipschitz forces (for
instance, suspension bridges, see [FV08]).

1.5 The case of the overdetermined epigraph in dimension n = 2, 3

We now consider the epigraph case, namely the case in which our domain may be written as

{xn = Γ(x′), x′ ∈ R
n−1}.

It is customary to say that the epigraph given by Γ is coercive if

lim
|x′|→+∞

Γ(x′) = +∞.
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With this notation, we obtain the following two results, which, to the best of our knowledge,
are new:

Theorem 1.6. Let f be locally Lipschitz and suppose that

• either n = 2

• or n = 3 and f(r) ≥ 0 for any r ≥ 0.

Let Ω be an open subset of R
n with C3 boundary.

Suppose that u ∈ C2(Ω) ∩ L∞(Ω) satisfies

∆u(x) + f(u(x)) = 0 and u(x) > 0

for any x ∈ Ω, with
u(x) = 0 for any x ∈ ∂Ω.

Assume also that ∂νu is constant on ∂Ω.

Then, Ω cannot be a uniformly Lipschitz coercive epigraph.

Theorem 1.7. Let n = 2, 3.

Let Ω be an open epigraph of R
n with C3 and uniformly Lipschitz boundary.

Suppose that u ∈ C2(Ω) ∩ L∞(Ω) satisfies

∆u + u − u3 = 0 and u > 0 (1.11)

in Ω, with
u(x) = 0 for any x ∈ ∂Ω.

Assume also that ∂νu is constant on ∂Ω.

Then, we have that Ω = R
n
+ up to isometry and

u(x1, . . . , xn) = tanh

(√
2 xn

2

)

for any (x1, . . . , xn) ∈ R
n
+.

We observe that (1.11) is the classical Allen-Cahn equation. In fact, Theorem 1.7 will be, for
us, the consequence of the following, more general, result:

Theorem 1.8. Let n = 2, 3 and f be locally Lipschitz.

Let Ω be an open epigraph of R
n with C3 and uniformly Lipschitz boundary.

Suppose that u ∈ C2(Ω) ∩ L∞(Ω) satisfies

∆u(x) + f(u(x)) = 0 and u(x) > 0

for any x ∈ Ω, with
u(x) = 0 for any x ∈ ∂Ω.
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Assume also that ∂νu is constant on ∂Ω and that

there exists δ3 > δ2 > δ1 > 0 in such a way that

f(t) > δ1t for any t ∈ (0, δ1),

f is nonincreasing on (δ2, δ3),

f > 0 on (0, δ3)

and f ≤ 0 on [δ3,+∞).

(1.12)

Then, we have that Ω = R
n
+ up to isometry and that there exists uo : (0,+∞) → (0,+∞) in

such a way that

u(x1, . . . , xn) = uo(xn) for any (x1, . . . , xn) ∈ R
n
+.

The question on whether or not similar results hold in higher dimension remains open.

We observe that Theorem 1.8 should be compared with Theorem 7.1 in [BCN97a]. Indeed,
the result of Theorem 7.1 in [BCN97a] is similar to the one of Theorem 1.8 here and it even
holds in any dimension, but there an additional flatness condition of the graph at infinity
is needed (see (7.2) in [BCN97a]). The use of such additional flatness was actually crucial
in [BCN97a] for using the sliding method: it is therefore the use of a new geometric tool that
allows us to prove our Theorem 1.8 without any additional flatness assumption.

1.6 Overdetermined problems in dimension n = 2, 3: a version of Schiffer’s

conjecture in unbounded domains

We give the following result for overdetermined problems:

Theorem 1.9. Let λ, c ∈ R.

Let Ω be a C3 and uniformly Lipschitz epigraph of R
n, with n = 2, 3.

Then, there exists no solution u ∈ C2(Ω) ∩ L∞(Ω) of















∆u + λu = 0 in Ω,
u > 0 in Ω,
u = 0 on ∂Ω,

∂νu = c on ∂Ω.

(1.13)

We wonder whether analogous results hold in higher dimension.

Remark 1.10. Theorem 1.9 may be related to a version for unbounded domains of Schiffer’s
conjecture (see, for instance, [Ser71, Wei71, Yau82, GS93, Ebe93, WCG95]).

Indeed, Schiffer’s conjecture consists of the question whether or not there exists u ∈ C 2(Ω)
solving







∆u + λu = 0 in Ω,
u = b on ∂Ω,

∂νu = c on ∂Ω
(1.14)

for some λ, b and c ∈ R, then Ω is a ball.

While the original Schiffer’s conjecture deals with a bounded Ω in (1.14), Theorem 1.9 con-
siders an analogous problem in unbounded domains. As far as we know, Theorem 1.9 is the
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first attempt to look for phenomena of the type of the Schiffer’s conjecture in unbounded
domains.

In fact (see Section 11 below), the proof of Theorem 1.9 consists in showing that if a solution
of (1.13) existed, then λ would be positive and Ω would be a halfspace.

But then (recall Theorem 1.5), u needs to be a function of only one variable. Thus, by solving
the ODE associated to (1.13), one would easily obtain a contradiction with the fact that u is
positive.

1.7 The case of the halfspace in dimensions n = 4, 5

Exploiting some parabolicity estimates of [DF08] and Theorem 1.4 of [BCN97b], we are also
in the position of extending Theorem 1.5 to the case n = 4, 5.

A similar result for n = 4 was also given in [AAC01], with different methods. To the best
of our knowledge, the case n = 5 was not considered in any previous literature and new
ingredients were needed to deal with it.

Theorem 1.11. Let n = 4, 5. Let f ∈ C1(R). Suppose that u ∈ C2(Rn
+) ∩ L∞(Rn

+) satisfies

∆u(x) + f(u(x)) = 0 and u(x) > 0

for any x ∈ R
n
+, with

u(x′, 0) = 0 for any x′ ∈ R
4.

Assume

• either that f(r) ≥ 0 for any r ≥ 0,

• or that there exists ζ > 0 in such a way that f(r) ≥ 0 for any r ∈ [0, ζ] and f(r) ≤ 0
for any r ∈ [ζ,+∞).

Then, there exists uo : (0,+∞) → (0,+∞) in such a way that

u(x′, xn) = uo(xn) for any (x′, xn) ∈ R
n
+.

What happens in dimension n ≥ 6 is, for what we know, an open question.

We also stress that we cannot prove Theorem 1.11 when f is only locally Lipschitz, since we
need to take limits of a suitable stability condition in (12.2) below, for which the continuity
of f ′ plays a crucial role.

1.8 Organization of the paper

The rest of this paper is organized as follows. Section 2 contains some elementary level set
analysis, an easy parabolicity estimate and a classical consequence of the Maximum Principle.

Section 3 is inspired by some computations in [SZ98a, SZ98b, FSV08] and it develops the
estimates necessary for proving Theorem 1.1. The proof of Theorem 1.1 is then finished in
Section 4.

Some preliminary rigidity results are collected in Section 5.

Theorems 1.2 and 1.3 are then proved in Sections 6 and 7.
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In Section 8 we prove Theorem 1.4.

Some energy estimates, inspired by [AAC01], are collected in Section 9.

The remaining main results are then proved in Sections 10–12.

2 Preliminaries

We collect here some elementary observations, to be used in the proofs of the main results.

2.1 Level set analysis

This part is a local version of a global geometric analysis performed in [FSV08] under greater
generality (we give here full details for the reader’s convenience).

In the forthcoming arguments, U will denote an open subset of R
n and we will take v ∈

C2(U) ∩ C(U).

Given x̄ ∈ U , we denote the level set of v through x̄ by

Lv,x̄ := {x ∈ U s.t. v(x) = v(x̄)}.

We will suppose in what follows that ∇v(x) 6= 0 for any x ∈ U . In particular, Lv,x̄ is a
smooth hypersurface.

Lemma 2.1. Let M be a connected component of Lv,x.

Suppose that M 6= ∅ and M is contained in a hyperplane π. Then, M agrees with a connected
component of π ∩ U .

Proof. We show that
M is open in the topology of π ∩ U . (2.1)

For this, let z ∈ M : we show that there exists an open set O ⊂ R
n containing z and such

that O ∩ (π ∩ U) ⊆ M .

To check this, we observe that since M is a smooth connected hypersurface lying in π, there
exists an open set O ⊂ U , for which z ∈ O and O ∩ M = O ∩ π.

As a consequence,
O ∩ (π ∩ U) = O ∩ π = O ∩ M ⊆ M,

proving (2.1).

Also, M is obviously closed in U , since so is Lv,x̄, and this, together with (2.1), gives the
desired claim.

Lemma 2.2. Suppose that a non-empty connected component L̄ of Lv,x has zero principal
curvatures at all points.

Then, there exists a hyperplane π is such a way that L̄ agrees with a connected component
of π ∩ U .

Proof. We use an elementary differential geometry argument (see, for instance, page 311
in [Ser94]). Since the principal curvatures vanish identically, the normal of L̄ is constant,
thence L̄ is contained in a hyperplane.

Then, the claim follows from Lemma 2.1.
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Following is the flatness result for domain that we will use in the sequel:

Lemma 2.3. Let v > 0 in U and v = 0 on ∂U .

Suppose that any connected component of Lv,x has zero principal curvatures at all points.

Then, there exists vo : R → R and ω ∈ Sn−1 in such a way that any connected component of
U is a slab of the form

{

x ∈ R
n s.t. ω · x ∈ (a, b)

}

,

for suitable a, b ∈ R ∪ {−∞} ∪ {+∞}, and v(x) = vo(ω · x), for any x ∈ U .

Proof. Each connected component L̄ of Lv,x agrees with a connected component πL̄ ∩U , for
some hyperplane πL̄, due to Lemma 2.2.

Moreover, since v > 0 in the connected component of Lv,x̄, such a connected component
cannot touch ∂U .

Consequently, the connected components of any level set of v are all portions of hyperplanes
that do not meet ∂U and therefore they must all be parallel hyperplanes.

2.2 A consequence of the Maximum Principle

Lemma 2.4. Let u ∈ C2(Rn
+)∩L∞(Rn

+) be a solution of ∆u+f(u) = 0 in R
n
+, with f locally

Lipschitz and u(x′, 0) = 0 for any x′ ∈ R
n−1.

Assume that there exists ζ > 0 in such a way that f(r) ≥ 0 for any r ∈ [0, ζ] and f(r) ≤ 0
for any r ∈ [ζ,+∞).

Then, u(x) ≤ ζ for any x ∈ R
n
+.

Proof. Suppose, by contradiction that u(xo) > ζ for some xo ∈ R
n
+. Then, there exists an

open connected neighborhood D ⊂ R
n
+ of xo for which u(x) > ζ for any x ∈ D and u(x) = ζ

for any x ∈ ∂D.

Let z(x) := ζ − u(x). Then, z < 0 in D and

‖z‖L∞(D) ≤ ζ + ‖u‖L∞(Rn
+).

Also,
∆z(x) = −∆u(x) = f(ζ − z(x)) ≤ 0

for any x ∈ D, while z = 0 on ∂D.

As a consequence of this and of the Maximum Principle (see the version of it given in
Lemma 2.1 of [BCN97a]), we would get that z ≥ 0 in D, which is a contradiction.

3 A Poincaré-type inequality

Following is a modification of a standard result relating monotone and stable solutions (see
[AAC01, FSV08]). Differently from the previous literature, boundary terms will be taken
into account here.
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Lemma 3.1. Let Ω be an open subset of R
n with C3 boundary and let ν be its exterior

normal.

Let f be a locally Lipschitz function.

Suppose that u ∈ C2(Ω) satisfies

∆u(x) + f(u(x)) = 0 (3.1)

and
∂nu(x) > 0 (3.2)

for any x ∈ Ω.

Suppose also that
u is constant on ∂Ω. (3.3)

Then,
∫

Ω

[

|∇φ|2 − f ′(u)
∂nuφ2

ε + ∂nu

]

−
∫

∂Ω

φ2

ε + ∂nu
∇∂nu · ν ≥ 0, (3.4)

for any φ ∈ W 1,∞
0 (K), for any compact set K ⊂ R

n and for any ε > 0.

Proof. We remark that

u ∈ W 3,2
(

Br(p) ∩ Ω
)

for any r > 0 and any p ∈ R
n, (3.5)

thanks to (3.3) here above and Theorem 8.13 in [GT83].

Now, let K ⊂ R
n be compact and φ ∈ W 1,∞

0 (K). Note that the map x 7→ f(u(x)) is locally
Lipschitz, so, from (3.1),

∆∂nu(x) + f ′(u(x))∂nu(x) = 0 (3.6)

for almost any x ∈ Ω. We now fix ε > 0 and we use (3.2), (3.5) and (3.6) to get

0 = −
∫

Ω

(

∆∂nu + f ′(u)∂nu
) φ2

ε + ∂nu

=

∫

Ω
∇∂nu · ∇ φ2

ε + ∂nu
− f ′(u)

∂nuφ2

ε + ∂nu
−
∫

∂Ω

φ2

ε + ∂nu
∇∂nu · ν

=

∫

Ω
2φ∇∂nu · ∇φ

ε + ∂nu
− |∇∂nu|2φ2

(ε + ∂nu)2
− f ′(u)

∂nuφ2

ε + ∂nu
−
∫

∂Ω

φ2

ε + ∂nu
∇∂nu · ν.

Cauchy Inequality then yields (3.4).

Next result is a variation of a geometric formula of [SZ98a, SZ98b]. Differently from [SZ98a,
SZ98b], we will keep track of the boundary terms.

Proposition 3.2. Let Ω be an open subset of R
n with C3 boundary and let ν be its exterior

normal.

Suppose that u ∈ C2(Ω) satisfies (3.1), (3.2) and (3.3), and that f is locally Lipschitz.
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Then,

∫

Ω

(

|∇u|2K2 + |∇T |∇u||2
)

ϕ2

+ lim sup
ε→0+

∫

∂Ω

ϕ2

ε + ∂nu

(

|∇u|2∂2
n,νu − ∂2

i,νu∂iu∂nu
)

≤
∫

Ω
|∇u|2|∇ϕ|2

(3.7)

for any ϕ ∈ W 1,∞
0 (K), for any compact set K ⊂ R

n.

Proof. Given a matrix M ∈ Mat(n × n), we define

|M | :=

√

∑

1≤i,j≤n

M2
i,j . (3.8)

Since the map x 7→ f(u(x)) is locally Lipschitz, by differentiating (3.1) we obtain, almost
everywhere,

∆(∂iu) + f ′(u)∂iu = 0.

Therefore, for any test function ϕ, we have that

∫

Ω
f ′(u) |∇u|2 ∂nuϕ2

ε + ∂nu
=

∫

Ω
f ′(u) ∂iu∂iu

∂nuϕ2

ε + ∂nu

= −
∫

Ω
∆(∂iu)∂iu

∂nuϕ2

ε + ∂nu

=

∫

Ω
∇(∂iu) · ∇

(

∂iu
∂nuϕ2

ε + ∂nu

)

−
∫

∂Ω
∂ν(∂iu)∂iu

∂nuϕ2

ε + ∂nu

=

∫

Ω
|D2u|2 ∂nuϕ2

ε + ∂nu
+

∫

Ω
∂iu∇(∂iu) · ∇

(

∂nuϕ2

ε + ∂nu

)

−
∫

∂Ω
∂2

i,νu∂iu
∂nuϕ2

ε + ∂nu
,

(3.9)

where (3.5), (3.8) and the standard repeated index summation have been used.
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We now make use of Lemma 3.1 by choosing φ := |∇u|ϕ. Then, (3.4) and (3.9) imply that

∫

∂Ω

|∇u|2ϕ2

ε + ∂nu
∂2

n,νu

≤
∫

Ω
|∇|∇u||2ϕ2 + |∇u|2|∇ϕ|2 + 2|∇u|ϕ∇|∇u| · ∇ϕ − f ′(u)|∇u|2 ∂nuϕ2

ε + ∂nu

=

∫

Ω
|∇|∇u||2ϕ2 + |∇u|2|∇ϕ|2 +

1

2
∇|∇u|2 · ∇ϕ2

−
∫

Ω

[

|D2u|2 ∂nuϕ2

ε + ∂nu
+ ∂iu∇(∂iu) · ∇

(

∂nuϕ2

ε + ∂nu

)]

+

∫

∂Ω
∂2

i,νu∂iu
∂nuϕ2

ε + ∂nu

=

∫

Ω
|∇|∇u||2ϕ2 + |∇u|2|∇ϕ|2 +

1

2
∇|∇u|2 · ∇ϕ2

−
∫

Ω
|D2u|2 ∂nuϕ2

ε + ∂nu
+

∫

∂Ω
∂2

i,νu∂iu
∂nuϕ2

ε + ∂nu

− 1

2

∫

Ω

[

∇|∇u|2 · ∇ϕ2 ∂nu

ε + ∂nu
+ ϕ2∇|∇u|2 · ∇ ∂nu

ε + ∂nu

]

.

(3.10)

By rearranging the terms of (3.10), and by employing (3.2) and the Dominated Convergence
Theorem, we thus obtain that

lim sup
ε→0+

∫

∂Ω

|∇u|2ϕ2

ε + ∂nu
∂2

n,νu − ∂2
i,νu∂iu

∂nuϕ2

ε + ∂nu

≤
∫

Ω
|∇|∇u||2ϕ2 + |∇u|2|∇ϕ|2 +

1

2
∇|∇u|2 · ∇ϕ2

− lim inf
ε→0+

∫

Ω

[

|D2u|2 ∂nuϕ2

ε + ∂nu
+

1

2
∇|∇u|2 · ∇ϕ2 ∂nu

ε + ∂nu
+

1

2
ϕ2∇|∇u|2 · ∇ ∂nu

ε + ∂nu

]

=

∫

Ω
|∇|∇u||2ϕ2 + |∇u|2|∇ϕ|2 − |D2u|2ϕ2.

This gives (3.7), thanks to the following differential geometry formula (see [SZ98a, SZ98b]),
which holds on {∇u 6= 0}:

|D2u|2 − |∇|∇u||2 = |∇u|2K2 + |∇T |∇u||2.

Remark 3.3. It is worth to note that condition (3.3) was used in Lemma 3.1 and Proposi-
tion 3.2 only to obtain (3.5). Accordingly, the results of Lemma 3.1 and Proposition 3.2 are
still valid if (3.3) is dropped, but (3.5) holds true.

Corollary 3.4. Let Ω be an open subset of R
n with C3 boundary and let ν be its exterior

normal.

Suppose that u ∈ C2(Ω) satisfies (3.1) and (3.2) with f locally Lipschitz.

Let
u be constant on ∂Ω. (3.11)

Assume also that either
Ω = R

n
+ (3.12)

or
∂νu is constant on ∂Ω. (3.13)

13



Then
∫

Ω

(

|∇u|2K2 + |∇T |∇u||2
)

ϕ2 ≤
∫

Ω
|∇u|2|∇ϕ|2 (3.14)

for any ϕ ∈ W 1,∞
0 (K), for any compact K ⊂ R

n.

Proof. We claim that, on ∂Ω,

|∇u|2∂2
n,νu = ∂2

i,νu∂iu∂nu. (3.15)

Indeed, if (3.12) holds, we have that ∂iu = 0 on ∂Ω for any i = 1, . . . , n − 1, due to (3.11),
and this plainly gives (3.15).

If, on the other hand, (3.13) holds, we have that at any point of ∂Ω

∇(∂νu) = ±|∇(∂νu)|ν

and so
∇(∂νu) · ν = ±|∇(∂νu)|.

Therefore, on ∂Ω,

|∇u|2∂2
n,νu = |∇u|2∇(∂νu) · en

= ±|∇u|2|∇(∂νu)|
(

ν · en

)

= |∇u|2
(

∇(∂νu) · ν
) (

ν · en

)

.
(3.16)

Analogously, at any point of ∂Ω,
∇u = ±|∇u| ν

due to (3.11).

Consequently, on ∂Ω,

∂2
i,νu∂iu∂nu =

(

∇(∂νu) · ∇u
) (

∇u · en

)

= |∇u|2
(

∇(∂νu) · ν
) (

ν · en

)

.

This identity and (3.16) show that (3.15) holds in this case too.

Then, (3.14) follows from (3.7) and (3.15).

We observe that the geometric estimate of [SZ98a, SZ98b] is thus fully recovered in the
framework given by (3.11) and either (3.12) or (3.13), thanks to (3.14).

Differently from [SZ98a, SZ98b], however, formula (3.14) holds for test functions whose sup-
port may cross the boundary (i.e., in the notation of Corollary 3.4, we may have that K∩∂Ω 6=
∅).

4 Proof of Theorem 1.1

This follows by gathering the results of Lemma 3.1, Proposition 3.2 and Corollary 3.4. �
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5 Some symmetry results

Lemma 5.1. Suppose that Ω is an open, connected subset of R
2 and that u ∈ C2(Ω)∩C(Ω)

satisfies (3.14). Assume also that |∇u| ∈ L∞(Ω).

Then, up to isometry, Ω is a slab of the form

{

(x1, x2) ∈ R
2 s.t. x2 ∈ (a, b)

}

,

for suitable a, b ∈ R ∪ {−∞} ∪ {+∞}.
Moreover, there exists uo : (0,+∞) → (0,+∞) in such a way that

u(x1, x2) = uo(x2) for any (x1, x2) ∈ Ω.

Proof. Given R ≥ 1, we set

ϕR(x) := χB√
R
(x) +

2 ln(R/|x|)
lnR

χBR\B√
R
(x). (5.1)

We plug ϕR inside (3.14), to obtain

∫

Ω∩B√
R

(

|∇u|2K2 + |∇T |∇u||2
)

≤ C

(lnR)2

∫

BR\B√
R

1

|x|2 ≤ C ′

log R
, (5.2)

for appropriate C, C ′ > 0, thanks to the fact that |∇u| is bounded.

By taking R arbitrarily large, we deduce that both K and |∇T |∇u|| vanish identically in Ω.

Consequently, the desired claim follows from Lemma 2.3.

Remark 5.2. It is worth noting that Lemma 5.1 deeply uses the fact of working in dimen-
sion 2 in the last estimate in (5.2). Analogously, the choice of the capacitary function in (5.1)
is motivated by the fundamental solution in R

2 and it would not work, in general, in R
n.

Corollary 5.3. Let Ω be an open, connected subset of R
2 with C3 boundary.

Suppose that u ∈ C2(Ω) satisfies (3.1) and (3.2), that |∇u| ∈ L∞(Ω) and that

lim sup
ε→0+

∫

∂Ω

ϕ2

ε + ∂nu

(

|∇u|2∂2
n,νu − ∂2

i,νu∂iu∂nu
)

≥ 0. (5.3)

Then, up to isometry, Ω is a slab of the form

{

(x1, x2) ∈ R
2 s.t. x2 ∈ (a, b)

}

,

for suitable a, b ∈ R ∪ {−∞} ∪ {+∞}.
Also, there exists uo : (0,+∞) → (0,+∞) in such a way that

u(x1, x2) = uo(x2) for any (x1, x2) ∈ Ω.

Proof. We make use of Proposition 3.2 to attain that (3.7) holds true. Then, from (5.3), we
conclude that (3.14) holds true as well.

The claim thus follows from Lemma 5.1 and the strict monotonicity of u in the nth direction.
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6 Proof of Theorem 1.2

The assumptions of Corollary 3.4 are implied by the ones of Theorem 1.2 and therefore (3.14)
holds true.

Thence Theorem 1.2 follows from Lemma 5.1. �

7 Proof of Theorem 1.3

By Theorem 1.1’ in [BCN97b], we have that

∂2u > 0 in R
2
+. (7.1)

Thence, (1.6) follows from Theorem 1.2. �

8 Proof of Theorem 1.4

We first prove (1.8). Since this proof will be quite long, several intermediate claims will be
emphasized in display.

The technique for proving (1.8) is inspired by [CGS94].

Differently from [CGS94], due to the presence of the boundary, several technicals details are
needed here.

We define
G(t) := sup

r∈[0,‖u‖L∞(Rn
+)]

F (r) − F (t).

Note that
G(t) ≥ 0 (8.1)

for any t ∈ [0, ‖u‖L∞(Rn
+)].

Also, given v ∈ C2(Rn
+) and x ∈ R

n
+, following [CGS94], we define

P (v, x) := |∇v(x)|2 − 2G(v(x)). (8.2)

Given ` ∈ R, we also set

F` :=
{

v ∈ C2(Rn−1 × [`,+∞)) solutions of ∆v = G′(v) in R
n−1 × (`,+∞),

with 0 ≤ v ≤ ‖u‖L∞(Rn
+) and v(x′, `) = 0 for any x′ ∈ R

n−1
}

.

Given any domain Ω ⊆ R
n and v ∈ C2(Ω) satisfying ∆v = G′(v) in Ω, we recall (see

formula (2.7) of [CGS94]) that1

|∇v(x)|2∆P (v, x) − 2G′(v(x))∇v(x) · ∇P (v, x) ≥ |∇P (v, x)|2
2

(8.3)

1A caveat has to be taken into account in order to use here the computation of [CGS94]. Namely, G is here
only C

1,1
loc (R), so, in principle, the computation of [CGS94] has to be understood in the weak distributional

sense. See also Lemma 4.11 in [FSV08] for further comments.
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at any point x ∈ Ω where ∇v(x) 6= 0.

We consider
Po := sup

`∈R, v∈F`
x∈Rn−1×(`,+∞)

P (v, x).

We observe that the above sup is finite, thanks to standard elliptic estimates.

We claim that
Po ≤ 0. (8.4)

The proof of (8.4) is quite long and it will be finished after (8.34).

To prove (8.4), we argue by contradiction. We suppose that

Po > 0 (8.5)

and we take `k ∈ R, vk ∈ F`k
and xk ∈ R

n × (`k,+∞) in such a way that

Po −
1

k
≤ P (vk, xk).

We define
`′k := `k − (xk)n and uk(x) := vk(x + xk).

Note that
`′k < 0, (8.6)

since xk ∈ R
n−1 × (`k,+∞), that uk ∈ C2(Rn−1 × [`′k,+∞)) is a solution of ∆uk = G′(uk)

in R
n−1× (`′k,+∞), with 0 ≤ uk ≤ ‖u‖L∞(Rn), that uk(x

′, `′k) = 0 for any x′ ∈ R
n−1 and that

Po −
1

k
≤ P (uk, 0) ≤ Po. (8.7)

By elliptic regularity (see, e.g., page 311 of [GT83]),

‖uk‖C2,1/2(Rn
+×[`′k,+∞)) ≤ C, (8.8)

for a suitable C > 0, possibly depending on ‖u‖L∞(Rn
+).

We claim that
`′k is bounded. (8.9)

To prove (8.9), we suppose the converse. Then, by (8.6), we have that `′k → −∞, up to
subsequence.

Therefore, by (8.8), uk converges, up to subsequence, in C2
loc(R

n) to some u∞ ∈ C2(Rn)
which solves

∆u∞ = G′(u∞) in R
n. (8.10)

By taking the limit in (8.7), we also have that Po = P (u∞, 0), and so, by (8.5), that

|∇u∞(0)|2 − 2G(u∞(0)) > 0.

This and (8.10) are in contradiction with Lemma 4.11 in [FSV08], so (8.9) is proved.

In light of (8.9), up to subsequence, we may and do suppose that

`′k → `′, for some `′ ∈ R. (8.11)
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In fact, from (8.6),
`′ ≤ 0. (8.12)

We now take ũk ∈ C2,1/2(Rn) to be an extension of uk, that is ũk = uk on R
n−1 × [`′k,+∞),

for which
‖ũk‖C2,1/2(Rn) ≤ C. (8.13)

We recall that such an extension is possible, due to (8.8) and Lemma 6.37 of [GT83].

Consequently, we have that ũk converges, up to subsequence, in C2
loc(R

n) to some u∞ ∈
C2(Rn), with

‖u∞‖C2(Rn) ≤ C. (8.14)

By (8.11) and (8.14), we have that u∞ is a solution of

∆u∞ = G′(u∞) in R
n−1 × [`′,+∞). (8.15)

Then, for any ε > 0, there exists kε such that, if k ≥ kε,

|u∞(x′, `′)| ≤ |uk(x
′, `′)| + ε,

and so, recalling (8.8) once more,

|u∞(x′, `′)| ≤ |uk(x
′, `′k)| + C|`′ − `′k| + ε = C|`′ − `′k| + ε.

As a consequence, taking k arbitrarily large,

|u∞(x′, `′)| ≤ ε.

Then, taking ε as small as we wish, we deduce that

u∞(x′, `′) = 0 for any x′ ∈ R
n−1. (8.16)

Also,

u∞(x) = lim
k→+∞

uk(x) ∈
[

0, ‖u‖L∞(Rn
+)

]

(8.17)

so u∞ ∈ F`′ , and, passing to the limit in (8.7) and recalling (8.5),

|∇u∞(0)|2 − 2G(u∞(0)) = P (u∞, 0) = Po > 0. (8.18)

In particular,
u∞ cannot be constant, (8.19)

otherwise, by (8.16), it would vanish identically and so, from (8.1), (8.17) and (8.18),

0 ≥ 0 − 2G(0) = |∇u∞(0)|2 − 2G(u∞(0)) > 0.

This contradiction proves (8.19).

By (1.7), (8.15), (8.16), (8.17), (8.19) and Hopf Principle (see Lemma 3.4 in [GT83]), we thus
obtain that

∂nu∞(x′, `′) > 0 for any x′ ∈ R
n−1. (8.20)

Furthermore, we have that
inf

Rn−1×(`′,+∞)
|∇u∞| = 0. (8.21)
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To check this, we argue by contradiction, supposing that

inf
Rn−1×(`′,+∞)

|∇u∞| ≥ c > 0, (8.22)

and we consider the solution γ ∈ C1(R, Rn−1 × (`′,+∞)) of the ODE














γ′(t) =
∇u∞(γ(t))

|∇u∞(γ(t))|

γ(0) = (0, . . . , 0, `′ + 1).

Note that γ is globally defined, due to (8.22) and it does not hit the boundary because
of (8.20).

Consequently, utilizing (8.17) and (8.22), for any t > 0,

2‖u‖L∞(Rn
+) ≥ u∞(γ(t)) − u∞(γ(0))

=

∫ t

0
∇u∞(γ(s)) · γ ′(s) ds

=

∫ t

0
|∇u∞(γ(s))| ds

≥ ct.

The latter gives a contradiction for large t and it thus proves (8.21).

Now, we claim that

if P (u∞, y) = Po for some y ∈ R
n−1 × [`′,+∞), then yn = `′. (8.23)

To prove this, we argue again by contradiction, and we suppose that y lies in R
n−1×(`′,+∞).

Then,

the set U :=
{

x ∈ R
n−1 × (`′,+∞) s.t. P (u∞, x) = Po

}

is non-empty. (8.24)

We claim that
if x ∈ U , then |∇u∞(x)| > 0. (8.25)

To prove this, we take x ∈ U and we deduce from (8.1), (8.5) and (8.17) that

0 < Po = P (u∞, x) = |∇u∞(x)|2 − G(v(x)) ≤ |∇u∞(x)|2,

proving (8.25).

Moreover, since u∞ ∈ C2(Rn), we have that

U is closed in R
n−1 × (`′,+∞). (8.26)

We plan to prove that
U is also open. (8.27)

For this, we take x in U and employ (8.25) to deduce that

inf
Brx (x)

|∇u∞| > 0
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for some small rx > 0. This, (8.3) and the Strong Maximum Principle (see Theorem 8.19
of [GT83]) imply that P (y, u∞) = Po for any y ∈ Brx(x).

This proves (8.27).

From (8.24), (8.26) and (8.27), we conclude that

U = R
n−1 × (`′,+∞). (8.28)

We now recall (8.21) and we take xj ∈ R
n−1 × (`′,+∞) in such a way that

lim
j→+∞

|∇u∞(xj)| = 0. (8.29)

Then, from (8.1), and (8.28)

Po = P (u∞, xj) = |∇u∞(xj)|2 − 2G(u∞(xj)) ≤ |∇u∞(xj)|2

for any j ∈ N.

Therefore, by (8.29), we obtain Po ≤ 0, in contradiction with (8.5).

This proves (8.23).

What is more, from (8.18) and (8.23), we deduce that

`′ = 0.

Then,
P (u∞, 0) = Po ≥ P (u∞, x) for any x ∈ R

n−1 × (`′,+∞) = R
n
+. (8.30)

Note that
P (u∞, x) < Po for any x ∈ R

n−1 × (`′,+∞), (8.31)

thanks to (8.23).

Consequently, (8.3), (8.20), (8.30), (8.31) and Hopf Principle (see Theorem 5.5.1 on page 120
of [PS07]) give that

∂nP (u∞, 0) < 0. (8.32)

On the other hand, from (8.2),

∂nP (u∞, x) = ∇u∞(x) · ∇(∂nu∞(x)) − G′(u∞(x))∂nu∞(x)

for any x ∈ R
n
+ and so, from (8.14) and (8.16),

∂nP (u∞, 0) = ∂nu∞(0)
(

∂2
n,nu∞(0) − G′(0)

)

. (8.33)

Moreover, by (8.15) and (8.16),

G′(0) = ∆u∞(0) = ∂2
n,nu∞(0) (8.34)

and so (8.33) gives that ∂nP (u∞, 0) = 0.

Since this is in contradiction with (8.32), the proof of (8.4) is now finished.

Now, from (8.4),
0 ≥ Po ≥ sup

v∈F0
x∈Rn−1×(0,+∞)

P (v, x) ≥ P (u, x),
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for any x ∈ R
n
+.

This and (8.2) imply (1.8).

We now prove (1.9). For this, we first prove that

sup
r∈[0,‖u‖L∞(Rn

+
)]

F (r) = max
{

F (0), F (‖u‖L∞(Rn
+))
}

. (8.35)

To prove (8.35), we may restrict ourselves to the case in which u is not constant (other-
wise (8.35) is obvious). In such case, Theorem 1.1 in [BCN97b] states that

∂nu > 0 in R
n
+. (8.36)

For proving (8.35), let us argue by contradiction, and suppose that

sup
r∈[0,‖u‖L∞(Rn

+
)]

F (r) = F (θ),

for some θ ∈
(

0, ‖u‖L∞(Rn
+)

)

. Then, there must exists x+ ∈ R
n
+ for which θ = u(x+) and so

sup
r∈[0,‖u‖L∞(Rn

+
)]

F (r) = F (u(x+)).

Therefore, by (1.8),

1

2
|∇u(x+)|2 ≤ sup

r∈[0,‖u‖L∞(Rn
+

)]
F (r) − F (u(x+)) = 0.

Since this is in contradiction with (8.36), we have concluded the proof of (8.35).

We now complete the proof of (1.9) by arguing again by contradiction. Indeed, if (1.9) did
not hold, we would have from (1.8) and (8.35) that

1

2
|∇u(x∗)|2 ≤ sup

r∈[0,‖u‖L∞(Rn
+)]

F (r) − F (u(x∗)) = sup
r∈[0,‖u‖L∞(Rn

+)]
F (r) − F (0) = 0,

for any x∗ ∈ ∂R
n
+.

Since the latter is in contradiction with Hopf Principle (see Lemma 3.4 in [GT83]), the proof
of (1.9) is completed.

We now prove (1.10). For this, we make the above arguments more precise. Suppose, by
contradiction, that u is not identically zero and that

sup
r∈[0,‖u‖L∞(Rn

+
)]

F (r) = F (t̄)

for some t̄ ∈
[

0, ‖u‖L∞(Rn
+)

)

. Then, by the continuity of u, there exists x̄ ∈ Rn
+ for which u(x̄) =

t̄ and therefore (1.8) gives

1

2
|∇u(x̄)|2 ≤ sup

r∈[0,‖u‖L∞(Rn
+)]

F (r) − F (u(x̄)) = sup
r∈[0,‖u‖L∞(Rn

+)]
F (r) − F (t̄) = 0.

That is, ∂nu(x̄) = 0. Then, (8.36) says that x̄ cannot belong to the interior of R
n
+. But Hopf

Principle says that x̄ cannot lie on ∂Rn
+ either, and this contradiction proves (1.10).

The proof of Theorem 1.4 is thus completed. �
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9 Energy estimates

In this section, Ωo will denote a C3 and uniformly Lipschitz epigraph of R
n. In particular,

we have that there exists Co > 0 in such a way that

∫

BR(x)∩∂Ωo

dσ ≤ CoR
n−1 (9.1)

for any x ∈ R
n and R ≥ 0, where “dσ” denotes the surface element.

Let f ∈ C1(R) and

F (r) :=

∫ r

0
f(τ) dτ. (9.2)

For R ≥ 0, we set B+
R := BR ∩ Ωo. Given c ∈ R and v ∈ C1(B+

R ), we also define

ER,c(v) :=

∫

B+
R

|∇v|2
2

− F (v) + c dx. (9.3)

Also, given v : Ωo → R and t ≥ 0, we define

vt(x′, xn) := v(x′, xn + t) for any (x′, xn) ∈ Ωo.

Note that the domain of vt does contain Ωo since t ≥ 0 and Ωo is an epigraph.

Lemma 9.1. Fix c ∈ R. Let v ∈ C2(Ωo). Suppose that

∆v(x) + f(v(x)) = 0 (9.4)

and
∂nv(x) > 0 (9.5)

for any x ∈ Ωo.

Assume also that there exists M ≥ 0 in such a way that

sup
x∈Ωo

|v(x)| + |∇v(x)| ≤ M. (9.6)

Then, there exists C > 0, possibly depending on M but not on c, in such a way that

ER,c(v) ≤ ER,c(v
t) + CRn−1

for any t, R ≥ 0.

Proof. We argue as in [AAC01]:

d

dt
ER,c(v

t) =

∫

B+
R

∇vt · ∇(∂tv
t) − f(vt)∂tv

t

=

∫

∂B+
R

∂tv
t∇vt · ν

≥ −M

∫

∂B+
R

∂tv
t dσ,
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thanks to (9.4), (9.5) and (9.6).

Therefore, for any T ≥ 0, by using Fubini’s Theorem and (9.6) once more, we conclude that

ER,c(v
T ) − ER,c(v) =

∫ T

0

d

dt
ER,c(v

t) dt

≥ −M

∫

∂B+
R

∫ T

0
∂tv

t dt dσ

= −M

∫

∂B+
R

(vT − v) dσ

≥ −2M2

∫

∂B+
R

dσ,

which gives the desired claim via (9.1).

Lemma 9.2. Let u ∈ C2(Ωo) ∩ L∞(Ωo) be a solution of ∆u + f(u) = 0 in Ωo, with ∂nu > 0
in Ωo and f locally Lipschitz.

Then, the following limit exists

u∞(x′) := lim
xn→+∞

u(x′, xn) for any x′ ∈ R
n−1. (9.7)

and the convergence is in C2
loc(R

n−1).

Furthermore,
∆u∞(x′) + f(u∞(x′)) = 0 for any x′ ∈ R

n−1. (9.8)

Also, if κ∞
1 , . . . , κ∞

n−2 are the mean curvatures of the level sets of u∞ at points where ∇u∞ 6= 0

and K∞ :=
√

(κ∞
1 )2 + · · · + (κ∞

n−2)
2, we have that

∫

Rn−1∩{∇u∞ 6=0}

(

|∇u∞|2K2
∞ + |∇T |∇u∞||2

)

ϕ2 ≤
∫

Rn−1

|∇u∞|2|∇ϕ|2, (9.9)

for any ϕ ∈ W 1,∞
0 (Rn−1).

Proof. We use the monotonicity and the boundedness of u and to obtain that the limit
in (9.7) exists, and the convergence is in C2

loc(R
n−1), due to standard elliptic estimates (see,

e.g., [GT83]).

This also implies (9.8).

We now prove (9.9), using some arguments of [FSV08].

For this, we use (1.4) to see that
∫

Rn

(

|∇u|2K2 + |∇T |∇u||2
)

φ2 ≤
∫

Rn

|∇u|2|∇φ|2 (9.10)

for any φ ∈ W 1,∞
0 (Ωo) (note that φ in (9.10) is supported inside Ωo, so no boundary term

arises).

As usual, the quantity K in (1.4) is obtained by the mean curvatures of the level sets of u.
Thus,

|∇u∞(x′)|2K2
∞(x′) = lim

xn→+∞
|∇u(x′, xn)|2K2(x′, xn) (9.11)

23



for any x′ ∈ {∇u∞ 6= 0}, and the above convergence is locally uniform.

Now, let ϕ ∈ W 1,∞
0 (Rn−1). Let S be the support of ϕ and let

s := sup
(x′,xn)∈∂Ωo

x′∈S

xn ∈ R. (9.12)

Let τ ∈ C∞
0 ([0, 1]) with

∫

R

τ2(t) dt = 1. (9.13)

Fix also µ ∈ (0, 1) and let η(t) :=
√

µτ
(

µ(t − s − 1)
)

.

Note that, by (9.13),
∫

R

η2(t) dt = 1. (9.14)

We now define φ(x′, xn) := ϕ(x′)η(xn).

We claim that

for any t ≥ 0, φ(x′, xn − t) vanishes when (x′, xn) is outside Ωo. (9.15)

To check this, we argue by contradiction and suppose that φ(x̄′, x̄n − t̄) 6= 0, with (x̄′, x̄n) ∈
R

n \ Ωo and t̄ ≥ 0.

Then, x̄′ ∈ S and so, recalling (9.12),
s ≥ x̄n. (9.16)

Also, x̄n − t̄ must lie in the support of η, that is µ(x̄n − t̄ − s − 1) lies in the support of τ ,
which, in turn, is in [0, 1]. This gives that

x̄n ≥ t̄ + s + 1 ≥ s + 1 .

The latter estimate is in contradiction with (9.16) and therefore this proves (9.15).

Due to (9.15), we can plug the map (x′, xn) 7→ φ(x′, xn + t) inside (9.10), for any t ≥ 0.
Accordingly, recalling also (9.11) and (9.14),

∫

Rn−1∩{∇u∞ 6=0}

(

|∇u∞|2K2
∞ + |∇T |∇u∞||2

)

φ2

=

∫

R

∫

Rn−1∩{∇u∞ 6=0}

(

|∇u∞(x′)|2K2
∞(x′) + |∇T |∇u∞||2(x′)

)

ϕ2(x′)η2(xn) dx′ dxn

= lim
t→+∞

∫

R

∫

Rn−1∩{∇u∞ 6=0}

(

|∇u(x′, xn + t)|2K2(x′, xn + t) + |∇T |∇u||2(x′, xn + t)
)

·φ2(x′, xn) dx′ dxn

= lim
t→+∞

∫

R

∫

Rn−1∩{∇u∞ 6=0}

(

|∇u(x′, xn)|2K2(x′, xn) + |∇T |∇u||2(x′, xn)
)

·φ2(x′, xn − t) dx′ dxn

≤ lim
t→+∞

∫

Rn

|∇u(x′, xn)|2|∇φ(x′, xn − t)|2 d(x′, xn).

24



Therefore, by Cauchy Inequality, and using (9.14) once more,

∫

Rn−1∩{∇u∞ 6=0}

(

|∇u∞|2K2
∞ + |∇T |∇u∞||2

)

φ2

≤ lim
t→+∞

∫

Rn

|∇u(x′, xn)|2|∇ϕ(x′)η(xn − t) + ϕ(x′)∇η(xn − t)|2 d(x′, xn)

≤ lim
t→+∞

(1 + µ1/4)

∫

Rn

|∇u(x′, xn)|2|∇ϕ(x′)|2|η(xn − t)|2 d(x′, xn)

+
2

µ1/4

∫

Rn

|∇u(x′, xn)|2|ϕ(x′)|2|η′(xn − t)|2 d(x′, xn)

= lim
t→+∞

(1 + µ1/4)

∫

Rn

|∇u(x′, xn + t)|2|∇ϕ(x′)|2|η(xn)|2 d(x′, xn)

+
2µ3

µ1/4

∫

Rn

|∇u(x′, xn + t)|2|ϕ(x′)|2|τ ′(µ(xn − s − 1))|2 d(x′, xn)

= (1 + µ1/4)

∫

Rn−1

|∇u∞(x′)|2|∇ϕ(x′)|2 dx′ + 2µ7/4

∫

Rn−1

|∇u∞(x′)|2|ϕ(x′)|2 dx′

·
∫ 1

0
|τ ′(θ))|2 dθ

The proof of (9.9) then follows by sending µ → 0+.

Corollary 9.3. Let f be locally Lipschitz. Suppose that

(C1) either Ω = R
3
+ and f(0) ≥ 0,

(C2) or that Ω ⊂ R
3 is a C3 and uniformly Lipschitz epigraph, and f(r) ≥ 0 for any r ≥ 0.

Assume that u ∈ C2(Ω) ∩ L∞(Ω) satisfies

∆u(x) + f(u(x)) = 0 for any x ∈ Ω. (9.17)

with u
∣

∣

∣

∂Ω
= 0 and ∂3u > 0 in Ω.

Then, there exists C > 0 in such a way that

∫

BR∩Ω
|∇u(x)|2 dx ≤ CR2 for any R ≥ 1. (9.18)

Proof. By Lemma 9.2, u∞ is a solution of (9.8) in R
2, satisfying (9.9).

Therefore by [FSV08] (see in particular Corollary 2.6 and Lemma 2.11 there), we get that u∞
is one-dimensional, that is, there exists v∞ : R → R and ω ∈ S1 in such a way that

u∞(x) = v∞(ω · x) for any x ∈ R
2. (9.19)

Thus, from (9.8),
v′′∞(t) + f(v∞(t)) = 0 for any t ∈ R. (9.20)

Cauchy Theorem on ODEs then imply that v∞ cannot have plateaus (i.e., intervals on which
it is constant) unless it is identically constant. Hence, by Lemma 4.10 of [FSV08], we have
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that, if v∞ is not constant, then

either v∞ has at most one critical point

or there exist t−, t+ ∈ R such that

v∞(t−) < v∞(t+) and v′∞(t−) = 0 = v′∞(t+).

(9.21)

Notice now that, if F is as in (9.2), we have

d

dt

( |v′∞(t)|2
2

+ F (v∞(t))

)

= 0,

due to (9.20).

Therefore,
|v′∞(t)|2

2
+ F (v∞(t)) =

|v′∞(s)|2
2

+ F (v∞(s)) (9.22)

for any s, t ∈ R.

Let now tn be such that
lim

n→+∞
v∞(tn) = sup

R

v∞.

Let wn(t) := v∞(t + tn). We have that wn converges to some w in C2
loc(R). Also,

w(0) = lim
n→+∞

v∞(tn) = sup
R

v∞ ≥ lim
n→+∞

v∞(t + tn) = w(t)

for any t ∈ R and so w′(0) = 0.

Thence, (9.22) gives that

|v′∞(t)|2
2

+ F (v∞(t)) = lim
t→+∞

|v′∞(tn)|2
2

+ F (v∞(tn)) = 0 + c (9.23)

for any t ∈ R, where
c := F (sup

R

v∞). (9.24)

We now claim that
if (C2) holds, then v∞ is constant. (9.25)

Indeed, (C2) and (9.20) imply that v ′′
∞ ≤ 0 and so (9.25) follows2 since v∞ ∈ L∞(R).

We also claim that
−F (u(x)) + c ≥ 0 (9.26)

for any x ∈ Ω.

Indeed, (9.26) is obvious when (C2) holds, because of (9.24) and (9.25).

On the other hand, when (C1) holds, we argue as follows in order to prove (9.26). We
observe that (1.7) holds, thanks to our sign assumptions on f . Hence, from (1.9) and (9.24),
we conclude that

sup
r∈[0,‖u‖

L∞(R
3
+)

]
F (r) = c,

2We would like to point out the following alternative proof of (9.25) which does not use the results
of [FSV08]: when (C2) holds, we have ∆u∞ ≤ ∆u∞ + f(u∞) = 0 in R

2, so u∞ is constant by Liouville
Theorem (see, for instance, Theorem 3.1 in [Far07]).
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which gives (9.26).

We are now in position of strengthening (9.21), namely:

v∞ has at most one critical point, unless it is constant. (9.27)

Since (9.27) is obvious when (C2) holds, due to (9.25), we now prove it when (C1) holds. For
this, we argue by contradiction, supposing that (C1) holds and (9.27) does not hold. Then,
by (9.21), there exist t−, t+ ∈ R such that v∞(t−) < v∞(t+) and v′∞(t−) = 0 = v′∞(t+).
Then, by (9.23),

c = F (v∞(t−)). (9.28)

Also, since
lim

xn→+∞
u(ωt+, xn) = u∞(ωt+) = v∞(t+) > v∞(t−)

and
u(ωt−, 1) < lim

xn→+∞
u(ωt−, xn) = u∞(ωt−) = v∞(t−),

we deduce that there must exist x∗ ∈ R
3
+ for which u(x∗) = v∞(t−).

Consequently, (1.8), (9.26) and (9.28) give that

1

2
|∇u(x∗)|2 ≤ sup

r∈[0,‖u‖
L∞(R

3
+)

]
F (r) − F (u(x∗))

= c − F (v∞(t−)) = 0.

This would imply that ∂3u(x∗) = 0, against our assumptions. Therefore, this contradiction
proves (9.27).

From (9.27) we know that there exists b ∈ R in such a way that v∞ is monotone (though,
maybe, not strictly monotone) in (−∞, b) and in (b,+∞).

Consequently, for any A > 0,

∫ b

b−A
|v′∞(t)|2 dt ≤ C1

∫ b

b−A
|v′∞(t)| dt

= C1

∣

∣

∣

∣

∫ b

b−A
v′∞(t) dt

∣

∣

∣

∣

= C1|v∞(b − A) − v∞(b)| ≤ C2,

where C1, C2 > 0 are suitable quantities independent of A.

That is,
∫ b

−∞
|v′∞(t)|2 dt ≤ C2.

Analogously,
∫ +∞

b
|v′∞(t)|2 dt ≤ C2.

Therefore,
∫ +∞

−∞
|v′∞(t)|2 dt ≤ 2C2. (9.29)
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Furthermore, (9.23) and (9.29) give that
∫ +∞

−∞

|v′∞(t)|2
2

− F (v∞(t)) + c dt =

∫ +∞

−∞
|v′∞(t)|2 dt ≤ 2C2.

As a consequence, (9.19) implies that
∫

BR

|∇u∞(x′)|2
2

− F (u∞(x′)) + c dx′ ≤ C3R (9.30)

for a suitable C3 > 0, with BR ⊂ R
2.

Note that the ball BR in (9.30) is two-dimensional, while the one in (9.3) is three-dimensional,
therefore (9.30) implies that

ER,c(u∞) ≤ C4R
2.

From this and Lemma 9.1, we see that

ER,c(u) ≤ lim
t→+∞

ER,c(u
t) + CR2 ≤ ER,c(u∞) + CR2 ≤ (C4 + C)R2.

This and (9.26) imply (9.18).

Corollary 9.4. Let Ωo ⊂ R
3 be a continuous epigraph.

Suppose that u ∈ C2(Ωo) ∩ C(Ωo) satisfies (3.14), that u > 0 in Ωo, that u = 0 on ∂Ωo and
that

∫

BR∩Ωo

|∇u(x)|2 dx ≤ CR2 for any R ≥ 1. (9.31)

Assume also that {∇u = 0} = ∅.
Then, Ωo = R

3
+ up to isometry and there exists uo : R → R in such a way that u(x) = uo(xn)

for any x ∈ Ωo.

Proof. Fubini’s Theorem and (9.31) yield that
∫

(BR\B√
R)∩Ωo

|∇u|2
|x|2 dx

=

∫

(BR\B√
R

)∩Ωo

∫ R

|x|

|∇u|2
2t3

dt dx +

∫

(BR\B√
R

)∩Ωo

|∇u|2
R2

dx

=

∫ R

√
R

∫

(Bt\B√
R

)∩Ωo

|∇u|2
2t3

dx dt +

∫

(BR\B√
R

)∩Ωo

|∇u|2
R2

dx

≤
∫ R

√
R

Ct2

2t3
dt +

CR2

R2
≤ C ′ lnR,

as long as R ≥ 2, for a suitable C ′ > 0.

Therefore, we take ϕR as in (5.1) as test function in (3.14). We obtain from the preceding
estimate that

∫

B√
R∩{∇u6=0}

(

|∇u|2K2 + |∇T |∇u||2
)

≤ C ′′

(ln R)2

∫

BR\B√
R

|∇u|2
|x|2 ≤ C ′′′

lnR
,
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for appropriate constants C ′′, C ′′′ > 0.

Accordingly, by taking R as large as we wish, we deduce that K and |∇T |∇u|| vanish identi-
cally. The desired result then follows from Lemma 2.3.

Corollary 9.5. Suppose that

• either Ω = R
3
+ and f(0) ≥ 0,

• or that Ω ⊂ R
3 is a C3 and uniformly Lipschitz epigraph, and f(r) ≥ 0 for any r ≥ 0.

Assume that u ∈ C2(Ω) ∩ L∞(Ω) satisfies

∆u(x) + f(u(x)) = 0 for any x ∈ Ω.

with u
∣

∣

∣

∂Ω
= 0, and ∂3u > 0 in Ω.

Suppose that (3.14) holds.

Then, Ω = R
3
+ up to isometry and there exists uo : R → R in such a way that

u(x) = uo(xn) for any x ∈ Ω.

Proof. By Corollary 9.3, we see that (9.31) holds true, thence the claim follows from Corol-
lary 9.4.

10 Proof of Theorems 1.5, 1.6, 1.7 and 1.8

To make the notation uniform, we take Ω := R
3
+ if we are under the assumptions of Theorems

1.5.

We have that
∂nu > 0 in Ω. (10.1)

Indeed, if we are under the hypotheses of Theorem 1.5, we have that (10.1) is a consequence of
Theorem 1.1 in [BCN97b]. If, on the other hand, we are in the assumptions of Theorem 1.6,
we argue by contradiction, supposing that we have a coercive epigraph: then (10.1) follows
from [EL83] (see also Theorem 1.3 in [BCN97a]).

Finally, when we are in the assumptions of Theorem 1.8, then (10.1) follows from (1.12) and
Theorem 1.1 of [BCN97a].

When n = 2, Theorems 1.6 and 1.8 are consequence of (10.1) and Theorem 1.2.

Also, thanks to (10.1), we have that conditions (3.2), (3.11) and either (3.12) or (3.13) are
satisfied, and so (3.14) holds true, in the light of Corollary 3.4.

The proof of Theorems 1.5, 1.6 for n = 3 and 1.8 for n = 3 is then finished, thanks to
Corollary 9.5 (for this, we recall that, due to Lemma 2.4, we may also assume that f ≥ 0
under the hypotheses of Theorem 1.8).

Theorem 1.7 is then an obvious consequence of Theorem 1.8. �
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11 Proof of Theorem 1.9

The proof is by contradiction, assuming that a solution of (1.13) exists.

First of all, we show that then
λ > 0. (11.1)

The proof of (11.1) is by contradiction. If λ ≤ 0,

∆u = −λu ≥ 0

in Ω, while u = 0 on ∂Ω.

So, by Maximum Principle (see Lemma 2.1 in [BCN97a]), we would have that u ≤ 0 in Ω.
Since this is against our assumption, we get that (11.1) holds true.

Then, from (11.1), by suitably choosing f , the fact that u is bounded and (11.1) give (1.12).
Thus, by Theorem 1.8, we obtain that Ω is a halfspace, say, up to isometries, Ω = R

n
+.

As a consequence, Theorems 1.3 or 1.5, depending on the dimension n, imply that u(x) =
uo(xn) and (1.13) gives that

u′′
o(t) = −λuo(t), with uo(0) = 0.

Hence, (11.1) implies that
uo(t) = A sin(

√
λ t).

This contradicts the assumption that u > 0 in Ω and it thus proves Theorem 1.9. �

12 Proof of Theorem 1.11

By possibly adding a dummy variable, we may suppose that n = 5. By Lemma 2.4, we may
also assume that f ≥ 0.

Furthermore, by Theorem 1.1 in [BCN97b], we have that

∂5u > 0.

Hence, by Lemma 9.2, we may define

u∞(x′) := lim
x5→+∞

u(x′, x5),

for any x′ ∈ R
4 and obtain that

∆u∞(x′) + f(u∞(x′)) = 0 (12.1)

for any x′ ∈ R
4, and that

∫

R4

|∇ϕ|2 − f ′(u∞)ϕ2 ≥ 0 (12.2)

for any ϕ ∈ W 1,∞
0 (R4) (note that here we use the continuity of f ′).

From this and Theorem 1.1 of [DF08], we conclude that u∞ is constant.
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Therefore, (12.1) boils down to

0 = ∆u∞(x′) = f(u∞(x′)) = f
(

sup
R4

u∞
)

. (12.3)

Since
sup
R5

+

u = sup
R4

u∞,

we obtain from (12.3) that

f
(

sup
R

5
+

u
)

= 0.

This and Theorem 1.4 of [BCN97b] imply the claim of Theorem 1.11. �

Acknowlegments

EV has been supported by MIUR Metodi variazionali ed equazioni differenziali nonlineari
and FIRB Analysis and Beyond.

We thank an anonymous referee for her or his careful work.

References

[AAC01] Giovanni Alberti, Luigi Ambrosio, and Xavier Cabré. On a long-standing con-
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