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Abstract. We correct a mistake in [3].

1. Introduction

In the paper [3] we study the asymptotics of the functional

Jp,qε,λ (f) :=

∫
Ωλ

(∫
Ωλ

(
|f(x)− f(y)|p
|x− y|p

)q
ρε(x− y) dy

) 1
q

dx, f ∈ L1
loc (Ω) , (1.1)

as ε→ 0 and λ→ 0 , where Ω ⊂ RN is an arbitrary open set and 1 ≤ p, q <∞ . The main
result of the paper is a characterization of Sobolev and BV spaces for arbitrary open sets,
which in turn provides answers to conjectures of Brézis and Ponce in the case q = 1 .
While all of the results in [3] are true for q = 1 , in the case q > 1 there is a fundamental

mistake in Lemma 3.3 (which pertains to Sobolev functions), repeated in Lemma 3.5 (which
pertains to BV functions). Precisely, on page 2941 the change of variables y = x + th
is unjustified, since when q > 1 we are not free to use Fubini’s or Tonelli’s theorem to
interchange the integrals and make such a substitution. This error is then propagated
through the paper in Theorems 4.4, 4.6 and in the suffi ciency part of Theorems 1.5 and 1.9.
Theorems 4.1 and 4.2 hold for all q ≥ 1 and so does the necessary part of Theorems 1.5 and
1.9.
The following counterexample establishes that Theorem 4.6 is false when q > 1 .

Counterexample 1.1. Let Ω = (−1, 1) , q > 1 , and ρε(x) = cε 1
|x|1−ε . Define

f(x) =

{
1 if 0 < x ≤ 1,
0 if − 1 ≤ x ≤ 0.

Then we claim

lim
ε→0

∫ 1−λ

−1+λ

(∫ 1−λ

−1+λ

(
|f(x)− f(y)|
|x− y|

)q
ρε(x− y) dy

) 1
q

dx = +∞ (1.2)

Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, USA, gio-
vanni@andrew.cmu.edu.

Department of Mathematics, Technion - Israel Institute of Technology, Haifa, Israel.

1



2 GIOVANNI LEONI AND DANIEL SPECTOR

for every λ suffi ciently small. But we have that∫ 1−λ

−1+λ

(∫ 1−λ

−1+λ

(
|f(x)− f(y)|
|x− y|

)q
ρε(x− y) dy

) 1
q

dx

= c̃ε
1
q

∫ 0

−1+λ

(∫ 1−λ

0

(
1

|x− y|

)q+1−ε
dy

) 1
q

dx

= c̃ε
1
q

∫ 0

−1+λ

([
|x− y|−q+ε
−q + ε

]1−λ

0

) 1
q

dx

≥ cε
1
q

∫ 0

−1+λ

|x|−1+ ε
q dx = cε

1
q
q

ε
| − 1 + λ|

ε
q .

Thus, taking the limit as ε→ 0 we obtain (1.2) as claimed.

The validity of Theorem 4.4 for p > 1 and 1 ≤ q <∞ will be addressed in future work.
In the remaining of this erratum we show that when q > 1 , Theorems 1.5 and 1.9 continue

to hold for radial mollifiers when pointwise convergence of the functional Jp,qε,λ is replaced by
Γ -convergence. From the standpoint of approximation of a local functional this is actually
a more natural convergence, since it implies that any limit point of a sequence of minimizers
of the nonlocal problems is a minimizer of the local problem.
For simplicity, we replace the sets

Ωλ :=

{
x ∈ Ω : dist(x, ∂Ω) > λ, |x| < 1

λ

}
(1.3)

in the definition of Jp,qε,λ with Lipschitz domains. Precisely, for every λ > 0 let Uλ be an
open set with Lipschitz boundary such that

Ω2λ ⊆ Uλ ⊆ Ωλ (1.4)

and define

F p,qε,λ (f) :=

∫
Uλ

(∫
Uλ

(
|f(x)− f(y)|p
|x− y|p

)q
ρε(x− y) dy

) 1
q

dx, f ∈ L1
loc (Ω) .

Note that the specific form of the invading sequence {Ωλ} played no special role in [3].
We now proceed to state and prove the Γ -convergence result asserted previously, valid

for all 1 ≤ p < ∞ and 1 ≤ q < ∞ (notice here we can use all values of q as opposed to
the restrictions on q that were required in Theorems 1.5 and 1.9). For 1 ≤ p < ∞ and
1 ≤ q <∞ define the functional

F p,q (f) :=

{
Kp,q,N

∫
Ω
|∇f |p dx if f ∈W 1,p

loc (Ω) and ∇f ∈ Lp
(
Ω;RN

)
,

∞ otherwise in L1
loc (Ω) ,

(1.5)

when p > 1 and

F 1,q (f) :=

{
K1,q,N |Df | (Ω) if f ∈ BVloc (Ω) and Df ∈Mb

(
Ω;RN

)
,

∞ otherwise in L1
loc (Ω) .

(1.6)

Theorem 1.2. Let Ω ⊂ RN be open, let ρε satisfy (1.3) , (1.4) , and (1.5) in [3], let
1 ≤ p <∞ and 1 ≤ q <∞ . Then

Γ- lim
λ→0

(
Γ- lim

ε→0
F p,qε,λ

)
= F p,q,

where the Γ limit is taken with respect to the L1
loc (Ω)-strong topology.
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Proof. We begin by showing that for λ > 0 fixed

Γ- lim
ε→0

F p,qε,λ = F p,qλ ,

where

F p,qλ (f) :=

{
Kp,q,N

∫
Uλ
|∇f |p dx if f ∈W 1,p

loc (Ω) and ∇f ∈ Lp
(
Ω;RN

)
,

∞ otherwise in L1
loc (Ω) ,

when p > 1 and

F 1,q
λ (f) :=

{
K1,q,N |Df | (Uλ) if f ∈ BVloc (Ω) and Df ∈Mb

(
Ω;RN

)
,

∞ otherwise in L1
loc (Ω)

for p = 1 .
Step 1: Let εn → 0+ . We claim that for every f ∈ L1

loc (Ω) there exists a sequence
{fn} ⊂ L1

loc (Ω) converging to f in L1
loc (Ω) such that

lim sup
n→∞

F p,qεn,λ (fn) ≤ F p,qλ (f) .

If F p,qλ (f) =∞ , we can take fn :≡ f and there is nothing to prove. Thus, we can assume
that F p,qλ (f) <∞ . Moreover, in the case p = 1 , we also assume that

|Df | (∂Uλ) = 0. (1.7)

Extend f to be zero outside Ω and consider the sequence of functions fn := f ∗ ψδn ,
where ψδn are smooth mollifiers and δn > 0 will be chosen later. By standard properties
of mollifiers, we have that fn → f in L1

loc (Ω) .
For 0 < δn <

1
2λ , we are in a position to apply Lemma 3.1 in [3] to fn , to obtain that

|fn(x)− fn(y)−∇fn(x) · x− y| ≤ Cfn |x− y|2

for all x ∈ Uλ and y ∈ Uλ/2 , where

Cfn := C(N)||∇2fn||L∞(Uλ/2) +
8

λ2
||fn||L∞(Uλ/2) +

2

λ
||∇fn||L∞(Uλ/2). (1.8)

In turn, reasoning exactly as in the proof of Step 1 of Lemma 3.2 in [3], we have∫
Uλ

∣∣∣∣( |fn(x)− fn(y)|p
|x− y|p

)q
−
∣∣∣∣∇fn(x) · x− y|x− y|

∣∣∣∣pq∣∣∣∣ ρεn(x− y) dy (1.9)

≤ Cfnp,q
∫
Uλ

|x− y|ρεn(x− y) dy,

and so∫
Uλ

(
|fn(x)− fn(y)|p
|x− y|p

)q
ρεn(x− y) dy ≤

∫
Uλ

∣∣∣∣∇fn(x) · x− y|x− y|

∣∣∣∣pq ρεn(x− y) dy

+Cfnp,q

∫
Uλ

|x− y|ρεn(x− y) dy =: I + II,

where Cfnp,q := pqMpq−1
fn

Cfn and Mfn := ||∇fn||L∞(Uλ/2) . Since ρε(z) = ρ̂ε(|z|) , we may
use polar coordinates centered at x to write

I ≤
∫
SN−1

|∇fn(x) · σ|pq dHN−1(σ)

∫ ∞
0

ρ̂εn(t)tN−1 dt

= |∇fn(x)|pq 1

|SN−1|

∫
SN−1

|e1 · σ|pq dHN−1(σ),

where we have used the fact that
∣∣SN−1

∣∣ ∫∞
0
ρ̂εn(t)tN−1 dt =

∫
RN ρε(x) dx = 1 . Similarly,

using the fact that |x| < 1
λ and |y| <

1
λ (see (1.3) and (1.4)), we have

II ≤ Cfnp,q
∣∣SN−1

∣∣ ∫ 2
λ

0

ρ̂εn(t)tN dt.
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Using the inequality (a+ b)
1/q ≤ a1/q + b1/q , a, b ≥ 0 , gives

F p,qεn,λ (fn) ≤ Kp,q,N

∫
Uλ

|∇fn(x)|p dx

+
(
Cfnp,q

) 1
q |Uλ|

(∫
B(0,2/λ)

|h|ρεn(h) dh

) 1
q

,

where1

Kp,q,N :=

(
1

|SN−1|

∫
SN−1

|e1 · σ|pq dHN−1(σ)

) 1
q

.

By (2.4) in [3],

lim
n→∞

∫
B(0,2/λ)

|h|ρεn(h) dh = 0. (1.10)

On the other hand, by the properties of mollifiers,

||fn||L∞(Uλ/2) ≤
C (N, p)

δ
N/p
n

||f ||Lp(Uλ/2), ||∇fn||L∞(Uλ/2) ≤
C (N, p)

δ
N/p
n

||∇f ||Lp(Uλ/2),

||∇2fn||L∞(Uλ/2) ≤
C (N, p)

δ
1+N/p
n

||∇f ||Lp(Uλ/2),

for p > 1 , while

||fn||L∞(Uλ/2) ≤
C (N)

δNn
||f ||L1(Uλ/2), ||∇fn||L∞(Uλ/2) ≤

C (N)

δNn
|Df |

(
Uλ/2

)
,

||∇2fn||L∞(Uλ/2) ≤
C (N)

δ1+N
n

|Df |
(
Uλ/2

)
for p = 1 . In turn, (

Cfnp,q
) 1
q ≤ Cf

δ`n

for some constant Cf depending on f and for some ` > 0 . In view of (1.10), by choosing
δn which tends to zero slowly enough we can ensure that

(
Cfnp,q

) 1
q |Uλ|

(∫
B(0,2/λ)

|h|ρεn(h) dh

) 1
q

→ 0

as n→∞ . It follows that

lim sup
n→∞

F p,qεn,λ (fn) ≤ Kp,q,N lim sup
n→∞

∫
Uλ

|∇fn(x)|p dx

= F p,qλ (f) ,

where we have used the fact that ∇fn → ∇f in Lp
(
Uλ;RN

)
for p > 1 , while

∫
Uλ
|∇fn| dx→

|Df | (Uλ) for p = 1 in view of (1.7).
To remove the additional condition (1.7), consider an arbitrary f ∈ BVloc (Ω) with Df ∈

Mb

(
Ω;RN

)
and denote by f |Uλ the restriction of f to Uλ . Since Uλ is Lipschitz, we can

extend f |Uλ to a function g ∈ BV (Ω) with |Dg| (∂Uλ) = 0 (see Proposition 3.21 in [1]).
Construct a sequence of cut-off functions ϕk ∈ C∞c (Ω; [0, 1]) such that ϕk = 1 in Uλ and
ϕk = 0 outside (Uλ)

1
k and define

gk := ϕkg + (1− ϕk) f.

1There is a misprint in the definition of Kp,q,N in Theorem 1.5 in [3]. The factor 1

|SN−1| is missing.
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Then on any compact set K ⊂ Ω ,∫
K

|gk − f | dx ≤
∫

(Uλ)
1
k \Uλ

|g − f | dx→ 0

as k →∞ , where we used the fact that gk = f in Uλ . Thus, gk → f in L1
loc (Ω) . Moreover,

|Dgk| (∂Uλ) = |Dg| (∂Uλ) = 0 . By the lower semicontinuity of the Γ -upper limit (see, e.g.,
Proposition 6.8 in [2]), the first part of the proof applied to gk , and the fact that gk = f in
Uλ , we have

|Df | (Uλ) = lim inf
k→∞

|Dgk| (Uλ) = lim inf
k→∞

(
Γ- lim sup

n→∞
F p,qεn,λ (gk)

)
≥ Γ- lim sup

n→∞
F p,qεn,λ (f) .

Given the arbitrariness of εn , we have shown that

Γ- lim sup
ε→0

F p,qε,λ ≤ F
p,q
λ .

Step 2: We prove that
Γ- lim inf

ε→0
F p,qε,λ ≥ F

p,q
λ . (1.11)

Let εn → 0+ . We claim that for every f ∈ L1
loc (Ω) and for every sequence {fn} ⊂ L1

loc (Ω)
converging to f in L1

loc (Ω) we have

lim inf
n→∞

F p,qεn,λ (fn) ≥ F p,qλ (f) .

If the left-hand size is infinite, then there is nothing to prove, thus we assume that

lim inf
n→∞

F p,qεn,λ (fn) <∞. (1.12)

For 0 < δ < λ , let fδn := fn ∗ψδ , where ψδ is a smooth mollifier. Since fn → f in L1
loc (Ω) ,

by standard properties of mollifiers, we have that fδn → fδ in C2
loc(Ω) . By applying Lemma

3.6 to fn (and using ((Uλ)η)η ⊂ Uλ along with non-negativity of the integrand), we obtain∫
(Uλ)η

(∫
(Uλ)η

|fδn(x)− fδn(y)|pq
|x− y|pq ρηεn(x− y) dy

) 1
q

dx

≤
∫
Uλ

(∫
Uλ

|fn(x)− fn(y)|pq
|x− y|pq ρηεn(x− y) dy

) 1
q

dx

for 0 < δ < η < λ . Further, Lemma 3.2 may be modified to demonstrate the convergence

lim
n→∞

∫
(Uλ)η

|fδn(x)− fδn(y)|pq
|x− y|pq ρηεn(x− y) dy = |∇fn(x)|pq 1

|SN−1|

∫
SN−1

|e1 · σ|pq dHN−1(σ),

(1.13)
Indeed, reasoning as in Step 1 of the proof of Lemma 3.2 (see also (1.9) above), we have∫

(Uλ)η

∣∣∣∣ |fδn(x)− fδn(y)|pq
|x− y|pq −

∣∣∣∣∇fδn(x) · x− y|x− y|

∣∣∣∣pq∣∣∣∣ ρηεn(x− y) dy (1.14)

≤ Cf
δ
n
p,q

∫
(Uλ)η

|x− y|ρηεn(x− y) dy,

where Cf
δ
n
p,q := pqMpq−1

fδn
Cf

δ
n , with Mfδn

:= ||∇fδn||L∞((Uλ)η)
and

Cf
δ
n := C(N)||∇2fδn||L∞((Uλ)η)

+
2

η2
||fδn||L∞((Uλ)η)

+
1

η
||∇fδn||L∞((Uλ)η)

.

Since fδn → fδ in C2
loc(Ω) , we have that Cf

δ
n
p,q → Cf

δ

p,q <∞ as n→∞ , where fδ := f ∗ ψδ .
Hence, by (2.4) in [3], the right-hand side of (1.14) converges to 0 as n→∞ . We can now
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proceed as in the second step of Lemma 3.2 to conclude (1.13). In turn, Fatou’s lemma, and
the previous inequality implies that

lim inf
n→∞

F p,qεn,λ (fn) ≥ lim inf
n→∞

∫
(Uλ)η

(∫
(Uλ)η

|fδn(x)− fδn(y)|pq
|x− y|pq ρηεn(x− y) dy

) 1
q

dx

≥
∫

(Uλ)η

lim inf
n→∞

(∫
(Uλ)η

|fδn(x)− fδn(y)|pq
|x− y|pq ρηεn(x− y) dy

) 1
q

dx

= Kp,q,N

∫
(Uλ)η

|∇fδ(x)|p dx.

In view of (1.12), this implies that f ∈ W 1,p((Uλ)η) for p > 1 and f ∈ BV ((Uλ)η) for
p = 1 . Thus we may send δ → 0 along a subsequence and use lower semicontinuity with
respect to the convergence ∇fδ ⇀ ∇f weakly in Lp((Uλ)η;RN×N ) if p > 1 and ∇fδ ∗⇀ Df

weakly-star in
(
C0((Uλ)η;RN×N )

)′
if p = 1 to conclude that

lim inf
n→∞

F p,qεn,λ (fn) ≥ Kp,q,N

∫
(Uλ)η

|∇f(x)|p dx,

if p > 1 while

lim inf
n→∞

F 1,q
εn,λ

(fn) ≥ K1,q,N |Df |((Uλ)η),

if p = 1 . But then sending η → 0 and applying Lebesgue’s monotone convergence theorem
we conclude that the inequality (1.11) holds.
Step 3: The fact that

Γ- lim
λ→0

F p,qλ = F p,q

is straightforward. We omit the details. �
Finally, let us mention two small misprints. At the end of page 2927 the mollifiers ρε

should be

ρε(x) =
χB(0,R)(|x|)
|SN−1|

εpcε
|x|N−εp ,

which is the correct normalization to ensure that they satisfy∫
RN

ρε(x) dx = 1.

Also in Remark 2.2 we should have µε = HN−1
|SN−1| .
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