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Abstract. Let Ω be a general, possibly non-smooth, bounded domain of RN ,
N ≥ 3. Let 2∗= 2N/(N − 2) be the critical Sobolev exponent. We study the
following variational problem

S∗
ε = sup

{∫
Ω

|u|2
∗−εdx :

∫
Ω

|∇u|2dx ≤ 1, u = 0 on ∂Ω

}
,

investigating its asymptotic behavior as ε goes to zero, by means of Γ+-
convergence techniques. We also show that sequences of maximizers uε con-
centrate energy at one point x0 ∈ Ω.

1. Introduction

Let Ω be a general bounded, possible non-smooth, bounded open set in RN , N ≥ 3.
Consider the elliptic Dirichlet problem with nearly critical nonlinearity

(1.1)


−∆uε = λu2∗−1−ε

ε in Ω,

uε > 0 in Ω,

uε = 0 on ∂Ω,

where 2∗ = 2N/(N − 2), λ = N(N − 2). We know that when ε > 0 the above problem
has a solution uε, but when ε = 0 it becomes delicate. In particular, the existence and
the properties of the solutions strongly depend on the domain Ω (see [14, 9, 2, 5] and
others).

In view of this qualitative change when ε = 0, it is interesting to analyze the
asymptotic behavior of the subcritical solutions uε of (1.1) as ε goes to zero.

In the case of smooth domains Ω, this analysis was carefully investigated by Han [8]
and Rey [15]. They showed that the solutions uε of (1.1), that are maximizing for the
following variational problem

S∗ε :=sup

{
Fε(u) :

∫
Ω
|∇u|2dx ≤ 1, u = 0 on ∂Ω

}
(1.2)

(1.3) with Fε(u) =

∫
Ω
|u|2∗−εdx,
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concentrate at exactly one point x0 in Ω; i.e., the measures |∇uε|2dx converge (up to
subsequences) in the sense of measures to a Dirac mass at x0 ∈ Ω. They also showed
that x0 is a critical point of the Robin function of Ω (the diagonal of the regular part of
the Green function), answering to a conjecture by Brezis and Peletier in [3], in which
was analyzed the same problem in the case of Ω being a spherical domain.

In order to obtain this concentration result, even without localizing the blowing-up,
the cited authors also utilize some standard elliptic regularity techniques that require
to work in smooth domains.

We also stress that regularity assumptions on the domain Ω have a strong impact on
concentration results. In fact, in the case of smooth domains, the Robin function has
no critical points in a neighborhood of the boundary and thus in [3, 8, 15] concentration
may occur only in Ω. In [7], Flucher, Garroni and Müller were able to construct an

example of a nonsmooth domain Ω̃, with its Robin function achieving its infimum on
the boundary; and then Pistoia and Rey showed that concentration can occur on the
boundary, analyzing the asymptotic behavior of the maximizing solutions of the elliptic
Dirichlet problem (1.2) in such Ω̃ (see [13]).

Here we can obtain the same concentration result in general bounded domain,
not depending from any strong hypotheses of regularity, as a consequence of Lions’
Concentration-compactness principle ([10]) together with the convergence of maxFε
to supF0 (with F0(u) =

∫
Ω |u|

2∗dx; see Section 2).

We also investigate the asymptotic behavior as ε → 0 of the subcritical Sobolev
quotient S∗ε in (1.2) by means of De Giorgi’s Γ+-convergence techniques. We can find
this kind of approach, that is using Γ+-convergence techniques to study concentra-
tion phenomena linked to critical Sobolev exponent, in [1], where Amar and Garroni,
following Flucher and Müller in [6], studied the variational problem

(1.4) Sgε = sup
{
Gε(u) : u ∈ H1

0 (Ω), ||∇u||L2(Ω) ≤ 1
}

(1.5) with Gε(u) = ε−2∗
∫

Ω
g(εu)dx,

where g is a non-negative upper semi-continuous function bounded from above by
c|t|2∗ . They obtained a Γ+-convergence result, that implies concentration phenomena
arising in critical growth problems.

Although it is not possible to reduce our problem (1.2) to (1.4), the Γ+-convergence
of the functional Fε is related to the Γ+-convergence of F0 to its upper semi-continuous
envelope sc+F0, obtained by Amar and Garroni in [1] (see Section 3).

A fundamental key point of the Γ+-convergence is specifying the setting for the limit
functional, with the choice of the topology. Here, in particular, the topology has to be
sufficiently weak to assure the convergence of maximizing sequences and sufficiently
strong to allow us to find the concentration.

Due to the presence of the constraint on the Dirichlet energy, the variational problem
(1.2) suggests to study every sequence uε weakly converging to some function u in the
Sobolev space H1

0 (Ω). This convergence is not sufficient to describe the problem, so
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we also have to study every sequence |∇uε|2dx converging to some measure µ in the
sense of measures.

We will show that the asymptotic behavior of the functional (1.3), in term of Γ+-
convergence, is described by the following functional F that depends by the two vari-
ables u, belonging to H1

0 (Ω), and µ, being in M(Ω), the set of non-negative bounded
total variation Borel measures, with its atomic coefficients µi:

(1.6) F (u, µ) =

∫
Ω
|u|2∗dx+ S∗

∞∑
i=0

µ
2∗
2
i ,

where S∗ is the best Sobolev constant of the embedding H1
0 (Ω) ↪→ L2∗(Ω), that is

S∗=sup

{∫
Ω
|u|2∗dx :

∫
Ω
|∇u|2dx ≤ 1, u = 0 on ∂Ω

}
.(1.7)

Now, a natural question arises: can we localize the blowing up? Our hope is that
it will possible to prove that x0 is a “harmonic center” of Ω, that is the minimum of
the Robin function of Ω. We could work by means of a reasonable second order de-
velopment of the Γ+-limit, in order to obtain more informations about the asymptotic
behavior of the maximizing sequences. We surely need to look at some techniques
introduced in [6] and [7], where Flucher, Garroni and Müller showed that the concen-
tration at the critical points of the Robin function is a very general phenomenon.

Second, again using a similar variational approach, in [11] the author generalizes
the asymptotic analysis of subcritical solutions of the analogous problem to (1.1) for
the p-Laplacian operator.

Finally, in a work in progress with A. Pisante ([12]) we study non-local concentration
phenomena in the same spirit of this paper.

The remaining of the paper is divided in two sections. Section 2 is devoted to the
concentration result. In Section 3 we state and prove the Γ+-convergence result.

2. The concentration result

In this section, we will analyze the asymptotic behavior of the sequences uε that
are maximizers for the nearly critical Sobolev quotient S∗ε , as stated in the following
theorem.

Theorem 2.1. Let uε be a maximizer sequence for the Sobolev quotient S∗ε defined
in (1.2). Then uε concentrates at some x0 ∈ Ω, i.e.,

|∇uε|2dx
∗
⇀ δx0 in M(Ω).

This result is a consequence of Lions’s Concentration-compactness principle (see
forthcoming Lemma 2.2) together with the convergence of S∗ε to S∗ as ε goes to zero
(see Proposition 2.4).
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Lemma 2.2. ([10, Lemma I.1]). Let Ω ⊂ RN be an open subset and let un be a
sequence in H1

0 (Ω) weakly converging to u as n→∞ and such that

|∇un|2dx
∗
⇀ µ and |un|2

∗
dx

∗
⇀ ν in M(Ω).

Then, either un → u in L2∗(Ω) or there exists a finite set of distinct points x0, . . . , xk
in Ω and positive numbers ν0, . . . , νk such that we have

ν = |u|2∗dx+

k∑
i=0

νiδxi , ν2
i (S∗)2∗ ≥ (S∗)2 .

Moreover, there exist a positive measure µ̃ ∈ M(Ω) with spt µ̃ ⊂ Ω and positive
numbers µ1, . . . , µk such that

µ = |∇u|2dx+ µ̃+
k∑
i=0

µiδxi , νi ≤ S∗µ
2∗
2
i .

Armed with the concentration-compactness alternative, we can describe the asymp-
totic behavior of the optimal sequences un of the critical Sobolev quotient S∗. The key
of the proof is the well-known convexity argument by Lions (see also [6, Lemma 10]).

Corollary 2.3. Let un be a maximizing sequence for the critical Sobolev quotient S∗

defined in (1.7). Then un concentrates at one point x0 ∈ Ω.

Now, we will prove that the subcritical Sobolev quotients S∗ε converge to S∗ as ε
goes to zero.

Proposition 2.4. For every ε > 0, let S∗ε be defined by (1.2) and let S∗ be defined
by (1.7). Then

(2.1) lim
ε→0

S∗ε = S∗.

Proof. First, using the fact that Ω is bounded together with Hölder inequality, we can
show that

(2.2) lim sup
ε→0

S∗ε ≤ S∗.

Take uε ∈ H1
0 (Ω) maximizers for S∗ε ; we have

S∗ε = Fε(uε) =

∫
Ω
|uε|2

∗−εdx

≤
(∫

Ω
|uε|2

∗
)2∗−ε

2∗

|Ω|
ε
2∗

≤ (S∗)
2∗−ε
2∗ |Ω|

ε
2∗ .

Thus, passing to the limit as ε goes to zero, it follows inequality (2.2).

The remaining inequality easily follows by the pointwise convergence of Fε to F0.
This is a standard argument. For every δ > 0 there exists uδ ∈ H1

0 (Ω) such that
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‖∇uδ‖2L2(Ω) ≤ 1 and

(2.3) F0(uδ) > S∗ − δ.

Clearly, for such function uδ, we have

S∗ε ≥ Fε(uδ).

Then, combining the above inequality with (2.3) and passing to the limit as ε goes to
zero, we get

lim inf
ε→0

S∗ε ≥ lim
ε→0

Fε(uδ)

= F0(uδ)

≥ S∗ − δ,

that implied the desired inequality thanks to the arbitrariness of δ. The proof is
complete. �

Completion of the proof of Theorem 2.1. The concentration result for the se-
quence uε of maximizers of S∗ is immediate. Thanks to Proposition 2.4 the maximizers
uε of S∗ε are a maximizing sequence for F0. Hence, Corollary 2.3 ensures that |∇uε|2dx
converge to a Dirac mass in the sense of measures. �

3. The Γ+-convergence result

The goal of the present section is to describe by means of Γ+-convergence the as-
ymptotic behavior as ε goes to zero of the functionals Fε defined by

(3.1) Fε(u) =

∫
Ω
|u|2∗−εdx, ∀u ∈ H1

0 (Ω) such that ‖∇u‖2L2(Ω) ≤ 1.

In order to apply Γ+-convergence, we have to analyze the asymptotic behavior of
the sequence Fε(uε) for every sequence uε such that ‖∇uε‖2L2(Ω) ≤ 1. The constraint

on the Dirichlet energy of uε implies that there exists µ ∈ M(Ω) such that µ(Ω) ≤ 1

and |∇uε|2dx
∗
⇀ µ in M(Ω) and, by Sobolev embedding, there exists u ∈ H1

0 (Ω) such
that (up to subsequences) uε ⇀ u in L2∗(Ω).

Thanks to the semi-continuity of L2-norm, we have µ ≥ |∇u|2dx, so we can always
decompose µ in such way:

µ = |∇u|2dx+ µ̃+
∞∑
i=0

µiδxi ,

where µi ∈ [0, 1] and xi ∈ Ω is such that xi 6= xj if i 6= j; µ̃ can be view as the
“non-atomic part” of µ− |∇u|2dx.

In analogy with [1], this suggests the setting for the limit functional as the space X
defined by

X = X(Ω) :=
{

(u, µ) ∈ H1
0 (Ω)×M(Ω) : µ ≥ |∇u|2dx, µ(Ω) ≤ 1

}
,
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endowed with the topology τ such that

(uε, µε)
τ→ (u, µ)

def⇔

{
uε ⇀ u in L2∗(Ω)

µε
∗
⇀ µ in M(Ω).

Note that the topology τ is compact in X, then the Γ+-convergence of functionals
in this space implies the convergence of maxima.

We also note that X is the smallest space where we have to set our problem, as
stated in the following proposition by Amar and Garroni.

Proposition 3.1. ([1, Proposition 2.3]). Let (u, µ) ∈ X, then there exists a sequence

uε in H1
0 (Ω) such that, for every ε > 0,

∫
Ω
|∇uε|2dx ≤ 1 and (uε, |∇uε|2dx)

τ→ (u, µ)

when ε→ 0.

Once we have taken the right space, we need to extend our functional Fε to the
whole space X (and we keep the same symbol), in the natural way as follows

(3.2) Fε(u, µ) :=


∫

Ω
|u|2∗−εdx if (u, µ) ∈ X : µ = |∇u|2dx,

0 otherwise in X.

We prove the existence of the Γ+-limit of the sequence Fε, giving its characterization
in the following theorem.

Theorem 3.2. There exists the Γ+-limit F of the sequence of functionals Fε defined
by (3.2) and

F (u, µ) =

∫
Ω
|u|2∗dx+ S∗

∞∑
i=0

µ
2∗
2
i , ∀(u, µ) ∈ X.

In view of the pointwise convergence of Fε to F0 and the convergence of S∗ε to S∗

(see Proposition 2.4), Theorem 3.2 can be proved repeating the strategy in the proof
of [1, Theorem 3.1].

First, we state the Γ+-convergence result by Amar and Garroni in [1]. Let g : R→
[0,∞) be an upper semi-continuous function such that

(i) 0 ≤ g(t) ≤ c|t|2∗ , g 6= 0 in the L1-sense;
(ii) ∃ a constant g0 such that

(3.3) lim
t→0+

g(t)

t2∗
= g0.

Let Sg be the critical generalized Sobolev constant (see [6, Definition 1]) such that

(3.4) Sg = sup

{∫
Ω
g(u)dx : u ∈ H1

0 (Ω),

∫
Ω
|∇u|2dx ≤ 1

}
.

For any positive ε, consider the functional Gε defined in H1
0 (Ω)×M(Ω) by

(3.5) Gε(u, µ) =

ε−2∗
∫

Ω
g(εu)dx if (u, µ) ∈ X and µ = |∇u|2dx,

0 otherwise in X.
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The Γ+-limit of the functionalGε with respect to the topology τ is given in the following
theorem.

Theorem 3.3. ([1, Theorem 3.1]). There exists the Γ+-limit G of the sequence of
functionals Gε and

(3.6) G(u, µ) = g0

∫
Ω
|u|2∗dx+ Sg

∞∑
i=0

µ
2∗
2
i ,

for every (u, µ) ∈ X.

We note that in the particular case of g being the critical power 2∗; i.e., g(t) = |t|2∗ ,
∀ t ∈ R, the definitions in (3.3), (3.4), (3.5) and (3.6) become respectively

g0 = 1, Sg = S∗, Gε = F0 and G = F

and then, applying Theorem 3.3, it follows

(3.7) F0
Γ+

→ sc+F0 ≡ F,
where F0 is extended to the whole space X in the same way as in definition (3.2)
and we denote by sc+F0 the upper semi-continuous envelope of F0 with respect to the
topology τ .

Using the convexity argument by Lions together with the fact that the critical
Sobolev inequality is strict in bounded domains, Amar and Garroni also provide an
optimal upper bound inequality for the limit functional G.

Lemma 3.4. ([1, Lemma 3.6]). For every (u, µ) ∈ X, we have

(3.8) G(u, µ) ≤ Sg

and the equality holds if and only if (u, µ) = (0, δx0) for some x0 ∈ Ω.

Proof of Theorem 3.2. Let us introduce the Γ+-lim sup and the Γ+-lim inf of Fε,
respectively defined for every (u, µ) ∈ X by

F+(u, µ) = sup
{

lim sup
ε→0

Fε(uε, µε) : (uε, µε)
τ→ (u, µ)

}
and

F−(u, µ) = sup
{

lim inf
ε→0

Fε(uε, µε) : (uε, µε)
τ→ (u, µ)

}
.

We can write the notion of Γ+-convergence in terms of the Γ+-limsup and the Γ+-
liminf (see [4] for further details). The Γ+-limit F exists if and only if F−= F+ and, in
this case, F = F−= F+. Since F− ≤ F+ always holds, in order to prove Theorem 3.2
it is enough to show the following inequalities

F ≥ F+(3.9)

F ≤ F−.(3.10)

The first inequality (3.9) easily follows by the Concentration-compactness principle
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by Lions.

Proposition 3.5. For every (u, µ) ∈ X, we have

F (u, µ) ≥ lim sup
ε→0

Fε(uε, µε),

for every (uε, µε) ⊂ X such that (uε, µε)
τ→ (u, µ).

Proof. Let (uε, µε) be in X such that (uε, µε)
τ→ (u, µ); i.e.,

uε ⇀ u in L2∗(Ω) and |∇uε|2dx
∗
⇀ µ = |∇u|2dx+ µ̃+

∞∑
i=0

µiδxi in M(Ω),

By Lemma 2.2, it follows that

(3.11) |uε|2
∗
dx

∗
⇀ ν = |u|2∗dx+

k∑
i=0

νiδxi , with νi ≤ S∗µ
2∗
2
i .

Using Hölder Inequality by arguing as in the proof of Proposition 2.4, we have

lim sup
ε→0

Fε(uε, µε) ≤ lim sup
ε→0

(∫
Ω
|uε|2

∗
dx

)2∗−ε
2∗

|Ω|
ε
2∗


≤ ν(Ω)

≤
∫

Ω
|u|2∗dx+ S∗

∞∑
i=0

µ
2∗
2
i ≡ F (u, µ),

where we used (3.11). 2

The remaining inequality (3.10) can be obtained like in the proof of [1, Theorem 3.1].
For the sake of self-containment, we will sketch here the proof.

According to the idea of Amar and Garroni, the Γ+-liminf inequality will be proved
in two separate cases: (u, µ) = (u, |∇u|2dx + µ̃) and (u, µ) = (0,

∑
i µiδxi). This

decomposition is the key point in the proof. In fact, we will be able to use strong
L2∗ convergence on the pairs of the first type (see the forthcoming Proposition 3.6,
in which we use Fε → F0); while on the pairs with purely atomic measure part, the
functionals Fε are local, so we can compute their limit on each single Dirac mass (see
Proposition 3.7, in which we use S∗ε → S∗). Finally, Theorem 3.2 will be recovered
thanks to a unifying lemma (see Lemma 3.8).

Proposition 3.6. Let (u, µ) ∈ X be such that µ = |∇u|2dx+ µ̃. Then

F (u, µ) ≤ lim inf
ε→0

Fε(uε, µε)

for every sequence (uε, µε) ⊂ X such that (uε, µε)
τ→ (u, µ) as ε→ 0.

Proof. We take (uε, µε) ⊂ X such that µε = |∇uε|2dx and (uε, µε)
τ→ (u, µ) as ε→ 0.

Since the atomic part of µε is zero, uε → u in L2∗(Ω) as ε→ 0, so (up to a subsequence)
uε → u a.e. in Ω.
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It follows that for almost every x in Ω

|uε(x)|2∗−ε → |u(x)|2∗ as ε→ 0.

Hence, by Lebesgue Convergence Theorem, we have:

lim
ε→0

∫
Ω
|uε|2

∗−εdx =

∫
Ω
|u|2∗dx ≡ F (u, µ),

that gives the desired inequality. 2

Proposition 3.7. For every (u, µ) ∈ X such that (u, µ) =

(
0,

k∑
i=0

µiδxi

)
, with xi ∈ Ω,

there exists the Γ+-limit of (Fε) and we have(
Γ+- lim

ε→0
Fε

)
(u, µ) = F (u, µ).

Proof. First, we prove the following result. For every open set A ⊂ Ω, for every x ∈ A
and for every (u, µ) ∈ X such that (u, µ) = (0, δx), there exists the Γ+-limit of the
sequence (Fε) restricted to A and the following equality holds:(

Γ+- lim
ε→0

Fε

)
(0, δx;A) = S∗.

Let us fix A ⊆ Ω and let εh be such that εh → 0 if h → ∞. By the compactness
property of the Γ+-convergence, it follows that there exists a subsequence (still denoted
by εh) and a functional FA : X(A)→ [0,∞) such that(

Γ+- lim
h→∞

Fεh

)
(u, µ;A) = FA(u, µ).

We also have

S∗εh = sup
X(A)

Fεh → max
X(A)

FA as h→∞

and then, recalling Proposition 2.4,

(3.12) max
X(A)

FA = S∗.

By Proposition 3.6 and Lemma 3.4, with g(t) = |t|2∗ and Ω = A, it follows

FA(u, µ) < S∗, ∀ (u, µ) 6= (0, δx̄), ∀ x̄ ∈ A.

Combining the above inequality with (3.12), it follows the existence of x̄ ∈ A such

that

FA(0, δx̄) = S∗

and the above equality can be proved by density for every (u, µ) = (0, δx) with any
x ∈ A.
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Finally, in order to deal with the case µ =

k∑
i=0

µiδxi , it suffices to consider the

sequence (uε, µε) such that

uε =
k∑
i=0

√
µiu

i
ε, µε = |∇uε|2dx,

where (uiε, |∇uiε|2dx)
τ→ (0, δxi) are the recovering sequences given by the previous step.

A detailed proof is very well written in [1, Proposition 3.7]. 2

In order to complete the proof of inequality (3.10), we need the following technical
lemma by Amar and Garroni, applied to our functionals Fε.

Lemma 3.8. ([1, Lemma 4.1]) If F (u, µ) ≤ F−(u, µ) for every (u, µ) ∈ X such that

(1) µ(Ω) < 1;

(2) µ = |∇u|2dx+ µ̃+
k∑
i=0

µiδxi , xi ∈ Ω;

(3) dist
(
supp(|u|+ µ̃),

⋃k
i=0{xi}

)
> 0.

Then
F (u, µ) ≤ F−(u, µ) for every (u, µ) ∈ X.

Completion of the proof of Theorem 3.2. In view of Lemma 3.8, it remains
to prove the Γ+-liminf inequality for every pair (u, µ) ∈ X such that µ(Ω) < 1,

µ = |∇u|2 + µ̃+
k∑
i=0

µiδxi and dist
(

supp(|u|+ µ̃),
⋃k
i=0{xi}

)
> 0.

As a means to do this, it suffices to consider the recovery sequence

(uε, µε) := (uAε + uBε , µ
A
ε + µBε ),

where (uAε , µ
A
ε ) and (uBε , µ

B
ε ) are given by Proposition 3.6 and Proposition 3.7, respec-

tively (see [1, pag. 17]). The proof is complete. 2

Remark 3.9. We can also deduce the concentration result in Theorem 2.1, by using
the Γ+-convergence of Fε to F . In fact, by Theorem 3.2 and Γ+-convergence properties,
we have that every maximizing sequence (uε, |∇uε|2dx) of Fε must converge to a pair
(u, µ) ∈ X maximizer for F :

(uε, |∇uε|2dx)
τ→ (u, µ), with F (u, µ) = max

X(Ω)
F.

By Lemma 3.4, with g(t) = |t|2∗ , we have max
X(Ω)

F = F (0, δx0), for some x0 ∈ Ω.

It follows
(uε, |∇uε|2dx)

τ→ (0, δx0),

that is the desired concentration result. �
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France

E-mail address: giampiero.palatucci@univ-cezanne.fr


	1. Introduction
	2. The concentration result
	3. The +-convergence result
	References

