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Abstract. In this paper we consider the following standard problems appearing in optimal transporta-
tion theory:

• when a transference plan is extremal,
• when a transference plan is the unique transference plan concentrated on a set A,
• when a transference plan is optimal.

We show that these three problems can be studied with a general approach:

(1) choose some necessary conditions, depending on the problem we are considering;
(2) find a partition into sets Bα where these necessary conditions become also sufficient;
(3) show that all the transference plans are concentrated on ∪αBα.

Explicit procedures are provided in the three cases above, the principal one being that the problem has
an hidden structure of linear preorder with universally measurable graph.

As by sides results, we study the disintegration theorem w.r.t. family of equivalence relations, the
construction of optimal potentials, a natural relation obtained from c-cyclical monotonicity.
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1. Introduction

Let (X,Ω, µ), (Y,Σ, ν) be two countably generated probability spaces, and let (X × Y,Ω ⊗ Σ) be the
product measurable space. Using standard results on measure space isomorphisms (see for example the
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proof of the last theorem of [12]), in the following we assume that (X,Ω) = (Y,Σ) = ([0, 1],B), where B
is the Borel σ-algebra.

Let P([0, 1]2) be the set of Borel probability measures on [0, 1]2, and let Π(µ, ν) be the subset of
P([0, 1]2) satisfying the marginal conditions (P1)♯π = µ, (P2)♯π = ν, where P1(x, y) = x, P2(x, y) = y
are the projection on X , Y :

Π(µ, ν) :=
{

π ∈ P([0, 1]2) : (P1)♯π = µ, (P2)♯π = ν
}

.

For π ∈ Π(µ, ν) we will denote by Γ ⊂ [0, 1]2 a set such that π(Γ) = 1: as a consequence of the inner
regularity of Borel measures, it can be taken σ-compact.

For any Borel probability measure π on [0, 1]2, let Θπ ⊂ P([0, 1]2) be the π-completion of the Borel
σ-algebra. We denote with Θ(µ, ν) ⊂ P([0, 1]2) the Π(µ, ν)-universally measurable σ-algebra: it is the
intersection of all completed σ-algebras of the probability measures in Π(µ, ν):

(1.1) Θ(µ, ν) :=
⋂{

Θπ, π ∈ Π(µ, ν)
}

.

We define the functional I : Π(µ, ν) → R by

(1.2) I(π) :=

∫

c(x, y)π(dxdy),

where c : [0, 1]2 → [0,+∞] is a Θ(µ, ν)-measurable cost function. The set Πf (µ, ν) ⊂ Π(µ, ν) is the set of
probability measures belonging to Π(µ, ν) and satisfying the geometrical constraint I(π) < +∞.

The problems we are considering in the next sections are whether a given measure π ∈ Π(µ, ν) satisfies
one of the following properties:

• it is extremal in Π(µ, ν);
• it is the unique measure in Π(µ, ν) concentrated on a given set A ∈ Θ((µ, ν));
• it is minimizing the functional I(π) in Π(µ, ν).

We can restrict our analysis to the set Πf (µ, ν), by

• defining c(x, y) = 1IΓ for a particular set Γ with π(Γ) = 1 in the first case,
• defining c(x, y) = 1IA in the second case,
• assuming that I(π) < +∞ to avoid trivialities in the third case.

In all the above cases a necessary condition can be easily obtained, namely

• π is acyclic in the first case (Definition 3.2),
• π is A-acyclic in the second case (Definition 4.2),
• π is c-cyclically monotone in the third case (Definition 5.1).

Nevertheless, there are explicit examples showing that this condition is only necessary.

The kernel is the following idea (Lemma 2.5). Let π ∈ Π(µ, ν) be a transference plan.

Theorem 1.1. Assume that there are partitions {Xα}α∈[0,1], {Yβ}β∈[0,1] such that

(1) for all π′ ∈ Πf (µ, ν) it holds π′(∪αXα × Yα) = 1,
(2) the disintegration π =

∫
παm(dα) of π w.r.t. the partition {Xα×Yα}α∈[0,1] is strongly consistent,

(3) in each equivalence class Xα×Yα the measure πα is extremal/unique/optimal in Π(µα, να), where

µα := (P1)♯πα, να := (P2)♯πα.

Then π is extremal/unique/optimal.

The main tool is the Disintegration Theorem A.7 presented in Appendix A and applied to the partition
{Xα × Yβ}α,β∈[0,1]. This partitions are constructed in order to satisfy Point (3).

Before explaining the meaning of the above conditions, we consider the following corollaries. Instead
of partitions, we will equivalently speak of equivalence classes and relative equivalence relations.

Corollary 1.2 (Extremality (Theorem 3.8)). Let π concentrated on a σ-compact acyclic set Γ.
If we partition the set Γ into axial equivalence classes (Definition 3.4), then π is extremal in Π(µ, ν)

if the disintegration is strongly consistent.
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We show in Theorem 3.9 that the strong consistency assumption in the above corollary is nothing
more than the countable Borel limb condition of [11].

Denote with hX , hY the quotient maps w.r.t. the partitions {Xα}α∈[0,1], {Yβ}β∈[0,1]. In Lemma 2.4
it is shown that if Conditions (1) and (2) of Theorem 1.1 are valid for π, then there exists m ∈ P([0, 1])
such that (I, I)♯m = (hX , hX)♯µ = (hY , hY )♯ν = (hX ⊗ hY )♯π.

Let now A be an analytic set and define the image set

A′ := (hX ⊗ hY )(A).

Corollary 1.3 (Uniqueness (Page 18)). Let π concentrated on a σ-compact A-acyclic set Γ.
If we partition the set Γ into axial equivalence classes, then π is the unique measure in Π(µ, ν) con-

centrated on A if

(1) the disintegration is strongly consistent,
(2) there exists a set B ∈ (hX ⊗ hY )♯Θ(µ, ν), B ⊃ A′, which is the graph of a linear order.

Notice that one can always take as a quotient space a subset of [0, 1], by the Axiom of Choice, but the
image σ-algebra does not contain in general all Borel sets. Moreover, by Lemma 4.7, A′ is by construction
the graph of a partial order, which again by the Axiom of Choice can be always completed to a linear
order. The two assumptions above are therefore a measurability assumption, made precise in Remark
4.19: A and Γ induce a preorder on [0, 1] which is contained in a linear (or total) preorder with Borel
graph.

Finally, let c : [0, 1]2 → [0,+∞] be a coanalytic cost.

Corollary 1.4 (Optimality (Theorem 5.6)). Let π concentrated on a σ-compact c-cyclically monotone
set Γ and partition Γ w.r.t. the cycle equivalence relation (Definition 5.1).

Then, π c-cyclically monotone is optimal if

(1) the disintegration is strongly consistent,
(2) the image set A′ := (hX ⊗ hY )({c < +∞}) is a set of uniqueness.

If we use as condition for uniqueness the linear order condition, then the interpretation of this corollary
in terms of order relation is analogous to the one above and it is performed in Remark 5.10: {c < +∞}
and Γ induce a preorder on [0, 1] which is contained in a linear preorder with Borel graph.

The above result generalizes the previous known cases:

(1) if µ or ν are atomic ([17]): clearly m must be atomic;
(2) if c(x, y) ≤ a(x) + b(y) with a ∈ L1(µ), b ∈ L1(ν) ([18]): m is a single δ;
(3) if c : [0, 1]2 → R is real valued and satisfies the following assumption ([2])

ν

({

y :

∫

c(x, y)µ(dx) < +∞
})

> 0, µ

({

x :

∫

c(x, y)ν(dy) < +∞
})

> 0 :

in this case m is a single δ;
(4) If {c < +∞} is an open set O minus a µ ⊗ ν-negligible set N ([3]): in this case every point in

{c < +∞} has a squared neighborhood of positive π-measure satisfying condition (5.4b) below.

In each case the equivalence classes are countably many Borel sets, so that the disintegration is strongly
consistent and the acyclic set A′ is a set of uniqueness (Lemma 4.18).

1.1. Explanation of the approach. The three conditions listed in Theorem 1.1 have interesting inter-
pretations in terms of measurability, marginal conditions and acyclic perturbations.

We first observe that the necessary conditions considered in all three cases can be stated as follows:
the transference plan π is unique/optimal w.r.t. the affine space generated by π+ λc, where λc is a cyclic
perturbation of π.

Moreover, the partitions have a natural crosswise structure w.r.t. Γ: if {Xα}α, {Yβ}β are the corre-
sponding decompositions of [0, 1], then

(1.3) Γ ∩ (Xα × Y ) = Γ ∩ (X × Yα) = Γ ∩ (Xα × Yα).

This is clearly equivalent to Γ ⊂ ∪αXα × Yα, so that Condition (1) is satisfied at least for π and for its
cyclic perturbations.
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This and consequently Condition (1) are conditions on the geometry of the carriage Γ, since the specific
construction depends on it. In fact, fixed a procedure to partition a set Γ, it is easy to remove negligible
sets obtaining different partitions: sometimes Theorem 1.1 can be satisfied or not depending on Γ, i.e. on
the partition. A possible solution is to make the partition independent of Γ (Appendix A.1), but maybe
this decomposition does not satisfy the hypotheses of Theorem 1.1, while others do.

A consequence of the above discussion is that in the corollaries a procedure is proposed to test a
particular measure π. Some particular cost may however imply that there is a partition valid for all
transference plans: in this case the c-cyclical monotonicity becomes also sufficient, as in the known cases
of Points (1)-(4) above.

Notice however that the statement is that the necessary condition becomes sufficient if there exists a
carriage Γ such that the corollaries apply, or more generally if there exists a partition such that Theo-
rem 1.1 applies. When there is no such carriage, then one can modify the cost in such a way that there
are transport plans satisfying the necessary condition, giving the same quotient set A′ and which can be
either extremal/unique/optimal or not (Proposition 6.9).

The strong consistency of the disintegration is a measure theoretic assumption: it is equivalent to the
fact that the quotient space can be taken to be ([0, 1],B), up to negligible sets. This is important in order
to give a meaning to the optimality within the equivalence classes: otherwise the conditional probabilities
πα are useless and Condition (3) without meaning. From the geometrical point of view, we are saying
that π can be represented by weighted sum of probabilities in Xα × Yα, and Condition (1) yields that
we can decompose the problem into smaller problems in Xα× Yα. When the assumption is not satisfied,
then one can modify the cost in order to have the same quotient measure but both c-cyclically monotone
optimal and c-cyclically non optimal transport plans (Example 6.5).

Finally, we illustrate the linear preorder condition of Corollary 1.3. The sets Γ and A (or {c < +∞})
yield a natural preorder by saying x 4 x′ if there exists an axial path connecting them:

∃(xi, yi) ∈ Γ, i = 0, . . . , I : (xi+1, yi) ∈ A ∀i = 0, . . . , I and x0 = x, xI+1 = x′.

The equivalence classes {x 4 x′∧x′ 4 x} are the points connected by closed cycles. This holds in general,
but a strong requirement is that this preorder can be embedded into a linear preorder (i.e. every two
points are comparable) with Borel (universally measurable) graph having the same equivalence classes
{x 4 x′ ∧ x′ 4 x}. If this holds, then Theorem 4.9 implies two things:

(1) the disintegration with respect to the equivalence classes {x 4 x′ ∧x′ 4 x} is strongly consistent,
(2) and the image set A′ is contained in B := {s, t ∈ [0, 1]α, s � t}, with α ∈ ω1 and � being the

lexicographic ordering.

The last point and Lemma 4.13 (B is a set of uniqueness) prove that the assumption of Theorem 1.1 are
verified.

1.2. Structure of the paper. The paper is organized as follows.
In Section 2 we show the general scheme of our approach. We do not specify the particular necessary

conditions for optimality, but we prove that under the above three conditions the transference plan π is
extremal/unique/optimal. In Section 2, page 8, we collect the results into 4 steps which will be used to
obtain the results in the next sections.

In Section 3 we address the problem of extremality. The results obtained with our approach are already
known in the literature: this part can be seen as an exercise to understand how the procedure works. The
difficulties of both approaches are the same: in fact the existence of a Borel rooting set up to negligible
sets is equivalent to the strong consistency of the disintegration.

In Section 4, we consider the problem of verifying if an analytic set A can carry more than one
transference plan. In this case, not only the disintegration should be strongly consistent, but we must
verify also Condition (1) of Theorem 1.1. Condition (2) in Corollary 1.3 implies this fact. Essentially,
we are just showing (Theorem 4.9) that in the quotient space the uniqueness problem can be translated
into the uniqueness problem in [0, 1]α, with α ∈ ω1 enumerable ordinal, and

B =
{
(s, t) : s, t ∈ [0, 1]α, s� t

}
,

where � is the lexicographic order. Lemma 4.13 proves that the above B is a set of uniqueness.
In Section 5 we consider the optimality of a transference plan. In this case, the easiest equivalence

relation is the cycle equivalence relation Definition (5.1), introduced also in [3]. The optimality within
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each class is immediate from the fact that there exists a couple of A-optimal potentials φ,ψ, and after the
discussion of the above two problems the statement of Corollary 1.4 should be clear. If one chooses the
existence of optimal potentials as sufficient criterion, or even more general criteria, it is in general possible
to construct other equivalence relations, such that in each class the conditional probabilities πα are
optimal. Under strong measure theoretic assumptions (ZFC+CH+PD), an example of this construction
is shown in Appendix C.

In Section 6 we give several examples: for historical reasons, we restrict to examples concerning the
optimality of π, but trivial variations can be done in order to adapt to the other two problems. We
split the section into 2 parts. In Section 6.1 we study how the choice of Γ can affect our construction:
it turns out that in pathological cases a wrong choice of Γ may lead to situations for which either the
disintegration is not strongly consistent or in the quotient space there is no uniqueness. This may happen
both for optimal or not optimal transference plans. In Section 6.2 instead we consider if one can obtain
conditions on the problem in the quotient space less strict than the uniqueness condition: the examples
show that this is not the case in general.

In Section 7 we address the natural question: if we have optimal potentials in each set Xα × Yα, is
it possible to construct an optimal couple (φ, ψ) in ∪αXα × Yα? We show that under the assumption
of strong consistency this is the case. The main tool is Von Neumann’s Selection Theorem, and the key
point is to show that the set

{

(α, φα, ψα) : φα, ψα optimal couple in Xα × Yα

}

is analytic in a suitable Polish space. The Polish structure on the family of optimal couples is obtained
identifying each µ-measurable function φ with the sequence of measures {(φ∨ (−M))∧M)µ}M∈N, which
is shown to be a Borel subset of MN.

In Appendix A we give a short proof of the Disintegration Theorem in countably generated measure
spaces. All the results of this section can be found in Section 452 of [10] (with much greater generality).
In particular, the fact that consistent disintegrations exist and are unique, and the explicit representation
of the conditional probabilities. As an application of these methods, we show that if one has a family of
equivalence relations E closed under countable intersection, then there is an equivalence relation E ∈ E

which is the sharpest one in the following sense: the σ-algebra of saturated sets w.r.t. any other E′ ∈ E

can be embedded into the σ-algebra of saturated sets w.r.t. E (Point (1) Theorem A.11). Applied to
our problem, we can make the disintegration independent of the particular carriage Γ, but the examples
show that maybe this is not the best choice, or it is even the trivial one x• = {x}!

In Appendix B we give a meaning to the concepts of cyclic perturbations and acyclic perturbations.
After recalling the properties of projective sets in Polish spaces in Section B.1 and the duality results of
[13] (Section B.2), we show how to define the n-cyclic part of a signed measure λ with 0 marginals: this
is the largest measure λn ≪ λ which can be written as λn = λ+

n − λ−n with

λ+
n =

1

n

∫

Cn

n∑

i=1

δP(2i−1,2i)wm(dw) λ−n =
1

n

∫

Cn

n∑

i=1

δP(2i+1,2i mod 2n)wm(dw)

where Cn ⊂ [0, 1]2n is the set of n-closed cycles and m ∈ M+(Cn). This approach leads to the defi-
nition of cyclic perturbations λ: these are the signed measures with 0 marginals which can be written
as sum (without cancellation) of cyclic measures. The acyclic measures are those measures for which
there are not n-cyclic measures λn ≪ λ for all n ≥ 2: in particular they are concentrated on an acyclic
set. This approach leads naturally to the well known results on the properties of sets on which ex-
tremal/unique/optimal measures are concentrated: in fact, in all cases we ask that there are not cyclic
perturbations which either are concentrated on the carriage set Γ, or on the set of uniqueness A, or
diminish the cost of the measure π. One then deduces the well known criteria that Γ is acyclic, Γ is
A-acyclic and Γ is c-cyclically monotone.

The last Appendix C is more set theoretical: its aim is just to show that there are other possible
decompositions for which our procedure can be applied, and in particular situations where a careful
analysis may give the validity of Theorem 1.1 for this new decomposition, but not of Corollary 1.4 for the
cycle decomposition. The main result is that under PD and CH we can construct a different equivalence
relation satisfying Condition (3) of Theorem 1.1 and (1.3).
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2. Setting and general scheme

Let {Xα}α∈[0,1] be a partition of X into pairwise disjoint sets, and similarly let {Yβ}β∈[0,1] be a
partition of Y into pairwise disjoint sets. Let moreover {Xα × Yβ}α,β∈[0,1] be the induced pairwise
disjoint decomposition on X × Y .

Since it is clear that the decomposition X = ∪αXα with Xα pairwise disjoint induces an equivalence
relation E by defining xEx′ if and only if x, x′ ∈ Xα for some α, we will also refer to Xα, Yβ and Xα×Yβ
as equivalence classes. We will often not distinguish an equivalence relation E on X and its graph

graph(E) := {(x, x′) : xEx′} ⊂ X ×X.

We will denote by hX : X → [0, 1], hY : Y → [0, 1] the quotient maps: clearly hX⊗hY : X×Y → [0, 1]2

is the quotient map corresponding to the decomposition Xα × Yβ , α, β ∈ [0, 1], of X × Y .

Assumption 1. The maps hX , hY are µ-measurable, ν-measurable from (X,Ω, µ), (Y,Σ, ν) to ([0, 1],B),
respectively, where B is the Borel σ-algebra.

We will consider the following disintegrations:

(2.1a) µ =

∫ 1

0

µαmX(dα), mX = (hX)♯µ;

(2.1b) ν =

∫ 1

0

νβmY (dβ), mY = (hY )♯ν;

(2.1c) π =

∫

[0,1]2
παβn(dαdβ), n = (hX ⊗ hY )♯π.

Note the fact that under the assumptions of measurability of hX , hY , Theorem A.7 implies that — up
to a redefinition of µα, να, πα on respectively mX , mY , n negligible sets — the conditional probabilities
µα, νβ and πα,β satisfy

µα(Xα) = νβ(Yβ) = παβ(Xα × Yβ) = 1

for all (α, β) ∈ [0, 1]2, i.e. they are concentrated on equivalence classes: in the following we will say that
the disintegration is strongly consistent when the conditional probabilities are supported on the respective
equivalence classes (see [10], Chapter 45, Definition 452E).

The next Lemma 2.1 is valid also in the case the disintegration is not strongly consistent but just
consistent, by considering the quotient measure space of Definition A.5.

Lemma 2.1. The measure n belongs to Π(mX ,mY ).

Proof. This is a trivial consequence of the computation

n(A× [0, 1])
(2.1c)
= π(h−1

X (A) × Y )
π∈Π(µ,ν)

= µ(h−1
X (A))

(2.1a)
= mX(A).

The same computation works for n([0, 1] ×B). �

In the next sections, a special choice of the equivalence classes will lead to the following particular
case, which under Assumption 1 is meaningful: indeed, as direct consequence of the properties of product
σ-algebra (Theorem 3 in [12]), the set {α = β} belongs to the product σ-algebra (hX)♯(Ω) ⊗ (hY )♯(Σ) if
and only if Assumption 1 holds (up to measure spaces isomorphisms).

Assumption 2. We assume n = (I, I)♯mX .
In particular the marginals mX and mY coincide: we will denote this probability measure by m.

Hence the image of Π(µ, ν) under (hX⊗hY ) is contained in the set Π(m,m) by Lemma 2.1. Moreover:

Lemma 2.2. Under Assumption 2, one has πα ∈ Π(µα, να).

Proof. By the marginal conditions, for any m-measurable A and Borel S
∫

A

µα(S)m(dα) = µ(h−1
X (A) ∩ S)

π∈Π(µ,ν)
= π((h−1

X (A) ∩ S) × [0, 1]) =

∫

A

πα(S × [0, 1])m(dα).

Thus (P1)♯πα = µα for m-a.e. α. For να it is analogous. �
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Under Assumption 1, a necessary and sufficient condition for Assumption 2 is the following.

Definition 2.3. We say that a set Γ ⊂ [0, 1]2 satisfies the crosswise condition w.r.t. the families
{Xα}α∈[0,1], {Yβ}β∈[0,1], if

(2.2) Γ ∩ (Xα × Y ) = Γ ∩ (X × Yα) = Γ ∩ (Xα × Yα) ∀α ∈ [0, 1].

Lemma 2.4. Assume that there exists Γ ⊂ [0, 1]2 such that π(Γ) = 1 and it satisfies the crosswise
condition (2.2). Then n = (I, I)♯m, where m = mX = mY .

Conversely, if n = (I, I)♯m, then there exists Γ ⊂ [0, 1]2 such that π(Γ) = 1 and satisfying (2.2).

Proof. The proof follows the same line of the proof of Lemma 2.1.
The set Γ′ = (hX ⊗ hY )−1({α = β}) has full π measure if and only if n = (hX ⊗ hY )♯π = (I, I)♯m.

Since (2.2) implies immediately Γ ⊂ Γ′, then n = (I, I)♯m.
Conversely, by the definition of Γ′

(Xα × Y ) ∩ Γ′ = Γ′ ∩ (X × Yα) = Xα × Yα.

This implies (2.2) for the set Γ′. �

Along with the strong consistency of the disintegration (Assumption 1), the main assumption is the
following. This assumption requires Assumption 1 and implies Assumption 2.

Assumption 3. For all π ∈ Πf (µ, ν), the image measure n = (hX ⊗ hY )♯π is equal to (I, I)♯m.

So far we do not have specified the criteria to choose the partitions Xα, Yβ . The next lemma, which
is the key point of the argument, specifies it.

Lemma 2.5. Assume that the decompositions Xα, Yβ satisfy Assumption 3 and the following:

Assumption 4. For m-a.e α ∈ [0, 1] the probability measure πα ∈ Π(µα, να) satisfies sufficient conditions
for extremality/uniqueness/optimality.

Then π ∈ Π(µ, ν) is extremal/unique/optimal.

Proof. We consider the cases separately.
Extremality. If π1, π2 ∈ Π(µ, ν) are such that π = (1 − λ)π1 + λπ2, λ ∈ (0, 1), then it follows from

Assumption 3 that the disintegration of these measures is given by

π1 =

∫ 1

0

π1,αm(dα), π2 =

∫ 1

0

π2,αm(dα) π1,α, π2,α ∈ Π(µα, να) by Lemma 2.2.

It follows that πα = (1 − λ)π1,α + λπ2,α for m-a.e. α, so that from Assumption 4 we conclude that
πα = π1,α = π2,α.

Uniqueness. The computations are similar to the previous case, only using the fact that in each class
the conditional probability πα is unique.

Optimality. For π1 ∈ Πf (µ, ν)

I(π1) =

∫

c(x, y)π1(dxdy)
(2.1c)
=

∫ 1

0

(∫

c(x, y)π1,α(dxdy)

)

m(dα).

From Assumption 3 it follows that π1,α, πα ∈ Π(µα, να), so that from Assumption 4 one has

∫

c(x, y)π1,α(dxdy) ≥
∫

c(x, y)πα(dxdy) for m-a.e. α.

The conclusion follows. �

We thus are left to perform the following steps in each of the next sections.
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Procedure to verify the sufficiency of the necessary conditions.

(1) Fix the necessary conditions under consideration.
(2) Fix a measure π ∈ Πf (µ, ν) which satisfies the necessary conditions respectively for being ex-

tremal, being the unique measure concentrated on A, being optimal.
(3) Construct partitions Xα, Yβ of X , Y such that:

(a) the disintegrations of µ, ν w.r.t. X = ∪αXα, Y = ∪βYβ are strongly consistent. This implies
that the quotient maps hX , hY can be assumed to be measurable functions taking values in
([0, 1],B), by Theorem A.7;

(b) in each equivalence class Xα × Yα the necessary conditions become sufficient: the measure
παα satisfies the sufficient conditions for extremality, uniqueness or optimality among all
π ∈ Π(µα, να).

(4) Verify that the image measure nπ′ ∈ Π(m,m) of all π′ ∈ Πf (µ, ν) coincides with (I, I)♯m, where
m = (hX)♯µ = (hY )♯ν.

If the above steps can be performed, then from Lemma 2.5 we deduce that π is respectively extremal,
unique or optimal. In our applications, the necessary conditions reduce to a single condition on the
structure of the support of π.

Remark 2.6. It is important to note that in general the decomposition depends on the particular measure
π under consideration: the procedure will be used to test a particular measure π, even if in some cases
it works for the whole Πf (µ, ν). In the latter case, we can test e.g. the optimality of all measures in
Πf (µ, ν) using only the necessary conditions: this means that these conditions are also sufficient.

3. Extremality of transference plans

The first problem we will consider is to give sufficient conditions for the extremality of transference
plans in Π(µ, ν). The results obtained are essentially the same as the results of [11].

We first recall the following result ([7, 14]). Following the notation of Appendix B.3, we denote with
Λ ⊂ M([0, 1]2) the set

Λ :=
{

λ ∈ M([0, 1]2) : (P1)♯λ = (P2)♯λ = 0
}

.

Proposition 3.1. The transference plan π ∈ Π(µ, ν) is extremal if and only if L1(µ) + L1(ν) is dense
in L1(π).

Proof. We first prove that if f1 ∈ L1(µ), f2 ∈ L1(ν) and (f1 − f2)π ∈ Λ, then f1 − f2 = 0 π-a.e..
Writing

π =

∫

πxµ(dx) =

∫

πyν(dy)

for the disintegration of π w.r.t. µ, ν respectively, the above conditions mean that

f1(x) =

∫

f2(y)πx(dy) µ-a.e. x, f2(y) =

∫

f1(x)πy(dx) ν-a.e. y.

We then have
∫

|f1|µ =

∫ ∣
∣
∣
∣

∫

f2(y)πx(dy)

∣
∣
∣
∣
µ(dx)

=

∫

|f2|ν +

∫ (∣
∣
∣
∣

∫

f2(y)πx(dy)

∣
∣
∣
∣
−
∫

|f2(y)|πx(dy)
)

µ(dx) ≤
∫

|f2|ν,

and similarly
∫

|f2|ν =

∫

|f1|µ+

∫ (∣
∣
∣
∣

∫

f1(x)πy(dx)

∣
∣
∣
∣
−
∫

|f1(x)|πy(dx)
)

ν(dy) ≤
∫

|f1|µ.

We thus conclude that
∣
∣
∣
∣

∫

f2(y)πx(dy)

∣
∣
∣
∣
=

∫

|f2(y)|πx(dy) µ a.e. x,

∣
∣
∣
∣

∫

f1(x)πy(dx)

∣
∣
∣
∣
=

∫

|f1(x)|πy(dx) ν a.e. y.

i.e. π is concentrated on the set

{f1 < 0} × {f2 < 0} ∪ {f1 = 0} × {f2 = 0} ∪ {f1 > 0} × {f2 > 0}.
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Since if (f1, f2) satisfies (f1 − f2)π ∈ Λ, also [(f1 − k) − (f2 − k)]π ∈ Λ for all k ∈ R, it follows that π
is concentrated on the sets

{f1 < k} × {f2 < k} ∪ {f1 = k} × {f2 = k} ∪ {f1 > k} × {f2 > k}.
Hence one concludes that f1 − f2 = 0 π a.e..

⇐= The previous step implies that if L1(µ) + L1(ν) is dense in L1(π), then π should be extremal.
In fact, it is fairly easy to see that if π is not extremal, then there exists 0 ≤ g ∈ L1(π) such that
gπ ∈ Π(µ, ν): hence for some sequence {(f1,n, f2,n)}n∈N ∈ L1(µ) × L1(ν) it holds

(3.1) lim
n→∞

∫

|g − f1,n − f2,n|π = 0.

Define the L1(µ)-function m1,n and the L1(ν)-function m2,n by

m1,nµ := (P1)♯
(
g − f1,n − f2,n

)
π, m2,nµ := (P2)♯

(
g − f1,n − f2,n

)
π.

From (3.1), it follows that

(3.2) lim
n→+∞

‖m1,n‖L1(µ) + ‖m2,n‖L1(ν) = 0.

Trivially we have

f1,n +m1,n + f2,n +m2,n ∈ L1(π),
(
f1,n +m1,n + f2,n +m2,n

)
π ∈ Π(µ, ν).

Hence by the first part up to a π-negligible set

f1,n + f2,n = 1 − (m1,n +m2,n).

From (3.2) it follows that f1,n + f2,n → 1 = g in L1(π).

=⇒ If instead L1(µ) + L1(ν) ( L1(π), then by Hahn-Banach Theorem there exists an L∞(π)-function
g 6= 0, |g| ≤ 1, such that

∫

g(x, y)(f1(x) + f2(y))π(dxdy) = 0

for all f1 ∈ L1(µ), f2 ∈ L1(ν). In particular gπ ∈ Λ, g 6= 0 on a set of positive π-measure and

π =
1 + g

2
π +

1 − g

2
π,

where the two addends in the r.h.s. above belongs to Π(µ/2, ν/2). �

The second result is a consequence of Proposition B.15. A cyclic perturbation λ of a measure π ∈
Π(µ, ν) is specified in Definitions B.6, B.14; in particular π + λ ∈ Π(µ, ν).

Definition 3.2 (Acyclic set and measure). We say that Γ ⊂ [0, 1]2 is acyclic if for all finite sequences
(xi, yi) ∈ Γ, i = 1, . . . , n, with xi 6= xi+1 mod n and yi 6= yi+1 mod n it holds

{

(xi+1, yi), i = 1, . . . , n, xn+1 = x1

}

6⊂ Γ.

A measure is acyclic if it is concentrated on an acyclic set.

Lemma 3.3 (Theorem 3 of [11]). Suppose that there is no cyclic perturbation of the measure π ∈ Π(µ, ν)
on [0, 1]2. Then π is concentrated on an acyclic σ-compact set Γ.

We specify now necessary and sufficient conditions for extremality:

necessary condition: the measure π is acyclic;
sufficient condition: the measure π is concentrated on a Borel limb numbering system, [11] page

223: there are two disjoint families {Ck}k∈N, {Dk}k∈N0 of Borel sets and Borel measurable
functions fk : Ck → Dk−1, gk : Dk → Ck, k ∈ N, such that π is concentrated on the union of the
following graphs

Fk = graph(fk), Gk = graph(gk).

We verify directly the second condition, [11] Theorem 20: clearly due to the σ-additivity and inner
regularity, we can always replace measurable with σ-compact sets up to a negligible set.
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Γ

Figure 1: A limb numbering system and the axial path of a point.

Proof of sufficiency of the condition. Assume first that there are only finitely many Gk, Fk, k ≤ N . In
this case, the uniqueness of the transference plan π follows by finite recursion, since the marginality
conditions yield, setting FN+1 := ∅, that π must be defined by

(3.3) πxFk
= (I, fk)♯(µ− (P1)♯πxGk

), πxGk
= (gk, I)♯(ν − (P2)♯πxFk+1

), k ∈ {1, . . . , N}.
For the general case, let π ∈ Π(µ, ν) such that π(∪kFk ∪Gk) = 1. Define the measures πN by means

of (3.3) starting at N : let
(πN )xFN+1 := (I, fN+1)♯µxFN+1

and for k ∈ {1, . . . , N}
(πN )xFk

:= (I, fk)♯(µ− (P1)♯(πN )xGk
), (πN )xGk

= (gk, I)♯(ν − (P2)♯(πN )xFk+1
).

Since
∑

k>N µ(Fk)+ ν(Gk) → 0 as N → ∞, it is fairly easy to see that up to subsequences πN converges
strongly to π — just by the fact that if

∑

i ai < +∞ there exists a subsequence i(j) s.t. i(j)ai(j) → 0.
Using the uniqueness of the limit and the fact that the approximating sequence does not depend on

π, the uniqueness of π follows. �

The equivalence classes in order to apply Theorem 1.1 are the following.

Definition 3.4 (Axial equivalence relation). We define (x, y)E(x′, y′) if there are (xi, yi) ∈ Γ, 0 ≤ i ≤ I
finite, such that

(3.4) (x, y) = (x0, y0), (x
′, y′) = (xI , yI) and (xi+1 − xi)(yi+1 − yi) = 0.

In the language of [11], page 222, each equivalence class is an axial path. The next lemma is an
elementary consequence of Definition 3.4.

Lemma 3.5. The relation E of Definition 3.4 defines an equivalence relation on the acyclic set Γ. If
Γ = ∪αΓα is the partition of Γ in equivalence classes, and Xα = P1Γα, Yα = P2Γα are the projections of
the equivalence classes, then the crosswise condition (2.2) holds.

By setting
X0 = [0, 1] \ P1(Γ), Y0 = [0, 1] \ P2(Γ),

we have a partition of X , Y into disjoint classes.
We can thus use Theorem A.7 to disintegrate the marginals µ, ν and every transference π plan

supported on Γ. From (2.1) and Lemmas 2.2, 2.4 one has immediately the following proposition.
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Proposition 3.6. The following disintegrations w.r.t. the partitions X = ∪αXα, Y = ∪αYα hold:

µ =

∫

µαm(dα), ν =

∫

ναm(dα), m = (hX)♯µ.

Moreover, if π is a transference plan supported on Γ and the disintegration is strongly consistent, then
the disintegration of π w.r.t. the partition Γ = ∪α∈AΓα is given by

π =

∫

παm(dα) with πα ∈ Π(µα, να).

The next lemma shows that in each equivalence class the sufficient condition holds.

Lemma 3.7. Each equivalence class satisfies the Borel limb numbering condition.

Proof. The proof is elementary: if (xα, yα) ∈ Γα, then one defines recursively (Figure 1)

D0,α = {yα}, C1,α = P1(Γ ∩ ([0, 1] × {yα})),

Dk,α = P2

(
Γ ∩ (Ck,α × ([0, 1] \Dk−1,α))

)
, Ck+1,α = Γ ∩ (([0, 1] \ Ck,α) ×Dk,α).

From the assumption of acyclicity, it is a straightforward verification that each

Γ ∩ (Ck,α ×Dk−1,α), Γ ∩ (Ck,α ×Dk,α)

is the graph of a function fk,α : Ck,α → Dk−1,α, gk,α : Dk,α → Ck,α. Moreover, Γα is covered by the
graphs Gk,α, Fk,α because of the definition of the equivalence class Γα.

It remains to study the Borel measurability of the functions gk,α, fk,α. We show the induction step of
the argument. D0,α is a point and C1,α a section of the Borel set Γ, thus is itself Borel. Assume the Ck,α,
Dk−1,α are Borel. Then Γ ∩ (Ck,α × ([0, 1] \ Dk−1,α) is the Borel antigraph Gk,α: hence its horizontal
section is compact, being a point, and by Novikov Theorem 4.7.11 its projection Dk,α is Borel. Finally by
Theorem 4.5.2 of [19] the function gk,α is Borel. The argument for Ck+1,α is analogous with Fk+1,α. �

From Lemma 2.5, it follows the following theorem.

Theorem 3.8. If the disintegration of Proposition 3.6 is strongly consistent, then π is extremal.

We now conclude the section showing that the existence of a Borel limb numbering systems is equivalent
to the existence of an acyclic set Γ where the transference plan π is concentrated and such that the
disintegration is consistent.

Theorem 3.9. The transference plans π is concentrated on a limb numbering system Γ with Borel limbs
if and only if the disintegration of π into the equivalence classes of some acyclic carriage Γ is strongly
consistent.

Proof. Assume first that π satisfies the Borel limb condition. Then from [11], Theorem 20, it follows we
can take as quotient space a Borel root set A. In particular Γ can be taken as the union of the orbits
of points in A, and it is immediate to verify that the orbit of a Borel subset of A is an analytic subset
of [0, 1]2. Hence the disintegration is consistent by the fact that (A,B(A),m) is a countably generated
measure space.

Conversely, suppose that the disintegration is strongly consistent w.r.t. the axial equivalence relation
E on an acyclic carriage Γ. Then, as a consequence of Proposition A.9, by eventually removing a set
of π-measure 0 from Γ, one can assume that the equivalence relation E has a Borel section S. One
constructs finally Borel limbs as in Lemma 3.7 from {(x(α), y(α)}α∈[0,1]. �

Remark 3.10. We observe that by adding the set G0 = {x0} ×D0, where x0 /∈ ∪kCk, the disintegration
is supported on a single equivalence class.

4. Uniqueness of transport plans

In this section we address the question of uniqueness of transference plans concentrated on a set A.

Definition 4.1 (Set of uniqueness). We say that A ∈ Θ(µ, ν) is a set of uniqueness of Π(µ, ν) if there
exists a unique measure π ∈ Π(µ, ν) such that π(A) = 1.
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In Section 5 of [11] (or using directly the proof of the sufficient condition, page 10) it is shown that if
Γ satisfies the Borel limb condition, then Γ supports a unique transference plan.

The first lemma is a consequence of Proposition B.15.

Definition 4.2. A set Γ ⊂ A is A-acyclic if for all finite sequences (xi, yi) ∈ Γ, i = 1, . . . , n, with
xi 6= xi+1 mod n and yi 6= yi+1 mod n it holds

{

(xi+1, yi), i = 1, . . . , n, xn+1 = x1

}

6⊂ A.

A measure is A-acyclic if it is concentrated on an A-acyclic set.

Lemma 4.3. If an analytic set A is a set of uniqueness for Π(µ, ν), then the unique π ∈ Π(µ, ν) is
concentrated on a A-acyclic Borel set Γ ⊂ A.

Necessary and sufficient conditions for uniqueness are then given by:

necessary condition: there exist a measure π ∈ Π(µ, ν) and an A-acyclic Borel set Γ ⊂ A such
that π(Γ) = 1;

sufficient condition: A is a Borel limb numbering system (Page 9).

We will state a more general sufficient condition later at Page 18.
Let Γ be an A-acyclic σ-compact carriage of π. In particular, Γ is acyclic. We will thus use the

equivalence classes of the axial equivalence relation E on Γ, Definition 3.4, assuming w.l.o.g. that PX(Γ) =
PY (Γ) = [0, 1].

Let hX : X → [0, 1], hY : Y → [0, 1] be the quotient maps. In general the image of A

(4.1) A′ :=
{

(α, β) : (hX ⊗ hY )−1(α, β) ∩A 6= ∅
}

is not a subset of {α = β}. However, for the equivalence classes in the diagonal {α = β}, we have the
following lemma.

Lemma 4.4. For all α ∈ [0, 1],

(hX ⊗ hY )−1(α, α) ∩A = (hX ⊗ hY )−1(α, α) ∩ Γ.

Proof. The definition implies that if x, x′ ∈ h−1
X (α), then there exist (xi, yi) ∈ Γ, i = 0, . . . , I, with x0 = x,

such that denoting xI = x′ then (3.4) holds. A completely similar condition is valid for y, y′ ∈ h−1
Y (α).

Let (x̄, ȳ) ∈ (h−1
X (α) × h−1

Y (α)) ∩ (A \ Γ). Then there are (x, y), (x′, y′) ∈ Γ such that x = x̄, y′ = ȳ.
Consider then the axial path (xi, yi) ∈ Γ, i = 0, . . . , I = 2(n − 1), connecting them inside the class α:
removing by chance some points, we can assume that (x0, y0) = (x, y), (xI , yI) = (x′, y′) and

x2j − x2j−1 = 0, y2j−1 − y2j−2 = 0, j = 1, . . . , n.

Hence if we add the point (xI+1, yI+1) = (x̄, ȳ) we obtain a closed cycle, contradicting the hypotheses of
acyclicity of Γ in A. �

The above lemma together with Lemma 2.5 and Lemma 3.7 implies that non uniqueness occurs because
of the following two reasons:

(1) either the disintegration is not strongly consistent,
(2) or the push forward of some transference plan π ∈ Π(µ, ν) such that π(A) = 1 is not supported

on the diagonal in the quotient space.

Indeed, differently from the previous section, the consistency of the disintegration is not sufficient to
deduce the uniqueness of the transference plan.

Example 4.5 (Pratelli). Consider µ = L1 and the set

A = {x = y} ∪ {y − x = α mod 1}, Γ = {x = y} with α ∈ [0, 1] \ Q.

In this case the quotient map is the identity, but the measure (x, x + α mod 1)♯L1 is not concentrated
on the diagonal and still belongs to Π(L1,L1).

In the following we address the second point, and we assume that the disintegration is strongly con-
sistent — which is equivalent to assume that the quotient maps hX , hY can be taken Borel (up to a µ,
ν negligible set, respectively, consequence of Proposition A.9).
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Lemma 4.6. The set A′ defined in (4.1) is analytic if A is analytic.

Proof. Since A′ = (hX , hY )(A), the proof is a direct consequence of the fact that Borel images of analytic
sets are analytic, being the projection of a Borel set. �

The next lemma is a consequence of the acyclicity of Γ in A.

Lemma 4.7. In the quotient space, the diagonal is A′-acyclic.

Proof. We prove the result only for 2-cycles, the proof being the same for the n-cycles.
Assume that A′ has a 2-cycle, between the classes (α, α) and (α′, α′). This means that there are points

(x, y) ∈ (hX ⊗ hY )−1(α, α′) ∩A and (x′, y′) ∈ (hX ⊗ hY )−1(α′, α) ∩A.
By definition of equivalence class, there are points (xi, yi) ∈ (hX ⊗ hY )−1(α, α), i = 1, . . . , n, and

(x′j , y
′
j) ∈ (hX ⊗ hY )−1(α′, α′), j = 1, . . . , n′ forming an axial path in Γ and connecting (x, y) to (x′, y′)

in (hX ⊗ hY )−1(α, α) and (x, y) to (x′, y′) in (hX ⊗ hY )−1(α′, α′).
The composition of the two axial paths yields a closed cycle, contradicting the assumption of acyclicity

of Γ in A. �

We now give a sufficient condition for the implication

n ∈ Π(m,m), n(A′) = 1 =⇒ n({α = β}) = 1,

where m = (hX)♯µ = (hY )♯ν.

Definition 4.8. A relation R ⊂ [0, 1]2 is a preorder if

(x, y), (y, z) ∈ R ⇒ (x, z) ∈ R.

A preorder R is a linear preorder if R ∪R−1 = [0, 1]2.

When the preorder is linear we are thus requiring that every couple is comparable. This means that
R is a linear order when [0, 1] is quotiented w.r.t. the equivalence relation

(4.2) E := R ∩R−1.

We will also write x 4 y or xRy when (x, y) ∈ R and R is a preorder.
Notice that since A′ is acyclic w.r.t. the diagonal (Lemma 4.7), it defines a partial order on [0, 1] with

analytic graph (Lemma 4.6).

Theorem 4.9. Let B be the Borel graph of a linear preorder 4 on [0, 1]. Then the disintegration w.r.t. E
is strongly consistent for all µ ∈ P([0, 1]), and the image set B′ in the quotient space is a set of uniqueness
of Π(m,m), where m is the image measure of µ w.r.t. the equivalence relation E in (4.2).

In the proof, at Page 16, we use the following lemmas.

Lemma 4.10. Let m ∈ P([0, 1]) and B ∈ B([0, 1]2). Then the function x 7→ hB(x) := m(B(x)) is Borel.

Proof. First observe that if

B =

n⋃

i=1

Ai × A′
i, Ai ×A′

i ∩Aj ×A′
j = ∅ for i 6= j, Ai, A

′
i ∈ B([0, 1]) ∀i ∈ 1, . . . , n.

then hB is Borel:

hB(x) =

n∑

i=1

m(A′
i)χAi

(x).

Hence hB is Borel on the algebra of simple products.
Moreover, if {Bn}n∈N is an increasing sequence of Borel sets, then by the σ-additivity of the measure

hB(x) = sup
n
hBn

(x).

The same computation holds for a decreasing family of Borel sets {Bn}n∈N, hB(x) = infn hBn
(x).

It thus follows that the family of sets A such that hB is Borel contains the simple products and it is a
monotone class. From the Monotone Class Theorem (Proposition 3.1.14, page 85 of [19]) it follows that
A ⊃ B([0, 1]2). �
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Clearly, if B ⊂ [0, 1]2 is µ ⊗ m-measurable then by Fubini Theorem the function x 7→ hB(x) is µ-
measurable.

Lemma 4.11. If [0, 1] ∋ t 7→ mt ∈ P([0, 1]) is Borel, then for all B ∈ B([0, 1]) the function t 7→ mt(B)
is Borel.

Proof. Let A ⊂ P([0, 1]) be the family of sets such that t 7→ mt(B) is Borel for B ∈ A .
If O is open, then the function t 7→ mt(O) is l.s.c., being the supremum of continuous functions

mt(O) = sup
φ∈C([0,1])

{∫

φmt, φ ≤ χO

}

,

so that open sets belong to A .
Using the equivalences

mt

(
⋃

i∈N

Bi

)

= lim
i→∞

mt(Bi) {Bi}i increasing, mt([0, 1] \B) = 1 −mt(B),

it follows that A is a σ-algebra. �

Lemma 4.12. Let [0, 1] ∋ t 7→ mt ∈ P([0, 1]) be Borel and B ∈ B([0, 1]2). Then the function

h : [0, 1]2 → [0, 1]
(t, x) 7→ h(t, x) := mt(B(x))

is Borel.

Proof. If B is a finite union of disjoint products of Borel sets Ai ×A′
i, i = 1, . . . , n, then

hB(t, x) =

n∑

i=1

mt(A
′
i)χAi

(x),

so that by Lemma 4.11 the function hB is Borel on the algebra of simple products. As in Lemma 4.10,
the family A of sets for which hB(t, x) = mt(B(x)) is Borel is a monotone class, so that the conclusion
follows. �

In the following we will consider the set [0, 1]α, where α is an ordinal number. The linear order on this
set is the lexicographic ordering �:

(4.3) s, t ∈ [0, 1]α, s� t, s 6= t ⇐⇒ ∃β ≤ α
((

∀γ < β(Pγ(s) = Pγ(t))
)
∧
(
Pβ(s) < Pβ(t)

))

.

We recall that Pγ : [0, 1]α → [0, 1] is the projection on the γ-coordinate.

Lemma 4.13. If α ∈ ω1, then

Bα :=
{
(s, t) ∈ [0, 1]α × [0, 1]α : s� t

}
⊂ ([0, 1]α)2,

is a set of uniqueness for π ∈ Π(m,m) for all m ∈ P([0, 1]α).

Proof. The proof will be done by induction over α.
Step 0. First of all, if α = 1, then the result follows from the observation that B1 = {(s, t) : s ≤ t} is

a set of uniqueness by elementary computations.
Step 1. Assume that Bα :=

{
(s, t) : s � t

}
⊂ ([0, 1]α)2 is a set of uniqueness, and consider the set

Bα+1. By the definition of lexicographic ordering, (Pγ≤α ⊗ Pγ≤α)(Bα+1) = Bα, so that we can write by
the Disintegration Theorem

mα := (Pγ≤α)♯m, m =

∫

mtmα(dt), π =

∫
(
δ(t,t) ⊗ πt

)
mα(dt),

with mt ∈ P([0, 1]), πt ∈ P([0, 1]2). We have used the fact that

πα := (Pγ≤α ⊗ Pγ≤α)♯π ∈ Π(mα,mα),

and then the uniqueness property of Bα implies that πα = (I, I)♯mα =
∫
δ(t,t)mα(dt).

Note now that for mα-a.e. t ∈ [0, 1]α it holds πt ∈ Π(mt,mt) and that

Bα+1 ∩
(
P−1
γ≤α, P

−1
γ≤α

)
(t) =

{

(s, s′) : Pγ≤α(s) = Pγ≤α(s′) = t, Pα+1(s) ≤ Pα+1(s
′)
}

= {(t, t) ×B1}.
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This is clearly a set of uniqueness, by Step 0, so that πt = (I, I)♯mt. We thus conclude that also Bα+1 is
a set of uniqueness.

Step 2. Let α ∈ ω1 be a limit ordinal. Then for all β < α the set Bβ = Pγ≤β(B) is a set of uniqueness.
Using the fact that

{
(s, t) ∈ [0, 1]α × [0, 1]α : s = t

}
=
⋂

β<α

{
(t, s) : Pγ≤β(t) = Pγ≤β(s)

}
,

and observing that
(Pγ≤β ⊗ Pγ≤β)♯π = (Pγ≤β, Pγ≤β)♯m,

we conclude that π({s = t}) = 1, i.e. B is a set of uniqueness.
Step 3. By transfinite induction, we conclude that for every α ∈ ω1 the set B = {(s, t) : s � t} ⊂

([0, 1]α)2 is a set of uniqueness. �

As noticed concerning the diagonal in the discussion before Assumption 2, {s E t} does not belong to
the product σ-algebra if α = ω1, so that the uniqueness question for α = ω1 is meaningless.

Lemma 4.14. Let B ∈ Θm⊗m be the graph of a linear preorder 4 and m ∈ P([0, 1]) a probability measure
such that for some κ ∈ [0, 1]

(4.4) m(B−1(x)) = κ for m-a.e. x ∈ [0, 1].

Then m is concentrated on an equivalence class E0 for E = B ∩B−1 and k = 1. If (4.4) holds for all x

(4.5) ∀x ∈ E0, ∀y ∈ [0, 1] x 4 y.

See Example C.12 for an example where the assumption B ∈ Θm⊗m is not satisfied and the thesis is
false.

Proof. Step 1. Let us prove the thesis for κ = 1. In this case, we do not need the assumption that the
preorder B is linear.

By Fubini Theorem it follows that

m⊗m(B−1) =

∫

m(B−1(x))m(dx) = 1.

Thus m⊗m is concentrated on B−1. Using the formula

B−1(x) ∩ (B \E)(x) = {y : y 4 x} ∩ {y : y ≻ x} = ∅
one has that B−1 ∩ (B \E) = ∅, and then m⊗m(B \ E) ≤ m⊗m([0, 1] \B−1) = 0.

Since m⊗m is invariant for the reflection w.r.t. the diagonal, m⊗m(B−1 \E) = m⊗m(B \E) = 0,
finding that m⊗m is concentrated on E.

Again by Fubini Theorem,

m⊗m =

∫

mxE(x)m(dx) =⇒ m(E(x)) 6= 0 m-a.e. x,

which implies that the image measure w.r.t. E is purely atomic.
Under the present assumption that κ = 1 there can be at most one equivalence class with positive

measure: denoting this class by E0, clearly m(E0) = 1 and (4.5) holds if m(B−1(x)) = 1 for all x.
Step 2. Notice first how the assumption that the preorder is linear implies κ > 0. Indeed,

B ∪B−1 = [0, 1]2

yields m ⊗ m(B) + m ⊗ m(B−1) ≥ 1. Since m ⊗ m is invariant for the reflection w.r.t. the diagonal,
m⊗m(B) = m⊗m(B−1), and then 2 ·m⊗m(B) ≥ 1 > 0. By Fubini and (4.4) we conclude

κ = m⊗m(B) > 0.

Let X = B−1(x̄) such that m(B−1(x̄)) = κ. For m-a.e. x ≻ x̄ B−1(x̄) ⊂ B−1(x) and by (4.4) one has

mx[0,1]\X(B−1(x)) = m(B−1(x) \B−1(x̄)) = 0.

If m([0, 1] \X) = 1− κ > 0 we would reach an absurd, as (4.4) would hold with κ = 0 for the probability
measure m̃ := (mx[0,1]\X)/(1 − κ). This yields κ = 1, proving the thesis by the first step. �

We can now prove the main theorem of the section.
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Proof of Theorem 4.9. The following steps of the proof show that given any measure µ ∈ P([0, 1]) there
exists an ordinal ᾱ ∈ ω1 and an order preserving Borel map

hᾱ : ([0, 1],4) → ([0, 1]ᾱ,�)

such that

µ =

∫

µtm(dt) m := (hᾱ)♯µ

with µhᾱ(x) concentrated on the single equivalence class E(x) ⊂ h−1
ᾱ (hᾱ(x)), defined in (4.2), for µ-a.e. x.

We prove that if one removes a µ-negligible set hᾱ is the quotient projection w.r.t. E.
Since the map is order preserving, the image set B′ of B in the quotient space is clearly a subset of

{
(s, t) ∈ [0, 1]α × [0, 1]α : s � t

}
. The fact that B′ is a set of uniqueness of Π(m,m), for all m Borel,

follows then immediately from Lemma 4.13, proving the last part of the theorem.
Step 1. Define the function

[0, 1] ∋ x 7→ h1(x) := µ({z : z 4 x}) = µ(B−1(x)) ∈ [0, 1].

Since B is Borel, by Lemma 4.10 h1 is Borel and

x 4 y =⇒ h1(x) ≤ h1(y).

Step 2. Let α ∈ ω1 and assume that there exists a µ-measurable order preserving map hα : [0, 1] →
[0, 1]α, where [0, 1]α is ordered by the lexicographic ordering �.

Since [0, 1]α is Polish because |α| ≤ ℵ0, then the disintegration

µ =

∫

µt(hα)♯(dt)

is well defined and strongly consistent.
By redefining µt on a set of measure 0 w.r.t. (hα)♯µ, we can assume that [0, 1]α ∋ t 7→ µt ∈ P([0, 1])

is Borel, so that the map

[0, 1]× [0, 1]α ∋ (x, t) 7→ µt(B
−1(x)) ∈ [0, 1]

is Borel by Lemma 4.12 and the Borel Isomorphism Theorem (Theorem 3.3.13, page 99 of [19]).
Step 3. Consider the function

hα+1 : [0, 1] → [0, 1]α+1

x 7→ hα+1(x) := (hα(x), µhα(x)(B
−1(x)))

Since t 7→ hα(t) is Borel, then (t, x) 7→ µhα(t)(B
−1(x)) is Borel by Lemma 4.12, being the composition

of two Borel maps. It is clearly order preserving if hα is and [0, 1]α+1 is ordered lexicographically. Note
that Pβ≤α ◦ hα+1 = hα.

Step 4. Assume that α is a limit ordinal, and that the Borel functions hβ : [0, 1] → [0, 1]β, β < α, have
been constructed in such a way that Pγ≤β ◦ hδ = hβ for all β ≤ δ. Then we construct the Borel order
preserving map

hα : [0, 1] → [0, 1]α

x 7→ (Pβ ◦ hα)(x) := Pβ(hβ(x)) ∀β < α

By transfinite induction, we can construct a Borel order preserving map h : [0, 1] → [0, 1]ω1, where
[0, 1]ω1 is equipped with the Borel σ-algebra.

Step 5. Consider the family of Borel equivalence relations

E :=
{

Eα = {x ∼ y ⇔ hα(x) = hα(y)}, α ∈ ω1

}

.

We observe that if {αn} ⊂ ω1 and α = supn αn ∈ ω1, then ∩nEαn
= Eα by the definition of hα. By

Theorem A.11, there exists ᾱ ∈ ω1 such that the disintegration

µ =

∫

µt((hᾱ)♯µ)(dt)

is the sharpest one, in the sense that any other disintegration w.r.t. hβ , β ∈ ω1, namely

µ =

∫

µs((hβ)♯µ)(ds)
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can be written by means of

µxh−1
ᾱ (B([0,1]ᾱ))=

∫

rs((hβ)♯µ)(ds), µ =

∫

µs((hβ)♯µ)(ds) =

∫ (∫

µtrs(dt)

)

((hβ)♯µ)(ds).

We write here µxC for the restriction of a measure to the σ-algebra C ⊂ B.
By (A.5), we conclude that there exists a Borel function s : [0, 1]ᾱ → [0, 1]β such that (hβ)♯µ is

concentrated on the graph of s = s(t), where t ∈ [0, 1]ᾱ.
Step 6. From the definition of hᾱ+1 and Step 5, it follows that

µt(B
−1(x)) = s(t) for (hᾱ)♯µ-a.e. t, ∀x ∈ h−1

ᾱ (t),

i.e. µt(B
−1(x)) is constant on h−1

ᾱ (t), for (hᾱ)♯µ-a.e t ∈ [0, 1]ᾱ: in particular removing a µ-negligible
saturated set we can assume that by Lemma 4.14 the measure µt is concentrated on the first equivalence
class contained in B(h−1

ᾱ (t)), denote it with Ehᾱ
.

Step 7. Define the function h̄ : [0, 1] → [0, 1]ᾱ+1 as

h̄(x) :=
(
hᾱ(x), 1 − µhᾱ(x)(B(x))

)
.

The (ᾱ+ 1)-component is 0 only on the unique class Ehᾱ(x) of E on which µhᾱ(x) is concentrated. From
the disintegration formula w.r.t. hᾱ then

µ
(
h̄−1(P−1

ᾱ+1((0, 1]))
)

= 0.

We conclude that, up to the above µ-negligible set, hᾱ is the quotient map w.r.t. E and using the fact
that [0, 1]ᾱ is Polish

µ =

∫

µt((hᾱ)♯µ)(dt)

is a strongly consistent disintegration for E. �

Corollary 4.15. If B is a Borel linear order, then B is a set of uniqueness in Π(m,m) for every
m ∈ P([0, 1]).

Proof. It is sufficient to observe that

E := B ∩B−1 = {x = y}.

Hence the map hᾱ : [0, 1] → [0, 1]ᾱ constructed in the previous proof is order preserving and moreover

m =

∫

δx(t)((hᾱ)♯m)(dt).

Removing the cross negligible set N where hᾱ⊗hᾱ is not invertible, we have that the uniqueness problem
can be stated as a uniqueness problem in [0, 1]ᾱ with the lexicographic ordering �. By Lemma 4.13
uniqueness of π follows. �

Remark 4.16. In Theorem 4.9 and Corollary 4.15 one can assume that B ∈ Θ(µ, µ). The proof is
analogous to the one above, but relies on the following lemma instead of Lemmas 4.10-4.12.

Lemma 4.17. Let B ∈ Θ(m,m), with m ∈ P([0, 1]), and h : ([0, 1],Θm) → ([0, 1],B) a measurable map.
Let m =

∫
mtξ(dt) be the disintegration of m w.r.t. h. Then

(1) the map x 7→ mt(B(x)) is m-measurable for ξ-a.e. t;
(2) the map (x, t) 7→ mt(B(x)) is π-measurable for π ∈ Π(m, ξ);
(3) the map x 7→ mh(x)(B(x)) is m-measurable.

For simplifying the notation, in the following we will denote the disintegration of η ∈ P(X1 × X2)
w.r.t. the projection P1 as

∫

φη =

∫ (∫

φ(x1, x2)ηx1(dx2)

)

((P1)♯η)(dx1).
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Proof. Step 1: Point (1). By the Disintegration Theorem A.7 (x, t) 7→ mt(B
−1(x)) is m⊗ ξ-measurable,

where ξ := (hα)♯m:

m⊗m(B−1) =

∫

m(B−1(x))m(dx)

=

∫ {∫

mt(B
−1(x))ξ(dt)

}

m(dt) =

∫

mt(B
−1(x))(m ⊗ ξ)(dx, dt).

By Fubini Theorem x→ mt(B(x)) is therefore m-measurable for t ∈ [0, 1] \N , ξ(N) = 0.
Step 2: Point (2). Let π̂ ∈ Π(m, ξ) and π̂ =

∫
π̂tξ(dt) its disintegration w.r.t. the projection on the

second variable. Define the Borel measure on [0, 1]3

η :=

∫

mtπ̂(dxdt) =

∫

mt ⊗ π̂tξ(dt).

Notice that (P1)♯η =
∫
mtξ(dt) = m. Similarly, (P2)♯η = (P1)♯π̂ = m. In particular, (P12)♯η ∈ Π(m,m).

Since (P12)
−1(Θ(m,m)) ⊂ Θη, then B × [0, 1] ∈ Θη. By the Disintegration Theorem one finds that

(x, t) 7→ mt(B(x)) is π̂-measurable and

η(B × [0, 1]) =

∫

mt(B(x))π̂(dxdt).

Step 3: Point (3). Finally by taking π := (I, h)♯m ∈ Π(m, ξ) one has the last point of the statement.
�

Hence, our sufficient condition for uniqueness is the following:

Sufficient condition for uniqueness: A′ is a subset of a linear order B ∈ Θ(m,m).

As the diagonal is A′-acyclic, and therefore by the Axiom of Choice it can be completed to a linear
order, this is again a measurability assumption.

An easy case is covered by the next lemma.

Lemma 4.18. If A′ is acyclic and m purely atomic, then A′ is a subset of a Borel linear order on [0, 1]
and hence a set of uniqueness.

Proof. If m is purely atomic with atoms on {αi}i∈N, it is enough to prove that we can find a linear order
on the set {(αi, αj), i, j ∈ N}. In fact it is fairly easy to extend its graph R to a Borel linear order on
[0, 1] by defining

α 4 β ⇐⇒







αRβ α, β ∈ {αi}i∈N

α ∈ {αi}i∈N β /∈ {αi}i∈N

α ≤ β α, β /∈ {αi}i∈N

Now, every acyclic set A′ on {(αi, αj)}i,j∈N containing {(αi, αi), i ∈ N} defines a partial order relation
by setting

αi 4 αj ⇐⇒ (αi, αj) ∈ A′.

By countably many operations one can complete this partial order into a linear one. �

An example of a set A for which A′ is a set of uniqueness is presented in Figure 2. By setting

c(x, y) =







1 Γ

0 A \ Γ

+∞ [0, 1]2 \A
the uniqueness of the transport plan in A is related to a problem of optimality.

Remark 4.19. We observe here that given an A-acyclic set Γ, and assuming for simplicity that P1(Γ) =
[0, 1], one can define a preorder on [0, 1] by

x 4 x′ ⇐⇒ ∃{(xi, yi)}i=0,...,I ⊂ Γ, (xi+1, yi) ∈ A, x0 = x, xI+1 = x′,

i.e. x, x′ are connected by an axial path. The equivalence relation E defined in (4.2) corresponds to the
axial equivalence relation (3.4), so that we can state equivalently that if 4 can be extended to a linear
preorder, then A is a set of uniqueness.
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x

y

C1 C2 C3

D0

D1

D2

Γ

A

Figure 2: The set where A should be contained in order to have that A′ is a the graph of the standard
order ≤ on [0, 1]. The bold curves are the limbs of Γ, and two axial path are represented.

5. Optimality

The last problem we want to address is the problem of optimality of a measure π ∈ Π(µ, ν) w.r.t. the
functional I defined in (1.2). We recall that a plan π ∈ Π(µ, ν) is said to be optimal if

I(π) =

∫

c(x, y)π(dxdy) = min
π̃∈Π(µ,ν)

I(π̃).

In this section the function c is assumed to be a positive Π1
1-function.

Definition 5.1 (Cyclical monotonicity). A subset Γ of [0, 1]2 is c-cyclically monotone when for all I,
i = 1, . . . , I, (xi, yi) ∈ Γ, xI+1 := x1 we have

I∑

i=1

[
c(xi+1, yi) − c(xi, yi)

]
≥ 0.

A transference plan π ∈ Π(µ, ν) is c-cyclically monotone if there exists a c-cyclically monotone set Γ such
that π(Γ) = 1.

As usual, by inner regularity and by the fact that for π fixed c coincides with a Borel function up to
a negligible set, the set Γ for that given measure π can be taken σ-compact and cxΓ Borel.

We recall that a necessary condition for being optimal is that the measure is concentrated on a c-
cyclically monotone set. A proof is provided for completeness in Proposition B.16.

Lemma 5.2. If π is optimal, then it is c-cyclically monotone.

Having a necessary condition which gives some structure to the problem, we have to specify a sufficient
condition which should be tested in each equivalence class. We list some important remarks.
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(1) The optimality is implied by the fact that there exists a sequence of functions φn ∈ L1(µ),
ψn ∈ L1(ν) such that φn(x) + ψn(y) ≤ c(x, y) and

∫

φnµ+

∫

ψnν =

∫

(φn + ψn)π ր
∫

cπ.

(2) For l.s.c. costs or costs satisfying c(x, y) ≤ f(x) + g(y), f ∈ L1(µ) and g ∈ L1(ν)-measurable, the
converse of Point (1) holds.

(3) Another condition is that there is an optimal pair φ, ψ : [0, 1] → [−∞,+∞), respectively µ-
measurable and ν-measurable, such that φ(x) + ψ(y) ≤ c(x, y) for all (x, y) ∈ [0, 1]2 and φ(x) +
ψ(y) = c(x, y) π-a.e..

For completeness we prove the sufficiency of the last condition, proved also in [4].

Lemma 5.3. Suppose there exist Borel functions φ, ψ : [0, 1] → [−∞,+∞) and Γ ⊂ [0, 1]2 such that

φ(x) + ψ(y) < c(x, y) ∀(x, y) ∈ [0, 1]2 \ Γ

φ(x) + ψ(y) = c(x, y) ∀(x, y) ∈ Γ.

If ∃π ∈ Πf (µ, ν) such that π(Γ) = 1, then

π ∈ Π(µ, ν) optimal ⇐⇒ π(Γ) = 1.

It is trivial to extend the proposition to the case of φ : [−∞,+∞) µ-measurable and ψ : [−∞,+∞)
ν-measurable, just redefining the functions on negligible sets in order to be Borel.

Proof. Let π̄ be an optimal transference plan and π ∈ Πf (µ, ν) concentrated on Γ. Hence µ and ν are
concentrated on the sets {φ > −∞}, {ψ > −∞} respectively.

Step 1. We prove that if λ ∈ Λ and ψλ, (φ + ψ)λ are Borel measures (assuming eventually the value
∞) concentrated on {φ+ ψ > −∞}, then

∫ {
φ+ ψ

}
λ = 0.

Since (φ+ ψ)λ is a Borel measure, one can consider the following integrals
∫

[0,1]2

{
φ+ ψ

}
λ = lim

M→∞

∫

{|φ|<M}

{
φ+ ψ

}
λ.

Since also ψλ is a Borel measure and φχ|φ|<Mλ ∈ M([0, 1]2),

lim
M→∞

∫

{|φ|<M}

{
φ+ ψ

}
λ = lim

M→∞

{∫

{|φ|<M}

φλ+

∫

{|φ|<M}

ψλ

}

λ∈Λ
= lim

M→∞

∫

{|φ|<M}

ψλ =

∫

ψλ = lim
M→∞

∫

{|ψ|<M}

ψλ = 0.

Step 2. Let λ := π̄ − π, with π̄ ∈ Πf (µ, ν).
Define φM := (φ∧M)∨ (−M) and ψM := (ψ∧M)∨ (−M): it is immediate to verify that from φ+ψ = c
on Γ

Γ({φ ≤M}) ⊂ {ψ ≥ −M}, Γ−1({ψ ≤M}) ⊂ {φ ≥ −M},
and then

φM (x) + ψM (y) ≤ c(x, y), φM (x) + ψM (y) ≥ 0 on Γ.

In particular, φMλ and (φM + ψM )λ are finite Borel measures.
Since φM , ψM converge pointwise, then φM + ψM converges to c in L1(π), yielding immediately

∫

[0,1]2
cλ ≥ lim

M

∫

[0,1]2

{
φM + ψ−M

}
λ.

The r.h.s. vanishes by Step 1, showing the optimality of π:

0 ≥ I(π̄) − I(π) =

∫

[0,1]2
cλ ≥ lim

M

∫

[0,1]2

{
φM + ψ−M

}
λ = 0.

�
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From the formulas

(5.2a) φ(x, x̄, ȳ) = inf

{ I∑

i=0

c(xi+1, yi) − c(xi, yi), (xi, yi) ∈ Γ finite, (x0, y0) = (x̄, ȳ), xI+1 = x

}

,

(5.2b) ψ(y, x̄, ȳ) = c(x, y) − φ(x, x̄, ȳ), (x, y) ∈ Γ,

it is always possible to construct an optimal couple φ, ψ in an analytic subset of Γ containing (x̄, ȳ) such
that (−φ, ψ) are Σ1

1-functions. In Remarks C.3, C.6 it is shown that φ, ψ are A-functions, but using the
facts that

g ∈ Π1
1(X × Y ) ⇒ inf

y
g(x, y) ∈ Π1

1(X), cxΓ is Borel,

the above better estimate follows.
In Remark 5.10 we show that φ defines a natural linear preorder on [0, 1], and that we can state a

particularly concise condition. In Section C, instead, the idea of extending φ(x, x̄, ȳ), ψ(y, x̄, ȳ) to larger
sets is developed in a general framework.

Here we consider the easiest equivalence relation for which the procedure at Page 8 can be applied.
This equivalence relation has been also used in [3].

Definition 5.4 (Closed cycles equivalence relation). We say that (x, y)Ē(x′, y′) or (x, y) is equivalent
to (x′, y′) by closed cycles if there is a closed cycle with finite cost passing through them: there are
(xi, yi) ∈ Γ such that (x0, y0) = (x, y) and (xj , yj) = (x′, y′) for some j ∈ {0, . . . , I} such that

I∑

i=1

c(xi, yi) + c(xi+1, yi) < +∞, xI+1 := x0.

It is easy to show that this is an equivalence relation, and it follows directly from (5.2) or the analysis
of Section C that in each equivalence class there are optimal potentials φ, ψ.

Lemma 5.5. The equivalence relation Ē satisfies the following.

(1) Its equivalence classes are in Σ1
1.

(2) It satisfies the crosswise structure (2.2).

The above lemma can be seen as a straightforward consequence of Lemma C.5 and Corollary C.7 of
Section C. Since it is elementary, we give here a direct proof.

Proof. For the Point (1), just observe that for all I ∈ N

I∑

i=0

c(xi, yi) + c(xi+1, yi), xI+1 = x0

is a Π1
1-function, so that

ZI(x̄, ȳ) =

{

(x1, y1, . . . , xI , yI) ∈ ΓI :

I∑

i=1

c(xi, yi) + c(xi+1, yi) + c(x̄, ȳ) + c(x1, ȳ) < +∞, xI+1 = x̄

}

is in Σ1
1.

The equivalence class of (x̄, ȳ) is then given by

⋃

I∈N

I⋃

i=1

P2i−1,2i(ZI) ∈ Σ1
1,

where we used the fact that Σ1
1 is closed under projection and countable union (see Appendix B.1 or

Chapter 4 of [19]).
The proof of Point (2) follows from the straightforward observation that (x, y)Ē(x′, y) and (x, y)Ē(x, y′)

whenever (x, y), (x′, y), (x, y′) ∈ Γ: just consider the closed cycle with finite cost made of the two points
(x0, y0) := (x, y) and (x1, y1) := (x′, y), or (x1, y1) := (x, y′). �

Let now π ∈ Πf (µ, ν) be a c-cyclically monotone transference plan, and let Γ be a c-cyclically monotone
set where π is concentrated. Let Ē be the equivalence class of Definition 5.4.

As in the previous section, by Lemmas 5.3 and 2.5 non optimality can occur because of two reasons:
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(1) either the disintegration is not strongly consistent,
(2) or the push forward of some measure π′ ∈ Πopt(µ, ν) is not supported on the diagonal in the

quotient space.

In the next section we give examples which show what can happen when one of the two situations
above occurs. Here we conclude with two results, which yield immediately the optimality of π.

Let hX , hY be the quotient maps. By redefining them on a set of measure 0, the condition of strong
consistency implies that hX , hY can be considered as Borel maps with values in [0, 1]. In particular, the
set

(5.3) A′ := (hX ⊗ hY )({c < +∞})
is analytic. Note that

(hX ⊗ hY )♯π̃(A′) = 1 ∀π̃ ∈ Πf (µ, ν),

i.e. the transport plans with finite cost are concentrated on A′, and moreover for the π under consideration

(hX ⊗ hY )♯π = (I, I)♯m,

where m = (hX)♯µ = (hY )♯ν by Lemma 5.5 and Lemma 2.4.

Theorem 5.6. Assume that the disintegration w.r.t. the equivalence relation Ē is strongly consistent. If
A′ is a set of uniqueness in Π(m,m), then π is optimal.

The proof is a simple application of Lemma 2.5.
The next corollary is a direct consequence of Lemma 4.18.

Corollary 5.7. If m = (hX)♯µ is purely atomic, then the c-cyclical monotone measure π is optimal.

We now give a simple condition which implies that the image measure m is purely atomic.

Proposition 5.8. Assume that π satisfies the following assumption: there exists a countable family of
Borel sets Ai, Bi ⊂ X, i ∈ N such that

(5.4a) π

(
⋃

i

Ai ×Bi

)

= 1,

and

(5.4b) µ⊗ ν
(
∪i (Ai ×Bi) ∩ {c = +∞}

)
= 0.

Then the image measure m is purely atomic.

Proof. First of all, we can assume that Γ ⊂ ∪iAi ×Bi, where Γ is a c-cyclically monotone set such that
π(Γ) = 1.

Step 1. The assumption (5.4b) and Fubini Theorem imply that there is x̄i ∈ Ai such that

B̄i := P2

(
(Ai ×Bi ∩ {c < +∞})x̄i

)
,

has full νxBi
-measure, where for C ⊂ [0, 1]2 we define

Cx := C ∩ {x} × [0, 1].

Then there is ȳi ∈ B̄i such that

Āi := P2

(
(Ai ×Bi ∩ {c < +∞})ȳi

)

has full µxAi
-measure. The functions φ, ψ given by formula (5.2) starting from (x̄i, ȳi) provide then

optimal potentials on the sets Āi × B̄i.
Step 2. It is now fairly easy to show that the new sets Āi, B̄i, i ∈ N, satisfy again conditions (5.4),

and that in Γ ∩ ∪iĀi × B̄i each equivalence class for the closed cycles equivalence relation contains at
least one Āi × B̄i. Then it follows that m is purely atomic. �

The case of Point (3) of Page 3 corresponds to a single global class.

Remark 5.9. Let Γ be a c-cyclically monotone set where π is concentrated. The proof shows actually
that in each set Γ ∩ (Ai ×Bi)

φ(x) + ψ(y) = c(x, y)

up to a cross-negligible set. This is clearly a stronger condition than cxΓ< +∞ µ⊗ ν-a.e..
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Remark 5.10. From the definition of the optimal couple (φ(·, x̄, ȳ), ψ(·, x̄, ȳ)), we can define the following
relation on P1(Γ).

Definition 5.11. We say that x ≥c x′ if ∃y ∈ Γ(x) such that φ(x′, x, y) < +∞: equivalently there are
points (xi, yi) ∈ Γ, i = 0, . . . , I such that x0 = x, xI+1 = x′ and

∑

i c(xi+1, xi) + c(xi, yi) < +∞.

When we consider as uniqueness condition the Borel linear order condition of page 18, the results of
this section can be rephrased as the fact that ≤c can be completed into a Borel linear preorder ≤c such
that

(1) x ≤c x;
(2) for all x, x′ ∈ [0, 1], at least x ≤c x′ or x′ ≤c x.
(3) x ≤c x′ and x′ ≤c x implies that they belong to a closed cycle with finite cost.

In fact, by using Theorem 4.9 it follows that the disintegration w.r.t. the equivalence classes is strongly
supported and that the image set A′ is a set of uniqueness: just observe that if x ≤c x′, then there is an
axial path connecting them, so that A′ is contained in the graph of a Borel linear order on [0, 1].

5.1. Extension of the construction. The approach we are proposing can be generalized as follows.

Assumption 5. Assume that for any (x̄, ȳ) ∈ Γ there exist universally measurable subsets A(x̄,ȳ), B(x̄,ȳ)

of [0, 1] and universally measurable functions φ(x̄,ȳ), ψ(x̄,ȳ) satisfying

(x̄, ȳ) ∈ A(x̄,ȳ) ×B(x̄,ȳ)(5.5a)

φ(x̄,ȳ)(x) + ψ(x̄,ȳ)(y) ≤ c(x, y) ∀(x, y) ∈ A(x̄,ȳ) ×B(x̄,ȳ)(5.5b)

φ(x̄,ȳ)(x) + ψ(x̄,ȳ)(y) = c(x, y) ∀(x, y) ∈ A(x̄,ȳ) ×B(x̄,ȳ) ∩ Γ.(5.5c)

We can define the relation R

(x, y)R(x′, y′) ⇐⇒ (x′, y′) ∈ A(x,y) ×B(x,y).

Assume that there exist partitions {Xα}α, {Yα}α of [0, 1] such that each Xα×Yα ⊂ A(xα,yα)×B(xα,yα)

for some (xα, yα) ∈ Γ. Then optimality holds if the equivalence relation induced by {Xα×Yβ}α,β satisfies
Assumptions 1, 2, 3, i.e. if the disintegrations w.r.t. {Xα×Yβ}α,β is strongly consistent, π(∪αXα×Yα) = 1
and A′ of (5.3) is a set of uniqueness.

A method for constructing a relation R satisfying Assumption 5 and the crosswise condition w.r.t. Γ
(Definition 2.3) is exploited in Appendix C.

6. Examples

In this section we study the dependence of our construction w.r.t. the choice of Γ, and the necessity
of the assumptions in Theorem 5.6.

6.1. Dependence w.r.t. the set Γ. We consider the situation where the assumptions of Theorem 5.6
do not hold, so that either we do not have the strong consistency of the disintegration, or the set A′ is
not a set of uniqueness. Keeping fixed µ, ν, c and the plan π ∈ Π(µ, ν), varying Γ, the following cases
are possible:

(1) Strong consistency of the disintegration is not satisfied for any choice of Γ, and the plan we are
testing can either be optimal or not (Example 6.1, Example 6.2).

(2) Strong consistency can be satisfied or not, depending on Γ, and, when it is, the quotient problem
can be both well posed (A′ is a set of uniqueness) or not (Example 6.3, Example 6.2). We are
testing an optimal plan.

(3) Strong consistency is always satisfied, but the image measure m is not atomic (Example 6.4).
The plan we are testing can either be optimal or not.

In Figure 3, for each example we draw the pictures of the set in [0, 1]2 where c is finite.

Example 6.1. Consider µ = ν = L1 with the cost given by

c(x, y) =







c0 y − x = 0

c1 y − x = α (mod 1)

c−1 y − x = −α (mod 1)

+∞ otherwise

with α ∈ [0, 1] \ Q and c1 + c−1 ≥ 2c0.
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1 x

y

α

α

c0c1

c1

c−1

c−1

(a) When α /∈ Q, the cycle decomposition of the plan
π = (Id, Id)♯L

1 gives always a non-measurable disinte-
gration (Ex. 6.1).

0

0

2

2

1

1

1 x

y

α

(b) Disintegration sometimes only consistent, sometimes
strongly consistent, but with no answer (Ex. 6.2).

0

0

0

0

2

2

1

1

1 x

y

α

(c) Disintegration either only consistent or strongly
consistent, quotient problem either well posed or not
(Ex.: 6.3).

0

0

1

1 x

y c(x, y) = 1 −√
y − x

(d) A set of uniqueness with no optimal pair and well
posed quotient problem (Ex.: 6.4).

Figure 3: The dependence on Γ. In the picture you find, in bold, the set where c is finite.

Three extremal points in Π(µ, ν) are, for i ∈ {0, 1,−1},

πi =
(
Id, Id + iα(mod 1)

)

♯
L1 =⇒

∫

c(x, y)dπi = ci,

the optimal one will be the one corresponding to the lowest ci.
Fix the attention on π0, which is c-cyclically monotone when c1 + c−1 ≥ 2c0. Take as Γ the diagonal

{x = y}: the equivalence classes are given by {x+ nα mod 1}, the quotient is a Vitali set, and thus the
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unique consistent disintegration is the trivial disintegration

L1 =

∫

L1m(dt).

Moreover, one can verify that there is no choice of Γ for which the disintegration is strongly consistent.
When c1 < c0, we have a c-cyclically monotone transference plan π for which the decomposition gives a
disintegration which is not strongly consistent and π is not optimal. When c1, c2 > c0, we have an optimal
c-cyclically monotone transference plan π for which the disintegration consistent with the decomposition
in cycles is not strongly consistent.

Example 6.2. Consider an example given in [2], page 135: µ = ν = L1 with the cost given by

c(x, y) =







1 y − x = 0

2 y − x = α (mod 1)

+∞ otherwise

with α ∈ [0, 1].

The extremal plans in Π(µ, ν) with finite costs are, for i ∈ {0, 1},

πi =
(
Id, Id + iα(mod 1)

)

♯
L1 =⇒

∫

c(x, y)dπi = 1 + i;

both are c-cyclically monotone, and the optimal one is π0. Take Γ = {x = y}: then there is no cycle of
finite cost, therefore the cycle decomposition gives classes consisting in singletons, the quotient space is
the original one, m = L1, πα = δ{(x,y)}, where α is the class of (x, y). This means that the measura-
bility condition is satisfied, but the quotient problem (which here is essentially the original one) has not
uniqueness. Take instead Γ = {c <∞}: now we have cycles, all with zero cost, obtained by going on and
coming back along the same way; consider for example the cycle

(w1, w1) = (0, 0) → (w2, w2) = (0, α) → (w3, w3) = (α, α) → (w4, w4) = (0, 0).

The situation is similar to Example 6.1 and, as it was there, the disintegration is not strongly consistent.
Thus we have that, depending on Γ, strong consistency can be satisfied or not, and when it is, the quotient
problem has not uniqueness. This behavior holds when testing either π0 or π1, thus it does not depend
on the optimality of the plan we are testing.

Example 6.3. Consider the same setting as in Example 6.2, but put the cost to be finite, say zero, also
on the lines {x = 1} and {y = 1}. Now, considering π = (Id, Id)♯L1,

- with Γ containing (1, 1), all the points are connected by a cycle of finite cost, we have just one
class and optimality follows by c-cyclical monotonicity;

- with Γ = {(x, x) : x ∈ [0, 1)} the classes are made of single points, the disintegrations is trivially
measurable, the quotient problem is essentially the original one and we are in the non-uniqueness
case;

- when you consider instead Γ = {(x, x) : x ∈ [0, 1)} ∪ {(x, x+ α) : x ∈ [0, 1] \ {1 − α}} again the
quotient space is a Vitali set, the strong consistency of the disintegration is lost.

Depending on the choice of Γ, we can have or not strong consistency; moreover, when we have strong
consistency, the quotient space can have uniqueness or non-uniqueness. Notice that since there exists Γ
for which Theorem 5.6 holds, π must optimal: the first argument does not hold for (Id, Id + α)♯L1, since
Γ = {(x, x+ α mod 1), x ∈ [0, 1]} is not c-cyclically monotone.

Example 6.4 (A set of uniqueness with nonexistence of φ, ψ). Consider µ = ν with the cost given by

c(x, y) =







1 y = x

1 −√
y − x y − x = 2−n

+∞ otherwise

with n ∈ N.

Unless µ is purely atomic with a finite number of atoms, there is no optimal potential. However, applying
the procedure one can deduce optimality: {c < ∞} is acyclic and therefore the cycle decomposition
consists in singletons, the quotient spaces are the original ones, and therefore A′ of (5.3) is a set of
uniqueness, being contained in {x ≤ y}, and π{(x,x)} = δ{(x,x)}, m = µ.
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Example 6.5. The final example shows that in the case of consistency only, then we can construct a cost c̃
such that the image measure m is the same but there are non optimal transference plans. We just sketch
the main steps.

Let hX , hY : [0, 1] → [0, 1] be the Borel quotient maps for the equivalence relation of Definition A.5.

Step 1. The conditional probabilities µα, νβ cannot be purely atomic for m-a.e. α, β.
By the Borel regularity of the map α 7→ µα, one can in fact show ([5]) that there exists a Borel set B

such that B ∩ h−1
X (α) is countable and the atomic part of µα is concentrated on B. Hence if µα is purely

atomic we can reduce to the case where h−1
X (α) is countable for all α.

Assume by contradiction that each equivalence class has countably many counterimages. We can use
Lusin Theorem (Theorem 5.10.3 in [19]) to find a countable family of Borel maps h′n : [0, 1] ⊃ Bn → [0, 1],
Bn ∈ B([0, 1]), n ∈ N, such that hX ◦ h′n = IxBn

and

graph(hX) =
⋃

n

graph(h′n), graph(h′n)
⋂

graph(h′m) = ∅.

Define the analytic Ē-saturated sets (Ē is the closed cycles equivalence relation, Definition 5.4)

Zn = P1

(
Ē ∩ [0, 1] × h′n(Bn)

)
\
n−1⋃

i=1

Zi.

By construction, h′n(Bn) ∩ Zn is an analytic section of Zn, so that Proposition A.9 implies that the
disintegration is strongly consistent. The same clearly holds for ∪nZn.

Step 2. We restrict to the case where µα, να have no atoms.
The previous step shows that there is a set of positive m-measure for which the conditional probability

µα is not purely atomic. Let µα,c be the continuous part of µα: in [5] it is shown that
∫

µα,cm(dα) = µxC

for some Borel set C, so that we can assume C compact and restrict the transport to C × [0, 1].
Repeating the procedure for Y , there exists D compact such that for the transport problem in C ×D

the conditional probabilities µα, να are continuous.

Step 3. We redefine the cost in the set C ×D is order to have the same equivalence classes for hX , hY
but for which there are non optimal cyclically monotone costs.

Define the map

HX(α, x) = µα((0, x)), HY (β, y) = νβ((0, y)).

By Lemma 4.11, we can assume that HX , HY are Borel in (α, x) and (β, y), respectively. If c̄ is the cost
of Example 6.2, then define

c̃(x, y) =

{

c̄(HX(α, x), HY (α, y)) (x, y) ∈ (hX ⊗ hY )−1(α, α)

+∞ otherwise

With the notation of Example 6.2 for π0 and π1, for any pseudoinverse H−1
X (α), H−1

Y (α) it is fairly
easy to verify that

π =

∫

(H−1
X (α) ⊗H−1

Y (α))♯π1m(dα)

is a c̃-cyclically monotone transference plan which is not optimal: the optimal is

π′ =

∫

(H−1
X (α) ⊗H−1

Y (α))♯π0m(dα).

6.2. Analysis of the transport problem in the quotient space. In this section we consider some
examples related to the study of the quotient transport problem. The examples are as follows.

(1) The regularity properties of the original cost (e.g. l.s.c.) are in general not preserved (Example
6.6).

(2) In general, there is no way to construct a quotient cost c independently of the transference plan
π and different from 1IA′ (Example 6.7).

(3) The set Πf (m,m) strictly contains the set (hX ⊗ hY )♯Π
f (µ, ν) (Examples 6.7, 6.8).
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µ

ν

π c = 0

c = 1

c = 1

c = 1

c = 0

c = 1

m

m

Figure 4: The cost of Example 6.6. Outside the diagonal segments the cost is +∞.

(4) If the uniqueness assumption of Theorem 5.6 does not hold, then we can construct a cost c′ which
gives the same equivalence classes and quotient transport problem and such that the original π
is c′-cyclically monotone but not optimal for c′ (Proposition 6.9).

Example 6.6 (Fig. 4). Consider the cost

c(x, y) =







0 y = x, x ∈ [0, 1/2]

1 y = x+ 1/2 mod 1

1 y = x, x ∈ (1/2, 1)

and the measures

µ = ν =

+∞∑

i=1

2−i−1δ

(

x− 1

2
+ 2−i

)

+
1

2
δ(x− 3/2), π = (x, x)♯µ.

If we require that in each equivalence class

(6.1) cπ(α, α) =

∫

c(x, y)πα(dxdy), πα ∈ Π(µα, να),

one obtains

c(α, β) =

{

0 β = α = 1/2 − 2−i, i ∈ N

1 β = α = 1/2

Clearly this cost is not l.s.c., and there is no way to make it l.s.c. under (6.1). This example shows that
we cannot preserve regularity properties for the quotient cost c.

Example 6.7 (Fig. 5). Let r ∈ [0, 1/4] \ Q and consider the cost

c(x, y) =







1 x = y, x ∈ [0, 1)

1 + d y = x+ 1/2, x ∈ [0, 1/2)

1 + d y = x− 1/2, x ∈ [1/2, 1)

0 y = x+ r, x ∈ [0, 1/2− r)

e y = x+ r, x ∈ [1/2, 1− r)

0 y = x− 1/2 + r, x ∈ [1 − r, 1)

+∞ otherwise

d, e ≥ 0.
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The settings are
µ = ν = L1, Γ = {y = x}.

The equivalence relation is (x, x)E(x + 1/2, x + 1/2): for simplicity we consider the quotient space as
[0, 1/2).

In the quotient space, the cost cπ is finite only on y = x and y = x + r mod 1/2. We now consider
two particular transference plans.

The easiest one is π0 = (x, f0(x))♯L1, where

f0(x) =







x x ∈ [0, 1
2 )

x+ r x ∈ [12 , 1 − r)

x− 1
2 + r x ∈ [1 − r, 1)

for which by formula (6.1) we obtain a quotient cost of

(6.2) c0 =







1 β = α, α ∈ [0, 1/2)

e β = α+ r, α ∈ [0, 1
2 − r)

0 β = α− 1
2 + r, α ∈ [ 12 − r, 1

2 )

Another cost is obtained by π1 = (x, f1(x))♯L1, where

f1(x) =







x+ r x ∈ [0, 1
2 − r)

x+ 1
2 x ∈ [12 − r, 1

2 )

x− 1
2 x ∈ [12 ,

1
2 + r)

x x ∈ [ 12 + r, 1 − r)

x− 1
2 + r x ∈ [1 − r, 1)

In this case the cost is by (6.1)

(6.3) c1 =







1 + d β = α, α ∈ [0, r) ∪ [1/2 − r, 1/2)

1 β = α, α ∈ [r, 1/2 − r)

0 β = α+ r mod 1/2

Since it is impossible to have a transference plan π in the original coordinates such that

cπ =

{

1 β = α, α ∈ [0, 1/2)

0 β = α+ r mod 1/2

then it follows that there is no clear way to associate the cost c in the quotient space independently of
the transport plan π.

We note that there is no transference plan whose image is concentrated only on β = α + r mod 1, so
that in general the image of Πf (µ, ν) under the map (hX ⊗ hY ) is a strict subset of Πf (m,m).

Example 6.8 (Fig. 6). We consider the cost for r ∈ [14 ,
1
2 ] \ Q

c(x, y) =







1 y = x, x ∈ [0, 1)

1 + d y = x
2 + 1

2 , x ∈ [0, 1)

1 + d y = 2x− 1, x ∈ [0, 1)

e y = x+ r, x ∈ [0, 1
2 − r)

f y = x− 2−i(1
2 − r), x ∈ (1 − 2−i) + 2−i[12 − 2−i+1r, 1

2 − 2−ir), i ∈ N

+∞ otherwise

.

We consider the measures

µ = ν =
3

2

+∞∑

i=0

2−iL1x[1−2−i,1−2−i−1).

Since the measure of the segment [1 − 2−i, 1 − 2−i−1) is 2−2i−1, all measures π with finite cost in
Π(µ, ν) are concentrated on the segments

{
y = x, x ∈ [0, 1]

}
∪
{
y = x/2 + 1/2, x ∈ [0, 1]

}
∪
{
y = 2x− 1, x ∈ [1/2, 1]

}
.
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µ = L1

ν = L1

π0

π0

π1

π1

π1

π1

π0, π1

c = 0

c = 0

c = 0

c = 0

c = 0

c = 1

c = 1

c = 1

c = 1

c = 1 + d
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c = e

c = e
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c1

m = 2L1

m = 2L1

m = 2L1
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Figure 5: The cost of Example 6.7. Outside the segments the cost is +∞, while for the two different
tranference plans the quotient costs are given by (6.2), (6.3).
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ν

c = 1

c = 1 + d
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c = e

c = f m

m

c

Figure 6: The cost of Example 6.8.

This can be seen in the quotient space, because

m = L1,

and every measure m̃ ∈ Πf (m,m) is of the form m̃ = a1(x, x)♯L1 + a2(x, x+ r mod1)♯L1, a1, a2 ≥ 0 and
a1 + a2 = 1. But clearly this cannot be any image of a measure with finite cost in Πf (µ, ν).

The next proposition shows that if A′ is not a set of uniqueness, then the problem of optimality cannot
be decided by just using c-cyclical monotonicity.
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Proposition 6.9. If there exists a transference plan m̃ ∈ Πf (m,m) different from (I, I)♯m, then there
exists a cost ĉ(x, y) for which the following holds:

(1) the set Γ is ĉ-cyclically monotone;
(2) there are two measures π, π̃ in Π(µ, ν) such that

π(Γ) = 1,

∫

ĉπ̃ <

∫

ĉπ < +∞.

A variation of the following proof (using Lusin Theorem and inner regularity) allows to construct a
cost which is also l.s.c. if the original cost is.

Proof. Let m̃ ∈ Πf (m,m) \ {(I, I)♯m}, and consider a Borel cost c such that

c

(
[0, 1]2 \ (hX ⊗ hY )({c < +∞})

)
= +∞,

∫

cm̃ <

∫

cm < +∞.

It is fairly easy to construct such a cost.
Define now

Γ := (hX ⊗ hY )−1({α = β}), ĉ(x, y) := c(hX(x), hY (y)),

π :=

∫

µα ⊗ ναm(dα), π̃ :=

∫

µα ⊗ νβm̃(dαdβ).

It follows that ∫

ĉπ̃ =

∫

cm̃ <

∫

cm =

∫

ĉπ < +∞.

Moreover, since hX ⊗ hY ({c < +∞}) is acyclic w.r.t. {α = β} (by the same proof of Lemma 4.7), the
equivalence classes w.r.t. the closed cycles equivalence relation Ē do not change, so that Γ is acyclic. �

7. Existence of an optimal potential

Let π ∈ P([0, 1]2) be concentrated on a c-cyclically monotone set Γ. Assume that there exist partitions
{Xα}α, {Yβ}β of [0, 1] into Borel sets such that

- Γ ⊂ ∪αXα × Yα — i.e. Γ satisfies the crosswise condition of Definition 2.3 w.r.t. the partition;
- in each set Xα × Yα there exist Borel optimal potentials φα, ψα:

φα + ψα ≤ c on Xα × Yα φα + ψα = c on Γ ∩Xα × Yα.

Is it possible to find a Borel couple of functions φ, ψ s.t.

φ + ψ ≤ c on ∪αXα × Yα φ + ψ = c π-a.e.?

We show that this is the case under Assumption 1, i.e. if the disintegration of π w.r.t the partition
{Xα × Yα} is strongly consistent. If {c < +∞} ⊂ ∪αXα × Yα this provides clearly an optimal couple.

The approach is to show that the set
{

(α, φ̃, ψ̃) : φ̃, ψ̃ optimal couple in Xα × Yα

}

is an analytic subset of a suitable Polish space, that we are first going to define. We then apply a selection
theorem to construct an optimal couple.

In order to structure the ambient space with a Polish topology, we need some preliminary lemmas.

Lemma 7.1. For every nonnegative function ϕ̄ ∈ C0([0, 1]) the map

Gϕ̄ : M([0, 1]) ∋ µ 7→
∫
ϕ̄µ+ ∈ R

is convex l.s.c. is w.r.t. weak∗-topology.

Proof. Since for every µ ∈ M([0, 1])

sup

{∫

ϕµ : 0 ≤ ϕ ≤ ϕ̄

}

=

∫

ϕ̄µ+,

then Gϕ̄ is the supremum of bounded linear functionals, proving the thesis. �
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Corollary 7.2. The map

M([0, 1]) ∋ µ 7→ µ+ ∈ M+([0, 1])

is Borel w.r.t. weak∗-topology. For every nonnegative measure ξ the sublevel set {µ : µ+ ≤ ξ} is closed
and convex: in fact µ 7→ µ+ is order convex, meaning that

(λµ+ (1 − λ)ν)+ ≤ λµ+ + (1 − λ)ν+.

Proof. It is enough to observe that any function f : M([0, 1]) → M([0, 1]) is Borel if and only if the
function µ 7→

∫
ϕf(µ) is Borel for every nonnegative ϕ ∈ C0([0, 1]): the Borel measurability then follows

by Lemma 7.1. As well, f is order convex if and only if µ 7→
∫
ϕf(µ) is convex ∀ϕ ∈ C0([0, 1]; R+). �

Corollary 7.3. The function

M([0, 1]) ×M([0, 1]) ∋ (µ1, µ2) 7→ µ1 ∧ µ2 ∈ M([0, 1])

is Borel w.r.t. weak∗-topology.

Proof. The thesis follows by the relation µ1 ∧ µ2 = µ1 − [µ1 − µ2]
+ and Corollary 7.2. �

Lemma 7.4. The function

M+([0, 1])3 × C0([0, 1]; R+) ∋ (µ1, µ2, µ3, φ) 7→
∫

φ
dµ2

dµ1

dµ3

dµ1
µ1 ∈ [0,+∞]

is Borel w.r.t. weak∗-topology.

Proof. Let {hj,I}2I

j=1 be a partition of [0, 1] into continuous functions such that

0 ≤ hj,I ≤ 1,
2I

∑

j=1

hj,I = 1, supphj,I ⊂
[
(j − 1)2−I − 2−I−2, j2−I + 2−I−2

]
.

Define the l.s.c. and continuous functions, respectively,

R+ ∋ x 7→ x−1∗

:=

{

0 x = 0

1/x x > 0

M([0, 1]) × C0([0, 1]) ∋ (µ, φ) 7→
(∫

hj,Iφµ

)2I

j=1

∈ R2I

If µ2 = (dµ2/dµ1)µ1, then

gI(µ1, µ2) :=

2I

∑

j=1

hj,I(x)

(∫

hj,Iµ1

)−1∗(∫

hj,Iµ2

)

→ dµ2

dµ1

in L1(µ): in fact, for continuous functions the resut follows by uniform continuity, and for the general
case one observes that

∫ ∣
∣
∣
∣

2I

∑

j=1

hj,I(x)

(∫

hj,Iµ1

)−1∗(∫

hj,Ifµ1

)∣
∣
∣
∣
µ1(dx) ≤

2I

∑

j=1

∣
∣
∣
∣

∫

hj,Ifµ1

∣
∣
∣
∣
≤ ‖f‖L1(µ1).

For φ ∈ C0([0, 1]) and 0 ≤ µ2, µ3 ≤ kµ1 it follows
∫

φ
dµ2

dµ1

dµ3

µ1
µ1 = lim

I→+∞

∫

φgI(µ1, µ2)gI(µ1, µ3)µ1.

We finally reduce to the case µ2 ≤ kµ1 and µ3 ≤ kµ1: indeed
∫

φ
dµ2

dµ1

dµ3

µ1
µ1 = lim

k→∞
lim

I→+∞

∫

φgI(µ1, µ2 ∧ (kµ1))gI(µ1, µ3 ∧ (kµ1))µ1

and by Corollary 7.3 the map

(µ1, µ2, µ3) 7→
(

µ1, (kµ1) ∧ µ2, (kµ1) ∧ µ3

)

is Borel. By composition of the above Borel maps, the statement of the lemma is proved. �
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Lemma 7.5. The function

HM : M+([0, 1])2 ×M([0, 1])2 ×M+([0, 1]2) → [0,+∞]

(µ, ν, η, ξ, π) 7→ HM :=
∫ (d(η+Mµ)+

dµ

)(d(P1)♯π
dµ

)
µ

+
∫ (d(ξ+Mν)+

dν

)(d(P2)♯π
dν

)
ν

is Borel w.r.t. weak∗-topology for all M ∈ R+.

Proof. It follows immediately from Corollary 7.2 and Lemma 7.4. �

Lemma 7.6. The subset of sequences in RN converging to zero is analytic w.r.t. the product topology.

Proof. The family on nondecreasing sequences mn is a closed subset of NN, with the product topology.
The sequences of RN converging to zero are then the projection of the subset of RN × NN

C :=
{

({fℓ}ℓ∈N, {mn}n∈N) : |fi| ≤ 2−n ∀i ≥ mn

}

.

We now show that C is closed in the product topology, from which the result follows.
Consider sequences {fℓ,k}ℓ, {mn,k}n converging pointwise to {fℓ}ℓ, {mn}n, with ({fℓ,k}ℓ, {mn,k}n) ∈ C.
Then for each n ∈ N there exists k(n) such that the sequence {mn,k}k is constantly mn for k > k(n).
As a consequence, for all k > k(n) one has |fi,k| ≤ 2−n for i ≥ mn. Since {fi,k}i converges pointwise, it
follows that |fi| ≤ 2−n for i ≥ mn. Hence ({fℓ}ℓ, {mn}n) ∈ C. �

Given a subset J of R ∪ {±∞}, we denote by L(µ; J) the µ-measurable maps from [0, 1] to J . If not
differently stated, µ-measurable functions are equivalence classes of functions which coincide µ-a.e..

Proposition 7.7. There exists a Polish topology on linear space

L =
{

(µ, ϕ) : µ ∈ P([0, 1]), ϕ ∈ L(µ; R ∪ {±∞})
}

such that the map

I : L → P([0, 1])×∏∞
M=1 M([0, 1])

(µ, ϕ) 7→
(
µ,
{
(ϕ ∧M) ∨ (−M)µ

}

M∈N

)

is continuous.

Proof. We inject L in P([0, 1]) ×∏∞
M=1 M([0, 1]) by the map I. The image of L is the set

(7.1) Im(I) =
{

(µ, ηM ) : ηN = (ηM ∧Nµ) ∨ (−Nµ) for M > N
}

.

Notice that the compatibility condition ηN = (ηM ∧ Nµ) ∨ (−Nµ) implies that the Radon-Nikodym

derivative ϕN := dηN

dµ converges µ-a.e. to a uniquely identified ϕ ∈ L(µ; R ∪ {±∞}).
We observe that by Corollary 7.3 the function

(µ, η) 7→ FN (µ, η) := −(−(η ∧Nµ) ∧Nµ)

is Borel and Im(I) is the intersection of the following countably many graphs

Im(I) =
⋂

N<M

{

(µ, {ηQ}Q) : FN (µ, ηM ) = ηN

}

.

Being a Borel subset of a Polish space, by Theorem 3.2.4 of [19] there is a finer Polish topology on
P([0, 1]) ×∏∞

M=1 M([0, 1]) such that Im(I) itself is Polish, and this Polish topology can be pulled back
to L by the injective map I. The continuity of I, also w.r.t. the product weak∗ topology on the image
space, is then immediate. �

Lemma 7.8. The subset Lf := {(µ, ϕ) : ϕ ∈ L(µ; R)} of L is analytic.

Proof. If ϕ ∈ L(µ; R∪{±∞}), the condition ϕ ∈ L(µ; R) is clearly equivalent to limM‖µ‖(|ϕ| > M) = 0.
Since the injection I is continuous and I(L) is Borel by Proposition 7.7, it is enough to prove that

I(Lf ) =
{

(µ, {ξM}M ) : lim
M→+∞

‖ξM+1 − ξM‖ = 0
}
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is analytic. By Lemma 7.6 this follows by the l.s.c. of the map

P([0, 1])×∏∞
M=1 M([0, 1]) → RN

(µ, {ξM}M ) 7→
{
‖ξM+1 − ξM‖

}

M

.

�

Theorem 7.9. Let c be l.s.c.. Assume that the disintegration of π w.r.t. a partition {Xα×Yα}α is strongly
consistent and that there exist optimal potentials φα ∈ B(Xα,R ∪ {−∞}), ψα ∈ B(Yα; R ∪ {−∞}):

φα + ψα ≤ c on Xα × Yα φα + ψα = c on Γ ∩Xα × Yα.

Then there exist Borel optimal potentials on ∪αXα × Yα.

Proof. We prove the theorem by means of Von Neumann’s selection principle.
Step 1. Consider the Polish space

Z := L× L× P([0, 1]2).

We first prove the analyticity of the set A ⊂ Z made of those

((µ, ϕ), (ν, ψ), π) ∈ Lf × Lf × P([0, 1]2)

satisfying the relations

(1) (P1)♯π = µ, (P2)♯π = ν;
(2) φ+ ψ ≤ c out of cross-negligible sets w.r.t. the measures µ, ν;
(3) φ+ ψ = c π-a.e..

Since Σ1
1 is closed under countable intersections, it suffices to show that each of the conditions above

defines an analytic set.
Constraint (1) defines a closed set, by the continuity of the immersion I in Proposition 7.7 and because

{(µ, ν, π) : π ∈ Π(µ, ν)} is compact in P([0, 1]) × P([0, 1])× P([0, 1]2).
Setting φM = ((φ ∧M) ∨ (−M)), ψM = ((ψ ∧M) ∨ (−M)) for M ∈ N, Condition (2) is equivalent to

∫

φM (P1)♯π +

∫

ψM (P2)♯π ≤
∫

cπ ∀π ∈ Π≤(µ, ν), ∀M ∈ N.(7.2)

Indeed, suppose that Condition (2) is not satisfied, i.e. the set {(x, y) : φ(x)+ψ(y) > c(x, y)} is not cross-
negligible. Then, since φM , ψM converge pointwise to φ, ψ, the set {(x, y) : φM (x) + ψM (y) > c(x, y)}
cannot be cross-negligible. By the Duality Theorem B.2 there exists a non-zero π ∈ Π≤(µ, ν) concentrated
on {(x, y) : φM (x) + ψM (y) > c(x, y)} and therefore (7.2) does not hold. The converse is immediate, as
φM + ψM ≤ c.

We consider the Borel set (Lemma 7.5)

(7.3) Cn,M :=

{

(µ, ν, ξ, η, π) : HM (µ, ν, ξ, η, π) −
∫

(c+ 2M)π ≥ 2−n, π ∈ Π≤(µ, ν)

}

.

Since for π ∈ Π≤(µ, ν) one has

HM (µ, ν, ξ, η, π) =

∫
d(ξ +Mµ)+

dµ
(P1)♯π +

∫
d(η +Mν)+

dν
(P2)♯π

then for fixed (µ, ν, η, ξ) the function

π 7→
{

HM (µ, ν, ξ, η, π) −
∫

(c+ 2M)π π ∈ Π≤(µ, ν)

−∞ otherwise

is u.s.c. for l.s.c. cost c: we have used the fact that
{
m ∈ M([0, 1]) : 0 ≤ m ≤ µ

}
∋ m 7→

∫

fm ∈ R

is continuous for all f ∈ L1(µ) and {0 ≤ m ≤ µ} is closed. In particular the section

Cn,M ∩ {(µ, ν, ξ, η)} × P([0, 1]2)
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is closed, hence compact. By Novikov Theorem (Theorem 4.7.11 of [19]), it follows that

P1234(Cn,M ) =

{

(µ, ν, η, ξ) : ∃π ∈ Π≤(µ, ν), HM (µ, ν, η, ξ, π) −
∫

(c+ 2M)π ≥ 2−n
}

is Borel. Finally, the set

DM :=
⋃

n∈N

P1234(Cn,M ) =

{

(µ, ν, η, ξ) : ∃π ∈ Π≤(µ, ν), HM (µ, ν, η, ξ, π) −
∫

(c+ 2M)π > 0
}

is Borel.
Condition (7.2) thus can be rewritten as

{
(
µ, ν, {ξM}M , {ηM}

)
∈ P([0, 1])2 ×

( ∞∏

M=1

M([0, 1])

)2

: (µ, ν, ξM , ηM ) /∈ DM

}

,

and the above discussion implies that this is a Borel set.
We prove finally that Condition (3) identifies an analytic set. Consider the map
( ∞∏

M=1

M([0, 1]) ×M([0, 1])

)

× P([0, 1]2) ∋ ({ξM , ηM}M , π) 7→
{∫

ξM +

∫

ηM −
∫

cπ

}

M

∈ RN.

This function is clearly Borel. Moreover, by Lemma 7.6 the family of sequences converging to 0 is
an analytic subset of RN, and therefore his counterimage is analytic. The thesis follows again by the
continuity of the immersion I of Proposition 7.7.

Step 2. Since the set A of Step 1 is analytic, and the map [0, 1] ∋ α 7→ πα ∈ P([0, 1]2) can be assumed
to be Borel, then the set B = [0, 1]×A ∩ {(α, (µ, ϕ), (ν, ψ), π : π = πα)} is analytic.

Step 3. By Von Neumann’s selection principle applied to B, there exists an analytic map

[0, 1] ∋ α 7→
(
(µα, φα), (να, ψα)

)
∈ L× L .

Hence, by the immersion of I of Proposition 7.7 we can define the sequence of measures

ξM :=

∫

ξM,αm(dα) ηM :=

∫

ηM,αm(dα).

It is not difficult to show that
(
µ,
{
ξM
}

M∈N

)
and

(
ν,
{
ηM
}

M∈N

)
belong to the image (7.1) of I: by the

formula

ξM =
dξM
dµ

µ =

∫ (
dξM
dµ

µα

)

m(dα) =

∫

ξM,αm(dα)

it follows that (µ, {ξM}M ) ∈ Lf and satisfies the compatibility condition. Therefore taking the counter-
image with I one can define functions φ ∈ L(µ), ψ ∈ L(ν) which are optimal potentials. �

Remark 7.10. Theorem 7.9 does not provide an optimal couple for a generic equivalence relation different
from the axial one, and in particular it does not apply for the cycle equivalence relation (see Example 6.4).

Remark 7.11. Even if every two points are connected by an axial path and there exist Borel potentials,
in general there is no point (x̄, ȳ) such that the extensions of Corollary C.7 define Borel potentials φ̃, ψ̃.

Remark 7.12. In the proof one can observe that we can replace the cost c with any other cost c′, just
requiring that for m-a.e. α it holds φα + ψα ≤ c′. In particular, we can take a cost whose graph is
σ-compact in each equivalence class and prove that the sets Cn,M of (7.3) are σ-compact.

This shows how Theorem 7.9 can be extended to π-measurable costs.
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Appendix A. Disintegration theorem in countably generated probability spaces

In this section we prove the Disintegration Theorem for measures in countably generated σ-algebras,
with some applications. The results of this sections can be deduced from Section 452 of [10]; for com-
pleteness we give here self-contained proofs.

We consider the following objects:

(1) (X,Ω, µ) a countably generated probability space;
(2) X = ∪α∈AXα a partition of X ;
(3) A = X/ ∼ the quotient space, where x1 ∼ x2 if and only if there exists α such that x1, x2 ∈ Xα;
(4) h : X → A the quotient map h(x) = x• = {α : x ∈ Xα}.

We can give to A the structure of probability space as follows:

(1) define the σ-algebra A = h♯(Ω) on A as the quotient σ-algebra

A ∈ A ⇐⇒
⋃

α∈A

{x : h(x) = α} = h−1(A) ∈ Ω;

(2) define the probability measure m = h♯µ.

We can rephrase (1) by saying that A is the largest σ-algebra such that h : X → A is measurable: it
can be considered as the subalgebra of Ω made of all saturated measurable sets.

Definition A.1. The σ-algebra A is essentially countably generated if there is a countable family of sets
An ∈ A , n ∈ N, such that for all A ∈ A there exists Â ∈ A, where A is the σ-algebra generated by An,
n ∈ N, which satisfies m(A △ Â) = 0.

The first result of this section is the structure of A as a σ-algebra.

Proposition A.2. The σ-algebra A is essentially countably generated.

Notice that we cannot say that the σ-algebra A is countably generated: for example, take ([0, 1],B)
and x• = {x+ Q} ∩ [0, 1]. We are stating that the measure algebra A /Nm, where Nm is the σ-ideal of
m-negligible sets, is countably generated.

The proposition is a consequence of Maharam Theorem, a deep result in measure theory, and can
be found in [9], Proposition 332T(b). We give a direct proof of Proposition A.2. The fundamental
observation is the following lemma.

Lemma A.3. Let fn be a countable sequence of measurable functions on A. Then there is a countably
generated σ-subalgebra A of A such that each fn is measurable.

Proof. The proof is elementary, since this σ-algebra is generated by the countable family of sets
{

f−1
n (qm,+∞), qm ∈ Q,m ∈ N

}

.

This is actually the smallest σ-algebra such that all fn are measurable. �

Proof of Proposition A.2. The proof will be given in 3 steps.
Step 1. Define the map Ω ∋ B → fB ∈ L∞(m) by

(A.1) h♯µxB= fBm.

The map is well defined by Radon-Nikodym theorem, and 0 ≤ fB ≤ 1 m-a.e..
Given an increasing sequence of Bi ∈ Ω, then

∫

A

f∪iBi
m = µ(h−1(A) ∩ ∪iBi) = lim

i
µ(h−1(A) ∩Bi) = lim

i

∫

A

fBi
m =

∫

A

lim
i
fBi

m,

where we have used twice the Monotone Convergence Theorem and the fact that fBi
is increasing m-a.e..

Hence f∪iBi
= limi fBi

. By repeating the same argument and using the fact that m is a probability
measure, the same formula holds for decreasing sequences of sets, and for disjoint sets one obtains in the
same way f∪iBi

=
∑

i fBi
.

Step 2. Let B = {Bn, n ∈ N}, be a countable family of sets generating Ω: without any loss of generality,
we can assume that B is a Boolean algebra. Let A be the σ-algebra generated by the functions fBn

,
Bn ∈ B: it is countably generated by Lemma A.3.
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From Step 1 and the Monotone Class Theorem (Proposition 3.1.14, page 85 of [19]), it follows that the
family of sets B such that fB defined in (A.1) is A-measurable up the an m-negligible set is a σ-algebra
containing Ω.

Step 3. Applying the last step to the set B = h−1(A) with A ∈ A , we obtain that there exists a
function f in L∞(m), measurable w.r.t. the σ-algebra A such that χA = f m-a.e., and this concludes the
proof, because up to negligible set f is the characteristic function of a measurable set in A. �

Remark A.4. We observe there that the result still holds if Ω is the µ-completion of a countably generated
σ algebra. More generally, the same proof shows that every σ-algebra A ⊂ Ω is essentially countably
generated.

In general, the atoms of A are larger than the atoms of A . It is then natural to introduce the following
quotient space.

Definition A.5. Let (A,A ,m) be a measure space, A ⊂ A a σ-subalgebra. We define the quotient
(L,L , ℓ) as the image space by the equivalence relation

α1 ∼1 α2 ⇐⇒ ∀A ∈ A
(
α1 ∈ A ⇐⇒ α2 ∈ A

)
.

We note that (L , ℓ) is isomorphic as a measure algebra to (A,m), so that in the following we will not
distinguish the σ-algebras and the measures, but just the spaces A and L = A/ ∼1. The quotient map
will be denoted by p : A → L.

We next define a disintegration of µ consistent with the partition X = ∪αXα ([10], Definition 452E).

Definition A.6 (Disintegration). The disintegration of the probability measure µ consistent with the
partition X = ∪α∈AXα is a map A ∋ α 7→ µα ∈ P(X,Ω) such that

(1) for all B ∈ Ω, µα(B) is m-measurable;
(2) for all B ∈ Ω, A ∈ A ,

(A.2) µ(B ∩ h−1(A)) =

∫

A

µα(B)m(dα),

where h : X → A is the quotient map and m = h♯µ.

We say that the disintegration is unique if for all two measure valued functions α 7→ µ1,α, α 7→ µ2,α

which satisfy points (1), (2) it holds µ1,α = µ2,α m-a.e. α.
The measures µα, α ∈ A, are called conditional probabilities.
We say that the disintegration is strongly consistent if for m-a.e. α µα(X \Xα) = 0.

We make the following observations.

(1) At this level of generality, we do not require µα(Xα) = 1, i.e. that µα is concentrated on the class
Xα: in fact, we are not even requiring Xα to be µ-measurable.

(2) The choice of the σ-algebra A in A is quite arbitrary: in our choice it is the largest σ-algebra
which makes point (2) of Definition A.6 meaningful, but one can take smaller σ-algebras, for
example Λ considered in Definition A.5.

(3) If A ∈ A is an atom of the measure space (A,A ,m), then the measurability of µh(B) implies that
µh(B) is constant m-a.e. on A for all B ∈ Ω. In particular, if we want to have µh concentrated
on the smallest possible set, we need to check µh with the largest σ-algebra on A: equivalently,
this means that the atoms of the measure space (A,A ,m) are as small as possible. However,
negligible sets are useless to this extent.

(4) The formula (A.2) above does not require to have Ω countably generated, and in fact there are
disintegration results in general probability spaces (see Section 452 of [10] for general results).
However, no general uniqueness result can be expected in that case.

(5) The formula (A.2) can be easily extended to integrable functions by means of monotone con-
vergence theorem: for all µ-integrable functions f , f is µα-integrable for m-a.e. α,

∫
fµα is

m-integrable and it holds

(A.3)

∫

fµ =

∫ (∫

fµα

)

m(dα).

We are ready to prove the general disintegration theorem.
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Theorem A.7 (Disintegration Theorem). Assume (X,Ω, µ) countably generated probability space, X =
∪α∈AXα a decomposition of X, h : X → Xα the quotient map. Let (A,A ,m) the measure space defined
by A = h♯Ω, m = h♯µ.

Then there exists a unique disintegration α 7→ µα consistent with the partition X = ∪α∈AXα.
Moreover, if A is a countably generated σ-algebra such that Proposition A.2 holds, and L is the quotient

space introduced in Definition A.5, p : A → L the quotient map, then the following properties hold:

(1) X = Xλ = (p ◦ h)−1(λ) is µ-measurable, and X = ∪λ∈LXλ;
(2) the disintegration µ =

∫

L
µλm(dλ) is strongly consistent;

(3) the disintegration µ =
∫

A
µαm(dα) satisfies µα = µp(α) m-a.e..

The last point means that the disintegration µ =
∫

A
µαm(dα) has conditional probabilities µα constant

on each atom of L in A, precisely given by µα = µλ for α = p−1(λ) m-a.e.: i.e. µα is the pullback of the
measure µλ.

Proof. We base the proof on well known Disintegration Theorem for measurable functions from Rd into
Rd−k, see for example [1], Theorem 2.28.

Step 1: Uniqueness. To prove uniqueness, let B = {Bn}n∈N be a countable algebra of sets generating
Ω. We observe that the L∞(m) functions given by

∫

A
fn(α)m(dα) = µ(h−1(A)∩Bn) are uniquely defined

up to a m-negligible set. This means that µα(Bn) is uniquely defined on the algebra B m-a.e., so that
it is uniquely determined on the σ-algebra Ω generated by B.

Step 2: Existence. By measurable space isomorphisms (see for example the proof of the last theorem
of [12]), we can consider (X,Ω) = (L,A) = ([0, 1],B), so that there exists a unique strongly consistent
disintegration µ =

∫

L
µλm(dλ) by Theorem 2.28 of [1] and Step 1 of the present proof.

Step 3: Point (3) Again by the uniqueness of Step 1, we are left in proving that
∫
µp(α)m(dα) is a

disintegration on X = Xα.
Since p : A → L is measurable and p is measure preserving, α 7→ µp(α)(B) ism-measurable for all B ∈ Ω.

By Proposition A.2, for all A ∈ A there exists Â ∈ L such that m(A △ Â) = µ(h−1(A) △ h−1(Â)) = 0:
then

∫

A

µp(α)(B)m(dα) =

∫

Â

µp(α)(B)m(dα) =

∫

Â

µλ(B)m(dλ) = µ(h−1(Â) ∩B) = µ(h−1(A) ∩B).

�

The final result concerns the existence of a section S for the equivalence relation X = ∪αXα, under
the additional assumption that the atoms of Ω are singletons.

Definition A.8. We say that S is a section for the equivalence relation X = ∪α∈AXα if for α ∈ A there
exists a unique xα ∈ S ∩Xα.

We say that Sµ is a µ-section for the equivalence relation induced by the partition X = ∪α∈AXα if
there exists a Borel set Γ ⊂ X of full µ-measure such that the decomposition

Γ =
⋃

α∈A

Γα =
⋃

α∈A

Γ ∩Xα

has section Sµ.

Clearly from the Axiom of Choice, there is certainly a section S, and by pushing forward the σ-algebra
Ω on S we can make (S,S ) a measurable space. The following result is a classical application of selection
principles.

Proposition A.9. The disintegration of µ consistent with the partition X = ∪α∈AXα is strongly consis-
tent if and only if there exists a Ω-measurable µ-section S such that the σ-algebra S contains B(S).

Proof. Since we are looking for a µ-section, we can replace (X,Ω) with ([0, 1],B) by a measurable injection.
If the disintegration is strongly consistent, then the map x 7→ {α : x ∈ Xα} is a µ-measurable map

by definition, where the measurable space (A,A ) can be taken to be ([0, 1],B) (Step 2 of Theorem A.7).
By removing a set of µ-measure 0, we can assume that h is Borel, so that by Proposition 5.1.9 of [19] it
follows that there exists a Borel section.

The converse is a direct consequence of Theorem A.7 and the Isomorphism Theorem among Borel
spaces, Theorem 3.3.13 of [19]. �
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A.1. Characterization of the disintegration for a family of equivalence relations. Consider a
family of equivalence relations on X ,

E =
{

Ee ⊂ X ×X : Ee equivalence relation, e ∈ E
}

closed under countable intersection. By Theorem A.7, to each Ee ∈ E we can associate the disintegration

X =
⋃

α∈Ae

Xα, µ =

∫

Ae

µαme(dα), me := (he)♯µ, he : X → Ae quotient map.

The key point of this section is the following easy lemma. For simplicity we will use the language
of measure algebras: their elements are the equivalence classes of measurable sets w.r.t. the equivalence
relation

A ∼ A′ ⇐⇒ µ(A △ A′) = 0.

Let Z = {Cz, z ∈ Z} be a family of countably generated σ-algebras such that Cz ⊂ A , where A is a
given countably generated σ-algebra on X . Let C be the σ-algebra generated by ∪Z = ∪z∈ZCz.

Lemma A.10. There is a countable subfamily Z′ ⊂ Z such that the measure algebra generated by Z′

coincides with the measure algebra of C .

Proof. The proof follows immediately by observing that C is essentially countably generated because
it is a σ-subalgebra of A : one can repeat the proof of Proposition A.2, see also Remark A.4, or [9],
Proposition 332T(b).

Let An, n ∈ N, be a generating family for C : it follows that there is a countable subfamily Zn ⊂ Z

such that An belongs to the σ-algebra generated by ∪Zn = ∪Cz∈Zn
Cz. Let Azm, m ∈ N, be the countable

family of sets generating Cz ∈ Z: it is straightforward that {Azm,m ∈ N,Cz ∈ ∪nZn} essentially generates
C . �

We can then state the representation theorem.

Theorem A.11. Assume that the family E of equivalence relations is closed w.r.t. countable intersection:
if Een

∈ E for all n ∈ N, then
⋂

n

Een
∈ E.

Then there exists Eē ∈ E such that for all Ee, e ∈ E, the following holds:

(1) if Ae, Aē are the σ-subalgebras of Ω made of the saturated sets for Ee, Eē respectively, then for
all A ∈ Ae there is A′ ∈ Aē such that µ(A △ A′) = 0;

(2) if me, mē are the restrictions of µ to Ae, Aē respectively, then Ae can be embedded (as measure
algebra) in Aē by point (1): let

mē =

∫

mē,αme(dα)

be the unique consistent disintegration of mē w.r.t. the equivalence classes of Ae in Aē.
(3) If

µ =

∫

µe,αme(dα), µ =

∫

µē,βmē(dβ)

are the unique consistent disintegration w.r.t. Ee, Eē respectively, then

(A.4) µe,α =

∫

µē,βmē,α(dβ).

for me-.a.e. α.

The last point essentially tells us that the disintegration w.r.t. Eē is the sharpest one, the others being
obtained by integrating the conditional probabilities µē,β w.r.t. the probability measures mē,α.

Note that the result is useful but it can lead to trivial result if E = {(x, x), x ∈ X} belongs to E: in
this case

µē,β = δβ, mē,α = µe,α.
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Proof. Point (1). We first notice that if Ee1 , Ee2 ∈ E and A ∈ Ae1 , the σ-algebra of saturated sets
generated by Ee1 , then A ∈ Ae12 , the σ-algebra of saturated sets generated by Ee1 ∩ Ee2 . Hence, if E is
closed under countable intersection, then for every family of equivalence relations Een

∈ E there exists
Eē ∈ E such that the σ-algebras Aen

made of the saturated measurable sets w.r.t. Een
are σ-subalgebras

of the σ-algebra Aē made of the saturated measurable sets w.r.t. the equivalence relation Eē.
By Lemma A.10 applied to the family Z = {Ae|e ∈ E}, we can take a countable family of equivalence

relations such that the σ-algebra of saturated sets w.r.t. their intersection satisfies Point (1).
Point (2). This point is a consequence of the Disintegration Theorem A.7, using the embedding

Ae ∋ A 7→ A′ ∈ Aē given by the condition µ(A △ A′) = 0.
Point (3). Since consistent disintegrations are unique, it is enough to show that (A.4) is a disintegration

for Ee. By definition, for all C ∈ Ω, µē,β(C) is a mē-measurable function, so that by (A.3) it is also
mē,α-measurable for me-a.e. α and

α 7→
∫

µē,β(C)mē,α(dβ)

is me-measurable. Denoting with he the equivalence map for Ee, for all A ∈ Ae we have

µ(C ∩ h−1
e

(A)) =

∫

A

µē,β(C)mē(dβ) =

∫

A

(∫

µē,β(C)mē,α(dβ)

)

me(dα),

where we used the definition of µē,β in the first equality and (A.3) in the second one. �

Remark A.12. Using the fact that if A ∈ Ae, then there exists A′ ∈ Aē such that µ(A △ A′) = 0, then
the identity map I : (X,Aē) → (X,Ae) is µ-measurable. Let he : X → X/E, hē : X → X/Ē be quotient
maps. It is fairly easy to show that there exists a unique (hē)♯µ-measurable map gēe (defined up to
negligible sets) such that the following diagram commutes:

X
hē

//

I

��

X/Eē

gēe

��

X
he

// X/Ee

.

Clearly one then has

(A.5) (he)♯µ = (gēe)♯
(
(hē)♯µ

)
= (gēe ◦ hē)♯µ.

Appendix B. Perturbation by cycles

For the particular applications we are considering, the geometrical constraints allow only to perturb
a given measure π ∈ Π(µ, ν) by means of bounded measures λ ∈ M([0, 1]2) with 0 marginals, and such
that π+λ ≥ 0. The simplest way of doing this perturbation is to consider closed cycles in [0, 1]2: we will
call this types of perturbation perturbation by cycles (a more precise definition is given below).

The problem of checking whether a measure µ can be perturbed by cycles has been considered in several
different contexts, see for example [2, 3, 11]. Here we would like to construct effectively a perturbation,
which will be (by definition) a perturbation by cycles.

Since we are using a duality result valid only for analytic sets, in the following we will restrict to a
coanalytic cost c. We first recall some useful results on analytic subsets of Polish spaces (in our case
[0, 1]), and the main results of [13].

B.1. Borel, analytic and universally measurable sets. Our main reference is [19].
The projective class Σ1

1(X) is the family of subsets A of the Polish space X for which there exists Y
Polish and B ∈ B(X × Y ) such that A = P1(B). The coprojective class Π1

1(X) is the complement in X
of the class Σ1

1(X). The σ-algebra generated by Σ1
1 is denoted by A.

The projective class Σ1
n+1(X) is the family of subsets A of the Polish space X for which there exists

Y Polish and B ∈ Π1
n(X × Y ) such that A = P1(B). The coprojective class Π1

n+1(X) is the complement

in X of the class Σ1
n+1(X).

If Σ1
n, Π1

n are the projective, coprojective pointclasses, then the following holds (Chapter 4 of [19]):

(1) Σ1
n, Π1

n are closed under countable unions and countable intersections (in particular they are
monotone classes);
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(2) Σ1
n is closed w.r.t. projections, Π1

n is closed w.r.t. coprojections;
(3) the ambiguous class ∆1

n := Σ1
n ∩ Π1

n is a σ-algebra and Σ1
n ∪ Π1

n ⊂ ∆1
n+1.

We recall that a subset of X Polish is universally measurable if it belongs to all completed σ-algebras
of all Borel measures on X : it can be proved that every set in A is universally measurable.

Under the axiom of Projective Determinacy (PD) all projective sets are universally measurable, and
PD is undecidable in ZFC ([15, 16]). In the rest of the present Appendix we assume (PD). One could
avoid this assumption by recovering independently the measurability of the functions we are going to
define by countable limit procedures (see for example [6]), but since our aim is to describe a construction
this analysis is not needed here.

We recall that Borel counterimages of universally measurable sets are universally measurable.

B.2. General duality results. All the results recalled in this sections are contained in [13].
Let A ⊂ [0, 1]d be a subset of [0, 1]d, and consider Borel probabilities µi ∈ P([0, 1]), i = 1, . . . , d. We

want to know if there is a measure π such that π∗(A) > 0 and its marginals are bounded by the measure
µi: (Pi)♯π ≤ µi. We recall that

(B.1) π∗(A) := inf
{
π(A′) : A′ ∈ B([0, 1]d), A ⊂ A′

}

is the outer π measure. For simplicity, we will denote the i-th measure space in the product with Xi.

Definition B.1. A set A ⊂ [0, 1]d is cross-negligible w.r.t. the measures µi, i = 1, . . . , d, if there are
µi-negligible sets Ni, i = 1, . . . , d, such that A ⊂ ∪iP−1

i (Ni).
Given A1, A2 ∈ [0, 1]d, we define

(B.2) dist(A1, A2) := inf

{ d∑

i=1

∫

hiµi : χA1△A2(x) ≤
d∑

i=1

hi(xi), hi ∈ L∞(µi)

}

.

We say that A1, A2 ⊂ [0, 1]d are equivalent and we write A1 ∼dist A2 if A1 △ A2 is cross negligible,
i.e. dist(A1, A2) = 0.

This definition is the same as the L-shaped sets defined in [3]. Clearly the cross-negligible sets can be
taken to be Gδ-sets. The fact that ∼dist is an equivalence relation and that (P([0, 1]d)/ ∼dist, dist) is a
metric space is proved in [13], Proposition 1.15. Following again [13], given A ⊂ P([0, 1]d), we denote A
the closure of A w.r.t. the distance dist.

The next theorem collects some of the main results of [13]. This results are duality results, which
compare the supremum of a linear function in the convex set

Π(µ1, . . . , µd) :=
{

π ∈ P([0, 1]d) : (Pi)♯π = µi, i = 1, . . . , d
}

with the infimum of a convex function in a predual space.

Theorem B.2. If A ∈ Σ1
1(R

d), then the following duality holds

(B.3) sup
{

π(A) : π ∈ Π(µ1, . . . , µd)
}

= min

{ d∑

i=1

∫

hiµi :

d∑

i=1

hi(xi) ≥ χA(x), 0 ≤ hi ≤ 1

}

.

Moreover, if A is in closure w.r.t. d of the family of closed sets, then the max on the l.h.s. is reached. In
particular the maximum is reached when A is in the class of countable intersections of elements of the
product algebra.

Proof. The fact that the duality (B.3) holds with the infimum in the r.h.s. is a consequence of [13],
Theorem 2.14. In our settings the analytic sets contain all the Borel sets, so that in particular the duality
holds for Borel sets.

The fact that the minimum is reached is a consequence of [13], Theorem 2.21.
Finally, the last assertion follows from [13], Theorem 2.19, and the subsequent remarks. �

A fairly easy corollary is that if the supremum of (B.3) is equal to 0, then A is cross negligible.

Remark B.3. Note that since we are considering a maximum problem for a positive linear functional,
then the problem is equivalent when considered in the larger space

Π≤(µ1, . . . , µd) :=
{

0 ≤ π ∈ M([0, 1]d) : (Pi)♯π ≤ µi, i = 1, . . . , d
}

.



ON THE EXTREMALITY, UNIQUENESS AND OPTIMALITY OF TRANSFERENCE PLANS 41

B.3. Decomposition of measures with 0 marginals. In this section we decompose a measure with
0 marginals into its cyclic or essentially cyclic part and acyclic part. The decomposition is not unique,
even if we can determine if a perturbation is cyclic, essentially cyclic or acyclic.

Let Λ be the convex closed set of Borel measures on [0, 1]2 with 0 marginals:

(B.4) Λ :=
{

λ ∈ M([0, 1]d) : (Pi)♯λ = 0, i = 1, 2
}

.

In the following we restrict to d = 2, in view of applications to the transport problem in [0, 1]2.

Definition B.4. We define the following sets.
The configuration set

Cn :=

{

w ∈ [0, 1]2n : P2i−1w 6= (P2i+1 mod 2n)w, P2iw 6= (P2i+2 mod 2n)w, i = 1, . . . , n

}

.

The phase set

Dn :=

{

z ∈ [0, 1]4n : (P4i−1, P4i)z = (P4i+1 mod 4n, P4i−2)z, i = 1, . . . , n

}

.

The set of finite cycles of arbitrary length D∞

D∞ :=

{

z ∈ [0, 1]2N : (P4i−1, P4i)z = (P4i+1, P4i−2)z, ∃k : P4k+iz = Piz, i ∈ N

}

.

The projection operator

q : [0, 1]4n → [0, 1]2n, (P2i−1, P2i)q(z) = (P4i−3, P4i−2)z, i = 1, . . . , n.

The reduced phase set

D̃n := q−1(Cn) ∩Dn.

The narrow configuration set and narrow phase space

(B.5) Ĉn :=

{

w ∈ [0, 1]2n : (P2i−1, P2i)w 6= (P2j−1, P2k)w, i 6= j, k

}

, D̂n := q−1(Ĉn) ∩Dn.

Remark B.5. The following remarks are straightforward.

(1) The set Cn is open not connected in [0, 1]2n, and its connected components are given by the
family of sets

Cn,I :=

{

w ∈ [0, 1]2n : P2i−1w ≷ (P2i+1 mod 2n)w, P2iw ≷ (P2i+2 mod 2n)w, i = 1, . . . , n

}

for the 4 possible choices of the inequalities and of i ∈ {1, . . . , n}.
(2) The set Dn is compact connected, and the set D̃n can be written as

D̃n :=

{

z ∈ [0, 1]4n : (P4i−1, P4i)z = (P4i+1 mod 4n, P4i−2 mod 4n)z,

P4i−3z 6= (P4i+1 mod 4n)z, P4i−2z 6= (P4i+2 mod 4n)z, i = 1, . . . , n

}

.

(3) Both sets Cn and Dn are invariant for the cyclical permutation of coordinates T defined by
(Pi+2 mod n)(Tw) = Piw, i = 1, . . . , 2n in [0, 1]2n and by q−1Tq on Dn.

(4) The narrow phase set is made by cycles of length exactly n.

We give now the following definitions.

Definition B.6. A measure λ is n-cyclic if there exists m ∈ M+(Cn) such that

(B.6) λ+ =
1

n

∫

Cn

n∑

i=1

δP(2i−1,2i)wm(dw), λ− =
1

n

∫

Cn

n∑

i=1

δP(2i+1,2i mod 2n)wm(dw).

A n-cyclic measure λ is a simple n-cycle if m is supported on a set q(Q) with

Q =

{

z ∈ Dn : (P4i−3, P4i−2)z ∈ (xi, yi) + [−ǫ, ǫ]2,min
i,j

{
|xi − xj |, |yi − yj |

}
≥ 2ǫ

}

.
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A measure λ is cyclic if there exist mn ∈ M+(Cn), n ∈ N, such that
∑

nmn(Cn) <∞ and

(B.7) λ+ =
∑

n

1

n

∫

Cn

n∑

i=1

δP(2i−1,2i)wmn(dw), λ− =
∑

n

1

n

∫

Cn

n∑

i=1

δP(2i+1 mod 2n,2i)wmn(dw).

From the definition of simple n-cycles it follows that there are disjoint 2n sets (xi, yi) + [−ǫ, ǫ]2,
(xi+1 mod n, yi) + [−ǫ, ǫ]2, i = 1, . . . , n, such that

λ+

( n⋃

i=1

(xi, yi) + [−ǫ, ǫ]2
)

+ λ−
( n⋃

i=1

(xi+1 mod n, yi) + [−ǫ, ǫ]2
)

= ‖λ‖.

The next lemma is a simple consequence of the separability of [0, 1]4n and the fact that Ĉn is open.

Lemma B.7. Each n-cyclic measure λ of the form

λ+ =
1

n

∫

Ĉn

n∑

i=1

δP(2i−1,2i)wm(dw), λ− =
1

n

∫

Ĉn

n∑

i=1

δP(2i+1,2i mod 2n)wm(dw)

can be written as the sum of simple n-cycles λi so that

λ+ =
∑

i

λ+
i , λ− =

∑

i

λ−i .

B.3.1. n-cyclic components of a measure. Consider the Jordan decomposition of λ ∈ Λ,

λ = λ+ − λ− λ+ ⊥ λ−, λ+, λ− ≥ 0,

and the Borel sets A+, A− of the Hahn decomposition:

A+ ∩A− = ∅, A+ ∪A− = [0, 1]2, λ+ = λxA+ , λ− = λxA− .

Define then

(B.8) µ2i−1 := λ+, µ2i := λ−,

with i = 1, . . . , n.
From Theorem B.2 and the fact that Dn is compact, the following proposition follows.

Proposition B.8. Let µi as in (B.8). There exists a solution to the marginal problem, for n ∈ N,

(B.9) max
{

π(D̃n) : π ∈ Π(µ1, . . . , µ2n)
}

= min

{ 2n∑

i=1

∫

[0,1]2
hiµi :

2n∑

i=1

hi((P2i−1, P2i)z) ≥ χD̃n
(z)

}

.

Proof. It is enough to prove that Dn is in the equivalence class of D̃n w.r.t. ∼dist: from this it follows
that for every measure in Π(µi) one has π(Dn) = π(D̃n), and then one can apply Theorem B.2.

Step 1. By definition

Dn \ D̃n⊂
n⋃

i=1

{

z : P4i−3z = (P4i+1 mod 4n) or P4i−2z = (P4i+2 mod 4n)z

}

,

so that if z ∈ Dn \ D̃n for at least one i

(B.10) (P4i−3, P4i−2)z = (P4i−1, P4i)z or (P4i−1, P4i)z = (P4i+1 mod 4n, P4i+2 mod 4n)z.

Step 2. Consider the functions, for i = 1, . . . , n,

f2i−1 = χ[0,1]2\A+ , f2i = χ[0,1]2\A− .

Since f2i−1 + f2i ≥ 1, it follows from (B.10) that
n∑

i=1

f2i−1

(
(P4i−3, P4i−2)z

)
+ f2i

(
(P4i−1, P4i)z

)
≥ χDn\D̃n

.

Step 3. Since λ+(A−) = λ−(A+) = 0, then
n∑

i=1

∫

[0,1]2
f2i−1µ2i−1 +

∫

[0,1]2
f2iµ2i =

n∑

i=1

λ+(A−) + λ−(A+) = 0.

Hence dist(Dn, D̃n) = 0. �
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We now define the n-cyclic components of λ.

Definition B.9. Let π be a maximizer for (B.9) and define the measure

λn :=
1

n

n∑

i=1

(P4i−3, P4i−2)♯πxD̃n
− 1

n

n∑

i=1

(P4i−1, P4i)♯πxD̃n
.

We say that λn is the (or better a) n-cyclic component of λ.

Remark B.10. The following are easy remarks.

(1) 0 ≤ λ+
n ≤ λ+ and 0 ≤ λ−n ≤ λ−: in fact, by construction

0 ≤ (P4i−3, P4i−2)♯πxD̃n
≤ λ+, 0 ≤ (P4i−1, P4i)♯πxD̃n

≤ λ+.

Moreover, by the definition of Dn, it follows that
∣
∣(P4i−3, P4i−2)♯πxD̃n

∣
∣ =

∣
∣(P4i−1, P4i)♯πxD̃n

∣
∣ = π(Dn),

so that |λn| = 2π(Dn).
(2) If π is a maximum, also the symmetrized measure

π̃ :=
1

n

n−1∑

i=0

(

T ◦ · · · ◦ T
︸ ︷︷ ︸

i−times

)

♯
π

is still a maximum. For this measure π̃ it follows that

(B.11) λn = (P4i−3, P4i−2)♯π̃xD̃n
−(P4i−1, P4i)♯π̃xD̃n

for all i = 1, . . . , n. In particular, if we consider again the problem (B.9) with λ±n as marginals
in (B.8), then π̃ is still a maximum. However, there are maxima which are not symmetric,
and for which the projection on a single component does not exhibit a cyclic structure, as in
Example B.17.

(3) The n-cyclic component of λ is a n-cyclic measure, as one can see by the trivial disintegration

π =

∫

Cn

δq−1(w)m(w), m(w) := (q♯π)(w).

Conversely, if λ is n-cyclic, then πxDn
= (q−1)♯m is a maximum for the problem (B.9).

Note that the condition

λ =
1

n

∫

Cn

n∑

i=1

(

δP(2i−1,2i)w − δP(2i+1 mod 2n,2i)w

)

m(dw)

is not sufficient, because of cancellation, as it can be easily seen by the measure

λ =





1 −1 0
−1 1 0
0 0 0



+





0 0 0
0 −1 1
0 1 −1



 =





1 −1 0
−1 0 1
0 1 −1



 .

(4) If λn = 0, it follows from the duality stated in Theorem B.2 that Dn is cross negligible, so that
there exists Borel sets Ni, i = 1, . . . , n such that

λ+(N2i−1) = λ−(N2i) = 0 and Dn ⊂
2n⋃

i=1

(Pi)
−1(Ni).

Hence the sets

N+ =

n⋃

i=1

N2i−1, N− =

n⋃

i=1

N2i

still satisfy λ+(N+) = λ−(N−) = 0 and

Dn ∩
n⋂

i=1

(P2i−1)
−1(N+)c ∩ (P2i)

−1(N−)c = ∅.
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We thus conclude that if λn = 0 there exist Borel sets A+, A− such that λ+ is concentrated in A+,
λ− is concentrated in A− and there is no n-cycle {(xi, yi), i = 1, . . . , n} such that (xi, yi) ∈ A+

and (xi+1 mod n, yi) ∈ A− for all i = 1, . . . , n.

Define the measure λ6n := λ− λn.

Lemma B.11. The n-cyclic component of λ6n is zero. Equivalently, λ6n satisfies

(B.12) max
{

π(D̃n), π ∈ Π(µ1, . . . , µ2n)
}

= 0

for the marginal problem

µi =

{

λ+
6n i odd

λ−6n i even
.

Proof. If in (B.12) we have a positive maximum π′, then we can assume this maximum to be symmetric,
so that (B.11) holds. Let π be a symmetric positive maximum of the original (B.9): by construction we
have that

0 ≤ λ+
n = (P(1,2))♯πxDn

≤ λ+, 0 ≤ λ−n = (P(3,4))♯πxDn
≤ λ−

0 ≤ (P(1,2))♯π
′ ≤ λ+ − λ+

n , 0 ≤ (P(3,4))♯π
′ ≤ λ− − λ−n ,

so that

0 ≤ λ+
n + (P(1,2))♯π

′ = (P(1,2))♯(π + π′) ≤ λ+, 0 ≤ λ−n + (P(3,4))♯π
′ = (P(3,4))♯(π + π′) ≤ λ−,

and (π + π′)(Dn) > π(Dn), contradicting the maximality of π. �

A measure can be decomposed into a cyclic and an acyclic part by removing n-cyclic components for
all n ∈ N (see Remark B.13). However, when removing a n-cyclic component the m-cyclic components
are affected, for m 6= n. More clearly, the following observations are in order.

For all n, k ∈ N one has

max
{

π(D̃n), π ∈ Π(µ1, . . . , µ2n)
}

≤ max
{

π(D̃kn), π ∈ Π(µ1, . . . , µ2kn)
}

,

because if π1 is a measure in Π(µ1, . . . , µ2n), then the measure

π2 =
(

In, . . . , In
︸ ︷︷ ︸

k−times

)

♯
π1

belongs to Π(µ1, . . . , µ2kn) and π2(D̃kn) = π2(Dkn) = π1(Dn) = π1(D̃n).
However, in general

max
{

π(D̃n), π ∈ Π(µ1, . . . , µ2n)
}

+ max
{

π(D̃n), π ∈ Π(ν1, . . . , ν2kn)
}

< max
{

π(D̃kn), π ∈ Π(µ1, . . . , µ2kn)
}

,

where we define

νi =

{

λ+
6n i odd

λ−6n i even
µi =

{

λ+ i odd

λ− i even
.

This can be seen in Example B.17, by taking n = 2 and k = 4: in fact for any choice of the maximal
solution for n = 2 the remaining measure λ− λ62 does not contain any cycle of length 8, while λ itself is
a cycle of length 8. It follows

max
{

π(D̃n) : π ∈ Π(µ1, . . . , µ2n)
}

+ max
{

π(D̃n) : π ∈ Π(ν1, . . . , ν2kn)
}

= 2

< 8 = max
{

π(D̃kn) : π ∈ Π(µ1, . . . , µ2kn)
}

.

An even more interesting example is provided in Example B.18, where it is shown that a measure can
be decomposed into a cyclic and an acyclic part in different ways, and the mass of each part depends on
the decomposition one chooses.
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B.3.2. Cyclic and essentially cyclic measures. Given a sequence of marginals µi, let

Π∞({µi}i) =

{

π ∈ P([0, 1]2N) : (Pi)♯π = µi, i ∈ N

}

,

Consider following problem in [0, 1]2N:

sup
{

π(D∞), (P2i−1)♯π = λ+, (P2i)♯π = λ−, i ∈ N
}

.

Definition B.12. We say that a measure λ ∈ Λ is essentially cyclic if

sup
{

π(D∞), (P2i−1)♯π = λ+, (P2i)♯π = λ−, i ∈ N
}

= λ+([0, 1]2) = λ−([0, 1]2).

It is clear that if λ is cyclic, then the maximum exists, and viceversa (Remark B.10, Point (3), observing
that Dn →֒ D∞). If λ is acyclic, then the supremum is equal to 0. Since D∞ is not closed in [0, 1]2N, we
cannot state that such a maximum exists.

Remark B.13. We now construct a special decomposition, whose cyclic part however is not necessary
maximal.

Define recursively the marginal problem in Dn by

(B.13) µ2n−1 := λ+ −
n−1∑

i=2

λ+
i µ2n := λ− −

n−1∑

i=2

λ−i ,

where λi is given at the i-th step and λn is obtained by

λn :=
1

n

n∑

i=1

(P4i−3, P4i−2)♯πxD̃n
− 1

n

n∑

i=1

(P4i−1, P4i)♯πxD̃n

solving the problem

(B.14) max
{

π(D̂n), π ∈ Π(µ1, . . . , µ2n)
}

= min

{ 2n∑

i=1

∫

[0,1]2
hi(x)µi,

2n∑

i=1

hi((P2i−1, P2i)z) ≥ χD̂n

}

.

Let {πn}n∈N be the sequence of maxima for (B.14). There is a canonical way to embed πn in Π∞({µi}i),
with µi given by (B.13) for i ∈ N (here we assume that ‖λ‖ = 2). In fact, it is enough to take

Tn : [0, 1]4n → [0, 1]2N, z 7→ Tn(z) = (z, z, z, . . . ), π̃n = (Tn)♯πn.

Hence the measure π̃ =
∑

n π̃n belongs to π∞, the series being strongly converging, and since every map
Tn takes values in D∞, the measure π̃ satisfies

π̃(D∞) =
∑

n

πn(Dn).

Example B.18 implies that in general π̃ it is not a supremum.
Similarly, the measures

∑n
i λ

+
i ,
∑n

i λ
−
i are strongly convergent to measures λ+

c , λ−c .
The sets Dn are cross negligible for the marginals

µi =

{

λ+
a = λ+ − λ+

c i odd

λ−a = λ− − λ−c i even

This follows easily from (B.12) and the fact that the series of λn is converging.
Hence, from Point (4) of Remark B.10, one concludes that λ+

a , λ−a are supported on two disjoint
sets A+

a , A−
a , respectively, so that there are no closed cycles {(xi, yi), i = 1, . . . , n}, n ∈ N, such that

(xi, yi) ∈ A+
a and (xi+1, yi) ∈ A−

a for all i = 1, . . . , n and (xn+1, yn+1) = (x1, y1).
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B.3.3. Perturbation of measures. For a measure π ∈ P([0, 1]2) and an analytic set A ⊂ [0, 1]2 such that
π(A) = 1, we give the following definition.

Definition B.14. A cyclic perturbation on A of the measure π is a cyclic, nonzero measure λ concentrated
on A and such that λ− ≤ π.

Proposition B.15. If there is no cyclic perturbation of π on A, then there is Γ with π(Γ) = 1 such that
for all finite sequences (xi, yi) ∈ Γ, i = 1, . . . , n, with xi 6= xi+1 mod n and yi 6= yi+1 mod n it holds

{

(xi+1, yi), i = 1, . . . , n, xn+1 = x1

}

6⊂ A.

Proof. Define the set on n-cycles in A as

Cn,A := q

(

Dn ∩
2n∏

A

)

.

The fact that there is no cyclic perturbation means that for all n ∈ N

sup
{

m(q(Dn ∩ Π2nA)) : m ∈ Π(π, . . . , π)
}

= 0.

Then Cn,A is cross-negligible by Theorem B.2: there exist π-negligible sets Ni such that
( n∏

Γ \ (∪iNi)
)

∩ Cn,A = ∅.

The set Γ \ (∪iNi) satisfies the statement of the proposition. �

Let c ≥ 0 be a Π1
1-cost function: in the next proposition we follow the ideas of [3], which reduce to

ones in [17] for atomic marginals (see [13] for the general result).

Proposition B.16. If there is no cyclic perturbation λ of π such that I(π + λ) < I(π), then there is Γ
with π(Γ) = 1 such that for all finite sequences (xi, yi) ∈ Γ, i = 1, . . . , I, xI+1 := x1 it holds

(B.15)

I∑

i=1

[
c(xi+1, yi) − c(xi, yi)

]
≥ 0.

Proof. Let Γ a σ-compact carriage of π such that cxΓ is Borel. The set

Zn =

{

(x1, y1, . . . , xn, yn) ∈ Γn :

n∑

i=1

[
c(xi+1, yi) − c(xi, yi)

]
< 0

}

∩ Cn

is analytic: in fact, being the sum of a Borel function and an Π1
1-function, the function

n∑

i=1

[
c(xi+1, yi) − c(xi, yi)

]

is a Π1
1-function.

The fact that there is no cyclic perturbation λ of π which lowers the cost I means that for all n

sup
{
m(Zn) : m ∈ Π(π, . . . , π)

}
= 0,

otherwise the projected measure λ given by (B.6) satisfies
∫

cλ =

∫

Zn

1

n

n∑

i=1

[
c(xi+1, yi) − c(xi, yi)

]
m(dx1dy1 . . . dxndyn) < 0

contradicting optimality of π, as π + λ would be a transference plan with lower cost.
Theorem B.2 implies that there are π-negligible sets Nn,i ⊂ [0, 1]2, i = 1, . . . , n, such that

Zn ⊂
n⋃

i=1

(P2i−1,2i)
−1(Nn,i).

The set Γ \ ∪ni=1Nn,i satisfies then (B.15) for cycles of length I ≤ n. The c-cyclically monotone set Γ
proving the proposition is finally Γ \ ∪n ∪ni=1 Nn,i. �
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B.4. Examples. We give some examples.

Example B.17. Here we show that there are maxima of the problem (B.9) which are not symmetric,
and for which the projection on a single component does not exhibit any cyclic structure. Consider the
following example (since the measures are atomic, we use a matrix notation):

λ =











0 0 0 0 0 1 −1
0 1 0 0 −1 0 0
1 −1 0 0 1 −1 0
−1 1 0 −1 0 0 1
0 −1 1 0 0 0 0
0 0 −1 1 0 0 0











It is easy to verify that the maximum in the problem (B.9) with n = 2 is 2, by just considering the
functions

h1 = h3 = 1 − χsuppλ+ , h2 = h4 = 1 − χsuppλ− + δ{3,2},

and that a maximizer is the measure:

π̄xD̃2
= δ({3,1},{3,2},{4,2},{4,1}) + δ({2,2},{2,5},{3,5},{3,2}).

It follows that λ2 6= (P1, P2)♯π̄xD̃2
−(P3, P4)♯π̄: indeed

(P1, P2)♯π̄xD̃2
−(P3, P4)♯π̄xD̃2

=











0 0 0 0 0 0 0
0 1 0 0 −1 0 0
1 −1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0











.

Conversely the symmetrized measure yields

λ2 =











0 0 0 0 0 0 0
0 1/2 0 0 −1/2 0 0

1/2 −1 0 0 1/2 0 0
−1/2 1/2 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0











.

This example proves also that we do not have uniqueness, by just observing that
{
π : π(D2) = 2, π ∈ Π(λ+, λ−, λ+, λ−)

}

=

{

α1δ({3,1},{3,2},{4,2},{4,1}) + α2δ({4,2},{4,1},{3,1},{3,2})

+ α3δ({2,2},{2,5},{3,5},{3,2}) + α4δ({3,5},{3,2},{2,2},{2,5}), αi ≥ 0,

4∑

i=1

αi = 1

}

.

Hence the symmetrized set of π and the projected set are
{

α1

(

δ({3,1},{3,2},{4,2},{4,1}) + δ({4,2},{4,1},{3,1},{3,2}))
)

+ α2

(

δ({2,2},{2,5},{3,5},{3,2}) + δ({3,5},{3,2},{2,2},{2,5})

)

, αi ≥ 0,

2∑

i=1

αi =
1

2

}

,







α1











0 0 0 0 0 0 0
0 1 0 0 −1 0 0
0 −1 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0











+ α2











0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 −1 0 0 0 0 0
−1 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0











, αi ≥ 0,

2∑

i=1

αi = 1







.
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Example B.18. Here we decompose the measure

λ :=











0 0 0 0 −m1 m1

−m1 0 0 m1 m1 −m1

0 0 0 −m2 m1 0
m1 −m1 0 0 0 0
0 m1 −m1 0 0 0
0 0 m1 0 −m1 0











into an essentially cyclic and an acyclic part in two different ways, and the two acyclic part will not even
have the same mass. Let

m1 := (I, I)♯L1x[0,a], m2 := (I + α mod a, I)♯L1x[0,a],

with α ∈ R \ Q. Depending on n = 2 or n = 4 we obtain the following two decompositions:

λ =











0 0 0 0 −m1 m1

0 0 0 0 m1 −m1

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0











+











0 0 0 0 0 0
−m1 0 0 m1 0 0

0 0 0 −m2 m1 0
m1 −m1 0 0 0 0
0 m1 −m1 0 0 0
0 0 m1 0 −m1 0











,

λ =











0 0 0 0 0 0
−m1 0 0 0 m1 0

0 0 0 0 0 0
m1 −m1 0 0 0 0
0 m1 −m1 0 0 0
0 0 m1 0 −m1 0











+











0 0 0 0 −m1 m1

0 0 0 m1 0 −m1

0 0 0 −m2 m1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0











.

The first measure is cyclic and the second is acyclic, because of m2.

Appendix C. The c-cyclically monotone relation

Let c be a Π1
1([0, 1]2; [0,+∞])-function and let Γ be a c-cyclically monotone σ-compact set such that

cxΓ is Borel and real valued. In the following this will be the set where a transference plan is concentrated.
The next definition is not the standard one, but it is useful for our construction.

Definition C.1 (Cyclically Monotone Envelope). For a given function f : [0, 1] → (−∞,+∞] define the
c-cyclically monotone envelope of f as
(C.1)

φ(x) =







inf

{ I∑

i=0

c(xi+1, yi) − c(xi, yi) + f(x0), (xi, yi) ∈ Γ, xI+1 = x, I ∈ N

}

if the infimum is < +∞

−∞ otherwise

Similarly, for a given function g : [0, 1] → (−∞,+∞] define the c−1-cyclically monotone envelope of g
as
(C.2)

ψ(y) =







inf

{ I∑

i=0

c(xi, yi+1) − c(xi, yi) + g(y0), (xi, yi) ∈ Γ, yI+1 = y, I ∈ N

}

if the infimum is < +∞

−∞ otherwise

In the following we will denote them by

C(f) and C−1(g).

Moreover, we will often call the first case of formulas (C.1), (C.2) as the inf-formula.

Lemma C.2. If f, g belong to the ∆1
n-pointclass with n ≥ 2, then the functions φ, ψ : [0, 1] → [−∞,+∞)

belong to the ∆1
n+1-pointclass. Moreover φ(x) ≤ f(x), ψ(y) ≤ g(y) for x ∈ P1(Γ), y ∈ P2(Γ).
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Proof. The second part of the lemma holds trivially, because of the particular path (xi, yi) = (x, y) ∈ Γ
for all i.

Consider the function

φI(x0, y0, . . . , xI , yI , x) =

I∑

i=0

c(xi+1, xi) − c(xi, yi) + f(x0), (xi, yi) ∈ Γ, xI+1 = x.

Being the sum of the Π1
1 functions c(xi+1, xi)−c(xi, yi) (cxΓ is Borel) with the ∆1

n-function f , the function
φI(x0, y0, . . . , xI , yI , x) is ∆1

n with n ≥ 2.
If g(x, y) is a ∆1

n-function, then g̃(x) = infy g(x, y) satisfies

g̃−1(−∞, s) = P1(g
−1(−∞, s)) ∈ Σ1

n,

so that g̃ is in the Π1
n-pointclass.

It follows that

φI(x) = inf

{ I∑

i=0

c(xi+1, xi) − c(xi, yi) + f(x0), (xi, yi) ∈ Γ, xI+1 = x

}

is Π1
n, and finally infI φI(x) is also Π1

n. We conclude the proof by just observing that the set {x :
infI φI(x) = +∞} is in Π1

n, being the countable intersection of the Π1
n-sets {x : infI φI(x) > k}. Hence

{x : infI φI(x) < +∞} ∈ Σ1
n, so that the conclusion follows from the fact that ∆1

n+1 ⊃ Σ1
n ∪Π1

n and it is
a σ-algebra. �

Remark C.3. In the case n = 1 the same proof shows that φ, ψ are A-functions.

Definition C.4. A function f : [0, 1] → [−∞,+∞] is c-cyclically monotone if for all x, x′ ∈ [0, 1] such
that f(x) > −∞ and for all (xi, yi) ∈ Γ, i = 0, . . . , I, x0 = x, xI+1 = x′, it holds

f(x′) ≤ f(x) +

I∑

i=0

c(xi+1, yi) − c(xi, yi).

Similarly, a function g : [0, 1] → [−∞,+∞] is c−1-cyclically monotone if for all y, y′ ∈ [0, 1] such that
g(y) > −∞ and for all (xi, yi) ∈ Γ, i = 0, . . . , I, y0 = y, yI+1 = y′, it holds

g(y′) ≤ g(y) +

I∑

i=0

c(xi, yi+1) − c(xi, yi).

The following are well known results: we give the proof for completeness. We recall that for any
function h : [0, 1] 7→ [−∞,+∞] the set Fh is the set where h is finite:

(C.3) Fh := h−1(R) =
{
x ∈ [0, 1] : h(x) ∈ R

}
.

Lemma C.5. Let f : [0, 1] → (−∞,+∞] (g : [0, 1] → (−∞,+∞]). Then following holds:

(1) The function φ := C(f) (ψ := C−1(g)) defined in (C.1) (in (C.2)) is c-cyclically monotone (c−1-
cyclically monotone).

(2) If f is c-cyclically monotone (g is c−1-monotone), then φ(x) = f(x) on Ff ∩P1(Γ) (ψ(x) = g(x)
on Fg ∩ P2(Γ)).

(3) If we define the function
(C.4)

g′(y) =

{

c(x, y) − φ(x) (x, y) ∈ (Fφ × [0, 1]) ∩ Γ

+∞ otherwise

(

f ′(x) =

{

c(x, y) − ψ(y) (x, y) ∈ ([0, 1] × Fψ) ∩ Γ

+∞ otherwise

)

then g′ is c−1-cyclically monotone (f ′ is c-cyclically monotone) and belongs to the ∆1
n+1-pointclass

if f is in the ∆1
n-pointclass (belongs to the ∆1

n-pointclass if g is in the ∆1
n+1-pointclass).

A part of the statement is that c(x, y) − φ(x) does not depend on x for fixed y in (Fφ × [0, 1]) ∩ Γ
(c(x, y) − ψ(y) does not depend on y for fixed x in ([0, 1] × Fφ) ∩ Γ).

Remark C.6. If φ, ψ are A-functions, it is fairly easy to see that g′, f ′ are A-functions.
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Proof. The proof will be given only for φ, the analysis for ψ being completely similar.
Point (1). The first part follows by the definition: for any axial path as in Definition C.4 we have

φ(x) +

I∑

i=0

c(xi+1, yi) − c(xi, yi)

= inf

{ I′∑

i=0

c(xi+1, xi) − c(xi, yi) + f(x0), (xi, yi) ∈ Γ, xn+1 = x, I ′ ∈ N

}

+

I∑

i=0

c(xi+1, yi) − c(xi, yi)

≥ inf

{ I′+I∑

i=0

c(xi+1, xi) − c(xi, yi) + f(x0), (xi, yi) ∈ Γ, xI′+I+1 = x′, I ′ ∈ N

}

≥ φ(x′).

Notice that we have used that φ(x) > −∞ to assure that its value is given by the inf-formula.
Point (2). The second point follows by the definition of c-cyclical monotonicity: first of all, if x ∈

Ff ∩ P1(Γ), the value of φ is computed by the inf-formula in (C.1) by Lemma C.2. Then we have from
the c-cyclical monotonicity of f

f(x) ≤
I∑

i=0

c(xi+1, yi) − c(xi, yi) + f(x0), x0 ∈ Ff , (xi, yi) ∈ Γ, xI+1 = x.

Hence we obtain φ(x) ≥ f(x), and using Lemma C.2 we conclude the proof of the second point.
Point (3). Assume that for y fixed there are x, x′ ∈ Fφ such that (x, y) ∈ Γ and

c(x, y) − φ(x) ≥ c(x′, y) − φ(x′) + ǫ.

Then, since x, x′ ∈ Fφ, there are points (xi, yi) ∈ Γ, i = 0, . . . , I, xI+1 = x such that

I∑

i=0

c(xi+1, xi) − c(xi, yi) + f(x0) < φ(x) +
ǫ

2
.

Add then the point (xI+1, yI+1) = (x, y) ∈ Γ to the previous path: the definition of φ implies then for
xI+2 = x′

φ(x′) ≤
I+1∑

i=0

c(xi+1, xi) − c(xi, yi) + f(x0)

= c(x′, yI+1) − c(xI+1, yI+1) +
I∑

i=0

c(xi+1, yi) − c(xi, yi) + f(x0)

< c(x′, y) − c(x, y) + φ(x) +
ǫ

2
,

yielding a contradiction. This shows that the definition of g makes sense.
The proof of the c-cyclical monotonicity is similar: assume that there exist points (xi, yi) ∈ Γ, i =

0, . . . , I, such that g′(y0) > −∞ and

g′(y′) > g′(y) +

I∑

i=0

c(xi, yi+1) − c(xi, yi), y0 = y, yI+1 = y′

Using the fact that g′(y), g′(y′) > −∞, it follows that there exists (x, y), (x′, y′) ∈ (Fφ × [0, 1]) ∩ Γ such
that g′(y) = c(x, y) − φ(x), g′(y′) = c(x′, y′) − φ(x′) so that for (xI+1, yI+1) = (x′, y′), (x0, y0) = (x, y)

g′(y′) > g′(y) +

I∑

i=0

c(xi, yi+1) − c(xi, yi)

= c(x, y) − φ(x) + c(x′, y′) +

I+1∑

i=1

c(xi−1, yi) − c(xi, yi) − c(x0, y0)

≥ c(x′, y′) − φ(x) − φ(x′) + φ(x)

= c(x′, y′) − φ(x′) = g′(y′),

yielding a contradiction. We have used the c-cyclical monotonicity of φ.



ON THE EXTREMALITY, UNIQUENESS AND OPTIMALITY OF TRANSFERENCE PLANS 51

Finally, since cxΓ is Borel, then it follows immediately that g′ is in the ∆1
n+1-pointclass. �

For fixed (x̄, ȳ) ∈ Γ, we can thus define recursively for i ∈ N0 the following sequence of functions ψ2i,
φ2i+1.

(1) Set ψ0(y; x̄, ȳ) = −1Iȳ(y) ∈ ∆1
1.

(2) Assume that ψ2i(x̄, ȳ) ∈ ∆1
2i+1 is given. For i ∈ N0, define then the function φ2i+1(x; x̄, ȳ) as

(C.5) φ2i+1(x̄, ȳ) = C

(
(ψ2i)

′(x̄, ȳ)
)
∈ ∆1

2i+2,

where (ψ2i(x̄, ȳ))
′ ∈ ∆1

2i+1 is defined in (C.4).

(3) Similarly, if φ2i+1(x̄, ȳ) ∈ ∆1
2i+2 is given, define

(C.6) ψ2i+2(x̄, ȳ) = C−1

(
(φ2i+1)

′(x̄, ȳ)
)
∈ ∆1

2i+3.

Note that φ2i+1 is a ∆1
2i+2-function, ψ2i+2 is a ∆1

2i+3-function for i ∈ N0 (Lemma C.5), so that the
sets

(C.7) A2i+1(x̄, ȳ) = Fφ2i+1(x̄,ȳ), B2i+2(x̄, ȳ) = Fψ2i+2(x̄,ȳ), i ∈ N0,

are in ∆1
2i+2, ∆1

2i+3, respectively.
From Lemma C.5 it follows the next corollary.

Corollary C.7. If φ2i+1(x, x̄, ȳ), ψ2i(y, x̄, ȳ) are constructed by (C.5), (C.6) and A2i+1(x̄, ȳ), B2i(x̄, ȳ)
are defined by (C.7), then the following holds:

(1) A2i+1 ⊂ A2j+1, B2i ⊂ B2j if i ≤ j, and

φ2j+1(x̄, ȳ)xA2i+1(x̄,ȳ)= φ2i+1(x̄, ȳ), ψ2j(x̄, ȳ)xA2i(x̄,ȳ)= ψ2i(x̄, ȳ).

(2) A1(x̄, ȳ) ⊇ P1(Γ ∩ ([0, 1]× {ȳ})) and in general

A2i+1(x̄, ȳ) ⊇ P1

((
[0, 1]×B2i(x̄, ȳ)

)
∩ Γ
)

, B2i+2(x̄, ȳ) ⊇ P2

((
A2i+1(x̄, ȳ) × [0, 1]

)
∩ Γ
)

.

(3) On the set (A2i+1(x̄, ȳ) × A2j(x̄, ȳ)) ∩ Γ it holds

φ2i+1(x, x̄, ȳ) + ψ2j(x, x̄, ȳ) = c(x, y).

Proof. Point (1). Point (3) of Lemma C.5 implies that at each step we are applying formula (C.1) to the
c-cyclically monotone function c(x, y) − ψ2i(y) or the c−1-cyclically monotone c(x, y) − φ2i+1(y). From
Point (2) of the same lemma we deduce Point (1).

Point (2). The second point is again a consequence of the c-cyclically monotonicity or c−1-cyclically
monotonicity of the functions c(x, y) − ψ2i(y), c(x, y) − φ2i+1(y) on the set ([0, 1] × B2i(x̄, ȳ)) ∩ Γ,
(A2i+1(x̄, ȳ) × [0, 1]) ∩ Γ, respectively.

Point (3). The last point follows from Point (2) by Lemma C.5. �

For all (x, y) ∈ Γ, define the set Γ(x,y) as

Γ(x,y) := Γ ∩
(
⋃

i

A2i+1(x, y) ×B2i(x, y)

)

.

Observe that under (PD) Γ(x,y) is measurable for all Borel measures (Section B.1).

We then define the following relations in [0, 1]2.

Definition C.8 (c-cyclically monotone relation). We say that (x, y)R(x′, y′) if (x′, y′) ∈ Γ(x,y). We call
this relation R the c-cyclically monotone relation.

Clearly Ē ⊂ R, where Ē is the closed cycle equivalence relation given in Definition 5.4: actually the
equivalence class of (x̄, ȳ) w.r.t. Ē is already contained in (A1 × [0, 1]) ∩ Γ.

Remark C.9. The following are easy observations.

(1) If (x, y)R(x′, y′), then from Point (2) of Corollary C.7 also (x, y)R(Γ ∩ ({x′} × [0, 1])) and
(x, y)R(Γ ∩ ([0, 1] × {y′})): this means that Γ satisfies the crosswise condition w.r.t. R (Defi-
nition 2.3). In particular to characterize R it is enough to define the projected relations

xR1x
′ ⇔ x′ ∈

⋃

i∈N0

A2i+1(x, y), yR2y
′ ⇔ y′ ∈

⋃

i∈N0

B2i(x, y).
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(2) The relation R is nor transitive neither symmetric, as the following example shows (see Figure 7).
Consider the cost

c(x, y) =







0 (x, y) ∈ A

1 −
√

x− y − 7/8 7/8 ≤ y + 7/8 ≤ x ≤ 1

+∞ otherwise

where

A =
{

(0, 0), (0, 1/4), (0, 1/2), (1/4, 1/2), (1/2, 1/2), (1/2, 3/4), (1/2, 1), (3/4, 1), (1, 1)
}

.

Let Γ be the set

Γ =
{
(0, 1/4), (1/4, 1/2), (1/2, 3/4), (3/4, 1)

}
∪
{
(x, x− 7/8), x ∈ [7/8, 1]

}
.

It is easy to see that

Γ(1/4,1/2) = Γ ∩ ({0, 1/4, 1/2, 3/4, 7/8}× [0, 1])

6= Γ ∩ ([0, 1] × {1/8, 1/4, 1/2, 3/4, 1}) = Γ(1/2,3/4).

x

y

Γ

1 −
√

x− y − 7/8

A1(1/4, 1/2)

B2(1/4, 1/2)

A1(1/2, 3/4)
B2(1/2, 3/4)

A3(1/2, 3/4)

Figure 7: The cost of Point (2) of Remark C.9.

(3) Another possible definition can for example be the following symmetric relation on Γ.

Definition C.10. We say that (x′, y′)R(x′′, y′′) if there exists Borel functions φ, ψ : [0, 1] 7→
R ∪ {−∞} such that

φ(x′) + ψ(y′) = c(x′, y′), φ(x′′) + ψ(y′′) = c(x′′, y′′), φ(x) + ψ(y) ≤ c(x, y)∀(x, y).

However, the following points are in order.
(a) The relation R depends deeply on the choice of Γ.
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(b) We observe that even if Rx = {y : yRx} = [0, 1] for some x, this does not mean that the
measure is optimal. As an example, consider (Figure 8)

c(x, y) =







1 0 < x = y < 1

0 1 > x = y − α mod 1

0 y = 0

+∞ otherwise

with α ∈ [0, 1] \ Q, and the transport problem µ = δ1 + L1, ν = δ0 + L1. The transference
plan π = δ(1,0) + (I, I)♯L1 is clearly not optimal, but since the set

Γ =
{
(x, x), x ∈ [0, 1)

}
∪ {(1, 0)}

has not closed cycles, it follows that it is c-cyclically monotone and moreover R1 = [0, 1].

x

y

0

0

1

1

Figure 8: The cost function considered in Point (d) at Page 53

The main use of the c-cyclically monotone relation R is that any crosswise equivalence relation whose
graph is contained in R and such that the disintegration is strongly consistent can be use to apply
Theorem 5.6: the relation Ē of Definition 5.4 is a possible choice. Note that the strong consistency of
the disintegration allows to replace the universally measurable equivalence classes with Borel one, up to
a π-negligible set.

Remark C.11. Under (CH) we can give a procedure to construct an equivalence relation E′ ⊂ R maximal
w.r.t. inclusion: if Rα, α ∈ ω1, is an ordering of the partition R(x̄,ȳ) = {(x, y) : (x̄, ȳ)R(x, y)}, one then
defines the partition

Eα = Γ ∩
[(

P1Rα \
⋃

β<α

P1Rβ

)

× [0, 1]

]

.

Being Rβ universally measurable and ♯{β < α} = ω0, we have that each Eα is universally measurable.
Moreover it is a partition, and from the definition of R it follows that in each class there are optimal φ,
ψ. Finally it is clearly maximal w.r.t. graph inclusion among all equivalence relations containing Ē and
contained in R.
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However, the graph of the above well ordering 4 of R cannot be m⊗m-measurable for any non purely
atomic measure m (see Example C.12 below).

Example C.12. Under (CH), there exists a well ordering 4 of [0, 1] such that ♯{x : x 4 y} ≤ ℵ0 (see the
construction of Remark C.11). Denoting with ma the absolutely continuous part of m, one has therefore

ma({x : x 4 y}) = 0

for all y ∈ R. If the graph R of 4 is m ⊗m-measurable, then it is ma ⊗ma-measurable and by Fubini
Theorem ma ⊗ma(R) = 0 (see Lemma 4.14). This means that m is purely atomic.

Appendix D. Notation

B or B(X) Borel σ-algebra of the topological space (X, T )
M(X) or M(X,Ω) signed measures on a measurable space (X,Ω)
M+(X) or M+(X,Ω) positive measures on a measurable space (X,Ω)
P(X) or P(X,Ω) probability measures on a measurable space (X,Ω)
L(µ; J) µ-measurable maps from the measure space (X,Ω, µ) to J ⊂ R ∪ {±∞}
Π(µ1, . . . , µI) π ∈ P(ΠI

i=1Xi,⊗Ii=1Σi) with marginals (Pi)♯π = µi ∈ P(Xi)
Π≤(µ1, . . . , µI) π ∈ M(ΠI

i=1Xi,⊗Ii=1Σi), π ≥ 0, with (Pi)♯π ≤ µi ∈ P(Xi)
Πf (µ, ν) π ∈ Π(µ, ν) for which I(π) ∈ R

Πopt(µ, ν) π ∈ Π(µ, ν) for which I(π) is minimal
Pi1...iI projection of x ∈ Πk=1,...,KXk into its (i1, . . . , iI) coordinates, keeping order
dµ2/dµ1 the Radon-Nikodym derivative of (the absolutely continuous part of) µ2 w.r.t. µ1

h♯µ the push forward of the measure µ through h, h♯µ(A) = µ(h−1(A))
P(X) power set of X
I(π) cost function (1.2)
χA the characteristic function of A, x 7→ δx(A)

1IA the indicator function of A, 1IA(x) = 1−χA(x)
χA(x) ∈ {0,+∞}

A △ B the symmetric difference between two sets A, B
� the lexicographic ordering (4.3) on [0, 1]α, α ordinal number
dist(A,B) distance defined in B.2
graph(f) the graph of the function f : X → Y , graph(f) = {(x, y), y = f(x)} ⊂ X × Y
epi(f) epigraph of function f , epi(f) = {(x, y), y ≥ f(x)} ⊂ X × R

I, Id identity operator on a set and on the space Rd

Λ measures λ ∈ M([0, 1]d) with 0 marginals, see (B.4)
N,N0, Q, R natural numbers, natural numbers with 0, rational numbers, real numbers
Γ c-cyclically monotone σ-compact subset of [0, 1]2

Γ(A), Γ−1(B) the sets Γ(A) = P2(Γ ∩ P−1
1 (A)), Γ(B) = P1(Γ ∩ P−1

2 (B))
Cn configuration set of n-cycles (B.4)
Dn phase set of n-cycles (B.4)
q projection operator (B.4)

D̃n reduced phase set of n-cycles (B.4)
T cyclical permutation of coordinates, defined in Point (3) at Page 41
Ax, A

x the sections {y : (x, y) ∈ A}, {y : (y, x) ∈ A} for A ⊂ X × Y
fxA the restriction of the function f to A
µxA the restriction of the measure µ to the σ-algebra A ∩ Σ
Ld Lebesgue measure on Rd

π∗ outer measure (B.1)
‖µ‖ norm of µ ∈ M([0, 1])
|µ|, (µ)+ the nonnegative measures variation and positive part of µ ∈ M(X)
µ ∧ ν, µ ∨ ν the measures minimum and maximum of µ, ν ∈ M(X)
Θπ π-completion of the Borel σ-algebra
Θ(µ, ν) Π(µ, ν)-universal σ-algebra (1.1)
xRy, R a binary relation R over X
graph(R) graph of the binary relation R, graph(R) = {(x, y) : xRy} ⊂ X2
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x ∼ y or xEy, E an equivalence relation over X with graph E
x• equivalence class of x, x• = Ex
A• saturated set for an equivalence relation, A• = ∪x∈Ax•
X•, X/ ∼ quotient space of an equivalence relation
Σ1

1, Σ1
1(X) the pointclass of analytic subsets of Polish space X , i.e. projection of Borel sets

Π1
1 the pointclass of coanalytic sets, i.e. complementary of Σ1

1

Σ1
n, Π1

n the pointclass of projections of Π1
n−1-sets, its complementary

∆1
n the ambiguous class Σ1

n ∩ Π1
n

A σ-algebra generated by Σ1
1

A-function f : X → R such that f−1((t,+∞]) belongs to A
Fh the set where the function h is finite (C.3)
Σ1
n(Π

1
n,∆1

n)-function f : X → R such that f−1((t,+∞]) ∈ Σ1
n (Π1

n, ∆1
n)
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