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Abstract. We show how some problems coming from different fields of applied

sciences such as physics, engineering, biology, admit a common variational formu-

lation characterized by the competition of two energetic terms. We discuss related

problems and techniques studied by the authors and collaborators in the recent past

as well open problems and further possible research directions in these topics.

Keywords. Calculus of variations, shape optimization, applied variational

methods.
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1. Introduction

The main purpose of this paper relies in showing how some problems coming from

different fields of applied sciences admit a common variational formulation charac-

terized by the competition of two energetic terms. More precisely, the mathematical

problem modeling such phenomena can be put in the following general form

min

{
F(B) =

∫
B
g(x) dv +

∫
∂B

Γ(y, ν) ds, B ⊂ RN , |B| = 1

}
, (1)

where ν denotes the outward unit normal to the boundary of the set B ⊂ RN , |B| is

the volume of B, Γ(y, ν) is the surface energy density and g(x) is the volume energy

density. The main features of the problem stay in the interplay between the two

energetic contributions and, in general, its mathematical treatment is difficult since

the minimization is carried among the subsets of RN with fixed volume. Note that,

when g ≡ const, problem (1) reduces to some classical problems such as Wulff prob-

lem (crystal shape) or Newton problem (least resistance shape for a body moving in

a fluid), under suitable choices of Γ. If Γ ≡ const, then (1) corresponds to the classi-

cal problem of prescribed mean curvature. We refer to [1− 4] for an introduction to

these problems. Actually, many problems arising in material science and structural
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optimization are related to the determination of material regions minimizing certain

energy functionals. In this area, a classical problem is the equilibrium shape of a

crystal in the presence of an external field and it consists in minimizing a functional

involving bulk and interfacial energies. The literature on the subject is very exten-

sive from both the mathematical and physical sides. Here, we want to show that

some particular choices of the energy densities in problem (1) and/or some general-

izations of its formulation, can be suited to model some problems from very different

fields of applied sciences, thus producing different variational problems, which, in our

opinion, deserve a deep study in connection with important mathematical problems

in physics, engineering, biology.

2. Forces and shapes

Forces manifest themselves through their action on the matter, that means that

the presence of a force field in a material region is detectable just by the interaction

of the field with the matter. Indeed, the visualization of the force field is made by

introducing subtle materials in the influence region of the field. In such a way, it is

possible to highlight the force lines of the field and then recover its structure (see for
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instance [5]). These arguments suggest a kind of duality occurring in the interaction

between forces and matter. We try to clarify this idea and some of its consequences.

Let E ⊂ R3 be any homogeneous material region on which the force field F (x) is

supposed to act; we can model an elementary displacement or velocity of the matter

at a point x ∈ E by taking a vector field ϕ(x). Therefore, the total work done or

power expended by the force field F in the region E is given by

T (ϕ) :=

∫
E

〈F, ϕ〉 dx. (2)

Let us note that, in geometric measure theory, the relation (2), after identifying the

components of ϕ as the coefficients of a 1-form ω, gives the evaluation on E of a

1-current ω 7→ T (ω) of R3 (see [6]). By Helmholtz decomposition, we know that

any smooth vector field can be split into the sum of a curl-free and a divergence-free

components, i.e. ϕ = ∇ψ+ curl h, which induces the corresponding splitting in (2).

Then the action of the force field F on the material region E can be viewed as the

superposition of two contributions and so, by assigning an energy content, a natural

variational question is the determination of material regions minimizing such energies

related to the two contributions. Partially, this strategy is realized in the paper [7],
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where only the curl-free contribution of the displacement field is considered. This

choice corresponds to conservative (or irrotational on simply-connected regions),

displacements ϕ.

In the language of currents, in this case (2) corresponds to consider the boundary

current

∂T (f) = T (df) =

∫
E

〈F, df〉 dx,

where df is the 1-form corresponding to ∇ψ. Moreover, to deal with general not

homogeneous distributions of materials, it is natural to relax the formulation in (2)

by considering probability measures σ in place of domains E. To this aim, let us

introduce the space P(Ω) of the probability measures defined on Ω ⊂ R3. The

probability constraint is needed to deal with a fixed amount of material. The energy

considered in [7] is just the mass of the boundary current ∂T given by the functional

E(σ) = sup

{∫
Ω

〈F, df〉dσ : ‖f‖∞ ≤ 1

}
.

Therefore, if Ω ⊂ R3 plays the role of the ambient space, we are interested in

investigating the material shapes inside Ω (represented by probability measures)
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solving the following variational problem

min
{
E(σ) : σ ∈ P(Ω)

}
. (3)

Let us observe that problem (3) is strictly related to problem (1). Indeed, suppose

that F is of class C1 and assume that E ⊂ Ω is a given subset having prescribed

volume and finite perimeter, denoting by ν the outward normal unit vector. By the

Gauss-Green theorem, we have:

∫
E

〈F, df〉dx = −
∫

E

fdivFdx+

∫
∂E

fF · ν dHN−1.

Taking the supremum with respect to f such that ‖f‖∞ ≤ 1, we obtain

sup
‖f‖∞≤1

∫
E

〈df, F 〉dx =

(∫
E

|divF |dx+

∫
∂E

|F · ν| dHN−1

)
, (4)

which is a particular form of the functional F in (1) corresponding to take energy

densities both related to the same vector field. Actually, this last fact was the basic

motivation to introduce the formulation (3) in [7]. Observe that the variational

problem (3) involves a min-max procedure. In [7], the existence of solutions and

some regularity properties of problem (3) are investigated. Naturally, the optimal

shapes (minimizers of (3)) are strictly influenced by the structure of the force field
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F . For instance, if F (x̄) = 0, then an optimal shape is the atomic measure δx̄, i.e.

all the matter is concentrated in just one point. Moreover, in general, one cannot

expect the uniqueness of minimizers.

Example 2.1. Let Ω = [0, 1]2. We consider the constant vector field F (x) = e1 =

(1, 0). Let us fix x̄ ∈ Ω, x̄ = (0, x̄2). It is possible to show that both the measures

σ̃ = H1 [0, 1]⊗ δx̄2 and σ̄ = H2 [0, 1]2 are optimal shapes. Therefore, we see that,

in general, the optimal shapes can exhibit very different regularity properties.

Figure 1.

In [7], conditions on F ensuring the existence of absolutely continuous optimal

shapes are discussed. It is interesting to notice that the optimal shapes are also

influenced by the ambient space.

Example 2.2. Let v = (1/
√

2, 1/
√

2), F (x) = v and let Ω ⊂ R2 be a unit square

oriented with one edge direction equal to v. It results that the measure σ̄ = H2 Ω

is an optimal shape.

Figure 2.
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Now, we address the question of changing the ambient space. Let Ω = [0, 1]2. In

this case, the optimal shapes are absolutely continuous measures σ with density

a ∈ L1(Ω). We inscribe Ω in a square Σ with edge of length
√

2 and parallel to v

(see Figure 2). However, this time it is possible to prove that the optimal shapes are

not reached by sets of finite perimeter, while on Σ we have the optimal measures as

in Example 2.1.

If the force field has a radial structure, i.e. F = ϕ(|x|)x, then it is possible to find

radially symmetric shapes. Force fields taking the form F (x) = p|x|p−2x deserve

particular attention. In the solenoidal case, i.e. for p = −1, it turns out that the

unit ball is an optimal shape. However this is not always the case. For instance, for

p > 2 it results that there not exist absolutely continuous optimal shapes.

3. Mass reduction for elastic bodies

In this section, we study a classical problem in structural optimization (see [8, 9])

consisting in placing a hole of fixed volume inside an elastic body in equilibrium

under given external loads. In addition, we impose a failure constraint by bounding
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the maximum stress. For a deeper discussion we refer the reader to [10]. Let us

consider an elastic body occupying a regular region Ω ⊂ R3, in equilibrium under

the given traction f on the boundary ∂Ω. Its elastic state is completely determined

by the triplet (u,E, T ), representing the displacement vector, the strain tensor and

the stress tensor fields, respectively, and satisfying the kinematical condition E =

1
2
(∇u+∇uT ), the constitutive equation T = C[E] and the equilibrium conditions

div T = 0, in Ω, Tν = f, on ∂Ω, (5)

where ν is the outward unit normal to the boundary ∂Ω. According to the well

known principle of minimum of complementary elastic energy (see [11]), it results

that, at the equilibrium, the material body Ω is characterized by the energy

E(Ω) = min

{
1

2

∫
Ω

T · C−1[T ] dx | T satisfies (5)

}
.

Here we are interested in analyzing the consequence of making a hole inside Ω and

in particular, in producing this mass reduction under a failure constraint and by

optimizing a quantity which is particularly relevant for the elastic state of the body.

Let K ⊂⊂ Ω be a compact set representing the hole. By subtracting to the

body the material inside K we get a new material body Ω \ K whose equilibrium
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configuration is characterized by the elastic state (uK , EK , TK). The new stress field

TK satisfies the equilibrium conditions

div TK = 0, in Ω \K, TKν = f, on ∂Ω, TKν = 0, on ∂K. (6)

Let us notice that we cannot subtract too much material from the body without

exceeding its strength. Therefore, we need to impose a failure constraint that,

usually, takes the form of an inequality such as F (TK) ≤ C, where the choice of the

mapping F relies on constitutive assumptions. We shall assume as failure constraint

‖ TK ‖∞≤ C. (7)

We remark that, assuming the volume of the hole as the unique descriptor of the

problem is not enough. Indeed, the hole K could be placed everywhere inside Ω and

this, in general, seems not an optimal choice due to the inhomogeneity of the stress

state. Indeed, the geometry of K should be related to the stress distribution TK

and the dependence on K makes this problem difficult, since it requires the study of

the equations (6) for varying domains. To avoid this difficulty, a reasonable choice

could be to place the hole where the stress tensor T of the reference state Ω takes

lower values, in order to get a nearly uniform engagement of the material.
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By arguing as in shape optimization ([11− 14]) we are led to consider the elastic

stored energy. The following two simple assertions proved in [10] constitute the main

reason to reduce the present problem to a variational problem involving a surface

like functional.

Proposition 3.1. Let K ⊂⊂ Ω be any compact subset. Then,

E(ΩK)− E(Ω) ≥ 0.

Moreover, we also have that the energy change E(ΩK)− E(Ω) is concentrated on

the boundary of the hole K (see also [9]).

Theorem 3.2. Let K ⊂⊂ Ω be any compact subset and let (u,E, T ), (uK , EK , TK) be

the solutions of the elastic problem in the configurations Ω and Ω \K respectively.

Then,

E(ΩK)− E(Ω) =

∫
∂K

Tν · uK dHN−1. (8)

By following a direct approach, one could consider the term uK in (8) as a

state variable of an optimal control problem (see [14]) but this approach seems to be
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difficult because of the dependence of uK from the variable domain Ω\K. Therefore,

we observe that, according to (8), the energy change occurring in the body after the

creation of the hole K can be reduced to a surface like energy term localized on ∂K.

Indeed, by using the Poincaré inequality and by considering that the elastic state

uK is determined up to a constant, we have

E(ΩK)− E(Ω) =

∫
∂K

Tν · uK dHN−1 ≤ ‖uK‖∞
∫

∂K

|Tν| dHN−1

≤ C‖∇uK‖∞
∫

∂K

|Tν| dHN−1.

(9)

Now, by virtue of the failure constraint (7) and the constitutive equation, assuming

that the elasticity tensor C is invertible, we have ‖∇uK‖∞ ≤ M , for some positive

constant M . Therefore, according to (9), we can estimate the lower bound of the

energy increment due to the creation of a hole by minimizing the energy, whose

density is the norm of the stress vector acting on the boundary of the hole. Then,

we are lead to study the following minimization problem.

min

{∫
∂K

|Tν| dHN−1 | K ⊂ Ω, |K| = V

}
(10)

Let us notice that problem (10) is a Wulff like problem ([1]) for the density

Γ(x, ν(x)) = |Tν|, where | · | denotes the Euclidean norm. The Wulff problem is
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known as describing the equilibrium shape of a perfect crystal of one material in

contact with a single surrounding medium for which the dependence of the surface

energy on the normal ν relates the surface tension with the bulk crystalline lattice.

If the property

Γ(x, ν(x)) > α > 0 (11)

holds, the existence of minimizers for problem (10) can be proved by applying the

direct methods of the calculus of variations. Indeed, we have compactness among the

sets of finite perimeter and by the lower semicontinuity of the surface energy we get

minimizers. If (11) fails, the existence problem is more involved and in many cases it

is an open problem. However, for particular stress tensor T , problem (10) could be

reduced to problem (3) for a vector field having constant divergence. For instance, as

one expects, for stress tensor T having eigenvalues given by λi = λxi, i = 1, 2, 3, the

optimal hole is a ball, while it is an ellipsoid for constant non-vanishing eigenvalues.

For more details and other examples we refer to [10]. To develop more general tools

to treat problem (10) is an interesting open question.
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4. Morphological stability of crystals

In material science, a typical experimental observation reveals that a non-hydrostatically

strained solid that is in contact with a more compliant phase, as its own melt or

vapor, can partially release its elastic energy by a sudden morphological transition at

the interface. This occurs for instance when the strained solid has a surface at which

the material can be redistributed and thus it may reduce its elastic energy via surface

undulations. Roughly speaking, these transitions lead to a decrease of the energy

associated to a new stress distribution by decreasing the stress inhomogeneities.

This kind of instabilities is usually drawn back to the studies by Asaro and Tiller

([15]) of corrosion phenomena in metals, but the recognition of the general nature of

these kind of instabilities can instead be referred to the studies of Grinfeld ([16−19]),

hence they are often referred to as Grinfeld or Asaro-Tiller-Grinfeld instability.

The shape of a crystal Ω can be taken as the actual configuration, under a defor-

mation mapping y : Ω0 7→ Ω of a reference state Ω0 ⊂ R3. Then the rearrangement

of material occurring at the free boundary ∂Ω turns out to be the result of the

counteraction between bulk and surface energies.
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In Section 4.1 we show, through a simple case, that in general one cannot ex-

pect morphological stability by considering the only contribution of the bulk energy.

Indeed, by considering a plane region with a density energy g(x, y), taking a rectan-

gular configuration, we find a family of perturbations of the horizontal edge which

preserves the volume and on which the energy decreases. In fact, under some condi-

tions on the density energy g(x, y), the rectangle is a local maximum of the energy

with respect to such perturbations. In Section 4.2 we show that, by adding a surface

like energy, as in problem (1), the rectangle becomes a local minimum for the total

energy. Thus, in the subsequent Section 4.3, we use these results to state an example

of Grinfeld instability in linear elasticity.

4.1. Instability for the Bulk Energy. Let g : R2 → R be a regular bulk energy

density and let Ω = [0, 1]× [0, h] be the reference configuration of an elastic crystal.

Let us denote by γ̄(x) = h the upper edge of Ω. The bulk energy associated to the

configuration Ω is

J(γ̄) =

∫ 1

0

∫ h

0

g(x, y)dxdy.
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More generally, if γ : [0, 1] → R is a function such that γ(0) = h = γ(1), we consider

the bulk energy

J(γ) =

∫ 1

0

(∫ γ(x)

0

g(x, y)dy

)
dx. (12)

We are going to study the behavior of the above energy under area preserving

perturbations of γ. Therefore, let η : [0, 1] → R such that η(0) = η(1) = 0 and

∫ 1

0
η(x)dx = 0. To fix the ideas, we consider functions such as η(x) = sin(2kπx).

For ε > 0, we consider the perturbations γε(x) = γ(x) + εη(x). Let us evaluate

the first and second variations of the functional J . By the definition of variation it

results

δJ(γ, η) := lim
ε→0+

J(γε)− J(γ)

ε
.

Observe that

J(γε)− J(γ)

ε
=

1

ε

(∫ 1

0

(∫ γε(x)

0

g(x, y)dy −
∫ γ(x)

0

g(x, y)dy

)
dx

)
=

=

∫ 1

0

(
1

ε

∫ γε(x)

γ(x)

g(x, y)dy

)
dx.
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After applying the fundamental theorem of calculus, we get

δJ(γ, η) =

∫ 1

0

g(x, γ(x))η(x)dx. (13)

By requiring the condition

g(x, γ(x)) = const, (14)

we get

δJ(γ, η) = C

∫ 1

0

η(x)dx = 0, (15)

since the perturbations η are area preserving. Therefore, in this case, the configura-

tion γ is a critical point for J . Whereas, as it is standard in calculus of variations,

δJ = 0 for every η implies g(x, γ(x)) = const.

The nature of this critical point is revealed by studying the second variation

δ2J(γ, η) := lim
ε→0+

δJ(γε, η)− δJ(γ, η)

ε
.

By (13), we obtain

δJ(γε, η)− δJ(γ, η)

ε
=

∫ 1

0

g(x, γε(x))− g(x, γ(x))

ε
η(x)dx.

Passing to the limit as ε→ 0 under the integral sign, we get

δ2J(γ, η) =

∫ 1

0

∂

∂y
g(x, γ(x))η(x)2dx. (16)
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Therefore, by requiring the condition

∂

∂y
g(x, γ(x)) < α < 0, (17)

we obtain δ2J(γ, η) < 0. Thus, in such a case, the configuration γ is a local maximum

for J . If we consider a flat configuration γ̄ = h, in order to have an instability

property it is sufficient for instance that the volume density does not depend on the

first variable, that is g = g(y), and that g′(h) < α < 0. In particular this means

that the bulk energy decreases by passing from the flat configuration to corrugated

ones.

4.2. Stabilizing Effect of Surface Energies. We add a surface contribution.

The simplest choice is the length of the boundary configuration, which leads to the

following total energy

E(γ) =

∫ 1

0

(∫ γ(x)

0

g(x, y)dy

)
dx+ l(γ), (18)

where l(γ) =
∫ 1

0

√
1 + γ′(x)2dx is the length of the curve γ. We claim that, this

time, the flat configuration γ̄ = h is a local minimum for E whenever it satisfies the
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necessary condition (14). By standard computations we have

δl(γ, η) =

∫ 1

0

γ′(x)η′(x)√
1 + γ′(x)2

dx,

while

δ2l(γ, η) = −
∫ 1

0

γ′(x)2η′(x)2

(1 + γ′(x)2)
3
2

dx+

∫ 1

0

η′(x)2√
1 + γ′(x)2

dx.

Then, we obtain

δ2E(γ̄, η) =

∫ 1

0

∂

∂y
g(x, h)η(x)2dx+

∫ 1

0

η′(x)2dx.

If η(x) = sin(2kπx), we get

δ2E(γ̄, η) =

∫ 1

0

∂

∂y
g(x, h) sin2(2kπx)dx+ 4k2π2

∫ 1

0

cos2(2kπx)dx =

=

∫ 1

0

∂

∂y
g(x, h) sin2(2kπx)dx+ 2k2π2 ≥ m

2
+ 2k2π2,

wherem = min{ ∂yg(x, h) |x ∈ [0, 1]}. For k ∈ N large enough, it results δ2E(γ̄, η) >

0 and then the flat configuration is a local minimum for E. Thus, we see that, in

some sense, the flat configuration is stable for the total energy at least for thick

corrugations.

4.3. Instability in Linear Elasticity. Let Ω = [0, 1] × [0, h] be the reference

configuration for an elastic crystal. We denote by ∂2Ω the upper edge of Ω and we
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require ∂2Ω to be a free boundary. On ∂1Ω = ∂Ω \ ∂2Ω, we assign a displacement

u0. By assuming a linear isotropic elastic behavior, the constitutive equation takes

the form

T = 2µE + λ tr(E)I, (19)

where λ, µ > 0 are the Lamé coefficients, tr is the trace operator and I is the identity

matrix. Therefore, the elastic energy corresponding to u is given by

I(u) = µ

∫
Ω

tr(E2) dxdy +
λ

2

∫
Ω

(tr(E))2 dxdy. (20)

Any minimizer of (20) satisfies the equilibrium equations

div T = 0, in Ω, Tν = 0, on ∂2Ω, (21)

where ν denotes the outer unit normal to ∂2Ω. We set

E(Ω) = min{I(u) | u ∈ C1(Ω̄,R2), u = u0 on ∂1Ω}. (22)

In [16] it is shown that the elastic energy (22) is unstable for perturbations of the

free boundary ∂2Ω, whence an affine displacement u0 is prescribed. Here, we apply

the results of the previous section to state an analogous instability occurrence for a

general nonlinear displacement u0.
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Let u0(x, y) = (axy + bx, cy2 + dx2 + ey), where the coefficients will be chosen in

order to satisfy the equilibrium equations (21). Therefore we evaluate

E =

(
ay + b 1

2
(a+ 2d)x

1
2
(a+ 2d)x 2cy + e

)
,

T = 2µ

(
ay + b 1

2
(a+ 2d)x

1
2
(a+ 2d)x 2cy + e

)
+ λ

(
(a+ 2c)y + b+ e 0

0 (a+ 2c)y + b+ e

)
.

Then, we get

div T =

(
0

µ(a+ 2d) + 4cµ+ λ(a+ 2c)

)
,

Tν = T

(
0
1

)
=

(
µ(a+ 2d)x

4µcy + 2µe+λ(a+ 2c)y + λb+ λe

)
.

Hence, u0 is an equilibrium configuration after choosing the coefficients according

to the following:

a+ 2d = 0, 2(2µ+ λ)c+ λa = 0, 2h(2µ+ λ)c+ λha+ 2µe+ λb+ λe = 0. (23)

In particular, (23) is satisfied by the following choice of the coefficients:

d = 1, a = −2, c =
λ

2µ+ λ
, (2µ+ λ)e+ λb = 0. (24)

By (20) and (24), we compute

I(u0) = µ

∫
Ω

(ay + b)2dxdy + µ

∫
Ω

(2cy + e)2dxdy +
λ

2

∫
Ω

[(a+ 2c)y + b+ e]2dxdy.
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Setting g(y) = µ(ay + b)2 + µ(2cy + e)2 + λ
2
[(a + 2c)y + b + e]2, we have I(u0) =

∫
Ω
g(y) dxdy. Observe that g is defined on the whole R2. Therefore, the results of

the previous section hold true. Hence, by (17), if the following instability condition

holds true:

g′(h) = 2µa(ah+ b) + 4µc(2ch+ e) + λ(a+ 2c)[(a+ 2c)h+ b+ e] < 0, (25)

it follows that the energy IΩ(u0) :=
∫

Ω
g(y) dxdy = I(u0) is unstable for area-

preserving perturbations of the domain Ω. According to (24), setting a = −2 in

(25), we get

g′(h) = 8µh− 4µb+ 8µc2h+ 4µce+ 4λ(c− 1)2h+ 2λ(c− 1)(b+ e).

Since, by using again (24), c = λ
2µ+λ

, we obtain

g′(h) = (8µ+ 8µc2 + 4λ(c− 1)2)h+ 2(2µ+ λ)ce+ 2λcb− 4bµ− 2λb− 2λe =

= (8µ+ 8µc2 + 4λ(c− 1)2)h+ 2λcb− 4bµ− 2λb =

= (8µ+ 8µc2 + 4λ(c− 1)2)h− 8µ

(
µ+ λ

2µ+ λ

)
b.
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Hence, in order to satisfy (25), it suffices to take large enough values of b > 0 or to

take b > 0 and h small enough. Let Ωε be the ε-corrugated configuration given by

Ωε = {(x, y) ∈ R2 | x ∈ [0, 1], 0 ≤ y ≤ h+ εη(x)}

with
∫ 1

0
η dx = 0 and η(0) = η(1) = 0. Let IΩε(u) be the energy associated to

the displacement u for the configuration Ωε. Since g and u0 are well defined on the

whole R2, applying the results of the previous section we obtain

E(Ωε) ≤ IΩε(u0) ≤ IΩ(u0) = E(Ω).

Therefore the elastic energy decreases by passing from the flat initial configuration to

the corrugated one. The previous arguments suggest the possibility to construct an

initial displacement for which the energy is not decreasing by passing to corrugated

configurations of the reference domain. Thus, at least from the mathematical point

of view, this seems to suggest that the instability phenomenon, as focused by Grinfeld

in [16], is strictly related to the affine displacements. Indeed, in such a case, the

stored energy identically satisfies the necessary condition (14). We think that these

instability phenomena deserve a deep understanding and in [20] we will propose a
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more general variational framework in order to treat some stability or instability

properties of mechanical interest.

5. Manufacturing flat surfaces and fish population dynamic

Here we address two problems related to the industrial production of flat surfaces

and the stock-recruitment relationship in fish population dynamic. These problems

involve complex physical and biological phenomenologies, thus, by arguing as in

Section 4, we try to capture the essential of the phenomena by means of a simple

variational argument.

5.1. Flatness Manufacturing Operations. The assessment of the output of man-

ufacturing operations is, for a large part, a problem of evaluating geometric shapes

(e.g. straight line, planes, circles, etc.) and feature forms tolerances (e.g. flatness,

straightness, cylindricity, etc.) of the components. Here, we focus on the indus-

trial process producing flat surfaces by proposing an energy approach to control the

quality of the production. As a starting point, we assume that, whatever the indus-

trial process actually works, the machine production, in his perfect configuration,
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proceeds by minimizing an energy functional or at least by selecting critical points,

among all other possible geometric product configurations with the same amount

of material. To simplify the description, we discuss a 2-dimensional model. Let

Ω = [0, 1] × [0, h] be the reference of an ideal material product (the density is as-

sumed to be uniform). In general, the processing produces a corrugated output Ωp.

Let us assume that the upper edge of Ωp is the graph of the function y(x). If W (x, y)

denotes the cost to leave material (W could also depend on the initial configuration

before the processing) in the position (x, y), the cost to obtain the configuration Ωp

is given by

CW (Ωp) =

∫ 1

0

∫ y(x)

0

W (x, y) dxdy.

If the material is homogeneous, the condition
∫ 1

0
y(x) dx = K, for a fixed constant

K, corresponds to fixing the amount of material employed in the production. We

also require that the cost to leave the material, or to take away material, depends on

the geometry of the assumed configuration, namely on the normal vector, and then

on the first derivative y′(x) of the upper edge of Ωp. If σ(x, y) denotes the unitary
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cost to produce the derivative y′(x) at the position (x, y), the total cost is given by

Cσ(Ωp) =

∫ 1

0

∫ y′(x)

0

σ(x, y) dxdy.

Therefore, the total cost to realize the configuration Ωp is given by the functional

J(y) := C(Ωp) = CW (Ωp) + Cσ(Ωp). (26)

The problem is then to study the behavior of the above energy under area pre-

serving perturbations of y. Therefore, consider a function η : [0, 1] → R such that

η(0) = η(1) = 0 and
∫ 1

0
η(x)dx = 0. For ε > 0, we consider the usual perturbations

yε(x) = y(x) + εη(x). The first variation of J is given by

δJ(y, η) =

∫ 1

0

(
W (x, y(x))− d

dx
σ(x, y′(x))

)
η(x)dx.

The process selects a critical point if this first variation vanishes, namely if and only

if the following condition holds:

W (x, y(x))− d

dx
σ(x, y′(x)) = const. (27)

Observe that, in general, the equation (27) can be solved with respect to y just for

special forms of W and σ. The condition (27) could be taken as a characterization

of the process once the energy density functions are given, by means of physical
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inspection or by experimental derivation. We remark that, if the energy densities

W and σ depend only on the height y, then the flat configuration y(x) = h satisfies

the condition (27). Therefore, the flatness condition can be regarded as a critical

point for an energy functional. It could be useful to determine the expression of

the density energies W and σ through precise measurements at the beginning of the

production. Thus, condition (27) can be used as a test of production; i.e. whenever a

measurement on a product piece does not satisfy condition (27), one can suspect that

a modification has occurred in the production process, such as worn-out machine

tools, modified energy level, and so on.

The above variational paradigm makes sense only if an optimal configuration y

actually exists. Applying the direct methods of the calculus of variations, it is not

difficult to find conditions ensuring the existence of the minimum. To this aim we

set

L(x, y, y′) =

∫ y

0

W (x, t) dt+

∫ y′

0

σ(x, t) dt.

Then, the functional J can be written in the standard form
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J(y) =

∫ 1

0

L(x, y(x), y′(x)) dx. (28)

Typically, to get existence results, we have to impose conditions on the density

L(x, y, y′) and/or on the space of admissible functions y. Let L(x, y, y′) be continuous

and satisfy the following conditions:

(i) Growth Condition. There exists constants a > 0, b, c ∈ R and exponents

p > q ≥ 1 such that L(x, y, y′) ≥ a|y′|p + b|y|q + c;

(ii) Convexity condition. For fixed (x, y), the function L(x, y, z) is convex with

respect to z.

Under (i) and (ii), a classical existence result (see for instance [21]) states that the

functional J(y) admits minimizers in the Sobolev space W 1,p([0, 1]). Moreover, every

solution of (27) is in fact a minimizer of J . Finally, if L(x, y, ·) is strictly convex,

then we have a unique minimizer of J . Observe that the previous assumptions are

conditions on the integrand L(x, y, y′) and so they impose some restrictions on the

expression of the cost functions W and σ. In this way, we are making assumptions

on the machine process; indeed, to produce perfectly flat surfaces, the machine has
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to work with a homogeneous energy density, (i.e. independent on the x−variable),

otherwise the necessary condition (27) cannot be satisfied. However, since the cost

densities W and σ are unknown in the model, it could be preferable to make some

more assumptions on the space of admissible functions. Indeed, to get compactness,

we need some more conditions on the admissible functions, in particular the equi-

boundedness of y′′ allows us to use the Ascoli-Arzelà theorem. This corresponds

to introducing restrictions on the geometry of the surfaces produced, but it does

not yield restrictions on the densities W and σ. Moreover, existence of minimizers

follows since the functional J is lower semicontinuous. It is in fact continuous with

respect to the pointwise convergence. However, although in such a case we have

almost no restrictions on W and σ, and we find a regular minimizer of the func-

tional J , in general in this case we cannot expect the validity of the condition (27).

Indeed, in such a case, the variations hε = h + εη could not be admissible. The

question of finding explicit forms of W and σ in order to make this program work

for appropriate production processes will be investigated in a future work [22].
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5.2. A Problem in Fish Population Dynamic. The cycle of regeneration of a

population is crucial to maintain the population at a stable level. For fish popula-

tions, a crucial step in this cycle is the so-called recruitment phase, i.e. the age at

which the born fishes become vulnerable to the fishing activities. In fishery sciences,

the stock-recruitment problem (SR problem) concerns the relationship between the

amount of spawning stock biomass (SSB) and the number of fish at the subsequent

recruitment (R). Despite the fundamental importance of the SR process in fish dy-

namic, the mathematical modeling of the subject is yet not really satisfactory. We

want to apply a variational model to describe some aspects of this phenomenon. A

basic observation is that many fish species appear to maintain a constant mean R

level, at least in some SSB range. This is the reason for the assumption of constant

recruitment R in many fish population models. We assume this fact as a first prin-

ciple which could be mathematically stated by asking that any SR relationship, say

R = h(S), has a fixed integral mean in a reference SSB range [S1, S2], i.e. it satisfies

the following requirement.
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Principle 1. The function h(S) satisfies the following integral mean condition

∫ S2

S1

h(S) dS = Rm(S1 − S2).

At this point we need some criteria in order to select the function h among all the

possible ones. To this aim, we suppose that the biological phenomenon underlying

the recruitment, being submitted to natural selection, is related to a SR relationship

obeying some optimality condition. Then, the function h is selected as the best

possible to guarantee the survival of the stock. Of course, we need some more

precise statement in order to translate these hypothesis into a useful mathematical

principle. We assume that, whatever the biological processes actually work, the SR

relationship, in his equilibrium configuration, operates by minimizing an energy-

like functional or at least by selecting critical points. Therefore, we ask that the

SR relationship realizes the minimum or at least a critical point, among all other

possible configurations. To define a suitable functional we denote by W (S,R) the

positive cost for the amount S of SSB which yields the recruitment level R. It is

reasonable to suppose that the total cost in [S1, S2] depends on the area spanned by

the function h. In other words, very expensive R levels are possible but only in a
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very small range of SSB. Therefore, the total cost associated to the function h could

be defined as

J(h) =

∫ S2

S1

(∫ h(S)

0

W (S,R) dR

)
dS. (29)

The above functional is exactly the functional defined in (26) in the case σ ≡ 0. We

can now state a second variational principle.

Principle 2. The function R = h(S) for a SR relationship realizes the minimum or

at least a critical point, of the functional (29).

In this formulation, the total cost J(h) depends only on the amount R of the re-

cruitment. Of course the SR phenomenon could also depend on the geometric shape

of h, for instance from the rate of change at which variations on the R level happen.

It is possible to take into account these requirements by adding in (29) another term

depending on the first derivative h′ analogously to the approach pursued for flat

surfaces. In [23], a preliminary study of this model is performed and we refer the

reader to that paper for more details and applications.
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(1) Figure 1. Two optimal measures.
(2) Figure 2. Changing the ambient space.
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