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Abstract We present a mathematical model of perceptual completion and forma-
tion of subjective surfaces, which is at the same time inspired by the architecture
of the visual cortex, and is the lifting in the 3-dimensional rototranslation group of
the phenomenological variational models based on elastica functional. The initial
image is lifted by the simple cells to a surface in the rototraslation group and the
completion process is modelled via a diffusion driven motion by curvature. The
convergence of the motion to a minimal surface is proved. Results are presented
both for modal and amodal completion in classic Kanizsa images.

1. Introduction

1.1. The question of perceptual completion. When we look to the image in
Fig. 1, we do not only perceive contours which are characterized by image gradi-
ents, but our visual system completes the internal objects, and new contours arise,
called ”apparent” or ”subjective” contours. Gaetano Kanizsa in [34, 35] provided
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Figure 1. The two fishes of Kanizsa

a taxonomy of perceptual completion phenomena and outlined that they are inter-
esting test to understand how the visual system interpolates existing information
( ”modi per andare oltre l’informazione data”) and builds the perceived units. He
discriminated between ”modal completion” and ”amodal completion”. In the first
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one the interpolated parts of the image are perceived with the full modality of the
vision and are phenomenally undistinguishable from real stimuli (this happens for
example in the formation of illusory contours and surfaces). In ”amodal presence”
the configuration is perceived without any sensorial counterpart. Amodal comple-
tion is evoked every time one reconstructs the shape of a partially occluded object.
Thus it is at the base of the most primitive perceptual configuration that is the
segmentation of figure and ground.

Mathematical models of perceptual completion take into account main phe-
nomenological properties as described by psychology of Gestalt. Since subjective
boundaries could be linear or curvilinear, their reconstruction is classically per-
formed minimizing the elastica functional

(1)
∫

γ

(1 + k2)ds,

where the integral is computed on the missed boundary, and k is its curvature
(see [45]). The extension of this functional to the level set of the image I, has been
applied in problems of inpainting (that can be considered a particular case of modal
completion) by [46], [1] :

(2)
∫

Ω

|∇I|
(

1 +
∣∣∣div

( ∇I
|∇I|

)∣∣∣
2)
dxdy,

where the integral is extended to the domain of the image. In this way each level
line of the image is completed either linearly or curvilinearly as elastica curve. In
order to make occluded and occluding objects present at the same time in the im-
age, in [45] (and then in [5], [14]) a third dimension is introduced, and the objects
present in the image are represented as a stack of sets, ordered by depth. In [59] the
third added dimension is represented by the time, and the algorithm first detects
occluding objects, then occluded ones. However these representations fail where
a clear depth ordering is not present in the image as in figure 1. In all the past
work authors outline the difficulty to treat a functional depending on the curvature,
which is a second order operator. Approximation by more tractable functionals has
been proposed by [13]. In [6] the associated evolution equation was splitted in two
equations, each one of the first order, and depending on two different variables: the
image I, and the direction of its gradient ν = ∇I/|∇I|.
From the neurophysiological point of view, there is considerable evidence that these
kinds of perceptual completion phenomena are accomplished by the first layer of
the visual cortex by actively filling in the missing information. The dominant think-
ing is that there are two cascade mechanism, the first one extracting the existing
information (’real’ boundaries, image gradients and complex features) by way of
feed-forward filtering and the second one completing the missing information with
recursive circuitry (even if in the past also feed forward mechanisms for completion
have been proposed). The first mechanism is accomplished especially by simple
cells in the primary cortex and extracts information about module and orientation
of the brightness gradient of the visual stimulus. Not only strong discontinuities
corresponding to object boundaries, but also smooth gradients are estimated in this
step. The second mechanism propagates extracted information in an orientation
specific modality by means of long-range horizontal connections (Field et al. in
[26], Kovacs and Julesz, in [39, 40], Kapadia et al, in [36], Gilbert et al., [23]).
In this setting the formation of subjective contours is explained as the meeting of
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two neural activation flows shooted by the boundary inducers and closing missing
information between the existing boundaries. The specificity of this information
propagation is described by the ”association fields” (Field, Heyes,Hess, [26]) that
indicate boundary collinear directions as privileged diffusion directions to the detri-
ment of orthogonal ones.

Petitot and Tondut [55] outlines that the mechanism of boundary completion
is not distinct from the mechanism of unification of real contours responsible of
transforming fragmental information into continuous curves.

The perspective taken by Petitot and Tondut in [55] is particularly interesting
because the perceptual completion problem is considered as a problem of natu-
ralizing phenomenological models on the basis of biological and neurophysiological
evidence. They start from the consideration that orientation sensitive simple cells
induce a fibration of orientations and that the natural space in which completion
is performed is the 3-dimensional image-orientation manifold. Consequently the
second order functional (1) is replaced by a first order length minimizing functional
in the natural contact structure induced in the 3D space. We further develop this
point of view, and build up a model based on lifting of level lines, outlining its fea-
ture to segment simultaneously occluding and occluded objects without any depth
ordering. Modal and amodal completion can be accomplished in this setting.

The considered image defines a function I : D → R, and the points of the domain
D are denoted as (x, y). At every point we detect the the normal direction

∇I/|∇I| = (−sin(θ), cos(θ))

and lift the domainD to a surface in the 3-D dimensional space Σ = {(x, y, θ(x, y))}.
On this surface we lift the function I and its gradient:

u(x, y, θ(x, y)) = |∇I(x, y)|
defined on Σ. This first process models the extraction of existing information
operated bsimple cells in the primary cortex, according to biological models.
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Figure 2. The lifting of a whole image and the visualization of a
contact plane

Level lines of u lie on the plane orthogonal to the gradient, so that they are
tangent at every point to the vector fields

(3) X1 = cos(θ)∂x + sin(θ)∂y, X2 = ∂θ.
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These are the generators of the Lie algebra of rototranslation, whose natural geom-
etry models the circuitry of the first layers of visual cortex.

The completion of missing boundaries is performed in this setting, via a diffusion-
concentration process, which models the diffusion in the direction of association
fields, and an orientation selectivity process, as second step in the biological models
above recalled. The function u can be identified with the density of a dirac mass
concentrated on the initial surface Σ, so that it will be denoted by

u0δΣ0 .

It is evolved through the so called sub-Laplacian operator, (analogous of the Laplace
operator in rototraslation group):

∂tv = ∆Rv v(0) = u0δΣ0 .

At time t = 1, with a concentration-selectivity process, we built from v a new surface
Σ1, and a new function u1. Iterating this process, we approximate respectively the
motion by curvature in the rototralastion group, and the evolution via the Laplace
Beltrami operator on the surface. The proof is made extending a technique first
introduced in the euclidean setting by [2] and [7].

On the other hand a direct computation shows that the curvature of I can be
written in terms of the derivatives of the function v = X1I. Consequently also the
functional (2), which contains the curvature of I, can be expressed a new functional
defined in terms of the first derivatives of v:∫

Ω

|∇I|
(

1 +
∣∣∣div

( ∇I
|∇I|

)∣∣∣
2)
dxdy =

∫

Σ

√
|X1v|2 + |X2v|2.

This integral is extended only on Σ, but its formal extension to the whole space is
∫

R2×S1
|X1v|2 + |X2v|2,

whose steepest descent equation is the heat equation in the sublaplacian setting.
The fact that the lifted image is defined only on a surface justifies the concentration
process. Hence our model can be considered as the natural lifting of model [1] to
the three dimensional group.

The model takes into account the main phenomenological characteristics of per-
ceptual completion, including the following:

1) the subjective boundaries are geodesic curves in the metric of the space, which
are lifting in the 3-D space of the classic elastica curves, so that they can be linear
or curvilinear.

2) the modally completed parts of the image (inpainting) are minimal surfaces
in the RT space, and they are foliated in curvilinear isolevels, lifting of the models
of Ambrosio, Masnu [1], C. Ballester, and al. [6],

3) occluding and occluded objects are present at the same time in the segmen-
tation, but instead to create a stack of depth ordinate objects as in Mumford,
Nitzberg, Shiota [45] and Bellettini March [5], the completion is performed in the
natural 3-dimensional cotangent fibration of the image, allowing the segmentation
of partially overlapped objects without any depth ordering; this feature is required



A CORTICAL MODEL OF PERCEPTUAL COMPLETION 5

for the segmentation of the classic Kanizsa example of figure 1.

The paper is organized as follows:

• In section 2 we present our cortical based model of perceptual completion
• In section 3 we prove that the model expresses in the new space the varia-

tional model of Ambrosio Masnou
• In section 4 we provide the proof of the converge result.
• In section 5 we present a numerical scheme to approximate the model equa-

tion and provide results by applying the algorithm to classic gestalt images.

2. The Model

2.1. Simple cells and directional derivatives. It is well known that in primates
the contour extraction is provided by the area V1 of the visual cortex, which input
arrives from the retina with the intermediation of the Lateral Geniculate Nucleus.
The area V1 is the place of the visual cortex in which for the first time one finds cells
with elongated receptive fields. These present oriented receptive fields and exhibit
even or odd symmetric patterns. Figure 3 shows the odd ones. Simple cells can be
considered as units sensitive to brightness gradients, independently if the gradient
is originated by a boundary or a smooth region [48]. Simple cells are sensitive
to space scale, position and orientation of the contrast gradient and moreover to
the polarty of the gradient with respects to the elongation axis of the receptive
field. Receptive fields of simple cells are modelled usually as convolution kernels of
even and odd filters such as Gabor filters (Jones and Palmer [33], Daugman [12],
Marcelja [42]), steerable filters (Perona [53]). Grossberg and Mingolla in [25] have
interpreted the functionality of odd receptive fields as gradient indicators and even
receptive fields as polarity indicators. A Gabor filter with orientation θ has the
expression

G(x, y, θ) =
1

2πs2
exp

(
− (x̃2 + ỹ2)

s2
+ iỹ/s

)
,

where

(4) x̃ = x cos(θ) + y sin(θ) and ỹ = −x sin(θ) + y cos(θ).

We will consider here the imaginary part of the filter, which is its odd part.
Condition (4) describes a rotation of the axis of an angle θ, so that the Gabor
filters are obtained from a fixed function, via a rotation.
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Figure 3. Odd part of Gabor filters with different orientations
θ = 0, θ = π/4, θ = π/2,θ = 3/2π
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The odd part of the filter can be locally approximated (up to a multiplicative
constant) as

2 sin(ỹ)
s2

exp(−(x̃2 + ỹ2)/s2) ' 2ỹ
s2
exp(−(x̃2 + ỹ2)/s2) = −∂ỹexp(−(x̃2 + ỹ2)/s2).

A derivative in the direction ỹ can be expressed in the original variables (x, y, θ)
as a directional derivative in the direction of the vector (−sin(θ), cos(θ)). We will
denote it

(5) X3 = − sin(θ)∂x + cos(θ)∂y.

This derivative, applied to a function I, expresses the projection of the gradient in
the direction (−sin(θ), cos(θ)).

With this notation the filtering generates by convolution with the image I a
function

(6) O(x, y, θ) = −X3exp(−(x̃2 + ỹ2)/s) ∗ I = −X3(θ)Is,

where we have denoted Is the convolution of I with a smoothing kernel:

Is = I ∗ exp(−(x̃2 + ỹ2)/s).

Note that O(x, y, θ) depends on the orientation θ. Due to the expression of the
Gabor filter, the function O exponentially decays from its maxima. Hence for θ
fixed it selects a neighborhood of the points where the component of the gradient
in the direction (−sin(θ), cos(θ)), is sufficiently big (see Figure 4).
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Figure 4. The original image showing a white disk (upper) and
a sequence of convolutions with different orientations Gabor filters.

Then we can identify the function O with the fiber over the point (x, y) of all the
directional derivatives (see Figure 5). This is in agreement with the fundamental
idea that the visual cortex assigns a collection of tangent vectors to the points of
the image I (Hoffman Ferraro [28]). As outlined in [55] each fiber is physiologically
implemented by a hypercolumn of orientations, that is the basic structure of the
visual cortex [31].
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Figure 5. Schemata of simple cells arranged in a hypercolumn of
orientations (left), and the function O(x, y, θ), obtained by Eq. (6)
as convolution of the image with hypercolumns of orientations
(right)

2.2. Orientation selectivity and ”non maximal” suppression. The convo-
lution mechansim (6) (that is known by neurophysiologists as orientation bias of
the thalamic input) is insufficient to explain the strong orientation tuning exhibited
by most simple cells. For these reasons, the classic feedforward mechanism must
be integrated with additional mechanisms, in order to provide the sharp tuning
experimentally observed. In the past years several models have been presented
to explain the emergence of orientation selectivity in the primary visual cortex.
These models use different combinations of feedforward (thalamic) and feedback
(intracortical) inputs and consider different involvement of excitatory and inhibitory
short range connections (Miller, Worgotter, Carandini, Bar, Priebe, Shelley, Nelson
[47, 69, 10, 3, 57, 61, 50]). Even if the basic mechanism producing strong orien-
tation selectivity is controversial (”push-pull” models [47, 57], ”emergent” models
[50], ”recurrent” models [61] only to cite a few), nevertheless it is evident that the
intracortical circuitry is able to filter out all the spurious directions and to strictly
keep the direction of maximum response of the simple cells. Since X3Iσ is the pro-
jection of the gradient in the direction of the vector (−sin(θ), cos(θ)), the maximum
will be achieved at a value θ̄, which is the direction of the gradient.

Then, if we call the point of maximum θ̄, we get

(7) |X3(θ̄)| = maxθ|X3(θ)|.
Besides only strict maxima are selected, so that |X3(θ̄)Is| > 0. In this process

each point (x, y) in the 2D domain of the image is lifted to the point (x, y, θ̄).
If we denote T(x,y)(R2) the tangent space to R2 at the point (x, y), the vector
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Figure 6. A level set of the function O(x, y, θ) (left) and the re-
sulting surface after non maximal suppression, called lifted surface
(right).

(− sin(θ̄), cos(θ̄)) ∈ T(x,y)(R2) is lifted to the vector field

~X3(θ̄) = (− sin(θ̄), cos(θ̄), 0) ∈ T(x,y,θ)(R2 × S1).

The whole image domain is lifted to:

(8) Σ = {(x, y, θ̄) : |X3(θ̄)Is| = max
θ
|X3(θ)Is| > 0}.

This lifted set corresponds to the maximum of activity of the output of the simple
cells, and can be modelled as a dirac mass concentrated on Σ itself, with a density
u, given by the value of the activity:

u(x, y, θ) = O(x, y, θ̄)δΣ.

2.3. Non commutative Lie algebra. In the standard euclidean setting, the tan-
gent space to R2 × S1 has dimension 3 at every point. Here we have selected a
section ~X3 of the tangent space. This defines also a bidimensional subset of the
tangent space at every point, orthogonal to ~X3(θ). This is called horizontal plane,
it is generated by

~X1(θ) = (cos(θ), sin(θ), 0), ~X2 = (0, 0, 1),

and it can be represented as

πx,y,θ = {α1
~X1 + α2

~X2 : α1, α2 ∈ R}.
This plane, naturally defines a Lie algebra. (see [68]) Indeed to any vector field we

can naturally associate the directional derivative in the direction of the vector. We
will denote respectively:

X1 = cos(θ)∂x + sin(θ)∂y, X2 = ∂θ.

Due to the natural relation between vectors and directional derivatives, the vector
~Xi is sometimes identified with the derivative Xi, but we keep them distinct here for
reader convenience. If we choice α1, α2 ∈ R, the linear combination α1X1 + α2X2
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Figure 7. The contact planes at every point, and the orthogonal
vector ~X3

defines a new directional derivative. Besides the set of directional derivatives is en-
dowed with an other natural operation, called the bracket (or commuatator). Given
two directional derivatives Y, Z their commutator acts on function u as follows:

[Y,Z]u = (Y Z − ZY )u.

Note that if Y and Z were partial derivatives, then [Y, Z] = 0, while this does not
happens for directional derivatives. In particular we have

(9) [X1, X2] = −X3.

Then we say that X1 and X2 do not commute. Note, that even thought we have
applied two derivatives to the function u, the bracket is a first order directional
derivative. Then it is possible to define Lie algebra generated by X1 and X2 as the
set of all directional derivatives, which can be represented as linear combination of
X1, X2 and their commutators of any order. This set is denoted

L(X1, X2),

and contains X1, X2, and X3. Hence, even though the Lie algebra has only 2
generators, it contains the whole 3 dimensional tangent space at every point.

This property is crucial in a connectivity process, which allows to connect dif-
ferent lifted points we refer to [68] for the main properties of the Lie groups.

2.4. Association fields and metric of the rototraslation group. The lifted
points of the image would remain isolated without an integrative process allowing
to connect local tangent vectors to form integral curves. This process is at the base
of both regular contours and illusory contours formation [55].

The most plausible model of connection is based on a mechanism of ”local in-
duction”. The specificity of this local induction is described by the association field
(Field [26]).

The anatomical network of horizontal long-range connections has been proposed
as the implementation of association fields, i.e. the magnitude of synaptic interac-
tions depend upon the positions and orientations of the target cells accordingly to
the association field. These allow to connect different points of the cortex.
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Figure 8. Association fields from the experiment of Field,Heyes
and Hess
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Figure 9. Integral curves of the fields by varying the parameter
k. On the left a 3D representation with contact planes is shown,
in the right its projection onto the image plane is visualized

The local association field is shown in fig. (8) and it can be interpreted as a
family of integral curves of the vector fields X1 and X2, starting at a fixed point
(x, y, θ):

(10) γ′(t) = ~X1(γ) + k ~X2(γ), γ(0) = (x, y, θ),

obtained by varying the parameter k in R (fig. (9)). For k fixed this curve is
tangent to the horizontal plane at every point, it is called horizontal curve and it
is denoted

γ(t) = exp(t( ~X1 + k ~X2))(x, y, θ).

Note that the coefficient of ~X1 never vanishes in this representation, since the
projection on the 2dimensional plane (x, y) of an integral curve on ~X2 would be a
point.
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Long-range connections can consequently been modelled as admissible curves,
but with piecewise constant coefficients k. These curves satisfy the so called con-
nectivity property. Indeed the Chow theorem (see [4]) ensures that, since the di-
mension of the Lie algebra generated by X1 and X2 is 3 at every point, then for
every couple of points (x, y, θ), (x̄, ȳ, θ̄) there exists an horizontal curve γ which
connects them.

This property, which we deduced from the behavior of the directional derivatives,
can be equivalently read on the integral curves. Indeed, starting from a point
(0, 0, 0), and moving along the two curves

γ1(t) = exp(t ~X2)exp(t ~X1)(0, 0, 0) γ2(t) = exp(t ~X1)exp(t ~X2)(0, 0, 0)

we reach completely different points (x, y, θ), (x̄, ȳ, θ̄) at the time t. Besides the
difference between the two points reached in this way is of the form

exp(t2 ~X3 + o(t2))(x̄, ȳ, θ̄),

so that it is an integral curve of the vector ~X3, starting at (x̄, ȳ, θ̄).
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Figure 10. The composition of two integral curves of the roto-
translation group is non commutative, depending on the order of
application of the operators

Choosing the euclidean metric on the horizontal space, we can set

|| ~X1 + k ~X2||E =
√

1 + k2,

so that we can call length of any curve γ expressed as in (10)

λ(γ) =
∫ 1

0

||γ′(t)||dt =
∫ 1

0

√
1 + ‖2

Consequently it is possible to define

(11) d((x, y, θ), (x̄, ȳ, θ̄)) = inf{λ(γ) : γ is an horizontal curve

connecting (x, y, θ)and(x̄, ȳ, θ̄)},
see [49]. In the Euclidean case the infimum is realized by a geodetic that is a
segment. Also here the an horizontal path on which the infimum is achieved is
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called a geodesic, but it can be curvilinear or linear. We will denote ball of center
(x̄, ȳ, θ̄) and radius r in the metric d

B
(

(x̄, ȳ, θ̄), r
)

=
{

(x, y, θ) : d((x, y, θ), (x̄, ȳ, θ̄)) < r
}
.

2.5. Local and global invariance properties. Via the exponential mapping the
properties of the Lie algebra are carried on the Lie group R2×S1. Since X1, X2 X3

are linearly independent at every point, each couple of points can be also connected
with integral curves of these 3 vector fields with constant coefficients. In particular
each point can be written in the form:

(x, y, θ) = exp(α1
~X1 + α2

~X2 + α3
~X3)(0, 0, 0),

where (α1, α2, α3) are constant. Up to a first order approximation αi are the pro-
jection in the directin of the vector fields ~Xi of the point (x, y, θ). This means
that

α1 ' x cos(θ) + y sin(θ) α1 ' θ, α3 ' −x sin(θ) + y cos(θ).
It has been proved in [49] that the distance d, defined in (11) in terms of two vector
fields, is locally equivalent to

(12) d((x, y, θ), (0, 0, 0)) '
(

(x cos(θ)+y sin(θ))2 +θ2
)1/2

+ |x sin(θ)−y cos(θ)|1/2.

This means that d is linear in the directions ~X1 and ~X2, which define the contact
plane, and behave as a square root in the direction ~X3 of the commutator. In other
words for r small the balls are elongated in the directions ~X1 and ~X2, and thinner
in the direction ~X3.

The natural dilation defined locally around (0, 0, 0), is then

(13) δλ(α1, α2, α3) = (λα1, λα2, λ
2α3)

In particular this dilation sends the ball B((0, 0, 0), 1) in the ball with the same
center and radius λ. Analogously it is possible to locally define dilations around
any fixed point (x, y, θ).

The exponential mapping also define a composition law, which will play the same
role of the sum in the euclidean setting:

(x1, y1, θ1) +R (x0, y0, θ0) = (x2, y2, θ2)

where

(x2, y2, θ2) = (cos(θ1)x0 − sin(θ1)y0 + x1, sin(θ1)x0 + cos(θ1)y0 + y1, θ0 + θ1).

Since the dilation does not commute with the group law, the dilation is not a global
property, and the group is non homogeneous.

The distance and the differentiation on the contrary commute with left transla-
tions, indeed

d
(

(x̄, ȳ, θ̄), (x, y, θ)
)

= d
(

0,−R(x̄, ȳ, θ̄) +R (x, y, θ)
))

Besides, if we fix (x̄, ȳ, θ̄) and call

u(x̄,ȳ,θ̄)(x, y, θ) = u
(

(x̄, ȳ, θ̄) +R (x, y, θ)
)

then
Xiu(x̄,ȳ,θ̄) = (Xiu)

(
(x̄, ȳ, θ̄) +R (x, y, θ)

)
.
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2.6. Riemannian approximation of the metric. Note that this metric is not
induced by a riemannian metric. Indeed we have defined the euclidean metric only
on the horizontal plane. We can extend it on all the tangent space defining norm
of a vector as the euclidean norm of its projection on the horizontal tangent space.
Precisely for a vector ~v ∈ Tx,y,θ(R2×S1) represented in the standard basis ∂x, ∂y, ∂θ
we define

|v|2g =
∣∣∣
∣∣∣
(

cos(θ) sin(θ) 0
0 0 1

)

v1

v2

v3



∣∣∣
∣∣∣
2

E
= ||(v1 cos(θ) + v2 sin(θ), v3)||2E =

= (v1 cos(θ) + v2 sin(θ))2 + v2
3 =

v2
1 cos2(θ) + v2

2 sin2(θ) + v1v2 cos(θ) sin(θ) + v2
3

Hence we formally obtain an expression for the inverse of the metric:

gij =




cos2(θ) sin(θ) cos(θ) 0
sin(θ) cos(θ) sin2(θ) 0

0 0 1




Since this matrix is not invertible, be can not induce a riemannian metric on the
space. However, we can consider a riemannian approximation of the metric, and
add a viscosity term in the direction X3. The approximated riemannian norm of
the tangent vector ~v will be

|v|2g = (cos(θ)v1 + sin(θ)v2)2 + v2
3 + ε2(− sin(θ)v1 + cos(θ)v2)2.

The associated matrix is

gijε =




cos2(θ) + ε2 sin( θ) (1− ε2) sin(θ) cos(θ) 0
(1− ε2) sin(θ) cos(θ) sin2(θ) + ε2 cos2(θ) 0

0 0 1




This matrix is invertible, and the inverse matrix gijε defines a norm on cotangent
space at every point, as follows. If w = (w1, w2, w3) ∈ T ∗x,y,θ(R2 × S1)

|(w1, w2, w3)|2g,ε = (cos(θ)w1 + sin(θ)w3)2 + θ2 +
1
ε2

(sin(θ)x− cos(θ)y)2.

The geodesic distance dε associated to gijε tends as ε goes to 0 to the subriemannian
one, defined in (11) (see [32]).

2.7. Functions and surfaces regular with respect to the metric induced
by the association fields. The metric introduced by the association fields allows
to recognize that the lifted sets are regular and surfaces in the Rototraslation space.

In particular in a Lie algebra it is possible to introduce natural derivatives, called
Lie derivatives, which are performed along the association fields:

Definition 2.1. If γi(s) = exp(sXi)(ξ0) we define the Lie derivative of a function
u in ξ0 as

Xiu(ξ0) =
d

ds
(u ◦ γ)|s=0,

when the right hand exists and is finite.
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This derivative concises with the usual one, when u is smooth. Besides it is the
derivative implemented by the association fields.

The set of functions u such that X1u and X2u exist and are continuous will be
called C1

R. In this case the gradient of u is the horizontal section

∇Ru = (X1u,X2u).

We explicitly note that we do not require that u is differentiable with respect to X3,
hence in general C1 and C1

R are not the same set. On the contrary the function u
is only Holder continuous of order 1/2 in the direction X3. Analogously u ∈ C2

R if
∇u ∈ C1

R. In particular, if u ∈ C2, by relation (9), is differentiable with respect to
X3. In other words the derivative X3 has to be considered a second order derivative
with respect to the structure of the space. We can now define a regular surface:

Definition 2.2 ( regular surface). A subset Σ ⊂ R2 × S1 is called a R-regular
surface if it can be locally described as the 0-level set of a function u of class C1

R,
with non vanishing gradient. Precisely there exists a neighborhood U of every point
such that

Σ ∩ U = {(x, y, θ) ∈ U : u(x, y, θ) = 0,∇Ru(x, y, θ) 6= 0}.

Figure 11. normal and tangent vectors to the lifted surface

In particular the image domain, lifted to the set Σ as in formula (8), define a
regular surface in the rototraslation group. Indeed, we can represent Σ as

Σ = {(x, y, θ) : |X3(θ)Is| > 0, X2(X3(θ)Is) = 0, X2
2 (X3(θ)Is) 6= 0}.

If we call v = X2|X3(θ̄)Is|, the set Σ becomes

(14) Σ = {(x, y, θ) : v = 0, X2v 6= 0}.
If Σ is a regular surface in R2 × S1, we call horizontal normal to Σ, and denote

νR the projection on the horizontal plane of the euclidean normal:

νR =
(X1u,X2u)√

(X1u)2 + (X2u)2
.

A R−horizontal tangent vector is an horizontal vector, tangent to Σ. Since the
normal belongs to the horizonal plane, then there exists exactly a line of tangent
vectors, and the expression of the unitary tangent vector will be:

TR =
(X2u,−X1u)√

(X1u)2 + (X2u)2
.
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Finally the curvature is defined, in analogy with the euclidean one, as theR−divergence
of the R−normal vector:

HR(Σ) = divR(νR),
where the R-divergence of a vector (ν1, ν2) is defined as

divRν = X1ν1 +X2ν2.

2.8. Activity propagation in the sub-riemannian space. Up to now we have
built up a geometric space inspired by the functional geometry of the primary cor-
tex. In the cortex neural activity develops and propagates itself in this-subriemannian
space. For seek of semplicity, in this study we consider an extremely simple model
of activity propagation, i.e. a simple linear diffusion in the geometric structure. It
exactly means to diffuse with respect to the sublaplacian operator

(15) ∂tu = ∆Ru.

The sublaplacian operator in this setting is defined, in analogy with the classical
laplacian

(16) ∆Ru = divR(∇Ru).

Analogously if the function u is of class C2, the matrix of all the R−second deriva-
tives is called Hessian matrix

HessRu =
(

X2
1u

1
2 (X1X2 +X2X1)u

1
2 (X1X2 +X2X1)u X2

2u

)
.

Note that, since X1 and X2 do not commute, in order to make the matrix sym-
metric, the coefficients (HessR)12, and (HessR)21 contains the mean of the mixed
derivatives. Also note that the laplacian is the trace of the Hessian.

The laplacian operator is represented as a sum of squares of 2 vector fields
in R2 × S1. Hence it is strongly degenerate, since the associated matrix has 0
determinant at every point. However it has been deeply studied after the result of
Hörmander in [29]:

Theorem 2.1. Since the Lie algebra generated by X1 and X2 is of maximum rank
at every point, then the sublaplacian operator is hypoelliptic. This simply means
that for every initial datum, the solution of the evolution equation is of class C∞

Most of the classical analysis has been carried out in the spaces: existence and
local estimates of the fundamental solution has been proved by [58, 49], gaussian
estimates by Varopoulos, Saloff-Coste and Coulhon in [67], via semigroup theory,
by Kusuoka and Stroock [37, 38] via Gevrey methods. We also refer to [8] for a
proof in the homogeneous situation. As a consequence the classical Schauder and
Sobolev regularity results have been proved by [19, 20, 21], representation formulas
have established, embedding theorems and compactness results. In particular the
solution of (16) can be explicitly represented in terms of a fundamental solution:

u((x, y, θ), t) =
∫

Γ(ζ, t)u0(ζ−
R

(x, y, θ))dζ,

where u0 is the initial value, at time t = 0. Here the convolution is performed using
the group law of the space, and the variable ζ stands for (x′, y′, θ′). The expression
of Γ is not known explicitly, but it can estimated from above and from below as

|Γ((x, y, θ), t)| ≤ C

tQ/2
exp

(
− d2(x, y, θ)

t

)
,
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where Q = 4. In particular the level lines of Γ are the balls of the metric, and the
diffusion is made along these sets.

2.9. Completion model and minimal surfaces in the rototranslation space.
The joint work of subriemannian diffusion (15) and non maximal suppression (8)
allows to propagate existing information and then to complete boundaries and
surfaces. Starting from the lifting

t = 0

{
u0 = O

Σ0 = {(x, y, θ) : ∂θu0 = 0, ∂θθu0 < C}

u(·, 0) = u0δΣ0

the two mechanisms are simultaneously applied until the completion is reached.
To take into account the simultaneous work of diffusion and non maximal sup-
pression we consider iteratively diffusion in a finite time interval followed by non
maximal suppression, and we compute the limit when the time interval tends to 0.

Indeed, given a function un, whose maxima in a given direction are attained on
a surface Σn, we diffuse in an interval [0, h] of time the function unδn, where δn is
the δ function concentrated on the surface Σn:

(17) ut = ∆w, u = unδn per t = 0.

Then we define a new surface Σn+1 as the 0 level set of the derivative of u in the
direction normal to Σn, and consider the new function un+1 = uδΣn+1 .

t ∈ [nh, (n+ 1)h]

{
∂tu = ∆Ru in(R2 × S1)\Σ0

u(·, nh) = un(·, nh)δΣn

t = (n+ 1)h

{
un+1(·, (n+ 1)h) = u(·, (n+ 1)h)
Σn+1((n+ 1)h) = {∂νΣn

un+1 = 0, ∂2
νΣn

un+1 < 0}

If we fix a time T , we can choose intervals of length h = T/(n+ 1), and we get
the two sequences: un+1(·, T ), Σn+1(T ). In section 5 we will a sketch of the proof
of the convergence of the two sequences Σn(T ) and un(T ) respectively to mean
curvature flow Σ(T ) of the surface Σ0 and the beltrami flow on Σ. For T → +∞
the function Σ(T ) converges to a minimal surface in the rototraslation space, in the
sense that it satisfies:

∆Ru− 〈HessRuνΣ, νΣ〉 = 0

divR(νΣ) = 0

The existence of minimal surfaces in a Carnot group on R3 has been recently proved
by [9] and [52]. A definition of motion by curvature in a viscosity sense which
extends to the rototraslation group the well known definition of Evans and Spruck
has been given by Manfredi in [44].
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3. Relation with phenomenological models

3.1. Lifted curves and elastica. Petitot and Tondut have already noted in [55]
that for a lifted curve γ expressed in the form:

(18) γ′ = X1 + kX2,

the coefficient k is is the curvature of the projection of γ on the (x, y) plane.
Indeed if we denote γ(t) = (x(t), y(t), θ(t)), by definition of integral curve we

have
x′ = cos(θ), y′ = sin(θ), θ′ = k

¿From the first two relations it follows that

θ = arctan
(y′
x′

)
.

Differentiating this expression we get

θ′ =
√
x′ + y′

y′′x′ − x′′y′
((x′)2 − (y′)2)3/2

.

In particular the length of γ is the elastica functional, suitably modified:
∫ √

ẋ2 + ẏ2 + θ̇2 =
∫ √

ẋ2 + ẏ2
√

1 + k2.

For horizontal curves there exists a notion formally equal to the definition of
curvature, but computed with respect to the coordinates in the directionX1. Indeed
we represent a curve γ in the form

γ′ = γ′1X1 + γ′2X2),

the contact curvature is defined as

kc =
γ′′2 γ

′
1 − γ′2γ′′1

((γ′1)2 − (γ′2)2)3/2
.

3.2. Lifted surfaces and curves. We have recalled that, if Σ is a regular surface,
at any point is defined an unique horizontal tangent vector TR. Is then possible to
consider a curve γ on Σ, and tangent to TR, at every point. This curve is obviously
horizontal, and can be represented as

(19) γ′(t) = X1 − X1u

X2u
X2.

From this relation and (18) it immediately follows that the curvature of the pro-
jection of γ on the 2D plane x, y is

k =
−X1u

X2u
.

A direct verification ensures that

Remark 3.1. The curvature of the surface Σ coincides with the contact curvature
of the horizontal curve γ lying on Σ.

A lifted surface has been represented in (14) as

Σ = {(x, y, θ) : v = 0, X2v 6= 0},
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hence the Dini theorem ensures that Σ locally is the graph of a suitable function θ
defined in an open subset U of R2:

Σ = {(x, y, θ(x, y)) : (x, y) ∈ U},
Then also the measure of the lifted surface is represented in terms of curvature of
bidimensional curves:

Proposition 3.1. Let Σ a regular admissible surface parametrized by θ = θ(x, y).
For every point (x, y, θ) we denote k the euclidean curvature of the projection of the
curve γ, defined on Σ in (19). Then the measure of Σ is the following one:

mis(Σ) =
∫ √

1 + k2(θ(x, y))dxdy.

3.3. Relation of our model with Morel-Masnou one. Here we show the re-
lation with the level line model of Morel-Masnou, Ambrosio-Masnou who proposed
to minimize the functional (2)

A lifted surface has been represented in (14) as

Σ = {(x, t, θ) : v = 0 X2v 6= 0},
where v = X2X3Iσ = X1Iσ. On this surface we evolve the function

v = X1Is + |X3Is|.
Note that this means that we do not consider the intensity of Is, but only its level
sets. However this function has exactly the same level sets as the function

ṽ = X1Is + Is,

which coincides with Is on the surface. A simple differentiation show that (for both
v and ṽ)

|X1v| = |∇I||curv(Is)| |X2v| = |∇Is|,
so that substituting in 2 we get

∫
|∇Is|(1 + |curv(Is)|2) =

∫ √
|∇Is|(1 + |curv(Is)|2)

√
(1 + k2)(θ(x, y)) =

=
∫

v=0

√
(|X1v|2 + |X2v|2),

where θ is the parametrisation previously introduced. Applying the coarea formula
we can extend the integral on the whole space:

∫

R2×S1
|X1v|2 + |X2v|2 if X1Is = 0

This functional is simply the gradient squared, and its associated steepest descent
equation is the heat equation. Hence this describes a diffusion. However, since we
only want to consider the values on the surface, we also need to concentrate again
on the surface. In this sense our model ca be considered a lifting of Masnou Model
in R2 × S1. Note that it drastically reduces the complexity of the minimisation
problem.
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4. Numerical scheme and computational results

In this section, we show how to approximate the model equations with finite
differences. Let us consider a rectangular uniform grid in space-time (t, x, y, θ);
then the grid consists of the points (tn, xl, ym, θq) = (n∆t, l∆x,m∆y, q∆θ). The
relation between the increments will be deduced from the structure of the local
dilations we have defined. in (13). Since the grid is rectangular, while the natural
increments are linear in direction ~X1 and ~X2, and quadratic in direction ~X3, we
are forced to choice

∆x = ∆y, ∆θ = ∆x2 ∆t = ∆x2.

Following standard notation, we denote by unlmq the value of the function u at
the grid point (tn, xl, ym, θq). We approximate time derivative with a first order
forward difference and space derivative with second order centered scheme. First
and second derivatives in the direction of the subriemannian fields are approximated
with

D1u
n
lmq = cos(θq)Dxu

n
lmq + sin(θq)Dyu

n
lmq

D2u
n
lmq = Dθu

n
lmq

D11u
n
lmq = cos(θq)2Dxxu

n
lmq + 2 cos(θq) sin(θq)Dxyu

n
lmq + sin(θq)2Dyyu

n
lmq

D22u
n
lmq = Dθθu

n
lmq

where D is the usual finite difference operator on the discretized function and
the subscripts x, y, θ indicate the direction of differentiation.

un+1
lmq = unlmq + ∆t(D11u

n
lmq +D22u

n
lmq)

0 ≤ n ≤ N1

vN1
lmq = D2u

N1
lmq

un+1
lmq = unlmq + ∆t ∗

( (D2v
n
lmq)

2D11u
n
lmq + (D1v

n
lmq)

2D22u
n
lmq

D11vnlmq +D22vnlmq
−

− (D12u
n
lmq +D21u

n
lmq)D1v

n
lmqD2v

n
lmq

D11vnlmq +D22vnlmq

)

vn+1
lmq = D2u

n
lmq

N1 ≤ n ≤ N2

We impose Neumann boundary conditions on x and y and periodic boundary
conditions on the third direction θ. The time step ∆t is upper bounded by the CFL
(Courant-Friedrich-Levy) condition that ensures the stability of the evolution [41].

In the first numerical experiment we consider the completion of a figure that has
been only partially lifted in the roto-translation space. This example mimics the
missing information due to the presence of the macula cieca (blind spot) that is
modally completed by the human visual system, as outlined in [34]. The original
image (see Figure 12), top left) is lifted in the rotranslation space with missing
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Figure 12. The original image (top left) is lifted in the rototrans-
lation space with missing information in the center, like in the phe-
nomenon of macula cieca (top right). The surface is completed by
the algorithm (bottom).

information in the center (top right). The lifted surface is completed by iteratively
applying eqs until a steady state is achieved. As proved in Theorem 5.1, the final
surface is minimal with respects to the subriemannian metric.

In Figure 13 an occlusion problem is considered. The initial image (top left)
shows an underlying object partially occluded by a vertical stripe. The human
visual system contemporary segments the occluding object and a-modally completes
the occluded one, taking both at the same time as perceived units. In the numerical
experiment first the image is lifted in the roto-translation space (top right) and the
missing information is completed by the algorithm (bottom). The result shows that
the partially occluded object has been completed and the occluding one has been
segmented. Both the objects are present at the same time in the roto-translation
space.

Finally a classical cognitive image, like the Kanizsa fishes, has been considered.
This image has been deeply studied in the past because it induces several perception
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Figure 13. The original image (top left) is lifted in the roto-
translation space (top right). Modal and amodal completion are
performed at the same time by the algorithm (bottom).

phenomena. First the fishes heads are modally completed and they appear to
occlude the tails that are in turn a-modally completed. This double phenomenon
does not allow to introduce a depth ordering between the two objects, but it does
not prevent a clear perception of the two fishes. The original image (Figure 14
top) and is lifted in the rototranslation space. Modal and amodal completion are
performed at the same time by the algorithm. Two different view of the completed
image are shown in Figure 14: in the view from the top the modally completed
parts are visible (middle). In the view from the bottom the amodally completed
parts are shown (bottom). The two fishes are contemporary present in the 3D RT
space.

5. Proof of convergence

In this section we give a sketch of the proof of the convergence of our diffusion
concentration algorithm. A first relation between diffusion and curvature equation
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Figure 14. The original image (top) is lifted in the rototransla-
tion space. Modal and amodal completion are performed at the
same time by the algorithm. Two different view of the completed
image are shown: in the view from the top the modally com-
pleted parts are visible (middle). In the view from the bottom
the amodally completed parts are shown (bottom).
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goes back to paper of Bence, Merrimann and Osher [7] who describes the evolu-
tion of surface by mean curvature in terms of heat diffusion. Formal proof of the
convergence of the motion of Σn to the motion by curvature has been provided
independently by Evans, [17]and Barles and Georgelin [2]. Here we further develop
these ideas, relating the diffusion, with motion by curvature and Laplace beltrami
operator on a surface, in the subriemannian setting.

Using the fundamental solution we can represent the solution of the sublaplacian
heat equation, with initial datum u0δ0 as an integral on the surface Σ0:

u((x, y, θ), t) =
∫

Σ0

Γ(ζ)u0(ζ−
R

(x, y, θ))dσ(ζ) =

=
∫

Σ0

Γ( −
R
ζ+
R

(x, y, θ), t)u0(ζ)dσ(ζ),

where σ denotes the element of area on the surface Σ0, and ζ is a 3D point of the
space. The expression of the fundamental solution is not known explicitly, but it
can be approximated locally in time, with the parametrix method of Miranda (see
[58], for the application of the method to general subelliptic operators - see also
[8]). Indeed

Theorem 5.1. In a neighborhood of each point ξ0 = (x0, y0, θ0), there exists a
regular change of variables




x1 = (x− x0) cos(θ0) + (y − y0) sin(θ0),
θ1 = θ − θ0,
y1 = −(x− x0) sin(θ0) + (y − y0) cos(θ0)− 1

2x1θ1,

and regular function

ΓH((x, y, θ), t) =
1

(2πt)4

∫

R

cos(
yτ

t
) exp

((1
2
τcoth(2τ)(x2 + θ2)

)
/t
) (2τ)4

sinh(2τ)4
dτ

such that the function

Γξ0((x, y, θ), t) = ΓH((x1, y1, θ1), t)),

is a parametrix of the fundamental solution. Precisely

|X2Γ−X2Γξ0 |((x, y, θ), t) ≤ (t− τ)−1/2Γξ0((x, y, θ), t)

in a neighborhood of the point ξ (a similar assertion also holds for X1). Besides

|∇XΓ((x, y, θ), t)| ≤ C

tQ/2
exp

(
− d2(x, y, θ)

t

)

where Q = 4. (see [CMS[]] for the proof).

We explicitly remark that the function ΓH has the usual homogeneity property:

(20) ΓH(δ√t(x, y, θ), t) = ΓH((x, y, θ), 1)

with respect to the non homogeneous dilations defined in (13):

δ√t(x, y, θ) = (
√
tx, ty,

√
tθ).
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In order to show that the surface is moving by curvature, we take (x0, y0, θ0) ∈ Σ0

and denote ν = ν0 the normal to Σ at (x0, y0, θ0). Then we select v ∈ R so that
(x0, y0, θ0) +

R
tvν ∈ Σ1, in other words:

∂νu((x0, y0, θ0) +
R
tvν, t) = 0

Then vt is the normal increment from (x0, y0, θ0) to the new surface Σ1. We have
to prove the following theorem

Theorem 5.2.
v = H(x0, y0, θ0) + o(1)

as t→ 0, where H is the curvature of the initial surface at the point (x0, y0, θ0).

Proof Up to a change of coordinates, we may assume that (x0, y0, θ0) = 0,
ν = (0, 1, 0), and ∂ν = X2, and Σ is a graph:

{θ = h(x, y) : (x, y) ∈ Q′},
for some function h, and a suitable cube Q′. We then have

h(0) = 0, X1h(0) = 0, X2
1h(0) = curv(0).

Calling s = (x0, y0, θ0) +
R
tvν = (0, 0, tv) and differentiating the expression of u we

get

0 = X2u(s) =
∫

Σ

X2Γ( −
R
ζ+
R
s, t)dσ(ζ) =

where we have denoted ζ = (x, y, θ)

=
∫

Σ∪C
X2Γ(−

R
ζ+
R
s, t)dσ(ζ) +O(e−t) =

using the approximation in Theorem, and denoting ζ1 the image of ζ in the change
of variable,

=
∫

Σ∪C
X2ΓH

(
−
R
ζ1 +

R
s, t
)
u(ζ)dσ(ζ) +O(e−t) =

(the derivative of ΓH is of the form θK, for a suitable kernel never vanishing K,
exponentially decaying, and satisfying 20 ).

=
∫

Σ∪C

1
(2πt)4

(θ − vt)
t

K
(
−
R
ζ1 +

R
s, t
)
dσ(ζ) +O(e−t)

Since the integral is performed on the surface Σ, graph of h

=
∫

C

1
(2πt)4

(h(x, y)− vt)
t

K
(
−
R
ζ1 +

R
s, t
)√

1 + |∇h(x, y)|2dxdy +O(e−t)

With the change of variable x =
√
tp y = tq,

=
∫

C

1
(2πt)4

(h(
√
tp, tq)− vt)
t

K
(
−
R
ζ1 +

R
s, t
)√

1 + |∇h(
√
p, tq)|2dxdy +O(e−t)

Since this expression is 0, the first non zero term of the Taylor development of

vt− h(
√
tp, tq)

must vanishes. Since the first derivative of h is 0, this implies that

v = H(x0, y0, θ0) +O(
√
t).
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We explicitly note that this is only a local approximation result. However the
convergence proof performed by [2], [17], are based on the semigroup theory, and
can be repeated in the rototraslation one. We refer to [11] for details.
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