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ABSTRACT. This survey describes our project to study the motion by curvature of a network of
smooth curves with multiple junctions in the plane, that is, the geometric gradient flow associated to
the Length functional.
Such a flow can represent the evolution of a two–dimensional multiphase system where the energy
is simply the sum of the lengths of the interfaces, in particular it is a possible model for the growth
of grain boundaries.
Moreover, the motion of these networks of curves is the simplest example of curvature flow for sets

which are “essentially” non regular.
In this paper, we introduce the problem and we present some results and open problems about
existence, uniqueness and, in particular, the global regularity of the flow.

1. INTRODUCTION

In this survey we describe the first steps of our project to address the problem of the motion by
curvature of a network of curves in the plane, where by network of curves we mean a connected
planar graph without self–intersections.
The evolution by curvature of such a network is the geometric gradient flow with respect to the
energy given by the Length functional which is simply the sum of the lengths of all the curves of
the network (see [7]).

We point out two motivations to study this evolution. The first is the analysis of models
of two–dimensional multiphase systems, where the problem of the structure and regularity of
the interfaces between different phases arises naturally. As an example, the model where the
energy of a configuration is simply the total length has proven useful in the analysis of the
growth of grain boundaries, see [7, 8, 15, 22], the papers by Herring and Mullins in [6] and
http://mimp.mems.cmu.edu.
The second motivation is more theoretical: the evolution of such a network of curves in the plane
is the simplest example of motion by mean curvature of a set which is essentially singular.
In the literature there are various generalized definitions of flow by mean curvature for non reg-
ular sets (see [1, 7, 11, 13, 21, 25], for instance). All of them are fairly general, but usually lack
uniqueness and a satisfactory regularity theory, even in simple situations.

We consider a connected network S= [n
i=1σ

i in a smooth domain
 � R2 to be a finite family

of regular curves σ
i(x) : [0, 1℄ ! 
 which can intersect each other or self–intersect only at their

end points. We call “multi–points” the vertices of such a smooth graph Swhose order is greater
than one. Moreover, we assume that all the other ends of the curves (if there are any) are some

fixed points Pl on the boundary of 
.
The problem is to analyse the existence, uniqueness, regularity and asymptotic behavior of the

evolution by curvature of this network, under the constrain that the end points Pl 2 ∂
 stay
fixed.

Inspired by Grayson’s Theorem in [14], stating that any smooth closed curve embedded in R2

evolves by curvature without singularities before vanishing, and by the new approach to such re-
sult by Huisken in [20], one can reasonably expect that an “embedded” network of smooth curves
does not develop singularities during the flow if its “topological structure” does not change (we
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2 CARLOMANTEGAZZA

will be more precise about this point in the sequel) and asymptotically converges to a critical
configuration for the Length functional.

In this survey we present our first results, discussing some missing key points and open prob-
lems, and we suggest possible future research directions.

Inmany places this paperwill be somehow roughly, we preferred to discussmainly the general
problems than to mention all the technical points.
We refer the interested reader to the paper [23] for proofs and all the details.

2. BASIC DEFINITIONS AND SMALL TIME EXISTENCE OF THE FLOW

Since the sets we consider are singular because of the presence of the multi–points, first of all
we need to decide what definition of flow by mean curvature we adopt.
As previously underlined, the existing weak definitions of curvature motion do not give unique-
ness of the flow or allow “fattening” phenomena (see [13], for instance), which we would like to
avoid. Among the existing notions, the most suitable to our point of view seems to be Brakke’s
one (see Definition 2.2), which also lacks uniqueness, but maintains at least the Hausdorff dimen-
sion of the sets (thus, preventing the event of fattening).

At the moment we are able to show a satisfactory small time existence result (Theorem 2.4) of
a smooth motion for a special class of networks, that is, the ones having only multi–points with
at most three concurrent curves (triple–points) forming angles of 120 degrees between them (this
last property is called Herring condition).

We set in a precise analytical way the curvature evolution problem for an embedded special
network with only triple–points.

Definition 2.1. We say that the family of networks of curves St = [n
i=1γ

i(�, t) in 
 � R2 , with

end points P j 2 ∂
 and only triple–points, evolves by curvature (remaining embedded) in the

time interval [0, T) if the functions γ
i : [0, 1℄� [0, T)! 
 are of class C2 in space and C1 in time,

at least, and satisfy the following quasilinear parabolic system

(2.1)

8>><>>: γ
i
x(x, t) 6= 0 regularity

γ
i(x, 0) = σ

i(x) initial data

γ
i
t(x, t) = γ

i
xx(x,t)jγi
x(x,t)j2 motion by curvature

for every x 2 [0, 1℄, t 2 [0, T) and i 2 f1, . . . , ng, moreover, the following conditions hold,

(1) at every time, the curves can intersect each other or self–intersect only at their ends (em-
beddedness of the network);

(2) every end of a curve, either is a 3–point or it coincides with one of the fixed end points

of the network P j on the boundary of 
 (there are no “free” end points of the curves). In

this latter case, for example, if σ
i(0) = P j, for some index j, then γ

i(0, t) = P j for every
t 2 [0, T);

(3) every three curves meeting at a 3–point of the network form three angles of 120 degrees;
(4) the only curves which “touch” the boundary of 
 are the ones with fixed end points

coinciding with the points P j.

Notice that the evolution equation

(2.2) γ
i
t = γ

i
xxjγi
xj2 ,

is not the usual way to describe the motion by curvature, that is,

γ
i
t = hγi

xx jνiijγi
xj2 ν

i = kiνi

where we denoted with ν
i the unit normal to the curve γ

i and ki its curvature.
The two velocities differ by a tangential component which actually affects the motions of the
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single points (Lagrangian point of view), but it does not affect the local motion of a curve as a

whole subset of R2 (Eulerian point of view).
In our situation this extra component becomes necessary in order to allow the motion of the 3–

points. Indeed, since we look for a C2 solution of problem (2.1), if the velocity would be in normal
direction at every point of three concurrent curves, the 3–point should move in a direction which
is normal to all three, thus the only possibility would be that it does not move at all (see the
discussions and examples in [7, 8, 22]).

Definition 2.2. We will speak of Brakke flow with equality of an initial network S0 in [0, T), for a
family of C2 networks St in 
, all with the same end points as S0 and satisfying the equation

(2.3)
d

dt

ZSt

ϕ(γ, t) ds = � ZSt

ϕ(γ, t)k2 ds+ ZSt

hrϕ(γ, t) j ki ds+ ZSt

ϕt(γ, t) ds ,
for every smooth function with compact supportϕ : 
� [0, T)! R and t 2 [0, T).
This means also that the time derivative at the hand side has to exist.
Notice that the right hand side does not give any problem since the curves are at least C2.

It is straightforward to check that a solution of problem (2.1) is also a smooth Brakke flowwith
equality.

Remark 2.3. The original definition of Brakke flow stated in [7, Section 3.3] allows equality (2.3)

to be an inequality (and networks St to be one–dimensional countably rectifiable subsets of R2

with a distributional notion of curvature, called varifolds, see [24]), precisely,

d

dt

ZSt

ϕ(x, t) dH1(x) � � ZSt

ϕ(x, t)k2 dH1(x) + ZSt

hrϕ(x, t) j ki dH1(x)+ ZSt

ϕt(x, t) dH1(x) ,
must hold for every positive smooth function with compact support ϕ : 
 � [0, T) ! R and

t 2 [0, T), where d
dt is the upper derivative (the lim of the incremental ratios) andH1 is the Haus-

dorff one–dimensional measure in R2 .
This weaker condition was introduced by Brakke in order to prove an existence result [7, Sec-
tion 4.13] for a family of initial sets much wider than the networks of curves, but, on the other
hand, it let open the possibility of instantaneous vanishing of some parts of the set.
Since for our networks we are able to show, via a differentmethod, the existence of a Brakke flow
composed of smooth curves and satisfying the equality, for sake of simplicity, we included such
extra properties in the definition.

Theorem 2.4. If S0 is a C
2 initial embedded network, then there exists a Brakke flow with equality St for

some positive time interval [0, T).
Moreover, the networks St it is described by a smooth family of curves solving problem (2.1) in every time

interval [ε, T), for any ε > 0. Hence, all the curvatures ki belong to C1([0, 1℄� [ε, T)), hence the flow is
a smooth Brakke flow with equality for every positive time.

Finally, the unit tangents τ
i are continuous in space and time and the function

RSt
k2 ds is continuous on[0, T), where ds is the arclength measure on the curves of the network.

Remark 2.5. The fact that we have a solution of problem (2.1) (which is stronger than a Brakke
flow) only after some positive time ε, is due to the eventuality that the parabolic compatibility
conditions at time t = 0 are not satisfied by the initial network. If such conditions hold, we have
a unique solution of system (2.1) on all [0, T), for every parametrization of the initial network S0

(see [23] for details).

The proof of the theorem is based on a result of Bronsard and Reitich in their paper [8], where
they show that if the parabolic compatibility conditions are satisfied by the initial network, then
the system (2.1) has a unique solution on some positive time interval [0, T). Then, by means of a

priori estimates and approximation, it is possible to get the existence of a Brakke flow for any C2

network like above.
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If the compatibility conditions are not satisfied, the uniqueness of a smooth Brakke flow with
equality for these special networks, is an open problem, even restricting the admissible class of
Brakke flow to the ones with continuous unit tangents.

We discuss now a little the difficulties in extending our analysis to a general network.
In the case of the presence in the initial network of a “bad” 3–point, not satisfying the Herring
condition, that is, the three concurrent curves do not form angles of 120 degrees, we are not
able at the moment to show the existence of a flow, smooth for every positive time, satisfying a
“robust” definition (at least as Definition 2.2).
Actually, one would expect that the desired good definition should give uniqueness of themotion
and force, by an instantaneous regularization, the three angles to become immediately of 120
degrees and to remain so. This is sustained by the fact that, by an energy argument ([7]), any
smooth Brakke flow has to share such a property (which is also suggested by numerical and
physical experiments, see at http://mimp.mems.cmu.edu and also the discussions in [6, 7, 8, 15, 22]).
Notice that, by the variational nature of the problem it is appealing to guess that some sort of
parabolic regularization could play a role here.

The second “big trouble” is when one tries to consider networks with multi–points of order
greater than three.
We remark that if a multi–point has only two concurrent curves, it can be shown, by the regular-
izing effect of the evolution by curvature (see [2, 4, 5, 14]), that the two curves together become
instantaneously a single smooth curve moving by curvature. Hence, the 2–point has vanished
but this particular event is so “soft” (and topologically null) that we can avoid to consider it as a
real structural change.
In the case of a 4–point instead (and clearly also of a higher order multi–point), for instance con-
sidering the network described by two curves crossing each other, there are really several possible
candidates for the flow, even excluding a priori “fattening” phenomena. One cannot easily de-
cide how the angles must behave, like in the 3–point case above, moreover, one can allow the
four concurrent curves to separate in two pairs of curves moving independently each other and
it could even be taken into account the “creation” of new multi–points from such a single one
(these events are actually possible in Brakke’s definition).
In these latter cases, the topology of the network changes dramatically, forcing us to change the
“structure” of the system (2.1) governing the evolution or the family of curves composing the
network.

Finally, it should be noticed that, the previous situation can appear even for our special net-
works with only 3–points after some time, since two (or many) of them could possibly “collapse”
together creating a 4–point (or amulti–point), modifying the topological structure of the network.
This clearly happens when the length of at least one curve of the network goes to zero (and there
is no reason to exclude such an event). In this case, like at the previous point, one possibly has to
“restart” the evolution with a different set of curves.
Again, a “collapse” could also produce a “bad” 3–points (think of three 3–points collapsing to-
gether along three curves connecting them).

Anyway, it seems actually reasonable that the configurations withmulti–points of order greater
than three or 3–points with angles different to 120 degrees should be unstable (they are actually
unstable for the Length functional), with the meaning that they can appear at some discrete set of
times (and probably in some cases are unavoidable), but they must vanish immediately after.

3. A PRIORI ESTIMATES

Once the flow starts, by Theorem 2.4, we can suppose that it is described by a family of smooth

curves γ
i : [0, 1℄ � [0, T) ! 
, solving problem (2.1) in a maximal time interval [0, T), hence,

moving according to the law

γ
i
t(x, t) = γ

i
xx(x, t)jγi
x(x, t)j2 .
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After some time, it could happen that the network “hits” the boundary of
, so the flowwould

stop, by the definition above, without developing a real analytical singularity in the maps γ
i. Ex-

cluding for the moment this geometric event which will be discussed in the next section, there can

be only two reasons why the time T is maximal: either the length of one curve γ
i has gone to zero

(putting us in one of the situations discussed in the previous section) which implies that γ
i
x = 0,

or some derivative of a curve γ
i is not bounded.

Hence, in order to analyse the long term behavior, a priori estimates are needed. They are
strongly based on several relations holding at the 3–points of the network St between the cur-
vatures of the three concurrent curves and their space derivatives. For instance, the sum of the
three curvatures at every 3–point is zero at every time.
Moreover, even if these 3–points (by the Herring condition) are interior points of the network,
from the distributional point of view, every argument based on the maximum principle has to
consider them as “genuine” boundary points. This fact forces us to change approach, with respect
to the standard smooth case, and to resort to integral estimates obtained by means of interpola-

tion inequalities on the L2 norms of the curvature and its derivatives. Pointwise estimates then
will follow using Sobolev embeddings.

The first, immediate, estimate is on the lengths of the curves: since we are moving by the
gradient of the Length functional, the length of every curve of the network is uniformly bounded
above by a constant independent of time.

After some heavy computation one is able to get the following proposition which control these
lengths also away from zero.

Proposition 3.1. For every M > 0 there exists a time TM 2 (0, T) such that for every µ > 0, the
inverses of the lengths of the curves of S0, the curvature of every St and all its space derivatives are

uniformly bounded in the time interval [µ, TM℄ by some constants depending only on µ, the L2 norm of
the curvature of S0 and the inverses of the lengths of the curves of the network at time zero.

By means of these a priori estimates, which are similar to the ones in [3, 4, 5, 18] for the mean
curvature evolution of a smooth curve or hypersurface, we can work out some results about the
flow and, in particular, what happens at the maximal time of existence.

Theorem 3.2. If [0, T) is the maximal time interval of existence of a smooth solution St with T < +1
of problem (2.1), then

(1) either the inferior limit of the length of at least one curve of St goes to zero as t ! T,

(2) or limt!T maxSt
k2 ds = +1.

Moreover, if the lengths of the curves are uniformly bounded away from zero, then the superior limit in (2)
is a limit and there exists a positive constant C such that

(3.1) maxSt

k2 � Cp
T � t

! +1 ,

for every t 2 [0, T).
Remark 3.3. In the case of the evolution γt of a single closed curve in the plane there exist a
constant C > 0 such that if at time T > 0 a singularity develops, then

max
γt

k2 � C

T � t

for every t 2 [0, T) (see [19]). If this lower bound on the rate of blowing up of the curvature
(which is clearly stronger than the one in inequality (3.1)) holds also in the case of the evolution
of a network is an open problem.

If we now suppose that no curve of the network collapses, the analysis proceed like in the
standard case of mean curvature evolution of an hypersurface in Rn .
What is needed is the understanding of the structure of the possible blow up around the singu-
larities, in order to actually exclude these latter by means of geometric arguments. Some key
references for this line are [3, 16, 19, 20].
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The most relevant difference between our case and the standard one is that, because of the pres-
ence of the multi–points, it is difficult to apply themaximum principle, which would be the natural
tool to get estimates on the geometric quantities during the flow.

We postpone the study of the possible singularities to Section 5, as we want now to discuss
some geometric properties of the flow.

4. GEOMETRIC PROPERTIES OF THE FLOW

As we said in the previous section, there are two “catastrophic” geometric events that do not
allow the solution of system (2.1) to be defined for all times, one is the collapse of a curve that,
at the moment, even requires a definition to be dealt with, the other is if the network during the

flow “hits” the boundary of the domain 
 2 R2 .
Assuming the hypothesis that all the curves have lengths uniformly bounded away from zero,

a simple condition to avoid the second situation is the convexity of
.

Proposition 4.1. All the networks St intersect the boundary of 
 only at their end points.
Moreover, for every positive time such intersections are transversal.

Another important geometric property of the flow, in particular if one is thinking to modelize

a physical multiphase system in R2 , for instance a situation with several non–mixing liquid, is
the embeddedness of the network.
We required that all networks are embedded (condition (1) in problem (2.1)) but actually, one can
get a solution for small time also starting from a self–intersecting network.
Clearly, if the initial network is embedded, by continuity, it remains so for some time, what is

more interesting is that actually it remains embedded for every time, till the solution γ
i is smooth.

Moreover, this geometric property plays a key role also in the analysis of the singularities.
We assume a couple of technical hypotheses, that we would like to drop in the future.� The domain
 is strictly convex.� The network S0 is a tree, that is, it does not contain loops.

Borrowing ideas from [17], [20] (see also [10]), we associate to the flow St a quantity E(t) as fol-
lows: considering two points p, q belonging to St, we define �p,q to be the geodesic curve contained
in St connecting p and q (such geodesic is uniquely defined because there are no loops in St), then

we let Ap,q to be the area of the open region Ap,q in R2 enclosed by the segment [p, q℄ and the
curve �p,q. When the region Ap,q is not connected, we let Ap,q to be the sum of the areas of its
connected components.
We consider the function �t : St� St ! R [ f+1g as�t(p, q) = 8>><>>: jp�qj2

Ap,q
if p 6= q,

4
p
3 if p and q coincide with a 3–point of St,+1 otherwise.

Since St is smooth and the 120 degrees condition holds, it is easy to check that �t is a lower
semicontinuous function. Hence, by the compactness of St, the following infimum is actually a
minimum

(4.1) E(t) = inf
p,q2St�t(p, q)

for every t 2 [0, T).
If the network St has no self–intersections we have E(t) > 0, the converse is clearly also true.

Moreover, E(t) � 4
p
3 always holds, since at least one 3–point is present in the network, thus,

when E(t) > 0 the two points (p, q) of a minimizing pair can coincide if and only if they coincide
with a 3–point.
Finally, since the evolution is smooth it is easy to see that the function E : [0, T) ! R is continu-
ous.

The nice property of this function E is stated in the following proposition.
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Proposition 4.2. The function E(t) is monotone increasing in every time interval where 0 < E(t) <
4
p
3 and for at least one minimizing pair (p, q) of �t neither p nor q coincides with one of the end points

Pi.

Since the positivity of E(t) is equivalent to the embeddedness of St, our claim above follows.
We resume then these geometric properties.

Theorem 4.3. If 
 is bounded and strictly convex, and S0 is a tree, there exists a constant C > 0
depending only on S0 such that E(t) > C > 0 for every t 2 [0, T).
Hence, if the initial network was embedded, all the networks St remain embedded in all the maximal
interval of existence of the flow.

We remark that the two hypotheses above seems to be really unnecessary and very likely can
be avoided, maybe with a smart choice of a slightly different function E, since the property to
be a tree is necessary only to have a single geodesic in order to well determine the region Ap,q.
Moreover, we remark that if one is able to extend this theorem to networks with loops, the strict
convexity of 
 is no more necessary.

5. ANALYSIS OF THE SINGULARITIES

We recall that we continue to assume that the lengths of the curves of the networks are uniformly
bounded away from zero.

Since at the maximal time T the curvature has to explode, like in the standard smooth case we
separate the singularities according to its rate of blow up.

We say that a singularity is of Type I if for some constant C we have maxSt
k2 � C=(T � t) as

t ! T and it is of Type II otherwise.
Following Huisken [19], rescaling properly the flow around a “hypothetical” Type I singularity,

one gets an evolution of embedded networks (unbounded and without end points) shrinking
homothetically during the motion by curvature. Classifying all such particular evolutions, we
will show that none of them can arise as a blow up of the flow St, this clearly implies that Type I
singularities cannot develop.

With the same idea, rescaling the flow around a Type II singularity, one gets an eternal motion
by curvature, that is, an evolution of networks defined for every time t 2 R.
What is missing at the moment is that this eternal flow is actually simply given by a translating
network (unbounded and without end points), like it happens in the case of a single smooth
curve. Here also, the main difficulty resides in replacing some maximum principle arguments.
If this blow upwould be translating, after classifying these latters, we could exclude also this case
bymeans of an argument based on the monotonicity of the quantity E of previous section. Hence,
no singularity at all could appear during the flow if the lengths of the curves of the network stay
away from zero.

Since the technical details related to the blow up procedures are quite heavy, in this section we
will speak a little bit roughly, referring to [23] for more precise statements.

Proposition 5.1. Blowing up “in a proper way” the flow of the networks St, in space and time, around a
Type I singularity, we can obtain a non empty “limit” flow by curvature of embedded smooth networks of

curves in all R2 , with at most one end point or 3–point (still satisfying the 120 degrees condition), which
move simply by homothety with respect to the origin. Moreover, the curvature of these networks is not
identically zero.

At this point we want to know what are the possible candidate flows satisfying all the proper-
ties stated in this proposition.

Lemma 5.2. The only smooth flows by curvature of embedded networks with at most one end point or

3–point, moving by homothety with respect to the origin of R2 are:

(1) a straight line from the origin;
(2) a halfline from the origin;
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(3) the network composed by three halfline from the origin, forming three angles of 120 degrees be-
tween them.

Since in all these three situations the curvature of the network is identically zero, we get a
contradiction.

Theorem 5.3. Type I singularities cannot develop during the smooth flow St of an embedded network in

a bounded and strictly convex domain 
 � R2 if the lengths of the curves are uniformly bounded away
from zero.

We turn now our attention to the Type II singularities, that is,

lim
t!T

(T� t)maxSt

k2 = +1 .

Employing a trick by Hamilton, blowing up the flow in a way different to the previous one, we
get an eternal limit flow by curvature of embedded smooth networks S1t , all with at most one end
point or 3–point (as before), where eternal means that the flow is defined for every time t 2 R.
Moreover, the curvature of the networks achieves a non zero maximum at a point in space and
time.

In the case of the evolution of a single closed curve in the plane, it is possible to show that
the “limit” flow by curvature obtained in this way has to move by translation. This conclusion is
reached in two steps: first, one shows that at every time the limit curve is convex, then, by means
of the Harnack estimate proved by Hamilton in [16], it follows that it is simply translating during
the motion.
Then, one is able to classify these translating flows and it turns out that all of them are, up to
translations and dilations, the so called grim reaper (see [3, 16]), which is the curve given by the

graph of the function x = � log(cos y) in R2 when y varies in the interval (�π=2, π=2). Notice

e1

y = π=2
y = �π=2-

FIGURE 1. The grim reaper.

that this curve is contained in a strip or R2 of finite width.
In our situation the convexity condition above can be translated to “the curvature of the limit

flow is never zero”.
At the moment we can only state the following two conjectures.

Conjecture 5.4. If the curvature is zero at some point of the limit flow of networks (or curve) S1t ,
then it is zero along all the curve containing such a point (everywhere).

Conjecture 5.5. The networks (or curves) S1t move by translation.

If this last conjecture is true, so S1t are translating networks, we can apply the following clas-
sification lemma to describe them.

Lemma 5.6. The only smooth flows by curvature of embedded networks with at most one end point or

3–point, moving by translation in R2 are:

(1) a straight line (not moving at all);
(2) a halfline;
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(3) a triod composed by three halflines (like the set at point (3) of Lemma 5.2;
(4) the grim reaper;
(5) a network composed of three unbounded curves which are either halflines or translated copies of

pieces of the grim reaper, meeting at a single 3-points with angles of 120 degrees (it clearly follows
that at most one curve can be a halfline).

FIGURE 2. Some examples of translating networks.

Since our limit flow has non zero curvature, the first three cases would be excluded and we
could conclude that either we are dealing with the grim reaper or with a network composed by
three pieces of it, or two pieces and a halfline.

If we can get to this conclusion, we consider the analogous of the function E of Section 4 for
the limit flow S1t (defined on all R in this case), we call it E1 to distinguish it from the one of the
original flow St. Since, by definition, E is dilation invariant andwe got these limit flows bymeans
of a blow up procedure, as we know that E(t) was greater than an universal constant C (by the
embeddedness of the initial network), the same estimate holds also for E1, that is, E1(t) � C
for every t 2 R.

Fixing t 2 R, if we now consider a pair of points p, q on two curves of the network with
opposite convexity (or on the two ends, if S1t is the grim reaper), we see that sending them both
to infinity in a way that the length of the segment [p, q℄ is uniformly bounded (this can be done

because the grim reaper is contained in a strip of R2 with finite width), it follows that E1(t)must
be zero, which is in contradiction with E1(t) � C.

This clearly exclude Type II singularities.

Remark 5.7. The same argument, but with a different geometric quantity, is used by Huisken
in [20] to exclude Type II singularities during the motion of a single curve.

Proposition 5.8. If Conjecture 5.5 is true then Type II singularities cannot develop during the smooth

flow St of an embedded network in a bounded and strictly convex domain 
 � R2 , if the lengths of the
curves are uniformly bounded away from zero.

Hamilton’s proof that a convex blow up of a Type II singularity (in the standard smooth case) is
translating, is heavily based on the maximum principle which, as we said, is difficult to apply in
our situation. So, it could happen that only Conjecture 5.4 can be proved and one could possibly
exclude Type II singularities without actually show that the limit flow S1t is translating. For
instance, if the curvature is always or never zero on each of the three curves, then they have
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asymptotic tangents (indeed, they are all convex but some of them in the opposite way, by the
fact that the sum of the curvatures at the 3–point is zero), hence in order to apply the previous
argument based on the function E, it would be enough to show that two of these limit tangents,
belonging to curves with opposite convexity, coincide.

Conjecture 5.9. The flow St of an embedded network in a bounded and strictly convex domain
 � R2 , such that the lengths of its curves are uniformly bounded away from zero, does not
develop singularities at all.

If this conjecture is true, it can also be shown that the networks converge, as t ! +1 to a
configuration which is critical for the Length functional among all the networks 
 with the same
end points.

6. OPEN PROBLEMS

The main problem left open in the paper is Conjecture 5.5, whose validity would imply Con-
jectures 5.9.

Other questions in the paper that we would like to set are concerned with the extension of the
results to all the networks, possibly with loops, with only 3–points (no 4–points or higher order
points), in particular, proving an analogous of Theorem 4.3. This would also make superfluous

the requirement that the domain
 � R2 is strictly convex.
Finally, we conclude by listing some, naturally arising, research directions.

(1) The problem of the uniqueness of Brakke flows (smooth/with equality) of networks, dis-
cussed after Theorem 2.4.

(2) The problem of the existence/uniqueness of flow for an initial network not satisfying the
120 degrees condition at the 3–points.

(3) The study of the singularities such that the curvature blows up but the lengths are not
bounded away from zero. Such analysis requires new estimates and a general classifica-
tion of all homothetically moving and translating networks, with only 3–points, flowing
by curvature.

(4) The “definitory” problem of the motion of networks with multi–points (of order greater
than three) and the analysis of the collapsing situations with change of topology (see the
introduction and the papers by De Giorgi [12] and Caraballo [9]).

REFERENCES

1. F. J. Almgren, J. E. Taylor, and L. Wang, Curvature driven flows: a variational approach, SIAM J. Cont. and Opt. 31 (1993),
387–438.

2. S. Altschuler and M. Grayson, Shortening space curves and flow through singularities, J. Diff. Geom. 35 (1992), 283–298.
3. S. J. Altschuler, Singularities of the curve shrinking flow for space curves, J. Diff. Geom. 34 (1991), no. 2, 491–514.
4. S. Angenent, Parabolic equations for curves on surfaces: curves with p–integrable curvature, Ann. of Math. (2) 132 (1990),

451–483.

5. , Parabolic equations for curves on surfaces: intersections, blow up and generalized solutions, Ann. of Math. (2) 133
(1991), 171–215.

6. J. M. Ball, D. Kinderlehrer, P. Podio-Guidugli, and M. Slemrod (eds.), Fundamental Contributions to the Continuum
Theory of Evolving Phase Interfaces in Solids, Springer, Berlin, 1999.

7. K. A. Brakke, The Motion of a Surface by its Mean Curvature, Princeton University Press, Princeton, N.J., 1978.
8. L. Bronsard and F. Reitich, On three-phase boundary motion and the singular limit of a vector–valued Ginzburg–Landau

equation, Arch. Rat. Mech. Anal. 124 (1993), no. 4, 355–379.
9. D. G. Caraballo, A variational scheme for the evolution of polycrystals by curvature, Ph.D. thesis, Princeton University,

1996.
10. K.-S. Chou and X.-P. Zhu, Shortening complete plane curves, J. Diff. Geom. 50 (1998), no. 3, 471–504.
11. E. De Giorgi, Barriers, boundaries and motion of manifolds, Scuola Normale Superiore di Pisa, 1995.
12. ,Motions of partitions, Variational methods for discontinuous structures (Como, 1994), Progr. Nonlinear Differ-

ential Equations Appl., vol. 25, Birkhäuser, Basel, 1996, pp. 1–5.
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