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Abstract

We prove maximum and comparison principles for weak distributional solutions of quasilinear, possibly singular or degenerate,
elliptic differential inequalities in divergence form on complete Riemannian manifolds. A new definition of ellipticity for nonlinear
operators on Riemannian manifolds is introduced, covering the standard important examples. As an application, uniqueness results
for some related boundary value problems are presented.
© 2007 Elsevier Masson SAS. All rights reserved.

Résumé

Nous démontrons des principes de maximum et de comparaison pour les solutions distributionnelles faibles d’inégalités différen-
tielles quasi-linéaires elliptiques, éventuellement singulières ou dégénérées, sous forme divergence sur les variétés riemanniennes
complètes. On présente une nouvelle définition d’ellipticité pour les opérateurs non-linéaires sur des variétés riemanniennes, en
couvrant les exemples importants standards. Comme application, nous présentons quelques résultats d’unicité pour des problèmes
aux limites.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Our main interest is in developing maximum principles and comparison results for weak distributional solutions
of quasilinear, possibly singular or degenerate, elliptic inequalities in divergence form on complete Riemannian
manifolds as

divA(x,u,∇u) + B(x,u,∇u) � 0
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or

divA(x, v,∇v) + B(x, v,∇v) � 0,

where A and B are very general nonlinear continuous functions, but no differentiability assumptions are required
either on A when the gradient variable is 0, or on B . For this purpose in Section 5 we give a new, but natural, concept of
ellipticity for nonlinear operators A on Riemannian manifolds, which covers the standard definition in the Euclidean
setting. Furthermore, the well known operators as the Laplace–Beltrami �, the more general p-Laplace–Beltrami,
�pu := div(|∇u|p−2∇u), p > 1, and the mean curvature operators are still elliptic in the sense of Definition 5.2
below. Moreover, the approach used here lets us treat nonlinear operators having general growth of power p, even
including the case p = 1.

Maximum principles for differential inequalities on complete Riemannian manifolds were already given in [28]
and [31], but our approach and the spirit of the results are quite different. Indeed, in [28] the main subject is the
Omori–Yau maximum principle (and various generalizations with geometrical applications), while we are interested
in classical pointwise versions of comparison and maximum principles for solutions of differential inequalities, in the
spirit of Calabi [9].

The results of the paper are obtained adapting a technique introduced by Pucci and Serrin in [30] and [32] for the
proof of the validity of the comparison principle for elliptic inequalities in Euclidean domains, also developed in [29].

In the last section, as a consequence and application of the comparison theorems of Sections 4 and 5, we establish
some uniqueness results for singular or degenerate elliptic problems on complete Riemannian manifolds. As a corol-
lary of Theorem 6.3 we present the following standard prototype of uniqueness results in smooth domains Ω of M
and for B regular, in the sense that for every compact set K ⊂ T Ω ×Ω R there exists a constant L > 0 such that
|B(x, z, ξ )−B(x, z,η)| � L|ξ −η| for every (x, z, ξ ), (x, z,η) ∈ K . For the precise definitions we refer to Sections 2
and 5.

Theorem 1.1. Let u0 ∈ C(∂Ω), and let u, v be weak solutions of class H
1,∞
loc (Ω) of the Dirichlet problem:{

�pu + B(x,u,∇u) = 0 in Ω,

u = u0 on ∂Ω,
(1.1)

where B = B(x, z, ξ ) is regular and nonincreasing in z. Moreover, assume either:

(i) 1 < p � 2, or
(ii) p > 2 and ess infΩ{|∇u| + |∇v|} > 0.

Then u = v.

As already noted in [30,32], assumption (ii) of Theorem 1.1 is somewhat sharp. Indeed, the problem{
�4u + |∇u|2 = 0 in BR ⊂ R

2,

u = 0 on ∂BR,

where �4 is an analytic elliptic operator, admits the smooth solutions u(x) = 0 and v(x) = 1
8 (R2 − |x|2), but

inf
BR

{|∇u| + |∇v|} = 0.

A special case of (1.1), and a natural extension of the classical Yamabe problem discussed below, is the generalized
scalar curvature equation

�pu − a(x)up−1 + b(x)up∗−1 = 0, u � 0, (1.2)

where p ∈ (1, n), n � 2, p∗ = pn/(n − p), while a and b are smooth functions. When p = 2 Trudinger has shown
in [39] that actually any solution of (1.2) is of class C∞(M ), but in the general case any solution of (1.2) is only of
class C

1,α
loc (M ) for some α ∈ (0,1) by the well-known regularity results of [14]. In the degenerate case p > 2, when

the uniform ellipticity is lost, this regularity is what we can expect at most. Indeed, even in the Euclidean case the
function,

u(x) = |x|p′
, 1/p + 1/p′ = 1, p > 2,
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solves �pu = np′ in R
n, but it is not of class C2. For this reason, it is natural to deal with weak solutions, which

will be introduced in Section 3 for more general elliptic differential inequalities. We remark that our distributional
approach is different from the one of Calabi (see [9]), who considered weak solutions in the sense of viscosity.

In [5] and [14] the authors have proved that under suitable assumptions on M , a and b, there exists at least one
positive solution for (1.2); while Theorem 1.1 shows that the boundary value problem associated to (1.2) admits a
unique solution when a � 0 and b � 0.

The famous and widely studied special example of (1.2), and so of (1.1), is the Yamabe problem on a Riemannian
manifold M of dimension n � 3; that is, given a metric g the problem consists in finding another metric g̃ with
prescribed scalar curvature Rg̃ on (M , g̃) which is conformally equivalent to g. Setting g̃ = u4/(n−2)g, then Rg̃ is
related to scalar curvature Rg of (M , g) by the formula:

4
n − 1

n − 2
�u − Rgu + Rg̃u

(n+2)/(n−2) = 0, u > 0. (1.3)

Hence the original question reduces to finding a smooth solution u of (1.3). In the classical Yamabe problem the
conformal metric g̃ is assumed to have constant scalar curvature Rg̃ = R0 ∈ R. The exponent (n + 2)/(n − 2)

appearing in (1.3) is critical in the sense of the Sobolev embedding, so that a usual variational approach exhibits
a lack of compactness. Nevertheless, existence theorems have been given starting from Trudinger in [39], essentially
when Rg � 0, and by Aubin in [2] and Schoen in [34] when M = Sn, the unit sphere in R

n, and g̃ is the standard
metric g0 of Sn (so that R0 is positive), basically for Rg � 0. In the latter case some multiplicity results for a perturbed
problem are established in [1] provided the dimension n is sufficiently large. Among more recent results, we quote the
one in [21], where conditions on the Weyl tensor and the Ricci curvature are required, in [6], where Rg is 0 and M is
compact, and in [7], where Rg is a negative constant. See also [23] and [38, case n = 2] for a detailed description of
existence or nonexistence results according to the sign or behaviour of Rg and Rg̃ . Recently some existence results for
boundary value problems associated to (1.3) have been established in [17] and [26] under mixed boundary conditions.

The homogeneous Dirichlet problem associated to (1.3) is considered in [11] when Ω is a smooth bounded domain,
Rg and Rg̃ are smooth functions, as well as in [12], where a more general selfadjoint, negative definite second-order
differential operator is considered in a Lipschitz domain Ω of M in presence of a nonlinear C1 function B(x,u). In
the special case that M is an annulus of R

n, n � 4, Rg, Rg̃ are positive numbers, the existence of infinitely many
solutions is proved in [11], while in [12] a uniqueness result is established when ∂uB � 0 and the asymptotic behavior
of the solution is studied in [4]. On the other hand, as an immediate consequence of Theorem 1.1, it is easily seen
that when Rg � 0 and Rg̃ � 0, the homogeneous Dirichlet problem associated to (1.3) has a unique solution of class

H
1,∞
loc (Ω). The example in [12, p. 1388] illustrates the uniqueness result for,

�u − |u|qu = 0 in Ω, u|∂Ω = g ∈ Lp(∂Ω),

whose solution is unique, provided that 0 � q < 2p/(n − 1), a result which we can easily cover when g ∈ C(∂Ω).
Finally, we remark that versions of the comparison and uniqueness results in presence of the mean curvature

operator seem to be fairly new. In the case of B independent of u and ∇u, Spruck shows that if Ω is a bounded C2

domain, H > 0 is the mean curvature of a nonparametric surface u and u0 is a continuous datum on ∂Ω , then, under
additional assumptions on the geometry of Ω , the Dirichlet problem:⎧⎨

⎩div

( ∇u√
1 + |∇u|2

)
= nH in Ω,

u = u0 on ∂Ω,

(1.4)

is uniquely solvable [36, Theorem 1.4]; such a result is immediately reobtained in Section 6. In the same way, we
extend the uniqueness results proved for several other special cases, both for the manifold and for the equation,
treated, i.e. in [10,16,27]. We recall that this problem arises when considering the isoperimetric problem of the least
surface area bounding a given volume.

Let us note that the equation appearing in (1.4), which can be easily handled in the comparison and uniqueness
theorems provided in the sections below, is equivalent to(

1 + |∇u|2)�u − 〈
D2u∇u,∇u

〉 = nH(x)
(
1 + |∇u|2)3/2

, (1.5)
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and that similar equations appear in several other applications of physical and geometric interest, in particular when
H is a function of (x,u,∇u). In the following we recall some of the main examples, and we refer to [32] for a detailed
description.

1. The surface of a fluid under the combined action of gravity and surface tension, capillary surface, verifies:(
1 + |∇u|2)�u − 〈

D2u∇u,∇u
〉 − κ

(
1 + |∇u|2)3/2

u = 0,

where κ is a physical constant.
2. The p-Dirichlet norm on Sn, p > 1, is minimized by functions u on Sn which satisfy

divSn

(|∇u|p−2∇u
) = 0.

Since Sn can be mapped conformally onto the Euclidean tangent space R
n at the South Pole by means of the

stereographic projection from the North Pole, in the stereographic variables x we have:

ρ−n div
(
ρn−p|∇u|p−2∇u

) = 0, ρ(x) = 1/
(
1 + |x|2).

This is a particular example where the vector A depends on both x and ∇u on the manifold R
n. Of course, general

variational integrals on Sn can be treated in the same way.
3. In subsonic gas dynamics the velocity potential ϕ satisfies,

div(	∇ϕ) = 0,

where the velocity ∇ϕ and the density 	 are related through Bernoulli’s law.
4. The general equation of radiative cooling has the form

div
(
κ|∇u|p−2∇u

) = σu4, p > 1,

where κ is the coefficient of heat conduction, depending on x and possibly also on u, while σ is the radiation,
assumed to be constant. Replacing the right-hand side by various functions f = f (x,u) yields further examples
of physical interest.

2. Preliminaries

In this section we introduce the main notation. From now on M will denote a smooth complete Riemannian
n-manifold with metric tensor g ∈ C∞(M , T ∗M ⊗ T ∗M ).

Definition 2.1. The fibered product bundle of two bundles (E,π1,M ) and (F,π2,M ) is the manifold,

E ×M F = {
(e, f ) ∈ E × F : π1(e) = π2(f )

}
,

with the induced vector bundle structure.

In the sequel Ω will denote a regular domain of M and, for shortness, we shall write T Ω ×Ω R in place of
T Ω ×Ω (Ω × R) to denote the fibered product bundle T Ω ×Ω (Ω × R). Of course T Ω ×Ω (Ω × R) ∼= T Ω × R,
and in turn the notation is not ambiguous. In analogy with the Euclidean case, points of T Ω ×Ω R will be denoted
with (x, z, ξ ), where (x, ξ) ∈ T Ω and (x, z) ∈ Ω × R.

Integrals will be taken with respect to the natural Riemannian measure. For example, if (U,Φ) is a coordinate chart
and u is a continuous function compactly supported in U , we define:∫

U

udM =
∫

Φ(U)

(√
Gu

) ◦ Φ−1 dx,

where dx stands for the Lebesgue measure on R
n and G is the absolute value of the determinant of the metric tensor

in the coordinate chart (U,Φ). With the help of smooth partitions of unity, the construction above defines a canonical
positive Radon measure on M , which is the natural Lebesgue measure on M , denoted simply by | · |. In particular
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we can speak of measurable vector fields, that is measurable sections of the tangent bundle. For a section V defined
on Ω and p � 1, introduce the Lebesgue p-norm,

‖V ‖p,Ω =
(∫

Ω

|V |p dM

)1/p

. (2.1)

The integrand at the right-hand side of (2.1) is |V |(x) = √
g(V (x),V (x)). In fact, we shall write | · | to denote,

according to the cases, the real modulus, the Riemannian norm of tangent vectors and the measure of measurable
subsets of M .

Let H 1,p(Ω) be the closure of C∞(Ω) in the Sobolev norm,

‖u‖ = ‖u‖p,Ω + ‖∇u‖p,Ω, (2.2)

where ‖u‖p,Ω = ‖u‖Lp(Ω) and let

H
1,p

loc (Ω) = {
u :Ω → R: u|Ω ′ ∈ H 1,p(Ω ′) for all open sets Ω ′ � Ω

}
.

Finally, denote by H
1,p

0 (Ω) the closure of C∞
c (Ω) with respect to the Sobolev norm (2.2).

We recall that, if u ∈ L1
loc(Ω), a locally integrable vector field H ∈ L1

loc(Ω,T Ω) is a weak gradient for u if∫
Ω

〈H ,V 〉dM = −
∫
Ω

udivV dM

for every vector field V ∈ C∞
c (Ω,T Ω) (see [22]). Since H is unique, we put H = ∇u. Of course, if u is a smooth

function its usual Riemannian gradient is a weak gradient.
We shall use the following result, which extends [15, Theorem 7.8] to a general domain Ω of M . Such an extension

is well known when Ω = M (see for instance [19, Proposition 2.5]).

Lemma 2.2. Let u ∈ H 1,p(Ω), p � 1, and let ψ : R → R be a piecewise smooth function, with ψ ′ ∈ L∞(R). When
|Ω| = ∞, also assume that ψ(0) = 0. Then ψ ◦ u ∈ H 1,p(Ω). Moreover, if S denotes the set where ψ is not differen-
tiable, then

∇(ψ ◦ u) =
{

ψ ′(u)∇u, if u /∈ S,

0, if u ∈ S.

Proof. Let us first suppose ψ ∈ C1(R), with |ψ ′| � M . Set v = ψ ◦ u and take uk ∈ C∞(Ω) such that uk → u in
H 1,p(Ω) and a.e. in Ω . Then vk := ψ ◦ uk ∈ C1(Ω) and ∇vk = ψ ′(uk)∇uk for any k ∈ N. Moreover, |vk| � M|uk|
and |∇vk| � M|∇uk|, so that they are both p-integrable on Ω .

It remains to prove that vk → v in Lp(Ω) and ∇vk → ∇v = ψ ′(u)∇u in Lp(Ω,T Ω), so that ∇v is the weak
gradient of v, since for every vector field V ∈ C∞

c (Ω,T Ω),∫
Ω

〈∇v,V 〉dM = lim
k→∞

∫
Ω

〈∇vk,V 〉dM = − lim
k→∞

∫
Ω

vk divV dM = −
∫
Ω

v divV dM .

Of course, by the mean value theorem,∫
Ω

|vk − v|p dM � Mp

∫
Ω

|uk − u|p dM → 0.

Moreover,

|∇vk − ∇v| = ∣∣ψ ′(uk)∇uk − ψ ′(u)∇u
∣∣

�
∣∣ψ ′(uk)∇uk − ψ ′(uk)∇u

∣∣ + ∣∣ψ ′(uk)∇u − ψ ′(u)∇u
∣∣

� M|∇uk − ∇u| + ∣∣ψ ′(uk) − ψ ′(u)
∣∣ · |∇u|.
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Consequently, by the Lebesgue theorem, as k → ∞,∫
Ω

|∇vk − ∇v|p dM → 0,

since |∇uk − ∇u| → 0 in Lp(Ω), while |ψ ′(uk) − ψ ′(u)| · |∇u| → 0 a.e. in Ω and |ψ ′(uk) − ψ ′(u)| · |∇u| �
2M|∇u| ∈ Lp(Ω). The first case is complete.

Now let ψ be a piecewise smooth function. By iterating the following argument, we can assume that ψ is not
differentiable at only one point, say u0. Without loss of generality, we can assume that u0 = 0 and, moreover, that
ψ(0) = 0 also when Ω is bounded. Now take ψ1,ψ2 ∈ C1(R) with bounded derivatives such that ψ1(u) = ψ(u) for
u � 0 and ψ2(u) = ψ(u) for u � 0. Then ψ(u) = ψ1(u

+) + ψ2(u
−). For the first step, it is enough to show that

u± ∈ H 1,p(Ω).
Take ε > 0 and define:

ψε(t) =
{√

t2 + ε2 − ε, t > 0,

0, t � 0.

Of course ψε ∈ C1(R) and |ψ ′
ε| � 1. For the first step ψε ◦ u ∈ H 1,p(Ω) and∫

Ω

ψε(u)divV dM = −
∫
Ω

〈∇ψε(u),V
〉
dM = −

∫
Ω+

u√
u2 + ε2

〈∇u,V 〉dM (2.3)

for any vector field V ∈ C∞
c (Ω,T Ω), where Ω+ = {x ∈ Ω: u(x) > 0}. Moreover, a.e. in Ω we have

|ψε(u)| = ψε(u) � u+ and ψε(u) → u+ as ε → 0. Furthermore u/
√

u2 + ε2 → 1 a.e. in Ω+ and of course∣∣∣∣ u√
u2 + ε2

〈∇u,V 〉
∣∣∣∣ � |∇u| · |V |.

Therefore, by the Lebesgue theorem, we can pass to the limit in (2.3) proving that

∇(
u+) = (∇u)χΩ+ .

The rest of the proof is straightforward. �
We shall also use this fact:

Lemma 2.3. [19, Proposition 2.4] If u :Ω → R is a Lipschitz function with compact support, then u ∈ H 1,p(Ω) for
every p � 1.

3. Maximum principles for homogeneous inequalities

In this section we shall follow the work of Pucci and Serrin [32] and extend to a Riemannian setting their results
about p-homogeneous inequalities in R

n, including in particular inequalities involving the p-Laplacian operator �p .
Recall that Ω is a bounded and regular domain of M , so that Ω is a smooth manifold with boundary.

We shall treat inequalities of the form

divA(x,u,∇u) + B(x,u,∇u) � 0 in Ω, (3.1)

where divergence and gradient are taken with respect to the Riemannian structure.
Assume that A :T Ω ×Ω R → T Ω is continuous, and A(x, z, ξ ) ∈ TxM for all x ∈ Ω , z ∈ R and ξ ∈ TxM . Let B

be a real function defined in T Ω ×Ω R. We also suppose that there exist p � 1, a1 > 0 and a2, b1 � 0 such that for
all (x, z, ξ ) ∈ T Ω ×Ω R there holds〈

A(x, z, ξ ), ξ
〉
� a1|ξ |p − a2|z|p, B(x, z, ξ ) � b1|ξ |p−1. (3.2)

Definition 3.1. A (weak) solution of (3.1) is a function u ∈ L1
loc(Ω) such that it is weakly differentiable in Ω ,

A(·, u,∇u) ∈ L1 (Ω,T Ω), B(·, u,∇u) ∈ L
p′

(Ω),
loc loc
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where p′ = p/(p − 1) if p > 1 and p′ = ∞ if p = 1, and finally such that∫
Ω

〈
A(x,u,∇u),∇φ

〉
dM �

∫
Ω

B(x,u,∇u)φ dM (3.3)

for all nonnegative φ ∈ H 1,p(Ω) such that φ = 0 a.e. in some neighborhood of ∂Ω . We say that u is a p-regular
solution, if in addition,

A(·, u,∇u) ∈ L
p′
loc(Ω). (3.4)

By u � M on ∂Ω we mean that for every δ > 0 there exists a neighborhood of ∂Ω in which u � M + δ. We need
the following result, which corresponds to [32, Lemma 3.1.2].

Lemma 3.2. Let ψ : R → R
+
0 be a nondecreasing continuous function such that ψ(t) = 0 for t ∈ (−∞, �], � > 0, and

ψ is of class C1 in [�,∞) with ψ ′ bounded. If u ∈ H
1,p

loc (Ω), p � 1, is a p-regular solution of (3.1) with u � 0 on
∂Ω , then (3.3) is valid for φ = ψ ◦ u, in the sense that∫

Ω

〈
A(x,u,∇u),∇φ

〉
dM �

∫
Ω

[
B(x,u,∇u)

]+
φ dM , (3.5)

where ∇φ = ψ ′(u)∇u when u �= �.

Proof. Let φk = ψk ◦ u be the truncation of ψ ◦ u at the level k, that is, φk(u) = ψ(u) when u < k and φk(u) = ψ(k)

when u � k. By the properties of ψ and by Lemma 2.2, φk ∈ H 1,p(Ω). Clearly φk has compact support in Ω when
k > 0, so that in this case φk can be used as a test function in (3.3). Hence∫

Ω

〈
A(x,u,∇u),∇φk

〉
dM �

∫
Ω

[
B(x,u,∇u)

]+
φk dM .

Of course

‖∇φk − ∇φ‖p,Ω = ‖∇φ‖p,{u�k} → 0

as k → ∞. Finally, by the Beppo Levi theorem (φk ↑ φ), the result follows at once. �
The integral

∫
B+φ in (3.5) can possibly be infinite, though in the sequel it will be proved to be actually finite in

our applications. The next result corresponds to Theorem 3.2.1 in [32].

Theorem 3.3 (Maximum principle). Assume that A and B satisfy (3.2) with a2 = 0. Let u be a p-regular solution of
(3.1) of class H

1,p

loc (Ω), p � 1. If u � M on ∂Ω for some constant M � 0, then u � M in Ω .

Proof. Since a2 = 0, it is enough to consider only the case M = 0. Set V = ess supΩ u and suppose by contradiction
that V > 0.

First assume 0 < V < ∞. For � ∈ (V/2,V ) we define ψ(t) = (t − �)+. By Lemma 3.2 we can take ψ(u) as
nonnegative test function for (3.1), so that∫

Γ

〈
A(x,u,∇u),∇ψ

〉
dM �

∫
Γ

[
B(x,u,∇ψ)

]+
(u − �)dM ,

where Γ = {x ∈ Ω: � < u(x) � V }. By Lemma 2.2

∇(ψ ◦ u) =
{∇u in Γ,

0 in Ω \ Γ.

Then applying (3.2) we have:

a1

∫
|∇u|p dM � b1

∫
|∇u|p−1w dM , (3.6)
Γ Γ
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where w = (u−�)+. Now take s = p∗ = np/(n − p) if p < n, and s = 2p (or any exponent s > p) if p � n. Applying
the Hölder inequality to the right-hand side of (3.6) yields

a1‖∇u‖p
p,Γ � b1|Γ |1/n‖w‖s,Ω‖∇u‖p−1

p,Γ . (3.7)

If p > 1, divide by ‖∇u‖p−1
p,Γ (which is strictly positive, since V > 0), so that

a1‖∇u‖p,Γ � b1|Γ |1/p−1/s‖w‖s,Ω. (3.8)

From the Sobolev embedding and from the Poincaré inequality (see Appendix A), there exists a positive constant C

such that

‖w‖s,Ω � C‖∇w‖p,Ω = C‖∇u‖p,Γ . (3.9)

Combining (3.8) and (3.9), dividing by ‖w‖s,Ω(> 0) we get the inequality,

1 � C(b1/a1)
p|Γ |1−p/s,

which is also true when p = 1 by (3.7) and (3.8). But such an inequality is impossible, since |Γ | → 0 when k → V .
If now ess supΩ u = ∞, take � ∈ (1,∞) and set Γ = {x ∈ Ω: u(x) > �}. The rest of the proof can be repeated

word-by-word until the final step, where we let � → ∞. Again |Γ | → 0 and ‖w‖s,Ω is finite thanks to the Sobolev
inequality. �

The next result covers the case b1 = 0 in (3.2) and corresponds to [32, Theorem 3.2.2].

Theorem 3.4 (Maximum principle). Assume that A and B satisfy (3.2) with b1 = 0 and let u ∈ H
1,p

loc (Ω), p > 1, be a
p-regular solution of (3.1) in Ω . If u � 0 on ∂Ω , then u � 0 in Ω .

Proof. Assume by contradiction that V = ess supΩ u > 0 (possibly V = ∞), and for any ε > 0 define:

ψ(t) =
{

0, t � ε,

1 − (ε/t)p−1, t > ε.

By Lemma 3.2 we can take φ = ψ(u) as an admissible test function for (3.1). Since b1 = 0, (3.5) implies∫
Ω

〈
A(x,u,∇u),∇φ

〉
dM � 0. (3.10)

Set Γ = {x ∈ Ω: u(x) > ε}. Then φ = 0 in Ω \ Γ , and by Lemma 2.2

∇ϕ = (p − 1)ε(p−1)

up
∇u in Γ.

By (3.2) and (3.10) we get

0 �
∫
Γ

〈A(x,u,∇u),∇u〉
up

dM �
∫
Γ

a1|∇u|p − a2u
p

up
dM . (3.11)

Hence

a1

∫
Γ

|∇ logu|p dM � a2|Γ |. (3.12)

Now, put w = (u − ε)+ and take s = p∗ if p < n, and simply s > p if p � n. Reasoning as in Theorem 3.3, by the
Sobolev and Poincaré inequalities, there exists a positive number C such that∥∥∥∥log

w + ε

ε

∥∥∥∥ � C

∥∥∥∥∇ log
w + ε

ε

∥∥∥∥ = C

∥∥∥∥∇ log
u

ε

∥∥∥∥ = C‖∇ logu‖p,Γ , (3.13)

s,Ω p,Ω p,Γ
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since log[(w + ε)/ε] = 0 on Ω \ Γ . Now take ε � min{1,V/2} and set:

Σ =
{ {x ∈ Ω: V/2 � u(x) � V } if V < ∞,

{x ∈ Ω: u(x) � 1} if V = ∞.

If V < ∞, note that w � V/2 − ε in Σ . Then (3.12) and (3.13) imply:

|Σ |1/s log
V

2ε
� C

(
a2

a1
|Γ |

)1/p

.

This is a contradiction, since ε → 0, while Σ is independent of ε.
If V = ∞, we get in a similar way

|Σ |1/s log
1

2ε
� C

(
a2

a1
|Γ |

)1/p

,

which is a contradiction. �
Remarks. 1. An alternative formulation of the boundary condition requires that (u − M)+ ∈ H

1,p

0 (Ω). In this case,
(3.4) must be strengthened to

A(·,u,∇u) ∈ Lp′
(Ω,T Ω), B+(·,u,∇u) ∈ Lp′

(Ω),

and the corresponding changes are needed for the proofs.
2. It is obvious that in the previous theorems condition (3.2) needs to hold only for the range of values of u(x) and

∇u(x), x ∈ Ω . We shall take advantage of this remark in the following, if u is assumed to be of class H
1,∞
loc (Ω) rather

than u ∈ H
1,p

loc (Ω).
3. The conclusions of Theorems 3.3 and 3.4 still hold even if Ω is unbounded, provided the boundary condition is

understood to include the condition

lim sup
x∈Ω, r(x)→∞

u(x) � M,

where r(x) = dist(x,O) denotes the Riemannian distance of x from a fixed origin O ∈ Ω .

Theorem 3.5. In Theorem 3.3 the coefficient b1 can be taken as a function in the following Lebesgue spaces:

b1 ∈
{

L
n/(1−θ)

loc (Ω), when 1 < p � n,

L
p

loc(Ω), when p > n,

for some θ ∈ (0,1].
The same result holds for Theorem 3.4, provided that a2 ∈ L1(Ω).

Proof. When 1 < p � n the proof of Theorem 3.3 is valid exactly as before, with (3.7) replaced by:

a1‖∇u‖p
p,Γ � |Γ |θ/n‖b1‖n/(1−θ),Γ ‖w‖s,Ω‖∇u‖p−1

p,Γ .

For the case p > n it is enough to use the Morrey theorem, see Theorem A.1 in Appendix A.
The second result is obvious from the proof itself. �

Theorem 3.6. The conclusions of Theorems 3.3 and 3.4 remain valid when the second inequality in (3.2) is replaced
by:

B(x, z, ξ ) � b1
(|ξ |p−1 + |ξ |q−1), (3.14)

with 1 < q < p.

Proof. The proofs are essentially the same as before, except for the estimate of the right side of (3.6). Indeed, (3.7)
becomes

a1

∫
|∇u|p � b1

(∫ {|∇u|p−1 + |∇u|q−1} · |u|
)

.

Γ Γ
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One then applies the Hölder inequality to separate terms on the right side, as before. �
4. A first comparison results for singular or degenerate inequalities

In this section and in the following we consider the pair of differential inequalities:

divA(x,u,∇u) + B(x,u,∇u) � 0 in Ω, (4.1)

divA(x, v,∇v) + B(x, v,∇v) � 0 in Ω, (4.2)

where Ω , as in the previous section, is a regular bounded domain of M , A :T Ω ×Ω R → T Ω is continuous and
B :T Ω ×Ω R → R, and u and v satisfy the inequality according to Definition 3.1.

Our first comparison result is concerned with an operator A which has no further regularity properties, but which
is independent of z and monotone in the variable ξ , that is for all x ∈ Ω and ξ , η ∈ Tx(M ), with ξ �= η, it results〈

A(x, ξ ) − A(x,η), ξ − η
〉
> 0. (4.3)

Theorem 4.1. Let u and v be p-regular solutions in H
1,p

loc (Ω) of (4.1) and (4.2), respectively, with p � 1. Suppose
that A = A(x, ξ) is independent of z and satisfies (4.3). Moreover, assume that B = B(x, z) is independent of ξ and
nonincreasing in z.

If u � v on ∂Ω , then u � v in Ω .

Proof. By definition of solution and by subtraction, we get that for any φ � 0 in H 1,p(Ω) which is 0 near ∂Ω ,∫
Ω

〈
A(x,∇u) − A(x,∇v),∇φ

〉
dM �

∫
Ω

[
B(x,u) − B(x, v)

]
φ dM .

Take ε > 0 and φ = (u − v − ε)+. Of course this φ ∈ H
1,p

0 (Ω) can be used as test function and Lemmas 3.2 and 2.2
imply: ∫

Γ

〈
A(x,∇u) − A(x,∇v),∇(u − v)

〉
dM �

∫
Γ

[
B(x,u) − B(x, v)

]+
(u − v − ε)dM ,

where Γ := {x ∈ Ω: u(x) − v(x) > ε}. Since B is nonincreasing in z and A is monotone in ξ , both sides of the
previous inequality equal 0. By (4.3), ∇u = ∇v a.e. in Γ . Moreover, (u − v − ε)+ = 0 a.e. in Ω \ Γ , so that

∇(u − v − ε)+ = 0 a.e. in Ω.

Since Ω is connected, (u − v − ε)+ = c for some c ∈ R. In turn c = 0 since φ ∈ H
1,p

0 (Ω) and so u � v + ε in Ω .
Letting ε → 0 completes the proof. �
Remark 4.2. It is clear that the previous result applies to the p-Laplace operator �p , when A(ξ) = |ξ |p−2ξ , p > 1.
But, even more interesting, it also applies to the mean curvature operator, when A(ξ ) = ξ/

√
1 + |ξ |2.

Indeed, p-regularity and 1-regularity of solutions belonging to H
1,p

loc (Ω) and H
1,1
loc (Ω) in presence of the p-Laplace

operator or the mean curvature operator respectively, are automatic, as well as (4.3).

5. Comparison results for singular or degenerate inequalities

In this section we prove a comparison result for a large class of inequalities which include, as special case, the
p-Laplace operator. To this aim, we first settle down the general framework in which the comparison holds, giving a
new definition of ellipticity in terms of the canonical lift (see Section 5.1 below), and then we establish the general
comparison result in Section 5.2.

In addition to the continuity of A, from now on we also assume that

(A1) A is continuously differentiable in (T Ω \ 0) ×Ω R, where 0 stands for the zero section;
(A2) B is locally bounded in T Ω ×Ω R.
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The requirement of smoothness of A only away from the zero section is essential in order to cover the case of
singular as well as degenerate elliptic inequalities. Indeed, the ellipticity condition fails e.g. for the standard p-Laplace
operator �p , p > 1, A(ξ) = |ξ |p−2ξ , as ξ → 0 (see below).

5.1. Ellipticity through the canonical lift

Here we introduce a definition of ellipticity for nonlinear operators seen as fiber-preserving mappings
A :T Ω → T Ω . For the ease of notation, we write ξx for any tangent vector of TxM , x ∈ Ω , or simply ξ if there is
no ambiguity.

Roughly speaking, A is said to be elliptic at some vector ξ ∈ TxM if the tangent mapping of
A(x, ·) :TxM → TxM at ξ is positive definite, after the identification of Tξ (TxM ) with TxM . More precisely,
consider the second tangent bundle of Ω , T 2Ω = T (T Ω), and let π∗ be the tangent mapping of the projection
π :T Ω → Ω . The space V B(T Ω) = {v ∈ T 2Ω: π∗(v) = 0} has a natural structure of vector bundle on Ω . It is called
the vertical bundle over Ω , since it is the space of vectors which are tangent to the fibers TxM of T Ω .

The mapping vl :T Ω ×Ω T Ω → V B defined as

vl(ξx,ηx) = d

dt
(ξx + tηx)|t=0, (5.1)

is called the vertical lift and plays a crucial role in the theory of connections (see [25]). Clearly vl induces an inner
product along the fibers (V B)x for every x ∈ Ω .

Definition 5.1. We say that A is elliptic at ξ ∈ TxM if for every η ∈ TxM〈
pr2 ◦ vl−1 ◦ A∗ ◦ vl(ξ ,η),η

〉
� 0, (5.2)

where pr2 is the second factor projection from T Ω ×Ω T Ω to T Ω .

Note that (5.2) is well defined since A is fiber-preserving, so its differential A∗T 2(Ω) → T 2(Ω) induces a
continuous mapping from V B(Ω) to V B(Ω).

Now, for any b > 0 let Pb,x = B(0x, b) \ {0x} be the punctured ball at 0x of radius b in TxM . If K ⊂ Ω set,

Pb,K =
⋃
x∈K

Pb,x ⊂ T Ω.

Definition 5.2. We say that A is quasi-uniformly elliptic in Pb,K if there exists c = c(b,K) > 0 such that〈
pr2 ◦ vl−1 ◦ A∗ ◦ vl(ξ ,η),η

〉
� c|η|2 (5.3)

for all x ∈ K and ξ , η ∈ Pb,x .
We also say that A is elliptic in Pb,K if (5.3) holds with c � 0.

In other words, A is quasi-uniformly elliptic in Pb,K if the tangent mapping A∗ of A is uniformly positive definite
in Pb,K by means of the canonical lift.

Concerning B , as already stated in the Introduction, we say that B is regular in the set Pb,V,K := ⋃
x∈K Pb,x ×

[−V,V ] if it is locally uniformly Lipschitz continuous with respect to ξ ∈ Pb,K .
Again, also the requirement of Lipschitz continuity of B only away from the zero section is essential for degenerate

equations.

Remarks 1. In the special case of linear operators, it is natural to compare our definition to the one given in [8,24,33,
37], where linear uniformly elliptic operators are defined. In particular, in [33] a linear uniformly elliptic operator in
divergent form is considered, so that it is possible to adopt an approach which is simpler than ours, but which does
not cover the nonlinear cases that we can handle. On the other hand, in [8,24,37] the authors consider operators of the
nondivergent form

Lu = tr
(
D2u ◦ Ax

)
,
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where x ∈ M , Ax is a positive definite symmetric endomorphism of Tx(M ) such that for all x ∈ M and ξ ∈ Tx(M )

c0|ξ |2 � g(Axξ , ξ) � C0|ξ |2.
Therefore, though they can treat nondivergent equations, as in [33], they require an upper bound which we avoid.

2. The definition of ellipticity and of quasi-uniform ellipticity is also valid for operators A that depend explicitly on
z, since we can write (5.2) and (5.3), respectively, for the mapping A(·, z, ·) with fixed z. By quasi-uniform ellipticity
in Pb,V,K we shall mean that the analogue of (5.3) holds for any z ∈ [−V,V ].

3. The concept of ellipticity is well illustrated by the p-Laplace operator �p . Indeed, if p > 2, then �p is elliptic
for ξ �= 0; while �p is quasi-uniformly elliptic in Pb,Ω for all b > 0 when 1 < p � 2 (see Corollary 5.4).

On the other hand, the mean curvature operator is quasi-uniformly elliptic in Pb,Ω for all b > 0.

5.2. Comparison principle

Theorem 5.3 (Comparison principle). Suppose that A = A(x, ξ) is independent of z and quasi-uniformly elliptic in
Pb,Ω for all b > 0. Assume additionally that B is nonincreasing in z and regular in Pb,V,Ω for all b > 0 and V > 0.
Let u and v be solutions of (4.1) and (4.2), respectively, of class H

1,∞
loc (Ω).

If u � v + M on ∂Ω for some constant M � 0, then u � v + M in Ω .

Proof. It is enough to treat the case M = 0, since the case of arbitrary values of M reduces to M = 0 by setting
v̄ = v + M , since A is independent of z. Fix ξx and ηx ∈ Pb,Ω and suppose that the line segment ζ x(t) = tξx +
(1 − t)ηx , t ∈ [0,1], is contained in Pb,Ω (hence is never zero). Dropping x for the ease of notation, by the integral
mean value theorem and the regularity assumption on A, since ζ is a vector field along the constant curve γ (t) = x,
we have

〈
A(ξ) − A(η), ξ − η

〉 =
1∫

0

d

dt

〈
A

(
ζ (t)

)
, ξ − η

〉
dt = 〈∇(A ◦ ζ )(s0), ξ − η

〉
(5.4)

for a suitable s0 ∈ [0,1]. Now, observe that〈∇(A ◦ ζ )(s0), ξ − η
〉 = 〈

pr2 ◦ vl−1 ◦ A∗ ◦ vl
(
ζ (s0), ξ − η

)
, ξ − η

〉
. (5.5)

Indeed, let U be a coordinate neighborhood containing x. Let {ei}ni=1 be a frame of TxM , so that ξ = ∑n
i=1 ξiei and

η = ∑n
i=1 ηiei for suitable components ξi and ηi , i = 1, . . . , n. Finally denote by Ai(x, y1, . . . , yn), i = 1, . . . , n, the

components of a locale representation of A on U . Then in local coordinates

vl−1 ◦ A∗ ◦ vl
(
ζ (s0), ξ − η

) =
(
A

(
ζ (s0)

)
,
∑

∂yi
Ai

(
x, ζ (s0)

)
(ξi − ηi)ei

)
,

so that

pr2 ◦ vl−1 ◦ A∗ ◦ vl
(
ζ (s0), ξ − η

) =
∑

∂yi
Ai

(
x, ζ (s0)

)
(ξi − ηi)ei .

On the other hand it is well known (for example, see [13, Eq. (1), p. 51]) that

∇(A ◦ ζ )(s0) =
n∑

i=1

d

dt
Ai

(
ζ(t)

)∣∣
s0

ei =
n∑

i,j=1

∂yj
Ai

(
x, ζ (s0)

)
(ξj − ηj )ei ,

since the remainder term in the general formula for covariant derivatives of a vector field along a curve γ is 0, being
γ a constant curve. Then (5.5) follows.

Therefore (5.3), (5.4) give 〈
A(ξ) − A(η), ξ − η

〉
� C|ξ − η|2, (5.6)

where C = C(b,Ω).
Let us show, by a continuity argument, that (5.4) remains valid even if ζ (t) passes trough the origin in the tangent

space. Indeed, if necessary, we replace ξ by a suitable nearby vector ξ ′, so that the new line segment joining ξ ′ and η
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is contained in Pb,Ω . Therefore (5.6) holds true with ξ replaced by ξ ′. Now let ξ ′ → ξ ; since A is continuous, then
(5.6) holds without the previous restriction ζ (t) �= 0, as claimed.

If V is a fixed positive number, an argument similar to that for obtaining (5.4) together with the regularity of B ,
yields

B(x,u, ξ ) − B(x, v,η) � b2|ξ − η| + B(x,u,η) − B(x, v,η),

in Pb,Ω and |u|, |v| � V , where b2 is a constant depending on the Lipschitz regularity of B . In particular, since B is
monotone in z,

B(x,u, ξ ) − B(x, v,η) � b2|ξ − η| when u � v. (5.7)

Let y = u−v and Y = supΩ y, which is finite, since y � 0 on ∂Ω by assumption. Let us also note that Y is actually
a “sup” and not an “ess sup” by the Morrey theorem (see Theorem A.1). Suppose by contradiction that Y > 0. For
k ∈ [Y/2, Y ) we define w = (y − k)+. Obviously w = 0 in Ω \ [Γ ∪ y−1(Y )], where

Γ = {
x ∈ Ω: k < y(x) < Y

}
.

Since u,v ∈ H 1,∞(Ω), there exist V,W > 0 such that

‖u‖∞,Γ ,‖v‖∞,Γ � V, ‖∇u‖∞,Γ ,‖∇v‖∞,Γ � W.

By subtracting (4.1) from (4.2) we obtain the principal relation

div
{
A(x,∇u) − A(x,∇v)

} + B(x,u,∇u) − B(x, v,∇v) � 0. (5.8)

Now w is a compactly-supported Lipschitz function, with ∇w = ∇y on Γ and ∇w = 0 on Ω \ Γ by Lemma 2.2.
Therefore w can be taken as a nonnegative test function for inequality (5.8), that is∫

Γ

〈
A(x,∇u) − A(x,∇v),∇w

〉
dM �

∫
Ω

{
B(x,u,∇u) − B(x, v,∇v)

}
w dM . (5.9)

From (5.6) and (5.7), with ξ = ∇u and η = ∇v, we get (note that y > w > 0 and y = u − v > 0 in Γ )

C

∫
Γ

|∇y|2 dM � b2

∫
Γ

|∇y|y dM .

Now proceed as in the proof of Theorem 3.3, since C = C(b,Ω). �
The case of the p-Laplace operator when 1 < p � 2 is particularly important.

Corollary 5.4. Theorem 5.3 is valid when A corresponds to the p-Laplace operator for 1 < p � 2, namely

A(x,∇u) = �pu = div
(|∇u|p−2∇u

)
.

Proof. We have only to show that when 1 < p � 2, the p-Laplace operator is quasi-uniformly elliptic, that is (5.3) is
satisfied. Here A :T Ω → T Ω is the mapping ξ �→ |ξ |p−2ξ for ξ �= 0 (and A(0) = 0). Obviously,

d

dt
A(ξ + tη)|t=0 = vl

(|ξ |p−2ξ , (p − 2)|ξ |p−4〈ξ ,η〉ξ + |ξ |p−2η
)
.

So that, when |ξ | � V 〈
pr2 ◦ vl−1 ◦ A∗ ◦ vl(ξ ,η),η

〉 = (p − 2)|ξ |p−4〈ξ ,η〉2 + |ξ |p−2|η|2
� (p − 1)|ξ |p−2|η|2 � (p − 1)V p−2|η|2,

since 1 < p � 2. �
However, we shall show later that a comparison result for the p-Laplace operator holds true also when p > 2,

under different assumptions (see Corollary 5.8).
In [32] there is another comparison result (Theorem 3.5.3) where A is permitted to depend on z, but B does not

depend on the vector variable ξ . We present here the case in which the concept of boundedness of A∗(∂z) is meant in
terms of the canonical lift.



P. Antonini et al. / J. Math. Pures Appl. 87 (2007) 582–600 595
Theorem 5.5. Let A be quasi-uniformly elliptic in Pb,Ω for all b > 0 and A∗(∂z) is locally bounded in T Ω ×Ω R.
Assume additionally that B = B(x, z) does not depend on ξ and is nonincreasing in the variable z. Let u and v be
solutions of (4.1) and (4.2), respectively, of class H

1,∞
loc (Ω).

If u � v on ∂Ω then u � v in Ω .

Proof. The proof is similar to the proof of Theorem 5.3, with the only novelty that (5.6) has to be treated taking into
account the derivative of A with respect to z, which is assumed to be bounded. More precisely〈

A(x,u, ξ) − A(x, v,η), ξ − η
〉 = 〈

A(x,u, ξ) − A(x,u,η), ξ − η
〉

+ 〈
A(x,u,η) − A(x, v,η), ξ − η

〉
.

As in (5.6), we can find c1 > 0 such that〈
A(x,u, ξ) − A(x,u,η), ξ − η

〉
� c1|ξ − η|2.

Moreover, by the mean value theorem there exists t in the bounded interval between u and v such that〈
A(x,u,η) − A(x, v,η), ξ − η

〉 = 〈
A∗(∂z)(x, t,η), ξ − η

〉
(u − v),

and since A∗(∂z) is locally bounded, there exists c2 > 0 such that〈
A(x,u,η) − A(x, v,η), ξ − η

〉
� −c2|ξ − η| · |u − v|.

By the Cauchy inequality 〈
A(x,u,η) − A(x, v,η), ξ − η

〉
� −c1

2
|ξ − η|2 − c3|u − v|2,

where c3 = 2c2
2/c1. Therefore,〈

A(x,u, ξ) − A(x, v,η), ξ − η
〉
� c1

2
|ξ − η|2 − c3|u − v|2. (5.10)

Next by the monotonicity of B in z,

B(x,u) − B(x, v) � 0 when u > v. (5.11)

Following the proof of Theorem 5.3, subtract (4.2) from (4.1) to get

div
{
A(x,u,∇u) − A(x, v,∇v)

} + B(x,u) − B(x, v) � 0. (5.12)

As before, set w = u − v and let Y = supΩ w. Again Y is finite, since w � 0 on ∂Ω . Assume by contradiction that
Y > 0 and for any ε ∈ (0, Y/2) define ψ(t) = (1 − ε/t)+ and ϕ = ψ(w). Of course w = 0 in Ω \ Γ and w > 0 in Γ ,
where

Γ = {
x ∈ Ω: ε < w(x)

}
.

By Lemma 3.2 we can take ϕ as a nonnegative test function for (5.12), so that∫
Γ

〈
A(x,u,∇u) − A(x, v,∇v),∇ϕ

〉
dM �

∫
Ω

[
B(x,u) − B(x, v)

]+
ϕ dM . (5.13)

By (5.11) and the fact that w > 0 in Γ we immediately get that the right-hand side of (5.13) is zero. Moreover,
∇ϕ = ∇w/w2, so that (5.10), with ∇w = ξ − η, and (5.13) imply∫

Γ

(
c1

2
· |∇w|2

w2
− c3

)
� 0.

Now the proof proceeds as in Theorem 3.4 from (3.11) onward. �
In the next result we remove the condition of quasi-uniformly ellipticity by adding a further hypothesis, which

allow us to treat the p-Laplace operator also when p > 2. This theorem corresponds to Theorem 3.6.1 in [32].
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Theorem 5.6. Assume that A = A(x, ξ ) is independent of z and elliptic in T Ω \ 0. Assume additionally that B is
regular in Pb,V,Ω for all b,V > 0 and nonincreasing in z. Let u and v be solutions of (4.1) and (4.2), respectively, of
class H

1,∞
loc (Ω). Suppose that

ess inf
Ω

{|∇u| + |∇v|} > 0.

If u � v + M on ∂Ω for some constant M � 0, then u � v + M in Ω .

The proof relies on the following

Lemma 5.7. Let Ω̂ be a compact subset of Ω and let x �→ ξx , x �→ ηx be continuous vector fields in Ω satisfying,

|ξx | � W, |ηx | � W and |ξx | + |ηx | � 4d,

for all x ∈ Ω̂ and for some positive constants W and d . Then, under the assumptions of Theorem 5.6, there exists a
constant a3 > 0 such that for all x ∈ Ω̂ ,〈

A(x, ξx) − A(x,ηx), ξx − ηx

〉
� a3|ξx − ηx |2,

and ∣∣B(x, z, ξ ) − B(x, z,η)
∣∣ � b3|ξx − ηx |, (5.14)

where

b3 = L + 2d−1 sup
PW,V,Ω

B

and L is the Lipschitz coefficient of B over the set

S = {
(x, z, ξ ): x ∈ Ω̂, z ∈ [0,V ], d � |ξ | � W

}
.

Proof. Fix a nonzero tangent vector w ∈ TxM \ 0 at some point x ∈ Ω̂ , and define the bilinear form
Qw :TxM × TxM → R, as

Qw(ξ ,η) = 〈
pr2 ◦ vl−1 ◦ A∗ ◦ vl(w, ξ),η

〉
. (5.15)

It is clear that Q is positive definite by ellipticity. Hence we can adapt the Euclidean argument of Lemma 10.2 in [30]
with the formalism of the first part of the proof of Theorem 5.3 (here the zero section plays the role of the singular set
Q in [32]). In particular we can take

a3 = 1

2
inf
S

{min eigenvalue Qwx },

where S = {wx ∈ T Ω, d � |wx | � W, x ∈ Ω̂}.
Inequality (5.14) is very simple to prove, since the first term in the sum for b3 applies when d � |ξx |, |ηx | � W ,

and the second term when |ξx |, |ηx | � 2d . �
Proof of Theorem 5.6. Of course, since A is independent of z, it is enough to treat the case M = 0.

We proceed as in the proof of Theorem 5.3. Let y = u−v and Y = supΩ y, which is finite. Suppose by contradiction
that Y > 0. For k ∈ [Y/2, Y ) we define w = (y − k)+. Of course w = 0 in Ω \ [Γ ∪ y−1(Y )], where

Γ = {
x ∈ Ω: k < y(x) < Y

}
.

Moreover

Γ ⊂ Σ ⊂ Ω,

where Σ = {x ∈ Ω: Y/2 < y(x) < Y }. Since Σ is pre-compact in Ω , and ess infΩ {|∇u| + |∇v|} > 0, there exists a
number d > 0 such that

ess inf
{|∇u| + |∇v|} � 4d.
Σ
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By assumption there exist V, W > 0 such that

‖u‖∞,Σ ,‖v‖∞,Σ � V, ‖∇u‖∞,Σ ,‖∇v‖∞,Σ � W.

As before, w can be taken as a nonnegative test function for (4.1) and (4.2), that is (5.9) holds. From Lemma 5.7,
applied with ∇u = ξx and ∇v = ηx , we have that (5.6) and (5.7) are valid (with C = C(b,Ω) replaced by a3 and b2
replaced by b3). Now we can proceed exactly as in the proof of Theorem 5.3. �
Remark. With the same notation of Lemma 5.7 above, from the proof of Corollary 5.4 we see that the bilinear form
Q corresponding to the p-Laplace operator is:

Qw(ξ ,η) = (p/2 − 1)|w|p−4〈w,η〉 · 〈w, ξ〉 + |w|p−2〈ξ ,η〉
(foot points are omitted for the ease of notation). When p > 2 the smaller eigenvalue of Q is easily shown to be
|w|p−2, that is we can take a3 = dp−2/2 in Lemma 5.7. For the case 1 < p � 2 under more general conditions see
Corollary 5.4.

Corollary 5.8. Assume that B is regular in Pb,V,Ω for all b,V > 0 and nonincreasing in z. Let u and v be solutions
of class H

1,∞
loc (Ω), p > 1, of the inequalities,

�pu + B(x,u,∇u) � 0 in Ω,

and

�pv + B(x, v,∇v) � 0 in Ω,

respectively. Suppose that

ess inf
Ω

{|∇u| + |∇v|} > 0.

If u � v + M on ∂Ω for some constant M � 0, then u � v + M in Ω .

The following final comparison result is a general comparison result similar to Theorem 5.5, but A needs not to
be quasi-uniformly elliptic and A∗(∂z) needs not to be bounded in Pb,Ω for all b > 0. For the proof it is enough to
combine the ideas used in the proofs of Theorems 5.5 and 5.6.

Theorem 5.9. Assume that A is elliptic in Pb,V,Ω for all b,V > 0. Moreover, suppose that B = B(x, z) does not
depend on ξ and is nonincreasing in z. Let u and v be solutions of (4.1) and (4.2), respectively, of class H

1,∞
loc (Ω)

such that

ess inf
Ω

{|∇u| + |∇v|} > 0.

If u � v on ∂Ω , then u � v in Ω .

All the results of this section continue to hold if Ω is unbounded, provided that the boundary condition is under-
stood to include the limit relation

lim sup
x∈Ω, r(x)→∞

{
u(x) − v(x)

}
� M.

Indeed, in the proofs above we use the Sobolev inequalities to functions which are compactly supported on M , so
that Theorem A.1 can be still applied.

6. Uniqueness results

In this section the results of Sections 4 and 5.2 are employed to prove uniqueness of solutions for the Dirichlet
problem {

divA(x,u,∇u) + B(x,u,∇u) = 0 in Ω,

u = u on ∂Ω,
(6.1)
0
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where u0 ∈ C(∂Ω) is a given boundary datum. Every comparison result gives immediately rise to a uniqueness result
for the corresponding Dirichlet problem, so that here we report the general cases and the important subcases of the
mean curvature operator and of the p-Laplace operator. Let us also note that existence results for quasilinear problems
of the form (6.1) are well known in Euclidean domains since the pioneering paper of Serrin [35].

First, Theorem 4.1 gives a uniqueness result whenever A = A(x, ξ) is independent of z and satisfies (4.3), while
B = B(x, z) is independent of ξ and nonincreasing in z. As an application, consider the following result.

Theorem 6.1. Assume that B = B(x, z) is independent of ξ and nonincreasing in z. Then the Dirichlet problem:⎧⎨
⎩div

( ∇u√
1 + |∇u|2

)
+ B(x,u) = 0 in Ω,

u = u0 on ∂Ω,

u0 ∈ C(∂Ω), has at most one solution in H
1,1
loc (Ω).

Proof. It is a consequence of Theorem 4.1. �
Theorem 6.2. Suppose that A = A(x, ξ) is independent of z and quasi-uniformly elliptic in Pb,Ω for all b > 0. Assume
additionally that B is regular in Pb,V,Ω for all b,V > 0 and nonincreasing in z. Then problem (6.1) can have at most
one solution in H

1,∞
loc (Ω).

Proof. It is an immediate application of the comparison principle given in Theorem 5.3. �
Theorem 6.3. Assume that A = A(x, ξ ) is independent of z and elliptic in T Ω \ 0. Suppose additionally that B is
regular in Pb,V,Ω for all b,V > 0 and nonincreasing in z. Let u and v be solutions of (6.1) of class H

1,∞
loc (Ω) such

that

ess inf
Ω

{|∇u| + |∇v|} > 0.

Then u = v in Ω .

Proof. It is a straightforward consequence of Theorem 5.6. �
As a general and final application of Theorem 6.3, let us consider in particular the p-Laplace operator, which is for

sure one of the most relevant cases.

Corollary 6.4. Let u0 ∈ C(∂Ω), and let u, v be weak solutions of class H
1,∞
loc (Ω) of the Dirichlet problem:{

�pu + B(x,u,∇u) = 0 in Ω,

u = u0 on ∂Ω,
(6.2)

where B = B(x, z, ξ ) is regular in Pb,V,Ω for all b,V > 0 and nonincreasing in z. Moreover, assume either,

(i) 1 < p � 2, or
(ii) p > 2 and ess infΩ {|∇u| + |∇v|} > 0.

Then u = v.

Proof. In the first case it is a consequence of Corollary 5.4, in the second case of Corollary 5.8. �
Remark. Consider problem (6.2) in R

n, with B(x, z, ξ ) = |ξ |2 − 1 and u0(x) = x1, for x = (x1, . . . , xn). Then the
unique solution of this problem is u(x) = x1 whatsoever Ω is, since |∇u| = 1 in R

n.
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Appendix A

We recall here the Sobolev embedding theorem in the framework of Riemannian manifolds with boundary, together
with the proof of the validity of an Euclidean-type Poincare’s inequality. For an extensive treatment of this subject see
[3] and [19]. Let Ω be a bounded regular domain of M so that Ω is an n-manifold with C1 boundary. Of course we
do not write the most general version of these results, for which we refer to Theorem 2.30 of [3], Chapters 2 and 10
of [18] and to [20].

Theorem A.1. For the compact manifold Ω with C1 boundary, the following Sobolev embeddings hold.
First part (Sobolev). If 1 � p < n, the embedding H 1,p(Ω) ↪→ Lp∗

(Ω) is continuous, where p∗ = np/(n − p).
Moreover, there exists κ > 0 such that for any u ∈ H

1,p

0 (Ω),

‖u‖p∗,Ω � κ‖∇u‖p,Ω.

If p = n, the embedding H 1,p(Ω) ↪→ Lq(Ω) is continuous for any q ∈ [1,∞).
Second part (Morrey). If p > n, the embedding H 1,p(Ω) ↪→ Cα(Ω) is continuous for 0 � α � 1 − n/p.

Here Cα(Ω), 0 < α < 1, is the space of Hölder continuous functions of exponent α with norm

‖u‖Cα = sup
x∈Ω

∣∣u(x)
∣∣ + sup

x,y∈Ω, x �=y

{∣∣u(x) − u(y)
∣∣ · d(x, y)−α

}
,

where d(x, y) is the Riemannian distance on M .
The next result is the analogue of the Kondrachov theorem.

Theorem A.2. [3, Theorem 2.34] If Ω is a bounded submanifold with C1 boundary, the following embeddings are
compact.

(i) If 1 � p < n, then H 1,p(Ω) ↪→↪→ Lq(Ω), with q ∈ [1,p∗). If p = n the result continues to hold for all
q ∈ [1,∞).

(ii) If p > n, then H 1,p(Ω) ↪→↪→ Cα(Ω), with 0 � α � 1 − n/p.

Finally, we give a simple version of the Poincaré inequality.

Lemma A.3. Let Ω be a bounded submanifold of M . If p � 1, then there exists C > 0 such that for all u ∈ H
1,p

0 (Ω)

there holds ∫
Ω

|u|p � C

∫
Ω

|∇u|p.

Proof. It is the same of the proof of the Poincaré inequality, Theorem 2.10 of [18], established in H 1,p(Ω), that is
with an extra mean term, which, however, we give for completeness, when p > 1 and without using Theorem A.1.

We show first that the functional L(u) = ∫
Ω

|∇u|p has a positive minimum α on

H =
{
u ∈ H

1,p

0 (Ω):
∫
Ω

|u|p = 1

}
.

Let α = infu∈H L(u) and let k �→ vk be a minimizing sequence. Since H
1,p

0 (Ω) is reflexive for p > 1 (see Propo-
sition 2.2 in [18]), by the Kondrachov Theorem A.2, the sequence (vk)k has a subsequence which converges weakly
in H

1,p

0 (Ω) and strongly in Lp(Ω), since H
1,p

0 (Ω) is compactly embedded in Lp(Ω). Let v be its limit. From the
strong convergence we see that v ∈ H , while from the weak convergence we have∫

Ω

|∇v|p � lim inf
k→∞

∫
Ω

|∇vk|p = α.

In turn α = L(v) > 0, because v cannot be zero and the proof is completed. �
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