Discrete approximation of functionals with jumps and creases

Andrea Braides
SISSA Via Beirut 434014 Trieste, Italy

Let $\mathcal{H}^{2}(0, L)$ denote the space of piecewise- H^{2} functions on the interval $(0, L)$; if $u \in \mathcal{H}^{2}(0, L)$ then u, u^{\prime} and $u^{\prime \prime}$ are regarded as defined on the whole interval $(0, L)$, and u and u^{\prime} are piecewise-continuous functions. Let $S(u)$ be the set of the discontinuity points (jump points) of the function $u \in \mathcal{H}^{2}(0, L)$ and, with a slight abuse of notation, denote by $S\left(u^{\prime}\right)$ the set of crease points of u (i.e., those points where u is continuous but u^{\prime} is discontinuous). Let $\alpha, \beta>0$. The functional $\mathcal{F}: \mathcal{H}^{2}(0, L) \rightarrow[0,+\infty)$ defined by

$$
\begin{equation*}
\mathcal{F}(u)=\int_{0}^{L}\left|u^{\prime \prime}\right|^{2} d t+\alpha \#\left(S\left(u^{\prime}\right)\right)+\beta \#(S(u)) \tag{1}
\end{equation*}
$$

has been introduced by Blake and Zisserman ([2]) to model some signal reconstruction problems, which can then be reduced to the solution of the minimum problems

$$
\begin{equation*}
m=\min \left\{\mathcal{F}(u)+\int_{0}^{L}|u-g|^{2} d t: u \in \mathcal{H}^{2}(0, L)\right\}, \tag{2}
\end{equation*}
$$

where g is the input (distorted) signal. The theoretical study of these problems has been performed by Coscia [9], who interpreted the functional \mathcal{F} in the spirit of free-discontinuity problems as introduced by De Giorgi and Ambrosio (see [1], [4]). The key point is to notice that if $\alpha \leq \beta \leq 2 \alpha$ then \mathcal{F} is lower semicontinuous with respect to the $L^{1}(0, L)$ convergence. At this point the direct methods of the Calculus of Variations may be applied to obtain existence of the solutions to the abovementioned problems. A characterization of lower semicontinuity for general functionals on jumps and creases is given by Braides [3].

Here we show an approximation result by Γ-convergence of the functional above in the same spirit of that proved by Chambolle [8] for the Mumford-Shah functional (see [12], [11], [1])

$$
\int_{0}^{L}\left|u^{\prime}\right|^{2} d t+\gamma \#(S(u))
$$

defined on piecewise- H^{1} functions. In that case, the approximating discrete functionals take the form

$$
\begin{equation*}
E_{\varepsilon}(u)=\sum_{x \in \varepsilon \mathbb{Z} \cap(0, L)} \varepsilon \Phi_{\varepsilon}\left(\frac{u(x+\varepsilon)-u(x)}{\varepsilon}\right) \tag{3}
\end{equation*}
$$

defined on discrete functions $u: \varepsilon \mathbb{Z} \cap(0, L) \rightarrow \mathbb{R}$, where Φ_{ε} are suitable functions, whose crucial property is to satisfy

$$
\lim _{\varepsilon} \Phi_{\varepsilon}(z)=z^{2} \text { on } \mathbb{R} \quad \lim _{\varepsilon} \varepsilon \Phi_{\varepsilon}\left(\frac{z}{\varepsilon}\right)=\gamma
$$

$(z \neq 0)$. The model case is with $\Phi_{\varepsilon}(z)=\min \left\{z^{2}, \gamma / \varepsilon\right\}$. The description of the behaviour of general difference schemes of the form (3) with minimal hypotheses on Φ_{ε} can be found in [7]. In our case we can define suitable Ψ_{ε} such that, setting

$$
E_{\varepsilon}(u)=\sum_{x \in \varepsilon \mathbb{Z} \cap(0, L)} \varepsilon \Psi_{\varepsilon}\left(\frac{u(x+\varepsilon)+u(x-\varepsilon)-2 u(x)}{\varepsilon^{2}}\right)
$$

(i.e., using a discretization of $u^{\prime \prime}$ in place of the difference quotients) these discrete energies converge to \mathcal{F} as $\varepsilon \rightarrow 0$ in the sense of Γ-convergence (see below). As a result, we immediately obtain approximate minimum problems for (2) of the form

$$
\begin{equation*}
m_{\varepsilon}=\min \left\{E_{\varepsilon}(u)+\sum_{x \in \varepsilon \mathbb{Z} \cap(0, L)} \varepsilon\left|u(x)-g_{\varepsilon}(x)\right|^{2}: u: \varepsilon \mathbb{Z} \cap(0, L) \rightarrow \mathbb{R}\right\} \tag{4}
\end{equation*}
$$

where g_{ε} are suitable discretizations of g. The main requirement on Ψ_{ε} is now that

$$
\lim _{\varepsilon} \Psi_{\varepsilon}(z)=z^{2} \text { on } \mathbb{R} \quad \lim _{\varepsilon} \varepsilon \Psi_{\varepsilon}\left(\frac{z}{\varepsilon}\right)=\alpha, \quad \lim _{\varepsilon} 2 \varepsilon \Psi_{\varepsilon}\left(\frac{z}{\varepsilon^{2}}\right)=\beta
$$

thus highlighting an interesting double-scale effect. Note in particular that the choice of $\Psi_{\varepsilon}(z)=\min \left\{z^{2}, \gamma / \varepsilon\right\}$ gives $\alpha=\gamma$ and $\beta=2 \gamma$.

Before proceeding in the exact statement and proof of the result, for notational convenience we replace the continuous small parameter ε by a discrete parameter λ_{n}. Let $L>0$ and $n \in \mathbb{N}$. We set

$$
\lambda_{n}=\frac{L}{n}, \quad x_{n}^{i}=i \lambda_{n} \quad(i=0, \ldots, n)
$$

Let $0<\alpha \leq \beta \leq 2 \alpha, c_{1}, c_{2}>0$ and define

$$
\Psi_{n}(z)= \begin{cases}z^{2} & \text { if }|z| \leq c_{1} / \sqrt{\lambda_{n}} \tag{5}\\ \frac{\alpha}{\lambda_{n}} & \text { if } c_{1} / \sqrt{\lambda_{n}}<|z| \leq c_{2} / \lambda_{n} \sqrt{\lambda_{n}} \\ \frac{\beta}{2 \lambda_{n}} & \text { if } c_{2} / \lambda_{n} \sqrt{\lambda_{n}}<|z|\end{cases}
$$

Note that the terms $c_{1} / \sqrt{\lambda_{n}}$ and $c_{2} / \lambda_{n} \sqrt{\lambda_{n}}$ may be replaced by any other pair of sequences $\left(T_{n}^{1}\right),\left(T_{n}^{2}\right)$ such that $1 \ll T_{n}^{1} \ll 1 / \lambda_{n} \ll T_{n}^{2} \ll 1 / \lambda_{n}{ }^{2}$ as $n \rightarrow+\infty$. Again, we have made this particular choice for notational convenience.

Let

$$
\mathcal{A}_{n}=\left\{u: \lambda_{n} \mathbb{Z} \cap[0, L] \rightarrow \mathbb{R}\right\}
$$

and let

$$
\begin{equation*}
E_{n}(u)=\sum_{i=1}^{n-1} \lambda_{n} \Psi_{n}\left(\frac{u\left(x_{n}^{i+1}\right)+u\left(x_{n}^{i-1}\right)-2 u\left(x_{n}^{i}\right)}{\lambda_{n}{ }^{2}}\right) \tag{6}
\end{equation*}
$$

be defined for $u \in \mathcal{A}_{n}$.
We identify \mathcal{A}_{n} with a subspace of $L^{2}(0, L)$ by regarding each function u as defined by the value $u\left(x_{n}^{i}\right)$ on $\left[x_{n}^{i}, x_{n}^{i+1}\right)$. We then have the following approximation result by Γ-convergence. For a general introduction to Γ-convergence we refer to [5], [10], or [6] Part II. For the application of Γ-convergence to the approximation of free-discontinuity problems we refer to [4]

Theorem 0.1 The functionals $E_{n} \Gamma$-converge to \mathcal{F} with respect to the $L^{1}(0, L)$ convergence on bounded sets of $L^{2}(0, L)$. Namely, we have
(i) if $\left(u_{n}\right)$ is bounded in $L^{2}(0, L)$ and $\sup _{n} E_{n}\left(u_{n}\right)<+\infty$ then $\left(u_{n}\right)$ is precompact in $L^{1}(0, L)$;
(ii) if $\left(u_{n}\right)$ is bounded in $L^{2}(0, L), u_{n} \rightarrow u$ in $L^{1}(0, L)$ and $\liminf _{n} E_{n}\left(u_{n}\right)<$ $+\infty$ then $u \in \mathcal{H}^{2}(0, L)$ and $\mathcal{F}(u) \leq \liminf _{n} E_{n}\left(u_{n}\right)$;
(iii) for all $u \in \mathcal{H}^{2}(0, L)$ there exist $u_{n} \in \mathcal{A}_{n}$ with $u_{n} \rightarrow u$ in $L^{2}(0, L)$ and $\mathcal{F}(u) \geq \lim \sup _{n} E_{n}\left(u_{n}\right)$.

As a consequence of (i)-(iii), if $g \in L^{2}(0, L)$ then the minimum values

$$
m_{n}=\min \left\{E_{n}(u)+\int_{0}^{L}|g-u| d t: u \in \mathcal{A}_{n}\right\}
$$

converge to the minimum value

$$
m=\min \left\{\mathcal{F}(u)+\int_{0}^{L}|g-u|^{2} d t: u \in \mathcal{H}^{2}(0, L)\right\}
$$

and from every sequence $\left(u_{n}\right)$ of solutions of the first problems we can extract a converging subsequence to a solution of the latter.

Proof. Statements (i) and (ii) will be proven by using the compactness properties of \mathcal{F} and by comparing E_{ε} with a suitable family $\left(F_{\varepsilon}\right) \Gamma$-converging to \mathcal{F}. Let $u_{n} \in \mathcal{A}_{n}$ be such that $\liminf _{n} E_{n}\left(u_{n}\right)<+\infty$. Upon extracting a subsequence, we can suppose that this liminf is actually a limit, so that in particular $\sup _{n} E_{n}\left(u_{n}\right)<+\infty$. We will modify u_{n} so as to obtain a comparison sequence $\left(v_{n}\right)$ in $\mathcal{H}^{2}(0, L)$.

We first modify u_{n} to obtain piecewise-affine functions w_{n}. On $\left[x_{n}^{i-1}, x_{n}^{i}\right]$ the function w_{n} is defined as

$$
w_{n}(x)=u_{n}\left(x_{n}^{i-1}\right)+\left(x-x_{n}^{i-1}\right)\left(\frac{u_{n}\left(x_{n}^{i}\right)-u_{n}\left(x_{n}^{i-1}\right)}{\lambda_{n}}\right)
$$

Let

$$
I_{n}=\left\{i \in\{1, \ldots, n-1\}: u_{n}\left(x_{n}^{i+1}\right)+u_{n}\left(x_{n}^{i-1}\right)-2 u_{n}\left(x_{n}^{i}\right)>c_{1} \lambda_{n} \sqrt{\lambda_{n}}\right\}
$$

For all $i \in\{1, \ldots, n-1\} \backslash I_{n}$ we define v_{n} on the interval $\left(x_{n}^{i}-\left(\lambda_{n} / 2\right), x_{n}^{i}+\left(\lambda_{n} / 2\right)\right)$ as the polynomial of degree 2 satisfying

$$
\begin{aligned}
& v_{n}\left(x_{n}^{i}-\frac{\lambda_{n}}{2}\right)=w_{n}\left(x_{n}^{i}-\frac{\lambda_{n}}{2}\right)=\frac{u_{n}\left(x_{n}^{i}\right)+u_{n}\left(x_{n}^{i-1}\right)}{\lambda_{n}} \\
& v_{n}\left(x_{n}^{i}+\frac{\lambda_{n}}{2}\right)=w_{n}\left(x_{n}^{i}+\frac{\lambda_{n}}{2}\right)=\frac{u_{n}\left(x_{n}^{i+1}\right)+u_{n}\left(x_{n}^{i}\right)}{\lambda_{n}} \\
& v_{n}^{\prime}\left(x_{n}^{i}-\frac{\lambda_{n}}{2}\right)=w_{n}^{\prime}\left(x_{n}^{i}-\frac{\lambda_{n}}{2}\right)=\frac{u_{n}\left(x_{n}^{i}\right)-u_{n}\left(x_{n}^{i-1}\right)}{\lambda_{n}}, \\
& v_{n}^{\prime}\left(x_{n}^{i}+\frac{\lambda_{n}}{2}\right)=w_{n}^{\prime}\left(x_{n}^{i}+\frac{\lambda_{n}}{2}\right)=\frac{u_{n}\left(x_{n}^{i+1}\right)-u_{n}\left(x_{n}^{i}\right)}{\lambda_{n}}
\end{aligned}
$$

For such v_{n} the constant second derivative is given on $\left(x_{n}^{i}-\left(\lambda_{n} / 2\right), x_{n}^{i}+\left(\lambda_{n} / 2\right)\right)$ by

$$
v_{n}^{\prime \prime}(y)=\frac{1}{\lambda_{n}}\left(w_{n}^{\prime}\left(x_{n}^{i}+\right)-w_{n}^{\prime}\left(x_{n}^{i}-\right)\right)=\frac{u_{n}\left(x_{n}^{i+1}\right)+u_{n}\left(x_{n}^{i-1}\right)-2 u_{n}\left(x_{n}^{i}\right)}{\lambda_{n}{ }^{2}}
$$

On the remaining part of $[0, l]$ we simply set

$$
v_{n}(x)=w_{n}(x)
$$

Note that $v_{n} \in \mathcal{H}^{2}(0, L)$ but $S\left(v_{n}\right)=\emptyset$. Moreover,

$$
S\left(v_{n}^{\prime}\right)=\left\{x_{n}^{i}: i \in I_{n}\right\}
$$

If $x_{n}^{i} \in S\left(v_{n}^{\prime}\right)$ then

$$
\begin{equation*}
\frac{u_{n}\left(x_{n}^{i+1}\right)+u_{n}\left(x_{n}^{i-1}\right)-2 u_{n}\left(x_{n}^{i}\right)}{\lambda_{n}^{2}}=\frac{1}{\lambda_{n}}\left(v_{n}^{\prime}\left(x_{n}^{i}+\right)-v_{n}^{\prime}\left(x_{n}^{i}-\right)\right) \tag{7}
\end{equation*}
$$

Finally, to complete the description of v_{n}, note that on the two intervals $\left(0, \lambda_{n} / 2\right)$ and $\left(L-\lambda_{n} / 2, L\right) v_{n}$ is affine.

Let

$$
F_{n}(v)=\int_{0}^{L}\left|v^{\prime \prime}\right|^{2} d t+\sum_{t \in S(v)} \varphi_{n}\left(v^{\prime}(t+)-v^{\prime}(t-)\right)+\beta \#(S(v))
$$

be defined on $\mathcal{H}^{2}(0, L)$, where

$$
\varphi_{n}(z)= \begin{cases}\alpha & \text { if }|z|<c_{2} / \sqrt{\lambda_{n}} \\ \beta / 2 & \text { otherwise }\end{cases}
$$

By construction, we immediately obtain that

$$
E_{n}\left(u_{n}\right) \geq F_{n}\left(v_{n}\right)
$$

In fact, recalling (7), we have

$$
\begin{aligned}
E_{n}\left(u_{n}\right)= & \sum_{i \in\{1, \ldots, n-1\} \backslash I_{n}} \lambda_{n}\left|\frac{u_{n}\left(x_{n}^{i+1}\right)+u_{n}\left(x_{n}^{i-1}\right)-2 u_{n}\left(x_{n}^{i}\right)}{\lambda_{n}^{2}}\right|^{2} \\
& +\alpha \#\left\{i \in I_{n}:\left|u_{n}\left(x_{n}^{i+1}\right)+u_{n}\left(x_{n}^{i-1}\right)-2 u_{n}\left(x_{n}^{i}\right)\right|<c_{2} \sqrt{\lambda_{n}}\right\} \\
& +\frac{\beta}{2} \#\left\{i \in I_{n}:\left|u_{n}\left(x_{n}^{i+1}\right)+u_{n}\left(x_{n}^{i-1}\right)-2 u_{n}\left(x_{n}^{i}\right)\right| \geq c_{2} \sqrt{\lambda_{n}}\right\} \\
= & \int_{0}^{L}\left|v_{n}^{\prime \prime}\right|^{2} d t+\alpha \#\left\{t \in S\left(v_{n}^{\prime}\right):\left|v_{n}(t+)-v_{n}(t-)\right|<c_{2} / \sqrt{\lambda_{n}}\right\} \\
& +\frac{\beta}{2} \#\left\{t \in S\left(v_{n}^{\prime}\right):\left|v_{n}(t+)-v_{n}(t-)\right| \geq c_{2} / \sqrt{\lambda_{n}}\right\} \\
= & \int_{0}^{L}\left|v_{n}^{\prime \prime}\right|^{2} d t+\sum_{t \in S(u)} \varphi_{n}\left(v_{n}^{\prime}(t+)-v_{n}^{\prime}(t-)\right) \\
= & F_{n}\left(v_{n}\right) .
\end{aligned}
$$

It is easily checked that the Γ-limit of F_{n} is \mathcal{F}.
Note that $u_{n}-v_{n}$ tends to 0 in $L^{1}(0, L)$. Since $F_{n}\left(v_{n}\right) \geq \frac{\alpha}{\beta} \mathcal{F}\left(v_{n}\right)$, by the coerciveness properties of \mathcal{F} we obtain that $\left(v_{n}\right)$ is precompact in $L^{1}(0, L)$ and each limit of a converging subsequence belongs to $\mathcal{H}^{2}(0, L)$ (see [9]). Moreover, if $u_{n} \rightarrow u$ then also $v_{n} \rightarrow u$, and by the Γ-convergence of F_{n} to \mathcal{F} we obtain

$$
\liminf _{n} E_{n}\left(u_{n}\right) \geq \liminf _{n} F_{n}\left(v_{n}\right) \geq \mathcal{F}(u)
$$

and (ii) is proved.
To prove (iii), by a density argument it suffices to show it for u piecewise C^{2} and with bounded second derivative. Then, upon a slight piecewise-affine change of variable tending uniformly to the identity as $n \rightarrow+\infty$, we can reason as if for all n we have $S(u) \cup S\left(u^{\prime}\right) \subset \lambda_{n} \mathbb{Z}$. We can then take $u_{n}(x)=u(x-)$ on $\lambda_{n} \mathbb{Z}$ (except at 0 , where we set $u_{n}(0)=u(0+)$); i.e., we choose as u_{n} in (iii) the piecewise-constant interpolation of u. We have:
(a) if $x_{n}^{i}=t \in S(u)$ or $x_{n}^{i-1}=t \in S(u)$ then

$$
\frac{u_{n}\left(x_{n}^{i+1}\right)+u_{n}\left(x_{n}^{i-1}\right)-2 u_{n}\left(x_{n}^{i}\right)}{\lambda_{n}{ }^{2}}=\frac{u(t+)-u(t-)+o(1)}{\lambda_{n}{ }^{2}}
$$

(b) if $x_{n}^{i} \in S\left(u^{\prime}\right)$ then

$$
\frac{u\left(x_{n}^{i+1}\right)+u\left(x_{n}^{i-1}\right)-2 u\left(x_{n}^{i}\right)}{\lambda_{n}{ }^{2}}=\frac{u^{\prime}\left(x_{n}^{i}+\right)-u^{\prime}\left(x_{n}^{i}-\right)+o(1)}{\lambda_{n}}
$$

(c) in all other cases,

$$
\frac{u\left(x_{n}^{i+1}\right)+u\left(x_{n}^{i-1}\right)-2 u\left(x_{n}^{i}\right)}{\lambda_{n}{ }^{2}}=u^{\prime \prime}\left(x_{n}^{i}\right)+o(1),
$$

with all the rests tending to 0 uniformly as $n \rightarrow+\infty$.
Note that we have, in case (a),

$$
\left|\frac{u\left(x_{n}^{i+1}\right)+u\left(x_{n}^{i-1}\right)-2 u\left(x_{n}^{i}\right)}{\lambda_{n}{ }^{2}}\right| \gg \frac{c_{2}}{\lambda_{n} \sqrt{\lambda_{n}}}
$$

while in case (b)

$$
\frac{c_{1}}{\sqrt{\lambda_{n}}} \ll\left|\frac{u\left(x_{n}^{i+1}\right)+u\left(x_{n}^{i-1}\right)-2 u\left(x_{n}^{i}\right)}{\lambda_{n}{ }^{2}}\right| \ll \frac{c_{2}}{\lambda_{n} \sqrt{\lambda_{n}}}
$$

as $n \rightarrow+\infty$. Taking into account (a)-(c) and the remark above, we immediately obtain

$$
\limsup _{n} E_{n}(u) \leq \mathcal{F}(u)
$$

so that (iii) is proved.
The final statement of the theorem follows easily from the well-known property of convergence of minima of Γ-limits. In fact, from (ii) and the lower semicontinuity of $u \mapsto \int_{0}^{L}|u-g|^{2} d t$ with respect to the $L^{1}(0, L)$ convergence, we obtain $m \leq \liminf _{n} m_{n}$. On the other hand, if u is a solution of m, by (iii) we can find $\left(u_{n}\right)$ as in (iii) so that

$$
m=\lim _{n}\left(E_{n}\left(u_{n}\right)+\int_{0}^{L}\left|u_{n}-g\right|^{2} d t\right) \geq \limsup _{n} m_{n}
$$

Finally, the pre-compactness property of minimizing sequences follows from (i).

References

[1] L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford University Press, Oxford, 2000.
[2] A. Blake and A. Zisserman, Visual Reconstruction, MIT Press, Cambridge, Massachussets, 1987.
[3] A. Braides. Lower semicontinuity conditions for functionals on jumps and creases. SIAM J. Math Anal. 26 (1995), 1184-1198.
[4] A. Braides, Approximation of Free-Discontinuity Problems, Lecture Notes in Mathematics, Springer Verlag, Berlin, 1998.
[5] A. Braides, Γ-convergence for Beginners, book in preparation.
[6] A. Braides and A. Defranceschi, Homogenization of Multiple Integrals, Oxford University Press, Oxford, 1998.
[7] A. Braides and M.S. Gelli, Limits of discrete systems without convexity hypotheses, Preprint SISSA, Trieste, 1999.
[8] A. Chambolle Un theoreme de Γ-convergence pour la segmentation des signaux. C. R. Acad. Sci., Paris, Ser. I 314 (1992), 191-196.
[9] A. Coscia, Existence Results for a New Variational Problem in One-dimensional Segmentation Theory, Ann. Univ. Ferrara, Sez. VII, 37 (1991), 185203.
[10] G. Dal Maso, An Introduction to Γ-convergence, Birkhäuser, Boston, 1993.
[11] J. M. Morel and S. Solimini, Variational Models in Image Segmentation, Birkhäuser, Boston, 1995.
[12] D. Mumford and J. Shah, Optimal approximation by piecewise smooth functions and associated variational problems, Comm. Pure Appl. Math., 42 (1989), 577-685.

