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We derive a quantitative rigidity estimate for a multiwell problem in nonlinear
elasticity. Precisely, we show that if a gradient field is L1-close to a set of the
form SO(n)U1 ∪ · · · ∪ SO(n)Ul, and an appropriate bound on the length of the
interfaces holds, then the gradient field is actually close to only one of the wells
SO(n)Ui. The estimate holds for any connected subdomain, and has the optimal
scaling.

1 Introduction

Variational models from nonlinear elasticity have the form∫
Ω

W
(
∇u(x)

)
dx , (1.1)

where u : Ω ⊂ Rn → Rn is the deformation, Ω ⊂ Rn is a bounded domain and the energy density
W is invariant under rotations; in the simplest cases W is minimized by the set of proper rotations
SO(n). The set SO(n), much as the set of conformal matrices, is rigid, in the sense that there are
no nontrivial gradient fields taking values in SO(n). This classical result, due for smooth functions
to Liouville, permits to show that minimizers of (1.1) are affine (on connected domains). Several
improvements have been obtained, among others by Gehring [20], John [21], Reshetnyak [30], and
Kohn [24], culminating in the recent quantitative version by Friesecke, James and Müller [19], who
have shown that gradient fields taking values close to SO(n) are approximately constant, in the sense
that for any u ∈W 1,2(Ω ⊂ Rn; Rn), Ω a connected bounded Lipschitz domain, one has

min
Q∈SO(n)

∫
Ω

|∇u−Q|2 dx ≤ c
∫

Ω

dist2(∇u, SO(n)) dx , (1.2)

where c is a constant depending on Ω. This shows that low-energy states are approximately affine,
with an estimate which has the optimal norm and scaling, and constitutes the nonlinear counterpart
of the classical linear estimate known as Korn’s inequality.
In the study of solid-solid phase transitions and in particular of shape-memory alloys one is interested
in energy densities W which are minimized by several copies of SO(n), i.e., by sets of the form

K := SO(n)U1 ∪ · · · ∪ SO(n)Ul (1.3)

where Ui ∈ Rn×n are the eigenstrains of the different phases, see, e.g., [2, 11, 3, 28, 13, 4, 29].
These sets are in general not rigid, and there are nontrivial gradient fields taking values in K, hence
no estimate like (1.2) can be expected. Such gradient fields are however strongly restricted. For
example, if an interface with normal ν separates a region where ∇u = A and one where ∇u = B,
then A−B = a⊗ ν, where ν is the normal to the interface. This implies that the interface is locally
a hyperplane, and that its normal has to take one of finitely many directions, which are determined
by K. More precisely, for the case of two rank-one connected wells in n dimensions, it was shown by
Dolzmann and Müller [14] that if ∇u ∈ BV (Ω;K) then ∇u is piecewise constant, and its jump set is
the disjoint union of hyperplanes that can only intersect at ∂Ω. Kirchheim was later able to obtain
a corresponding result for the substantially more complex, but physically more relevant, three-well
problem in three dimensions [22]. The problem of extending this to more general situations remains
open.
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A first quantitative version of the Dolzmann-Müller rigidity result was obtained by Lorent [25] for
the case of two wells with equal determinant, and bi-Lipschitz maps u : B1 → R2. Precisely, he has
proven that if ‖D2u‖(B1) is sufficiently small, then

min
J∈{U1,U2}

‖dist(∇u, SO(2)J)‖L1(Bρ) ≤ c
(
‖dist(∇u, SO(2){U1, U2})‖L1(B1)

)γ
for some constants γ, ρ, c > 0. Here it is tacitly assumed that ∇u ∈ BV , and D2u denotes the
distributional second gradient. Conti and Schweizer [10] improved the estimate by showing that

min
J∈{U1,U2}

‖dist(∇u, SO(2)J)‖L1(Ω′) ≤ c‖dist(∇u, SO(2){U1, U2})‖L1(Ω), (1.4)

for any two matrices U1 and U2 with positive determinant and for any maps u ∈ W 1,1(Ω; R2) for
which ‖D2u‖(Ω) is small compared to dist(Ω′, ∂Ω), where Ω′ is a connected subset of Ω. A related
estimate in a geometrically linear context had been obtained in [9]. These results have had several
applications, e.g., in studying the scaling of singularly perturbed problems under Dirichlet boundary
conditions [26, 5] or in proving compactness and Γ-convergence for a sequence of singularly perturbed
functionals of the kind

Iε[u] :=
∫

1
ε
W (∇u) + ε|∇2u|2dx ,

see [10, 9]. In particular, rigidity estimates are needed in order to pass from the case where the
nonconvex term of the energy has only finitely many minimizers [18, 7] to the elasticity case where
the set K of minimizers of W is infinite.
We present here a generalization of (1.4) beyond the two-well, two-dimensional case. We shall assume
that the wells are well separated, in the following sense:

for each i = 1, . . . , l there is ξi ∈ Sn−1 such that |Uiξi| > max
j 6=i
|Ujξi| . (1.5)

We shall show later that this condition holds in the most relevant examples, including the three-
well problem in three dimensions, and any two-well problem with two rank-one connections (see
Remarks 3.6, 3.7 and 3.8). Necessity of the assumption (1.5) is shown in Remark 3.9.

Theorem 1.1. Let U1, . . . Ul ∈ Rn×n have positive determinant, fulfill the separation condition (1.5),
and let K be defined as in (1.3). Let Ω′ ⊂⊂ Ω ⊂ Rn be two bounded Lipschitz open sets, with Ω′

connected. Then there are positive constants η0, c0, c1 and c2 such that for any u ∈W 1,1(Ω; Rn) with
∇u ∈ BV , satisfying ∫

Ω

|D2u| ≤ η0 distn−1(Ω′, ∂Ω) (1.6)

where η0 = η0({Ui}, n), one has

min
J∈{Ui}i

∫
Ω′

dist(∇u, SO(n)J) dx ≤ c0
∫

Ω

dist(∇u,K) dx, (1.7)

where c0 = c0(Ω,Ω′, {Ui}, n). Further, as long as∫
Ω

dist(∇u,K) dx ≤ c2({Ui}, n)distn(Ω′, ∂Ω), (1.8)

then the estimate (1.7) holds with c0 = c1({Ui}, n), independently of the geometry of the domains.

The proof is separated into two parts: first one proves rigidity along segments for many segments
(Section 2), and then one deduces L1 rigidity from the rigidity of segments via geometrical arguments
(Section 3). Whereas the subdivision of the argument in these two basic steps is the same as in the
two-dimensional case [10], the proof of both parts presents significant differences and new difficulties
with respect to the two-dimensional case.
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The multiwell rigidity result on segments is presented in Proposition 2.1. At variance with [10],
where the Sobolev embedding W 1,1(S1) ⊂ L∞(S1) automatically gave uniform estimates on circles,
permitting a direct usage of Brouwer-degree theory to prove invertibility, here the same holds only if
higher integrability is first obtained (W 1,p with p > n − 1 would suffice for embedding in C0(Sn−1),
we shall work with a Lipschitz approximation). This is achieved via a truncation argument, and by
carefully passing from the original function to the truncated one and back in appropriate points of
the proof. In particular, the map u is replaced by a Lipschitz map v, such that u = v outside a set
of small perimeter. This requires a truncation argument which estimates also the perimeter, and not
only the volume, of the set where the function is changed (Proposition 2.2).
The step from the segment rigidity of Proposition 2.1 to Theorem 1.1 is then essentially geometric.
Whereas in two dimensions one could use two coupled triangles to obtain the optimal scaling in a
region close to the midplane of the rhombus (see Figure 3 below), in the n dimensional case we need
to consider a small region close to the barycenter of a simplex. In both cases the key idea is that a
direction ξ0 can be chosen (according to (1.5)) so that the “majority” phase stretches that direction
more than the others. Then, if one considers segments which have approximately that orientation
inside a “rigid” simplex, the volume fraction of the “minority” phases can be controlled by the total
stretch, i.e., by the multiwell energy. Details are discussed in Section 3.
In closing, we recall that a quite different situation arises in the case that the wells are incompatible.
Indeed, in that case (1.2) can be directly generalized to the multiwell situation, as was shown by
Chaudhuri and Müller [6]; a simpler proof of the same result was then obtained by De Lellis and
Székelyhidi [12]. A geometric characterization of the jump set in a situation in which the elastic energy
is small but the total length of the interface is comparable to (or even larger than) the diameter of
the domain is, to the best of our knowledge, still not available.

2 Segment rigidity

We derive in this section a segment rigidity result for multiwell energies and dimension n ≥ 2, gen-
eralizing [10, Proposition 2.2]. Before giving the precise statement we briefly sketch the main ideas.
Let u : Ω → Rn be such that ∇u is close, in L1, to the set K introduced above. Then the domain
can be subdivided into l parts, according to which well ∇u(x) is closer to. We assume that, in an
appopriate weak formulation, one of those sets is large and the others have small perimeter (see (2.1)
and (2.2)). Then a slicing argument shows that most segments do not intersect the “minority” sets,
and have ∇u close to SO(n)U1 (possibly after relabeling). Therefore the tangential component ∂τu
of u has length close to |U1τ |, and hence the map u does not “make the segment longer”. In order to
obtain the converse inequality, one applies a similar argument to the inverse of u.
The main difficulty is that u is, in general, not invertible. This was overcome in [10, Proposition
2.2] by an argument based on Brouwer degree, exploiting an uniform estimate on the restriction of
u to the (one-dimensional!) boundary of the domain. The same estimate does not, however, hold in
higher dimension, unless stronger assumptions on the integrability of ∇u are made. Such assumptions
are however not expected to hold, in the typical applications of this type of rigidity estimate, such
as proving Γ-convergence or determining the optimal scaling of singularly perturbed functionals, see
discussion after (1.4).
To overcome this difficulty we replace the map u by a suitable truncation v. The new map v is
Lipschitz, and agrees with u away from a small set with small perimeter (see Proposition 2.2 for the
truncation). Then we can obtain for v the uniform estimate on the boundary, and obtain appropriate
invertibility of v. Finally, it remains to show that most segments do not intersect the set where u
differs from v, and this is done using the fact that the latter set has small perimeter. Having been
able to invert u along the relevant segments, we can apply the “no-stretch” argument to the inverse
and conclude that u does not “make the segment shorter”, which concludes the proof.
The function u is assumed to be C1 (and shall be later a C1 approximation of the Sobolev function
of interest to us). This permits in particular to use the implicit function theorem to prove local
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invertibility, and to have pointwise values for ∇u. None of the constants entering the statement can
depend on the C1 norm of u. In particular the Lipschitz norm of the truncation v does not depend
on u, but only on K and the constants c̄, p entering the statement.

Proposition 2.1. Let α ∈ (0, 1/8), θ ∈ (0, 1), c > 0 and p ≥ 1. Let K be defined as in (1.3) where
U1, . . . , Ul ∈ Rn×n have positive determinant. Then there are η, c > 0 depending only on the above
quantities such that the following holds:
Let Ω ⊂ Rn be open and convex, x0, y0 ∈ Ω with |x0 − y0| =: r > 0 and B(x0, 2αr) ∪B(y0, 2αr) ⊂ Ω.
Let φ : Rn×n → R be locally Lipschitz and such that

φ(F ) ≥ cmin
{

distp(F, SO(n)U1), |F |+ 1
}
. (2.1)

For every u ∈ C1(Ω; Rn) which satisfies

1
rn

∫
Ω

φ(∇u)dx+
1

rn−1

∫
Ω

|D[φ(∇u)]| ≤ η (2.2)

there is a L2n-measurable set E ⊂ B(x0, αr)×B(y0, αr) =: B1×B2 with L2n(E) ≥ (1−θ)L2n(B1×B2)
such that for all (x, y) ∈ E one has

1− cε ≤ |u(x)− u(y)|
|U1(x− y)|

≤ 1 + cε , (2.3)

where
ε :=

1
rn

∫
Ω

dist(∇u,K) dx. (2.4)

Proof. We use conv to denote the convex hull and c a generic constant that can depend on K, n, α, θ,
c̄, p. Without loss of generality we can assume r = 1 (by scaling) and Ω = conv(B(x0, 2α)∪B(y0, 2α))
(by restricting u), η ≤ 1. By the structure of K only the case that SO(n)Ui ∩ SO(n)Uj = ∅ for i 6= j
is relevant.
Step 1. We show that ∫

Ω

dist(∇u, SO(n)U1) dx ≤ cη1/p . (2.5)

Indeed, by (2.1) we have
dist(F, SO(n)U1) ≤ cφ(F ) + cφ1/p(F ) .

After integration, using the embedding of Lp into L1 and that η ≤ 1, we obtain∫
Ω

dist(∇u, SO(n)U1) dx ≤ c‖φ(∇u)‖L1 + c‖φ1/p(∇u)‖L1 ≤ cη + c‖φ1/p(∇u)‖Lp

≤ cη + c‖φ(∇u)‖1/pL1 ≤ cη1/p .

Step 2. We construct a Lipschitz function v which agrees with u on a large set, using the truncation
argument discussed in Proposition 2.2 below.
By assumption φ(F ) = 0 implies F ∈ SO(n)U1 and in particular detF = detU1. By continuity of the
lower bound in (2.1) we can choose φ0 > 0 so that φ(F ) ≤ φ0 implies

dist(F,K) = dist(F, SO(n)U1) and detF ≥ 1
2

detU1 . (2.6)

Let Ω′ := conv
(
B(x0, 15α/8) ∪ B(y0, 15α/8)

)
. By Proposition 2.2, applied to u on the pair of sets

Ω′ ⊂⊂ Ω with this value of φ0, we obtain, for sufficiently small η, a set ω such that φ(∇u) ≤ φ0 on
Ω′ \ ω, and

Ln(ω) +Hn−1(∂ω) ≤ cη . (2.7)
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The set ω is the union of finitely many closed balls. Let v : Rn → Rn be a Lipschitz map which
coincides with u on Ω′ \ ω. This exists by Kirszbraun’s theorem [23], or by the – for the present
purposes also sufficient – simpler scalar construction by McShane [27], applied componentwise, see
e.g. [16, Sec. 3.1, Th. 1] for a modern presentation. We conclude that

Lip(v) ≤ L and for every x ∈ Ω′ \ ω the matrix F = ∇v(x) = ∇u(x) obeys (2.6). (2.8)

Here the Lipschitz constant L of v does not depend on u, η and ε.

Step 3. We show that v has degree 1 on a domain D slightly smaller than Ω′, and use this to prove
invertibility.

Using first that Lip(v) ≤ L and then (2.5) and (2.7) we have∫
Ω′

distn(∇v, SO(n)U1) dx ≤ (L+ |U1|)n−1

∫
Ω′\ω

dist(∇u, SO(n)U1) dx+
∫
ω

(L+ |U1|)n dx

≤ cη1/p + cLn(ω) ≤ cη1/p .

Thus, from the quantitative one-well rigidity estimate by Friesecke, James and Müller [19, Th. 3.1]
(see [10, Sec. 2.4] for the extension to the W 1,p case), it follows that there is Q ∈ SO(n) such that∫

Ω′
|∇v −QU1|n dx ≤ cη1/p .

By the Poincaré inequality there is b ∈ Rn such that v is close to an affine map A(x) = QU1x+ b, i.e.,∫
Ω′
|∇v −QU1|n + |v −A|ndx ≤ cη1/p . (2.9)

After passing to polar coordinates, a choice argument based on Fubini’s theorem shows that there is
α1 ∈ (7α/4, 15α/8) such that, setting D := conv

(
B(x0, α1) ∪B(y0, α1)

)
,∫

∂D

|∇v −QU1|n + |v −A|ndHn−1 ≤ cη1/p .

By the embedding of W 1,n(∂D; Rn) in L∞(∂D; Rn) we have

|v(x)−A(x)| ≤ cη1/p for all x ∈ ∂D. (2.10)

We shall now prove invertibility of v with an argument based on the Brouwer degree, as in [10,
Proposition 2.2]. We first assert that

deg(v,D, z) = 1 for all z ∈ A(D′) , (2.11)

where D′ := conv
(
B(x0, 3α/2)∪B(y0, 3α/2)

)
. Indeed, consider the C0 homotopy defined by vt(x) :=

tv(x) + (1 − t)A(x) for t ∈ [0, 1]. By (2.10) the maps v0 = A and v1 = v are uniformly close on ∂D,
and by convexity (2.10) holds also for all vt. But dist(D′, ∂D) ≥ α/4 and therefore, |A(x)− A(y)| ≥
|U−1

1 |α/4 for all x ∈ ∂D, y ∈ D′. This implies that for sufficiently small η

vt(∂D) ∩A(D′) = ∅ for any t ∈ [0, 1]. (2.12)

Therefore the Brouwer degree deg(vt, D, z) does not depend on t for any z ∈ A(D′) (see [17, Theo-
rem 2.3(2)]). The affine map A has degree 1, hence (2.11) follows.
In order to make use of (2.11) to obtain injectivity and to estimate the size of counterimages of sets,
we assert that

1 ≤ #(v−1(z) ∩D) ≤ 1 + 2#(v−1(z) ∩D ∩ ω) for all z ∈ A(D′) \N , (2.13)

5



where N := v(Z), and

Z := {x ∈ D : v is not differentiable in x or det∇v(x) = 0}

Indeed, the first inequality in (2.13) is obvious from (2.11). The second is obvious if the right-hand
side is infinity, and otherwise follows from (2.11) and the fact that by (2.8) for every x ∈ D \ ω one
has that v is C1 in a neighborhood of x, and det∇v(x) > 0 (this in particular implies Z ⊂ ω).
Since the function v is Lipschitz, by Rademacher’s theorem it is differentiable almost everywhere, and
its gradient is a measurable function. It follows that the set Z is measurable, and that

∫
Z
|det∇v|(x)dx =

0. By Sard’s Lemma for Lipschitz functions ([17, Th. 5.6],[1, Lemma 2.96]) or the area formula [16,
Th. 1 in Sect. 3.3.2] it follows that Ln(N) = 0.
As a special case of (2.13), we remark that

for any z ∈ A(D′) \ v(ω) there is exactly one x ∈ D ∩ v−1(z). (2.14)

Now consider the set

ω0 := {x ∈ D : v(x) ∈ A(D′) ∩ v(ω)} = v−1
(
A(D′) ∩ v(ω)

)
∩D.

To estimate its volume, we use Ln(ω0) ≤ Ln(ω) + Ln(ω0 \ ω). In ω0 \ ω we know, by (2.6) and (2.8),
that det∇v ≥ detU1/2. Therefore using the area formula we have

detU1

2
Ln(ω0 \ ω) ≤

∫
ω0\ω

det∇v dx =
∫

Rn
#
(
v−1(z) ∩ ω0 \ ω

)
dz.

The latter integral can be restricted to v(ω0 \ ω) ⊂ v(ω0), which by the definition of ω0 is included in
A(D′)∩ v(ω). Further, since Ln(N) = 0 we can restrict to A(D′)∩ v(ω) \N . From ω0 ⊂ D, recalling
(2.13) we obtain

Ln(ω0 \ ω) ≤ c
∫
A(D′)∩v(ω)\N

#
(
v−1(z) ∩D

)
dz ≤ c

∫
A(D′)∩v(ω)\N

1 + #
(
v−1(z) ∩D ∩ ω

)
dz .

Finally, a second application of the area formula gives∫
v(ω)

#
(
v−1(z) ∩ ω

)
dz =

∫
ω

|det∇v| dx ≤ Ln Ln(ω),

and since Ln(v(ω)) ≤ LnLn(ω) ≤ cη we conclude

Ln(ω0) ≤ Ln(ω) + Ln(ω0 \ ω) ≤ cη. (2.15)

Step 4. We finally turn to the construction of the “good” pairs (x, y) ∈ B1 × B2. They have to
be good in two aspects: first, the line integral of dist(∇u, SO(n)U1) along [x, y], the segment with
endpoint x and y, should be small, implying the upper bound in (2.3); second, there should be a curve
γxy : [0, 1]→ D which is a parametrization of the preimage of [v(x), v(y)] such that the integral of the
same quantity along γxy is also small, implying the lower bound in (2.3).
We say that a property P holds for most choices of (x, y) if the set where it does not hold has measure
bounded by some function ψ(η), with ψ(η)→ 0 as η → 0. Here ψ should only depend on K, n, c̄, α,
θ, p, but not on u. For example, (2.15) shows that for most choices of (x, y) one has x, y 6∈ ω0.
We start by proving that ∫

[x,y]

dist(∇u, SO(n)U1) dH1 ≤ cε (2.16)

for most pairs (x, y) ∈ B1 × B2. The key idea is to extend the integral to the entire line through
x and y, then integrate over (x, y) ∈ B1 × B2, and change variables (see Figure 1). To simplify the
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Figure 1: Integration domains in (2.17). For every given x ∈ B1, the integration over y is extended
from y ∈ B2 to the larger set y ∈ B1+2α(x) \ B1−2α(x). Recall that B1 and B2 are balls with radius
α, the distance between the centers is 1.

tracking of the integration domains we set f := dist(∇u,K) in Ω and 0 elsewhere. We compute, with
z := y − x, ∫

B1×B2

(∫
[x,y]

f dH1

)
dxdy ≤

∫
B1

∫
1−2α<|z|<1+2α

∫ 1

0

|z|f(x+ tz) dt dz dx . (2.17)

We swap the order of integration and exploit that for any t ∈ R, z ∈ Rn, one has∫
Rn
f(x+ tz)dx =

∫
Rn
f(x)dx =

∫
Ω

dist(∇u,K)dx = ε .

Therefore ∫
B1×B2

(∫
[x,y]

f dH1

)
dxdy ≤

∫
1−2α<|z|<1+2α

|z|dz
∫ 1

0

dt ε ≤ cε .

Hence,
∫

[x,y]
f dH1 ≤ cη−1ε for most pairs (x, y), i.e., for all (x, y) ∈ (B1×B2)\I, where I is a certain

set with L2n(I) ≤ η.
Now we show that [x, y] ∩ ω = ∅ for most choices of (x, y). By (2.6) and (2.8) this will imply that
f = dist(∇u, SO(n)U1) on [x, y], and hence (2.16).
Fix a unit vector ν ∈ Sn−1, and let Pν be the projection onto ν⊥. Since ω is a finite union of closed
balls, Pνω = Pν∂ω. From Hn−1(Pνω) = Hn−1(Pν∂ω) ≤ Hn−1(∂ω) we obtain that for each ν the set

G(ν) := {x ∈ B1 : x+ Rν ∩ ω 6= ∅} ⊂ Pνω × [x0 · ν − α, x0 · ν + α]ν (2.18)

has volume smaller then cη (see Figure 2). Then∫
B1×B2

χ[x,y]∩ω 6=∅(x, y)dydx ≤
∫
B1

∫
1−2α<|z|<1+2α

χx+Rz∩ω 6=∅(x, z)dzdx

≤
∫

1−2α<|z|<1+2α

Ln(G(z/|z|)) dz ≤ cη .

This concludes the proof of (2.16).
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Figure 2: Geometry entering the definition of the set G(ν) in (2.18). Here ω is a single closed ball
(black), its projection on ν⊥ an interval, and the dashed cylinder is the set on the right-hand side.
The set Gν is the intersection of the cylinder with B1.

We now turn to the inverse, and assert that for most (x, y) ∈ B1 ×B2

[v(x), v(y)] ⊂ A(D′) and [v(x), v(y)] ∩ v(∂ω) = ∅ . (2.19)

To see this, we first observe that by (2.9) and dist(B(x0, α), ∂D′) > α/2 it follows that for most
(x, y) one has v(x), v(y) ∈ A(D′), and since A(D′) is convex this implies [v(x), v(y)] ⊂ A(D′). It
remains to prove the second part of (2.19). Since Hn−1(v(∂ω)) ≤ cη, for any ν ∈ Sn−1 we have
Hn−1(Pνv(∂ω)) ≤ cη, and arguing as above, since v(B2) is bounded, the set

H := {(X,Y ) ∈ v(B1)× v(B2) : [X,Y ] ∩ v(∂ω) 6= ∅}

is small, in the sense that L2n(H) ≤ cη. Let now

H̃ := {(x, y) ∈ (B1 \ ω0)× (B2 \ ω0) : [v(x), v(y)] ∩ v(∂ω) 6= ∅} .

We claim that L2n(H̃) ≤ cη. Indeed, if (x, y) ∈ H̃ then det∇v(x) and det∇v(y) are larger than
detU1/2, and using the area formula as above leads to

L2n(H̃) ≤ c
∫
H

#(v−1(X) ∩B1 \ ω0) ·#(v−1(Y ) ∩B2 \ ω0)d(X,Y ) = cL2n(H) ≤ cη

where we used that if x ∈ B1 \ ω0 then #v−1(v(x)) ∩D = 1, and analogously for y. Recalling (2.7)
and (2.15), the proof of (2.19) is concluded.
Pick now a pair (x, y) ∈ (B1 \ ω \ ω0) × (B2 \ ω \ ω0) such that (2.19) holds. We claim that there
is a curve γxy ∈ C1([0, T ];D \ ω) such that γ(0) = x, γ(1) = y, u(γxy([0, T ])) = [v(x), v(y)], u ◦ γxy
injective. To prove this, we first observe that, by the continuity of ∇u, det∇u ≥ detU1/2 also on
D \ ω, and, by the implicit function theorem, for any point a ∈ D \ ω there is ρa > 0 such that u has
a C1 inverse as a map from B(a, ρa) to u(B(a, ρa)). Notice that if a 6∈ ∂D ∪ ∂ω then we can assume
B(a, ρa) ⊂ D \ ω since D \ ω is open.
Let Γ := v−1([v(x), v(y)]) ∩D \ ω. Since Γ is compact, it can be covered by a finite number of balls
B(a, ρa) as above, a ∈ Γ. But, from [v(x), v(y)] ⊂ A(D′) and (2.12), we have [v(x), v(y)]∩ v(∂D) = ∅;
thus, recalling also (2.19), no such ball is centered on ∂D∪∂ω. Therefore all those balls are contained
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in D\ω, and there u = v. This proves that Γ is a finite union of C1 arcs, which do not touch ∂D∪∂ω.
Therefore they can have endpoints only in the sets v−1(v(x)) and v−1(v(y)). But since x, y 6∈ ω0, the
points v(x) and v(y) have only one counterimage each, namely, x and y. Hence Γ consists of a single
arc, with endpoints x and y.
We show that for most (x, y) the curve γxy carries energy of order ε. Define g : Rn → R as

g(z) :=
∑

x∈u−1(z)∩(D\ω)

dist(∇u(x),K) =
∑

x∈u−1(z)∩(D\ω)

dist(∇u(x), SO(n)U1) ,

where it is understood that g = 0 if the sum is empty, and the equality follows from (2.6), (2.8). By
a change of variables we have∫

Rn
g(z)dz =

∫
D\ω

f(x) det∇u(x)dx ≤ cε .

Arguing as in (2.17) and the following, we see that the setM of (ξ, ζ) ∈ A(B(x0, 3α/2))×A(B(y0, 3α/2))
where

∫
[ξ,ζ]

g dH1 ≤ cε/η does not hold is smaller than η (up to a multiplicative constant). Then, so
is the set m of (x, y) ∈ (B1 \ ω0) × (B2 \ ω0) where the condition is violated for (ξ, ζ) = (u(x), u(y))
(this argument is just as for the case of the two sets H and h above). Hence for most pairs (x, y)∫

γxy

dist(∇u, SO(n)U1) dH1 ≤ c
∫

[u(x),u(y)]

g dH1 ≤ cηε .. (2.20)

Step 5. We show that, from Step 4, (2.3) follows. We work with a pair (x, y) satisfying (2.16) and
(2.20). Using (2.16), we have

|u(x)− u(y)| ≤
∫

[x,y]

|∇τu|dH1 ≤ |U1(x− y)|+
∫

[x,y]

dist(∇u, SO(n)U1) dH1

≤ |U1(x− y)|+ cε , (2.21)

where ∇τu denotes the tangential gradient to [x, y].
To prove the converse inequality, we use the fact that there is a curve γ ∈ C1([0, T ];D \ ω) such that
|γ′| = 1, γ({0, 1}) = {x, y}, and u ◦ γ is monotone parametrization of the segment [u(x), u(y)]. This
implies in particular that the directional derivative ∇u(γ)γ′ is parallel to u(x)− u(y), and hence that

|u(x)− u(y)| =

∣∣∣∣∣
∫ T

0

d

dt
u(γ(t))dt

∣∣∣∣∣ =
∫ T

0

|∇u(γ)γ′| dt .

In turn, the last integrand is appoximately the length of the curve γ, since ∇u is locally close to
a rotation. In order to make this precise, choose for each t ∈ [0, T ], Q(t) ∈ SO(n) such that
dist(∇u(γ(t)), SO(n)U1) = |∇u(γ(t))−Q(t)U1|. Then we obtain∫ T

0

|∇u(γ)γ′| dt ≥
∫ T

0

|Q(t)U1γ
′(t)| − |(∇u(γ(t))−Q(t)U1)γ′(t)| dt

≥
∫ T

0

|U1γ
′| dt−

∫
γ([0,T ])

dist(∇u, SO(n)U1)dH1

≥

∣∣∣∣∣
∫ T

0

U1γ
′dt

∣∣∣∣∣− cε = |U1(x− y)| − cε .

This concludes the proof.
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We finally present the truncation that was used in Step 2. Precisely, we show that u is c-Lipschitz on
a subdomain Ω′ compactly contained in Ω, away from a set ω ⊂ Ω with small volume and perimeter.
Then it is possible to obtain a Lipschitz extension to Rn, which coincides with the old function on
Ω′ \ ω. With respect to the classical construction discussed in [16, Sect. 6.6.2], we need here to
estimate also the perimeter of ω, hence need to construct, via a covering argument, a smoother set (a
countable union of balls).

Proposition 2.2. Let Ω′ ⊂⊂ Ω ⊂ Rn, both open, with Ω bounded and Ω′ connected and Lipschitz.
Let φ ∈ Liploc(Rn×n; [0,∞)) be such that

φ(F ) ≥ 1
C 0
|F | − C0 (2.22)

for some C0 > 0, and φ0 be a positive constant. Then there is M > 0 (depending on C0, φ0, Ω and
Ω′) such that, for any u ∈W 1,1(Ω; Rn) there is a set ω ⊂ Ω with

Ln(ω) + PerΩ(ω) ≤M
[∫

Ω

φ ◦ ∇u dx+
∫

Ω

|D(φ ◦ ∇u)|
]

(2.23)

such that
the map u is M -Lipschitz on Ω′ \ ω and φ(∇u) ≤ φ0 on Ω′ \ ω. (2.24)

If additionally u ∈ C1(Ω; Rn), then ω can be chosen to be the union of finitely many closed balls.

Remark: the assumption that the domains are Lipschitz is not essential.

Proof. We set

η :=
∫

Ω

φ ◦ ∇u dx+
∫

Ω

|D(φ ◦ ∇u)| . (2.25)

We first show that there is c0 ∈ (φ0/3, 2φ0/3) such that the set

ω′ := {x ∈ Ω : φ(∇u(x)) ≥ c0} (2.26)

obeys Ln(ω′) + PerΩ(ω′) ≤ cη. Indeed, by the coarea formula for BV functions [1, Th. 3.40] and from
(2.25) we have

∫
R PerΩ(Ωt) dt = |D[φ(∇u)]|(Ω) ≤ η, where Ωt := {x ∈ Ω : φ(∇u(x)) ≥ t}. Therefore

there is c0 ∈ (φ0/3, 2φ0/3) such that the set ω′ = Ωc0 satisfies PerΩ(ω′) ≤ 3η/φ0. By (2.25) we get
also

Ln(ω′) ≤ 3
φ0
η. (2.27)

Let r0 := dist(Ω′, ∂Ω), for h ∈ N set rh := r02−h, and for each x ∈ Ω′ consider the sequence of balls
Bh(x) := B(x, rh), which are all compactly contained in Ω. We say that a ball B = Bh(x) is good if∫

B

|D(φ ◦ ∇u)| ≤ Hn−1(∂B) and Ln(B ∩ ω′) ≤ 1
2n+1

Ln(B) . (2.28)

If there is one x ∈ Ω′ such that B0(x) is not good, then either η ≥ Hn−1(∂B0) or Ln(ω′) ≥ 1
2n+1Ln(B0).

Recalling (2.27), in both cases we obtain η ≥ η0 := min{Hn−1(∂Br0), φ0Ln(Br0)/(3 · 2n+1)} > 0. Let
ω be a finite union of closed balls contained in Ω, which cover Ω′. The conclusion follows with
M = (Ln(ω) + PerΩ(ω))/η0 (in this degenerate case the set ω depends only on Ω and Ω′, and (2.24)
holds in the empty set).
We now come to the interesting case where all balls B0(x), x ∈ Ω′, are good. Let ω′′ ⊂ Ω′ be the set
of all centers of bad balls. For each x ∈ ω′′ let h(x) be the smallest h such that Bh(x) is bad. We
have already shown that h(x) > 0 for all x ∈ ω′′. Let F be the family of closed balls Bh(x)(x), for
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x ∈ ω′′. By the Besicovitch covering theorem, ω′′ can be covered by a fixed number NB of disjoint
families of such balls, let A1...ANB be the sets of their centers. Let

ωk :=
⋃
x∈Ak

Bh(x)(x) (2.29)

and

ω := {x ∈ Ω : x is not a Lebesgue point for u or ∇u } ∪
NB⋃
k=1

ωk .

Obviously ω′′ ⊂ ∪kωk ⊂ ω. We now show that φ(∇u) ≤ c0 on Ω′ \ ω. Indeed, if we had x ∈ Ω′ \ ω ⊂
Ω′ \ ω′′ and φ(∇u(x)) > c0 then by continuity of φ there would be ε > 0 such that φ(F ) > c0 for all
F ∈ Rn×n with |F −∇u(x)| < ε. In particular, this would imply that |∇u(y) −∇u(x)| ≥ ε for all y
such that φ(∇u(y)) < c0, i.e., for all y ∈ Ω \ ω′. Then

1
Ln
(
B(x, rh))

∫
B(x,rh)

|∇u(y)−∇u(x)| dy ≥ ε
Ln
(
B(x, rh) \ ω′)
Ln
(
B(x, rh))

.

Since x is a Lebesgue point for ∇u, the left-hand side converges to zero as h→∞, which implies that

lim
h→∞

Ln
(
B(x, rh) \ ω′)
Ln
(
B(x, rh))

= 0 ,

Therefore for sufficiently large h the ball B(x, rh) cannot be good, that is, x ∈ ω′′, which is a
contradiction. We conclude that φ(∇u) ≤ c0 on Ω′ \ ω.
We shall prove that each ωk obeys the volume and perimeter estimate, the same will then hold for
their union (with a different constant).
We consider ωk, which is the union of countably many disjoint bad balls, such that for each of them
the ball twice as large is good (by the minimality of h(x), and the fact that h(x) 6= 0). For each of
those balls, call it B, we claim that

Hn−1(∂B) ≤
∫
B

|D(φ ◦ ∇u)|+ cPerB(ω′) . (2.30)

If (2.30) holds, by Ln(B) ≤ r0Hn−1(∂B) an analogous estimate holds for the volume. Further, since
the balls composing ωk are disjoint, we obtain

Ln(ωk) + PerΩ(ωk) =
∑
x∈Ak

Ln(Bh(x)(x)) +Hn−1(∂Bh(x)(x))

≤
∑
x∈Ak

c

∫
Bh(x)(x)

|D(φ ◦ ∇u)|+ cPerBh(x)(x)(ω′)

≤ c

∫
Ω

|D(φ ◦ ∇u)|+ cPerΩ(ω′) ≤ cη .

Summing over k from 1 to NB gives (2.23).
We now prove (2.30). Recall that B is a bad ball contained in a good ball B′ twice as large. Since B
is bad, one of the two conditions in (2.28) is violated. If it is the first one, (2.30) follows immediately.
If it is the second one, using the fact that B′ is good we obtain

1
2n+1

Ln(B) ≤ Ln(B ∩ ω′) ≤ Ln(B′ ∩ ω′) ≤ 1
2n+1

Ln(B′) =
1
2
Ln(B) .

Therefore both Ln(B∩ω′) and Ln(B \ω′) have volume larger than 2−(n+1)Ln(B), and by the relative
isoperimetric inequality [1, Eq. (3.37)] we obtain PerB(ω′) > cHn−1(∂B). This concludes the proof
of (2.30).
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It remains to show that u is Lipschitz on Ω′ \ω. Pick x ∈ Ω′ \ω. Then x 6∈ ω′′, hence for every h ∈ N
the ball Bh(x) is good. By the first condition in (2.28) and the Poincaré inequality [15, Sec. 5.8.1,
Theorem 2] there is φ̂ = φ̂(x, h) ∈ R such that∫

Bh(x)

|φ(∇u)− φ̂|dx ≤ cP rh
∫
Bh

|D(φ ◦ ∇u)| ≤ ncPLn(Bh) , (2.31)

where cP = cP (n) is the Poincaré constant. The second condition in (2.28) and the definition of ω′ in
(2.26) show that ∫

Bh(x)

|φ̂− φ(∇u)|dy ≥
∫
Bh(x)\ω′

(φ̂− c0)dy ≥ 1
2
Ln(Bh)(φ̂− φ0)

and therefore |φ̂| ≤ φ0 + 2ncP , with cP the same constant as in (2.31). Therefore, using (2.22),∫
Bh(x)

|∇u|dy ≤ C0

∫
Bh(x)

(φ(∇u) + C0) dy ≤ cLn(Bh) , (2.32)

for every h. Let

Fh(x) :=
1

Ln(Bh)

∫
Bh(x)

u(y)dy .

By the Poincaré inequality, (2.32), and the fact that Bh+1(x) ⊂ Bh(x), we obtain

|Fh+1(x)− Fh(x)| =

∣∣∣∣∣ 1
Ln(Bh+1)

∫
Bh+1(x)

(u(y)− Fh(x))dy

∣∣∣∣∣
≤ 1
Ln(Bh+1)

∫
Bh+1(x)

|u(y)− Fh(x)|dy

≤ 1
Ln(Bh+1)

∫
Bh(x)

|u(y)− Fh(x)|dy =
2n

Ln(Bh)

∫
Bh(x)

|u(y)− Fh(x)|dy

≤ crh
1

Ln(Bh)

∫
Bh(x)

|∇u| ≤ crh ,

with a universal constant c. Therefore, summing the geometric series and using that limh→∞ Fh(x) =
u(x), we obtain

|u(x)− Fh(x)| ≤ crh (2.33)

for all h. Arguing analogously with the pair B0(x) ⊂ Ω we also obtain

|u(x)− F | ≤ c (2.34)

where F := Ln(Ω)−1
∫

Ω
u(y)dy.

We now show that for all x, y ∈ Ω′ \ ω one has

|u(x)− u(y)| ≤ c′|x− y| . (2.35)

To prove (2.35), assume first that r0 ≥ 2|x−y|, and let k be the largest integer such that rk ≥ 2|x−y|.
By maximality of k, rk ≤ 4|x− y|. This implies that the balls Bk(x) and Bk(y) have a large overlap,
and arguing with Poincaré’s inequality as above, from (2.32) we obtain analogously

|Fk(x)− Fk(y)| ≤ crk .

Therefore, recalling (2.33),

|u(x)− u(y)| ≤ |u(x)− Fk(x)|+ |Fk(x)− Fk(y)|+ |Fk(y)− u(y)| ≤ 3crk ≤ c′|x− y|
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which concludes the proof of (2.35) in the case r0 ≥ 2|x− y|.
We now turn to the case 2|x− y| ≥ r0. Then arguing analogously on the basis of (2.34) gives

|u(x)− u(y)| ≤ |u(x)− F |+ |F − u(y)| ≤ 2c ≤ c′|x− y|

This concludes the proof of (2.35) and hence of the first statement of the proposition.
Assume now that ∇u, and hence φ(∇u), are continuous. Possibly restricting to a smaller set we
can assume them to be uniformly continuous. We briefly discuss the few changes necessary to the
construction in this case. Let j > 0 be such that |x − y| ≤ 2rj = 2r02−j implies |φ(∇u(x)) −
φ(∇u(y))| ≤ φ0/3. We say that a ball B(x, rh) is good if either (2.28) holds or h > j and B(x, rj)
is good. Let ω′′ ⊂ Ω′ be again the set of centers of bad balls, and for each x ∈ ω′′ we let h(x) be
the smallest h ∈ N such that Bh(x) is bad. Then h(x) ≤ j for all x ∈ ω′′, hence proceeding with
Besicovitch as above, each ωk ⊂ Ω is composed by only finitely many balls. Analogously, all points of
Ω are Lebesgue points for the continuous functions u and ∇u, hence ω is a finite union of closed balls.
We now prove that this exceptional set also suffices. The proof of (2.30) is unchanged. Analogously,
(2.32) hold for all h ≤ j. In order to prove the same estimate for h > j, fix some x 6∈ ω′′. Since Bj(x)
is good there is y ∈ Bj(x) \ ω′, which by definition of ω′ obeys φ(∇u(y)) ≤ 2φ0/3. For any z ∈ Bj(x)
one has |z − y| ≤ diam(Bj) = 2rj , and therefore

for all z ∈ Bj(x) one has φ(∇u(z)) ≤ φ(∇u(y)) +
1
3
φ0 ≤ φ0 . (2.36)

This uniform estimate proves (2.32) for all h ≥ j. Further, it proves that φ(∇u) ≤ φ0 on Ω\ω ⊂ Ω\ω′′.
The proof that (2.32) implies that u is M -Lipschitz on Ω′ \ ω is unchanged.

3 Multiwell rigidity in L1

In this section we use the segment rigidity of the last section to prove Theorem 1.1. The key step is a
geometric argument permitting to prove the statement for the case that D and D′ are two concentric
balls, with D′ much smaller than D (Proposition 3.4, based on Lemma 3.5, which in turn is based on
Proposition 2.1, Lemma 3.2 and Lemma 3.3). Then a covering argument leads to Theorem 1.1. We
start by three lemmas dealing with n-dimensional simplexes. We denote by (eh)h the canonical basis
of Rn.

Lemma 3.1. Let {a1, a2 . . . an+1} ⊂ Rn, n ≥ 2, be such that the n vectors ah − an+1, for h = 1 . . . n,
are linearly independent. Let ā :=

∑n+1
h=1 ah/(n+ 1) be their barycenter. Then there are ρ and C > 0

(depending on a1, . . . , an+1) such that the following holds:
For all choices {b1, b2 . . . bn+1} ⊂ Rn with bh ∈ B(ah, ρ) and all p ∈ B(ā, ρ) there are c1, c2, . . . cn+1 ∈
(1/C,C) such that, for all q ∈ Rn, one has

n+1∑
h=1

ch|p− bh| ≤
n+1∑
h=1

ch|q − bh| . (3.1)

Proof. Since the vectors {ah − an+1} are linearly independent, the set

Ta := conv{a1 . . . an+1} =

{
n+1∑
h=1

λhah : λh ∈ [0, 1],
n+1∑
h=1

λh = 1

}

is a non-degenerate simplex in Rn, with positive n-dimensional volume Ln(Ta) = |det(
∑n
h=1(ah −

an+1)⊗ eh)|. In particular the point ā belongs to the interior of Ta. Let ρ > 0 be such that

B(ā, 3ρ) ⊂ Ta .
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Figure 3: Left panel: sketch of the geometry in the proof of Lemma 3.5 for the two-dimensional case.
The edges of the simplex (triangle) are rigid in the sense of Proposition 2.1, hence the map u is close to
the affine map A on the vertices. The result is obtained estimating the length of the segments joining
the vertices with a generic point P close to their barycenter. Central panel: corresponding sketch in
three dimensions. Right panel: for a comparison, we report the geometry used in [10]. There are five
rigid connections among four points, and P belongs to the central segment, which is rigid by (2.16).
A direct extension of this geometry to higher dimension fails because the “mid-segment” becomes a
“mid-plane”, which is not any more rigid.

This implies that, for all admissible choice of the bh’s,

B(ā, 2ρ) ⊂ Tb := conv{b1 . . . bn+1} . (3.2)

To see this, notice that any point x ∈ Rn \ Tb can be written as x =
∑
µhbh, with µh ∈ R,

∑
µh = 1,

and at least one not in (0, 1). Consider the point y :=
∑
µhah. Clearly y ∈ Rn \Ta, hence |y− ā| ≥ 3ρ.

At the same time |x − y| ≤
∑
µh|ah − bh| < ρ

∑
µh = ρ. Therefore |x − ā| ≥ |y − ā| − |x − y| > 2ρ,

and (3.2) follows.

Consider now any p ∈ B(ā, ρ) ⊂ Tb. Let λh ∈ [0, 1] with
∑n+1
h=1 λh = 1 be such that

p =
n+1∑
h=1

λhbh .

We show that λh ≥ ρ/c, where c is a constant which depends only on the ah. Consider for definiteness
λ1 (the others are treated the same way), assume λ1 ≤ 1/2, and set λ∗h := λh/(1 − λ1) and p∗ :=∑
h 6=1 λ

∗
hbh ∈ ∂Tb. From |λh − λ∗h| = λ1λh/(1− λ1) ≤ 2λ1λh we obtain

|p− p∗| = |λ1b1 +
∑
h6=1

(λh − λ∗h)bh| ≤ 3 max
h
|bh|λ1 ≤ cλ1 ,

where c = 3 maxh |ah|+ 3ρ. But since p∗ ∈ ∂Tb, (3.2) implies that p∗ 6∈ B(ā, 2ρ). Therefore

2ρ < |p∗ − ā| < |p∗ − p|+ |p− ā| ≤ cλ1 + ρ ,

which implies λ1 > ρ/c. Analogously, bh ∈ ∂Tb implies bh 6∈ B(ā, 2ρ), and therefore |p − bh| ≥ ρ for
all h.
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We set ch := λh|p − bh|. The above argument shows that 1/C ≤ ch ≤ C for some constant C > 0
depending only on the ah. We define the function fp : Rn → R by

fp(q) :=
n+1∑
h=1

ch|q − bh| .

We compute (for q 6∈ {bh}h)

∇fp(q) =
n+1∑
h=1

ch
q − bh
|q − bh|

,

and observe that

∇fp(p) =
n+1∑
h=1

ch
p− bh
|p− bh|

=
n+1∑
h=1

λh(p− bh) = p−
n+1∑
h=1

λhbh = 0 .

Since fp is convex, this implies that p is the global minimum of fp, i.e., that

fp(p) ≤ fp(q) for all q ∈ Rn ,

which concludes the proof.

Lemma 3.2. Let δ > 0, n ∈ N, n ≥ 2, be given. Then there are ρ > 0, µ ∈ (0, δ), c > 0 depending
only on δ and n such that the following holds. Let {a1, a2 . . . an+1} = {0, µe1, µe2, . . . µen−1, en} ⊂ Rn,
and let ā :=

∑n+1
h=1 ah/(n+ 1) be their barycenter.

For all choices {b1, b2 . . . bn+1} ⊂ Rn with bh ∈ B(ah, ρ), and all p ∈ B(ā, ρ), one has∣∣∣∣ p− bh|p− bh|
− en

∣∣∣∣ ≤ δ . (3.3)

Further, there are c1, c2, . . . cn+1 ∈ (1/c, c) (depending on the bh) such that for all p ∈ B(ā, ρ), and all
q ∈ Rn, one has

n+1∑
h=1

ch|p− bh| ≤
n+1∑
h=1

ch|q − bh| . (3.4)

Proof. To prove (3.3), we write for h ≤ n∣∣∣∣p− bh − 1
n+ 1

en

∣∣∣∣ ≤ |p− ā|+ |ah − bh|+ |ah|+ ∣∣∣∣ā− 1
n+ 1

en

∣∣∣∣ ≤ 2ρ+ 2µ ,

and in the last case, since an+1 = en,∣∣∣∣p− bn+1 +
n

n+ 1
en

∣∣∣∣ ≤ |p− ā|+ |an+1 − bn+1|+
∣∣∣∣ā− en +

n

n+ 1
en

∣∣∣∣ ≤ 2ρ+ µ .

Therefore (3.3) holds provided µ and ρ are chosen smaller than cδ, with c depending on the dimension
n.
Fix one such µ. Then the ah’s are given, depending only on µ, and satisfy the assumptions of
Lemma 3.1. Hence there are ρ and c, depending only on the ah’s (and hence only on δ) such that
(3.4) holds.

The next lemma proves the well-known fact that if two simplexes have sides of approximately equal
length, then one is close to an isometric copy of the other. For completeness we give a short self-
contained proof.
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Lemma 3.3. Let c > 0, a1, . . . an+1 ∈ Rn be such that |ah| ≤ c for all h, and det(
∑n
h=1(ah−an+1)⊗

eh) ≥ 1/c. Then for all ε ∈ (0, 1/2) and all b1, . . . bn+1 ∈ Rn such that

1− ε ≤ |bh − bk|
|ah − ak|

≤ 1 + ε (3.5)

there are R ∈ O(n) = {R ∈ Rn×n : RTR = Id} and d ∈ Rn such that for all h

|bh − (Rah + d)| ≤ Cε

where C depends only on c and n.

Proof. By replacing the vectors with {ah − an+1}h and {bh − bn+1}h we can assume an+1 = bn+1 =
d = 0. Let F ∈ Rn×n be the unique linear map which satisfies Fah = bh, for h = 1, . . . , n (this exists
by the assumption on the determinant). Let G :=

√
FTF , and R ∈ O(n) be such that F = RG. We

need to show that |G− Id| ≤ Cε.
From (3.5), with k = n+ 1, we obtain

|b2h − a2
h| ≤ Cε

and
|(bh − bk)2 − (ah − ak)2| = |(b2h − a2

h) + (b2k − a2
k)− 2(bh · bk − ah · ak)| ≤ Cε ,

which imply
|bh · bk − ah · ak| ≤ Cε ,

where the constant C may change from line to line and a2 denotes the squared norm of the vector a.
Consider two vectors v, w ∈ Sn, and let λ, µ ∈ Rn be such that v =

∑n
h=1 λhah, w =

∑n
h=1 µhah. By

the assumption on the determinant, |λ|+ |µ| ≤ C. We compute

|v(FTF − Id)w| = |(Fv) · Fw − v · w| =

∣∣∣∣∣∣
∑
h,k

λhµk(bh · bk − ah · ak)

∣∣∣∣∣∣ ≤ Cε
∑
h,k

|λhµk| ≤ Cε .

This proves that |FTF−Id| ≤ Cε. Therefore all eigenvalues of the positive-definite, symmetric matrix
FTF lie in [1−Cε, 1+Cε], and the same (with a different C) holds for G. This concludes the proof.

This concludes the preparatory part, and we now come to the multiwell rigidity result in L1. The rest
of this section is organized as follows: we first state the result for balls (Prop. 3.4), then show how one
can reduce to a special case, which is then proven in Lemma 3.5. Then we discuss how Proposition
3.4 implies Theorem 1.1. Finally, Remarks 3.6, 3.7 and 3.8 concern the fact that the separation
assumption (1.5) on the matrices is satisfied for most cases of physical interest.

Proposition 3.4. Let U1, . . . , Ul be matrices in Rn×n with positive determinant, which obey (1.5).
Let K be defined as in (1.3). Then there are positive numbers η, c∗ and ρ ∈ (0, 1) depending only
on {Ui}i and n such that for any ball B := B(x0, r) ⊂ Rn, any u ∈ W 1,1(B; Rn) with ∇u ∈ BV
satisfying

1
rn−1

∫
B(x0,r)

|D2u| ≤ η (3.6)

one has
min

J∈{Ui}i

∫
B(x0,ρr)

dist(∇u, SO(n)J) dx ≤ c∗
∫
B(x0,r)

dist(∇u,K) dx .

We divide the proof of Proposition 3.4 in two parts: we first reduce to a special case where one phase,
corresponding to SO(n), is dominant, and then treat that special case in Lemma 3.5 below.
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Proof. We can assume x0 = 0 by translation, r = 1 by scaling, that u is smooth by density, and by
relabeling the wells that U1 is the majority phase, i.e., that the set

E1 := {x ∈ B : dist(∇u(x),K) = dist(∇u(x), SO(n)U1)}

obeys Ln(E1) ≥ Ln(B)/l. This implies∫
E1

dist(∇u, SO(n)U1) dx =
∫
E1

dist(∇u,K) dx ≤
∫
B

dist(∇u,K) dx =: ε, (3.7)

where the last equality defines ε. By the Poincaré inequality, (3.6) implies that there is F ∈ Rn×n
such that ∫

B

|∇u− F | dx ≤ cη. (3.8)

Thus, by (3.7) and (3.8),

Ln(E1) dist(F, SO(n)U1) ≤
∫
E1

dist(∇u, SO(n)U1) dx+
∫
B

|∇u− F | dx ≤ ε+ cη ,

and therefore∫
B

dist(∇u, SO(n)U1) dx ≤
∫
B

dist(F, SO(n)U1) dx+
∫
B

|∇u− F | dx ≤ c(ε+ η) . (3.9)

In the case ε ≥ η the proof is concluded. In the following we can therefore assume that ε ≤ η.
We fix a vector ξ1 as in (1.5), a matrix Q ∈ SO(n) such that U1ξ1 = αQen for some α > 0, and define

ũ(x) := u(U−1
1 Qx) , Ũi := UiU

−1
1 Q , B̃ := QTU1B .

We observe that ũ ∈ C2(B̃; Rn), that Ũ1 = Q ∈ SO(n), and that the new matrices {Q, Ũ2, . . . , Ũl}
obey (1.5) with ξ̃1 = en. Further, there are r0, r1 > 0 such that B(0, r0) ⊂ B̃ ⊂ B(0, r1).
We show that Proposition 3.4 follows from the application of Lemma 3.5 below to the new function ũ.
Indeed, we observe that for any R ∈ SO(n) and any i we have |∇ũ−RŨi| = |∇uU−1

1 Q−RUiU−1
1 Q| =

|(∇u−RUi)U−1
1 | ≤ |∇u−RUi| |U

−1
1 |, and compute∫

eB dist(∇ũ, K̃) dx ≤ detU1

∫
B

|U−1
1 |dist(∇u,K) dx ≤ cε ,

and analogously, recalling (3.6), (3.9), and ε ≤ η,∫
eB
[
dist(∇ũ, SO(n)) + |∇2ũ|

]
dx ≤ detU1

∫
B

[
|U−1

1 |dist(∇u, SO(n)U1) + |U−1
1 |2|∇2u|

]
dx ≤ cη .

Clearly the same estimate holds in B(0, r0) ⊂ B̃. Therefore, if η is sufficiently small, Lemma 3.5 shows
that there is a ρ̃ > 0 such that∫

B(0,eρr0)

dist(∇ũ, SO(n)) dx ≤ c
∫
B(0,r0)

dist(∇ũ, K̃) dx ≤ c
∫
B

dist(∇u,K) dx .

Finally, setting ρ = ρ̃r0/r1 we obtain QTU1B(0, ρ) = ρB̃ ⊂ B(0, ρ̃r0) and∫
B(0,ρ)

dist(∇u, SO(n)U1) dx ≤ c
∫
B(0,eρr0)

dist(∇ũ, SO(n)) dx ≤ c
∫
B

dist(∇u,K) dx

which concludes the proof. Notice that all constants depend only on U1, therefore taking the maximum
among the l possible majority phases they can be made universal.

17



Lemma 3.5. Let U1, . . . , Ul be matrices in Rn×n with positive determinant, which obey (1.5) with
ξ1 = en, and assume that U1 ∈ SO(n). Let K be defined as in (1.3). Then there are positive numbers
η, c∗ and ρ ∈ (0, 1) depending only on {Ui}i and n such that for any r > 0, any u ∈ C2(B(0, r); Rn)
satisfying ∫

B(0,r)

dist(∇u, SO(n)) + r|∇2u| dx ≤ ηrn , (3.10)

one has ∫
B(0,ρr)

dist(∇u, SO(n)) dx ≤ c∗
∫
B(0,r)

dist(∇u,K) dx .

Proof. By scaling we can assume r = 1. Let B = B(0, 1) and

ε :=
∫
B(0,1)

dist(∇u,K) dx .

If η ≤ ε there is nothing to prove, hence we can assume ε < η. Define a partition (Ei)i of B by setting

Ei := {x ∈ B \ ∪i−1
k=1Ek : dist(∇u, SO(n)Ui) = dist(∇u,K)}

for i = 1, . . . , l (for i = 1 the union is understood to be empty). By the triangular inequality and
SO(n)-invariance this gives

dist(∇u, SO(n)) ≤ dist(∇u,K) +
l∑
i=2

dist(SO(n), SO(n)Ui)χEi , (3.11)

where χEi is the characteristic function of Ei. Since the second term is bounded, after redefining ρ it
is sufficient to show that there are ρ > 0 and c > 0 such that

Ln
(
B(0,

ρ

2
) \ E1

)
≤ cε . (3.12)

Set φ(F ) := dist(F, SO(n)) for F ∈ Rn×n. Then (3.10) gives∫
B

φ(∇u)dx+
∫
B

|D[φ(∇u)]| ≤ cη . (3.13)

Let δ > 0 be such that

|Uiξ| < 1− 2δ for all ξ ∈ Rn such that |ξ − en| < 2δ and all i = 2, . . . , l . (3.14)

Let c > 0, ρ > 0, µ > 0, {ah}h and ā as in Lemma 3.2 (µ is smaller than δ < 1/2, and ρ can be
reduced to obey ρ ≤ 1/4(n+ 1)). We define ãh := ah − ā so that the symplex with vertices {ãh} has
barycenter in 0, and has the same properties as the other one. Possibly reducing ρ, we can assume that
B(ãi, 2ρ) ∈ B for all i. Fix a small θ > 0. In the following we shall denote be cθ the constants which
may depend on θ. Let ηθ be such that the condition η < ηθ and (3.13) permit to apply Proposition
2.1 to each pair (ãh, ãk), with α = ρ and the chosen θ. Then, for each pair (h, k), h 6= k, there is a
set ωhk ⊂ B(ãh, ρ)×B(ãk, ρ) such that

1− cθε ≤
|u(x)− u(y)|
|x− y|

≤ 1 + cθε for all (x, y) ∈ B(ãh, ρ)×B(ãk, ρ) \ ωhk , (3.15)

with L2n(ωhk) ≤ θ. Summing over the (n+ 1)(n+ 2)/2 possible pairs, we obtain that the “bad” set

ω :=

{
(b1, . . . bn+1) ∈

n+1∏
h=1

B(ãh, ρ) : there are h, k such that (bh, bk) ∈ ωhk

}
(3.16)
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satisfies Ln(n+1)(ω) ≤ cθ . Fix now (b1, . . . bn+1) ∈
∏n+1
h=1 B(ãh, ρ) \ ω. Then (3.15) yields that the

(n+ 1)n/2 lengths are preserved under u up to errors of order ε, and by Lemma 3.3 this implies that
there is an isometry x 7→ I(x) := Qx+ b, Q ∈ O(n), such that

|u(x)− I(x)| ≤ cε for x ∈ {b1, . . . , bn+1} (3.17)

(in fact, one can show that Q ∈ SO(n), for most choices; this will however not be needed below).
The isometry depends on the choice of the (b1, . . . bn+1), but the constants here and in all following
estimates do not.
For any p ∈ Bρ := B(0, ρ), any h ∈ {1, . . . , n + 1}, consider the segment [bh, p] and let τh :=
(bh − p)/|bh − p|. By Lemma 3.2 we get |τh − en| ≤ δ, and, by (3.14), |Uiτh| < 1 − δ for all i ≥ 2.
Thus we have pointwise

|∂τhu| ≤ 1 +
l∑
i=2

(|Uiτh| − 1)χEi + dist(∇u,K) ≤ 1− δχ(B\E1) + dist(∇u,K),

and integrating over [bh, p], we get |u(p)− u(bh)| ≤ |p− bh|+ σh(p)− δh(p), where

σh(p) :=
∫

[bh,p]

dist(∇u,K) dH1, δh(p) := δ

∫
[bh,p]

χB\E1 dH
1.

Recalling (3.17) we have

|u(p)− I(bh)| ≤ |u(p)− u(bh)|+ |u(bh)− I(bh)| ≤ |p− bh|+ σh(p)− δh(p) + cε .

By the second statement in Lemma 3.2, applied with q = I−1(u(p)), we have

n+1∑
h=1

ch|p− bh| ≤
n+1∑
h=1

ch|I−1(u(p))− bh| =
n+1∑
h=1

ch|u(p)− I(bh)| .

This implies
n+1∑
h=1

ch (σh(p)− δh(p) + cε) ≥ 0 .

Since 1/c ≤ ch ≤ c, with c not depending on p or the bh, we conclude that

n+1∑
h=1

δh(p) ≤ cε+ c

n+1∑
h=1

σh(p) .

We integrate over all p ∈ Bρ, and obtain

n+1∑
h=1

∫
Bρ

δh(p) dp ≤ cε+ c

n+1∑
h=1

∫
Bρ

σh(p) dp. (3.18)

We now show that the bh’s can be chosen so that
∫
Bρ
σh(p)dp ≤ cε for any h = 1, . . . , n + 1. Let

f := dist(∇u,K) in B = B(0, 1) and 0 elsewhere. Then

σh(p) =
∫

[bh,p]

f dH1 ≤
∫
bh+R+(p−bh)

f dH1 =
∫ ∞

0

f

(
bh + t

p− bh
|p− bh|

)
dt .

We integrate over all p ∈ Bρ, and change to polar coordinates centered in bh according to p = bh+ rν,
ν ∈ Sn−1. Clealry r = |p− bh| ≤ |p|+ |bh| ≤ ρ+ 1 ≤ 3/2. We can then perform the r integration and
change variables again according to x = bh + tν, to get∫

Bρ

σh(p) dp ≤
∫ 3/2

0

rn−1

∫
Sn−1

∫ ∞
0

f(bh + tν)dt dν dr

= c

∫
Rn
f(x)

1
|x− bh|n−1

dx .
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Integrating over all bh ∈ B(ãh, ρ) yields∫
B(eah,ρ)

∫
Bρ

σh(p) dp dbh ≤ c
∫

Rn
f(p)

∫
B(eah,ρ)

1
|p− bh|n−1

dbh dp ≤ c
∫

Rn
f(x) dx = cε.

Thus there is a measurable set ω̃h such that Ln(ω̃h) ≤ θ and∫
Bρ

σh(p)dp ≤ c

θ
ε

for all bh ∈ B(ãh, ρ) \ ω̃h. We observe that the “bad” set ω∪{(c1, . . . , cn+1) : ch ∈ ω̃h for some h} has
measure bounded by c̄θ. Therefore choosing θ ≤ (Ln(Bρ))n+1/2c̄ the complement is nonempty, and
we can choose the bh’s with all desired properties. Therefore (3.18) becomes

n+1∑
h=1

∫
Bρ

δh(p) dp ≤ cε

(since θ has been chosen there is no need to indicate the dependence of the constant on θ).
It remains to show that

∫
Bρ
δhdp controls the volume of the minority phases (in this final step we may

focus on one of the values of h, say, h = 1). Changing variables as above, we obtain∫
Bρ

δh(p) dp = δ

∫ 3/2

0

rn−1

∫
Sn−1

χBρ(bh + rν)
∫ r

0

χB\E1(bh + tν) dt dν dr .

We bound rn−1 by a constant, swap the t with the r integration, and obtain∫
Bρ

δh(p) dp ≥ cδ
∫

Sn−1

∫ 3/2

0

χB\E1(bh + tν)
∫ 3/2

t

χBρ(bh + rν) dr dt dν .

If bh + tν ∈ Bρ/2, then the integral in r extends over a length at least ρ/2, therefore∫ 3/2

t

χBρ(bh + rν)dr ≥ ρ

2
χBρ/2(bh + tν) .

Inserting into the previous estimate and changing variables back we conclude that∫
Bρ

δh(p) dp ≥ cδρ

∫
Sn−1

∫ 3/2

0

χB\E1(bh + tν)χBρ/2(bh + tν) dt dν

= cδρ

∫
Bρ/2

χBρ/2\E1(x) dx = cδρLn
(
Bρ/2 \ E1

)
.

This concludes the proof of (3.12) and therefore of Proposition 3.4.

We finally come to the proof of Theorem 1.1 which is based on Proposition 3.4 and a covering argument
of the domain Ω with suitable balls. The argument given in [10, Pf. of Th. 2.1] can be applied with
minimal changes to the n-dimensional case, after passing in Proposition 3.4 from balls to cubes. For
the convenience of the reader we prefer to report the full argument in the current notation, and in
a version which only uses balls. We remark that the exponent of the distance dist(Ω′, ∂Ω) in (1.6)
comes from (3.6).

Proof of Theorem 1.1. Without loss of generality we can assume SO(n)Ui ∩ SO(n)Uj = ∅. We let
η > 0, ρ ≤ 1/2 and c∗ be as in Proposition 3.4 (they all depend only on K), and set d := dist(Ω′, ∂Ω),

ε :=
∫

Ω

dist(∇u,K) dx,
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and

c2 :=
1

4c∗dn
Ln
(
B

(
0,
ρd

2

))
min
i6=j
{dist(Ui, SO(n)Uj)}

The proof for the case that (1.8) does not hold is similar to the argument used in the proof of
Proposition 3.4, case η ≤ ε. Precisely, from (1.6) and the Poincaré inequality there is F ∈ Rn×n such
that ∫

Ω

|∇u− F | dx ≤ cΩη0d .

Let j ∈ {1, . . . , l} be such that the set

Ej := {x ∈ Ω : dist(∇u(x),K) = dist(∇u(x), SO(n)Uj)}

obeys Ln(Ej) ≥ Ln(Ω)/l. Then∫
Ej

dist(∇u, SO(n)U1) dx =
∫
Ej

dist(∇u,K) dx ≤
∫

Ω

dist(∇u,K) dx = ε,

and therefore

Ln(Ej) dist(F, SO(n)Uj) ≤
∫
Ej

dist(∇u, SO(n)Uj) dx+
∫

Ω

|∇u− F | dx ≤ ε+ cΩη0d .

We conclude that∫
Ω

dist(∇u, SO(n)Uj) dx ≤
∫

Ω

dist(F, SO(n)Uj) dx+
∫

Ω

|∇u− F | dx ≤ lε+ (l + 1)cΩη0d .

This concludes the proof if (1.8) does not hold.
Assume now that (1.8) holds. Choose {p1, . . . , pk} ∈ Ω′ be such that the closures of the balls Bh :=
B(ph, ρd/2) ⊂ Ω cover Ω′, and each point in Rn belongs to at most a fixed number M (depending
on the dimension n and on ρ, hence only on K) of the larger balls B′h := B(ph, d). This can be done
using the Besicovitch covering theorem, see, e.g., [8, Lemma 2.2 and 2.3], in this case simpler ad-hoc
arguments are also applicable. Clearly B′h ⊂ Ω for all h. Then (1.6) (with η0 = η) implies that
Proposition 3.4 can be applied to each of the B′h; hence for each h there is Jh ∈ {Ui}i such that∫

B(ph,ρd)

dist(∇u, SO(n)Jh) dx ≤ c∗
∫
B′h

dist(∇u,K) dx. (3.19)

The key observation is that Jh does not depend on h. Since Ω′ is connected it suffices to prove that
we can define J : Ω′ → K so that J is constant in a neighborhood of any x ∈ Ω′, and J(x) = Jh
whenever x ∈ Bh ∩ Ω′. In turn, to do this it suffices to show that for any x ∈ Ω′, and any h, k with
x ∈ Bh ∩Bk, one has Jh = Jk. Since x ∈ Bh = B(ph, ρd/2), we have B(x, ρd/2) ⊂ B(ph, ρd), and the
same for k. Therefore (3.19) implies

Ln(B(x, ρd/2))dist(Jh, SO(n)Jk) ≤
∫
B(x,ρd/2)

dist(∇u, SO(n)Jh) + dist(∇u, SO(n)Jk) dy

≤ 2c∗
∫
B′h∪B

′
k

dist(∇u,K) dy .

Estimating the right-hand side with the integral over Ω, and recalling (1.8) and the above choice for
c2, shows that Jh = Jk.
Finally, the theorem follows by summing over all balls,∫

Ω′
dist(∇u, SO(n)J) dx ≤

∑
h

∫
Bh

dist(∇u, SO(n)J) dx

≤ c∗
∑
h

∫
B′h

dist(∇u,K) dx ≤Mc∗
∫

Ω

dist(∇u,K) dx

where we used that any point of Ω belongs at most to M of the larger balls B′h.

21



We finally come back to the separation condition (1.5), and show that it holds in most cases of
physical interest. In particular, in materials undergoing solid-solid phase transitions the set K is
obtained from a single eigenstrain under the left action of SO(n) and the right action of the point
group of the austenitic phase, which is a finite subgroup of SO(n). This structural condition implies
(1.5).

Remark 3.6. Assume that the set K has the form

K =
{
QŪP : Q ∈ SO(n), P ∈ P

}
(3.20)

where P is a finite subgroup of SO(n), and Ū ∈ Rn×n a fixed matrix, with det Ū > 0. Then condition
(1.5) holds.
To see this, we let U1, . . . , Ul be such that K = SO(n)U1∪· · ·∪SO(n)Ul, with SO(n)Ui∩SO(n)Uj = ∅
for every pair (i, j) with i 6= j, and define ψi(ξ) := |Uiξ|2. For every pair (i, j) with i 6= j and almost
every ξ ∈ Sn−1 one has ψi(ξ) 6= ψj(ξ); therefore there is a ξ ∈ Sn−1 such that ψi(ξ) 6= ψj(ξ) for any
i 6= j. Let k ∈ {1 . . . l} be such that ψk(ξ) := maxj ψj(ξ). Then |Ukξ| > |Uhξ| for any h 6= k. Pick some
i ∈ {1 . . . l}, let Pik ∈ P be such that SO(n)Uk = SO(n)UiPik. We claim that ξi = Pikξ satisfies (1.5).
Indeed, |Uiξi| = |UiPikξ| = |Ukξ|, whereas for any j 6= i one has |Ujξi| = |UjPikξ|. Clearly UjPik ∈ K.
Since Uj 6∈ SO(n)Ui, we obtain UjPik 6∈ SO(n)UiPik = SO(n)Uk, hence UjPik ∈ SO(n)Uh for some
h 6= k, and |UkPikξ| = |Uhξ| < |Ukξ|. This concludes the proof.

As a special case, this applies to the three-well problem in three dimensions:

Remark 3.7. Let λ > 0, λ 6= 1, and let

U1 = diag(λ, 1, 1), U2 = diag(1, λ, 1), U3 = diag(1, 1, λ).

Then (1.5) holds (this is an immediate consequence of Remark 3.6).

In the case of two matrices the condition (1.5) is even weaker. It holds whenever none of the inequalities
U1 ≤ U2 or U2 ≤ U1, in the sense of symmetric matrices, holds; in particular (1.5) holds if the two
matrices have the same determinant.

Remark 3.8. Let U1, U2 be such that U1 6∈ SO(n)U2, detU1 = detU2 6= 0. Then (1.5) holds. Indeed,
let B be the unit ball in Rn. If the two ellipsoids U−1

1 B and U−1
2 B were equal, then U1U

−1
2 would be a

unit-determinant isometry, i.e., belong to SO(n), against the assumption. The determinant condition
shows that the two ellipsoids have the same volume, hence none is a subset of the other. Therefore
there are v ∈ U−1

1 B \ U−1
2 B, and w ∈ U−1

2 B \ U−1
1 B. The vectors v, w have the stated properties.

A simple example where (1.5) does not hold is provided by the set K = SO(n) ∪ 2SO(n).

Remark 3.9. If the assumption (1.5) is dropped, then Theorem 1.1 does not hold. Consider for
example the set (with l = 3 wells) K = SO(2){Id, Id + e1 ⊗ e2, Id− e1 ⊗ e2}, in two dimensions. Set
Ω = B(0, 2), Ω′ = B(0, 1). Assume Theorem 1.1 would hold. Pick ` ∈ (0, 1/2) so that 20` is less than
the right-hand side of (1.6). Define, for ε ∈ (0, 1/8),

Qε = {x ∈ R2 : |x1|+ |x2/ε| < `} .

We set

uε(x) =

{
x+ (ε`− |x1|ε− |x2|)e1 if x ∈ Qε ,
x else.

We observe that uε ∈ Lip(Ω; R2), that onQε we have∇uε = Id±e1⊗e2±εe1⊗e1, and dist(∇uε,K) ≤ ε
uniformly. We conclude that ∫

Ω

dist(∇uε,K) dx ≤ εL2(Qε) = 2ε2`2 ,
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whereas, since L2(Ω′ \Qε) > 2L2(Qε),

min
J∈K

∫
Ω′

dist(∇uε, SO(2)J) dx =
∫
Qε

dist(∇uε, SO(2)) dx ≥ cL2(Qε) = 2cε`2 .

Taking ε→ 0 we see that there is no c0 such that (1.7) can hold. The same construction can easily be
extended to higher dimension. With a larger set K it is easy to find examples where the right-hand
side of (1.7) vanishes, but the left-hand side does not (e.g., K = SO(2)∇uε(Ω)).
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