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June 16, 2009

CEREMADE, UMR CNRS 7534, Université Paris-Dauphine
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Abstract

Starting from a continuous congested traffic framework recently introduced
in [8], we present a consistent numerical scheme to compute equilibrium met-
rics. We show that equilibrium metric is the solution of a variational problem
involving geodesic distances. Our discretization scheme is based on the Fast
Marching Method. Convergence is proved via a Γ-convergence result and
numerical results are given.

1 Introduction

Congestion is an important issue in real-life applications such as road or commu-
nication networks. In the early 50’s, Wardrop [17] considered the situation where
a large number of vehicles have to go from one location to another, connected by
a finite number of different roads. Each vehicle has to choose a pathway along the
roads to minimize some transportation cost which depends not only on the chosen
pathway but also on the number of vehicles (the traffic) along it. Naturally, shorter
or wider roads are preferred by the vehicles. Nevertheless, the transportation ”cost”
on a given road depends increasingly on the traffic. To avoid the congestion some
vehicles may choose a ”longer” pathway to minimize the cost. Wardrop gave a min-
imal stability requirement for transportation strategies: the cost of every actually
used pathway should be equal or less than that which would be experienced by a
single vehicle on any other roads. In particular there is an equilibrium concept: all
actually used pathways have the same cost, i.e. they compensate in term of conges-
tion their differences given by length and other conditions. Beside the equilibrium
concept there is a minimality concept as well: those pathways are minimal among
all the possible ones. In other words, a Wardrop equilibrium is a situation where
every traveler uses only shortest paths from his source to his destination, given the
overall congestion pattern resulting from the individual strategies of all the users
of the road network. This natural equilibrium concept, somehow similar to Nash’s
equilibrium, has been very popular since its introduction.

Few years later, Beckmann et al. [3] discovered that Wardrop equilibria can be
obtained as minimizers of a certain convex optimization problem. This result is

1



very useful for proving theoretical existence, uniqueness and stability results. The
convex minimization formulation (or some dual one) can also be used to compute
numerically traffic equilibria as long as the complexity of the problem is tractable
which, in practice, often excludes the case of large networks. On the contrary, in the
present paper, we consider a continuous case, where there is no network and every
path is allowed. Our work is based on a continuous traffic equilibrium formulation
recently introduced in [8]. We will see how this problem can be dealt without huge
computational costs.

The study of Wardrop equilibria has mainly been restricted to the finite-dimen-
sional case where the road network is a given finite graph. In [8], there is no network
and congestion effects are captured by a metric that depends increasingly on the
traffic intensity which gives a natural framework to study optimal transportation
problems with congestion effects. It turns out that the problem addressed in [8] can
also be interpreted as a continuous traffic equilibrium à la Wardrop. The equilibrium
problem is then formulated in terms of the traffic intensity or the metric itself. As
shown, in section 4, the equilibrium metric is obtained by minimizing some convex
functional that is the difference of two terms. The first one is a standard convex
integral functional. The second one is a weighted sum of geodesic distances between
a given source and a given destination as a function of the metric. Building upon this
continuous minimization problem, we introduce a discretized minimization scheme
based on Sethian’s FMM [13] (Fast Marching Method). We prove convergence of the
discretized problems to the continuous one, obtaining a Γ−convergence result which
is interesting by itself. It is based on the convergence of the FMM scheme to the
viscosity solution of the Eikonal Equation |∇U| = ξ in the case ξ ∈ C0 and on some
semicontinuity properties coming from the comparison between different concepts
of this equation for ξ ∈ Lp. We then solve numerically the discretized problem by
an iterative subgradient descent method. Each iteration of the discretized problem
requires the computation of an element of the subgradient of the geodesic distance
with respect to the current metric. In our companion paper [4], we show how to
compute such a subgradient in the same routine of the FMM algorithm and develop
other applications of this method.

The continuous traffic congestion model is introduced in section 2. In section 3,
traffic equilibria are defined and characterized by means of some convex optimization
problem. A more tractable dual formulation is given in Section 4. In section 5, we
consider a discretization of this dual problem, prove that this discretization Γ-
converges to the continuous problem and give a consistent numerical scheme to
solve the discrete problem. Numerical results are presented in section 6.

2 The model

2.1 Notations and definitions

Given a separable and complete metric space X, M+(X) and M1
+(X) denote re-

spectively the set of positive and finite Borel measures on X and the set of Borel
probability measures on X. If X and Y are separable metric spaces, µ ∈ M1

+(X)
and f : X → Y is a Borel map, f]µ denotes the push forward of µ through f i.e.
the element ofM1

+(Y ) defined by f]µ(B) = µ(f−1(B)) for every Borel subset B of
Y .
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In the sequel, Ld denotes the d-dimensional Lebesgue measure. If µ and ν are
in M+(Rd) then dµ

dν denotes the Radon-Nikodym derivative of µ with respect to
ν. We write µ � ν to express that µ is absolutely continuous with respect to ν,
in which case, slightly abusing notations, µ is identified with the Radon-Nikodym
derivative dµ

dν .
The data of our problem are Ω (modelling a city, say), an open bounded con-

nected subset of R2 with a Lipschitz boundary, two probability measures, µ0 and
µ1 in M1

+(Ω), giving respectively the distribution of residents and services in the
city Ω and a transport plan γ i.e. a probability measure on Ω × Ω having µ0 and
µ1 as marginals. The transport plan γ models the travelers’ everyday movements,
more precisely for A and B Borel subsets of Ω, γ(A×B) represents the fraction of
the travelers’ population that commutes from a location in A to a location in B.

Introducing congestion naturally leads to consider spaces of paths, lengths of
such paths and sets of probability measures on sets of paths. From now on, we shall
denote:

• C := W 1,∞([0, 1],Ω), (endowed with the usual topology of C0([0, 1],R2)),

• Cx,y := {σ ∈ C : σ(0) = x, σ(1) = y} (x, y in Ω),

• l(σ) :=
∫ 1

0
|σ̇(t)| dt, the length of σ ∈ C,

• for ϕ ∈ C0(Ω,R) and σ ∈ C, we define

Lϕ(σ) :=
∫ 1

0

ϕ(σ(t))|σ̇(t)|dt,

• et(σ) := σ(t), for all σ ∈ C0([0, 1],R2) and t ∈ [0, 1].

Roughly speaking, a transportation strategy is a probability Q over paths (Q(Σ)
represents the number of travellers that use a path in Σ) which is compatible with
the transport plan γ:

Definition 2.1. A transportation strategy is a probability Q ∈ M1
+(C) such that

(e0, e1)]Q = γ.

The set of transportation strategies is denoted by

Q(γ) := {Q ∈M1
+(C) : (e0, e1)]Q = γ}.

If ξ ∈ C0(Ω,R+), it is proven in Lemma 2.6 in [8] that the map σ 7→ Lξ(σ) is
l.s.c. on C hence Borel for the uniform topology. Since 0 ≤ Lξ(σ) ≤ ‖ξ‖∞l(σ),
Lξ ∈ L1(C,Q) as soon as: ∫

C

l(σ)dQ(σ) < +∞ (2.1)

which means that the average (with respect to Q) length is finite. If (2.1) holds then
Lξ ∈ L1(C,Q) for every ξ ∈ C0(Ω,R+). If ξ ∈ C0(Ω,R), let us write ξ = ξ+ − ξ−
with ξ+ and ξ− the positive and negative part of ξ. Since Lξ = Lξ+ − Lξ− then Lξ
is Borel and in L1(C,Q) provided (2.1) holds.

Any Q ∈ M1
+(C) induces a traffic intensity which is a nonnegative measure on

Ω, intuitively the traffic intensity of a subregion of Ω is the cumulated traffic of
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this subregion (or the total amount of mass travelling through the subregion). For
simplicity, in the next definition, to avoid the case of measures taking the value
+∞, we restrict to the case where Q satisfies (2.1).

Definition 2.2. Let Q ∈ M1
+(C) satisfy (2.1), the traffic intensity of Q is the

measure iQ ∈M+(Ω) defined by:∫
Ω

ϕ(x)diQ(x) :=
∫
C

Lϕ(σ)dQ(σ) =
∫
C

(∫ 1

0

ϕ(σ(t))|σ̇(t)|dt
)
dQ(σ), (2.2)

for all ϕ ∈ C0(Ω,R).

Let us remark that the total mass of iQ is the average length with respect to Q.

2.2 On geodesic distances

For a continuous and nonnegative metric ξ ∈ C0(Ω,R+), the corresponding geodesic
distance is denoted cξ

cξ(x, y) := inf {Lξ(σ), σ ∈ Cx,y}

= inf
{∫ 1

0

ξ(σ(t))|σ̇(t)|dt, σ ∈ Cx,y
}
,∀(x, y) ∈ Ω× Ω.

.

A path σ such that Lξ(σ) = cξ(σ(0), σ(1)) is called a geodesic for the metric ξ
between x = σ(0) and y = σ(1).

In the sequel, we shall need to extend the definitions of cξ and Lξ to the case
where ξ only belongs to some Lp space. This is possible when p > 2 (we refer to
[8] for details), by proceeding as follows. Let us assume that p > 2 and ξ ≥ 0,
ξ ∈ Lp(Ω), then the following is proved in [8].

Proposition 1. Let us assume that p > 2 and define β := 1 − 2/p, then there
exists a non-negative constant C such that for every ξ ∈ C0(Ω,R+) and every
(x1, y1, x2, y2) ∈ Ω4, one has

|cξ(x1, y1)− cξ(x2, y2)| ≤ C‖ξ‖Lp(Ω)

(
|x1 − x2|β + |y1 − y2|β

)
. (2.3)

Consequently, if (ξn)n ∈ C0(Ω,R+)N is bounded in Lp, then (cξn)n admits a subse-
quence that converges in C0(Ω× Ω,R+).

This allows to extend the definition of the geodesic distance cξ to the case ξ ≥ 0
and ξ ∈ Lp (with p > 2) as follows:

cξ = sup
{
c = lim

n
cξn in C0(Ω× Ω) : (ξn)n ∈ C0(Ω), ξn ≥ 0, ξn → ξ in Lp

}
.

This definition really extends that of geodesic distance since when ξ is continuous
and non-negative, then cξ = cξ (see [8] for details). Section 5.3 shows that this
definition coincides with a different one, given in terms of pointwise a.e. subsolutions
of an Eikonal Equation.

It remains to extend the definition of Lξ. To do that, let us define for every
q ∈ [1,+∞], the set:

Qq(γ) := {Q ∈ Q(γ) : iQ ∈ Lq(Ω)} (2.4)
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where in the previous definition we have slightly abused notations to intend that
iQ � L2 and that the density of iQ with respect to L2 is in Lq. The requirement

iQ � L2 (2.5)

will naturally appear as a consequence of our traffic congestion modelling detailed
in the next paragraph (roughly speaking, in our model, congestion effects are so
strong that when (2.5) is not satisfied then the total transportation cost is +∞). If
p > 2, ξ ∈ Lp, ξ ≥ 0, (ξn)n is a sequence of non-negative continuous functions that
converges to ξ in Lp and Q ∈ Qp∗(γ) (p∗ being the conjugate exponent of p), then
the following holds (see [8]):

• (Lξn)n converges strongly in L1(C,Q) to some limit which is independent of
the approximating sequence (ξn)n and which is, again, denoted as Lξ.

• The following equality holds:∫
Ω

ξ(x)iQ(x) dx =
∫
C

Lξ(σ) dQ(σ). (2.6)

• The following inequality holds for Q-a.e. σ ∈ C:

Lξ(σ) ≥ cξ(σ(0), σ(1)). (2.7)

Having extended the definition of Lξ and cξ, we naturally call a geodesic any
σ ∈ C such that Lξ(σ) = cξ(σ(0), σ(1)).

2.3 Traffic congestion

Traffic congestion modelling has to capture the fact that travellers spend more time
(or more effort) in regions where the traffic is dense i.e. where the traffic intensity
is high. A natural way to do so (assuming for a moment that iQ � L2 with a
density with respect to L2 still denoted iQ), is to associate to iQ a metric of the
form g(., iQ(.)) where g is a given congestion function. We shall always assume the
following on the congestion function g:

• g ∈ C0(Ω× R+; R+),

• g(x, .) is strictly increasing on R+ for every x ∈ Ω,

• there exists strictly positive constants a and b and a constant α ∈ (0, 1) such
that

aiα ≤ g(x, i) ≤ b(iα + 1), ∀i ∈ R+ ∀x ∈ Ω. (2.8)

Let us set q := 1 +α and q∗ = 1 + 1/α its conjugate exponent (note that q∗ > 2
so that one can define cξ as in the previous paragraph whenever ξ ∈ Lq∗ and ξ ≥ 0)
and define Qq(γ) by (2.4). Let us also remark that every Q ∈ Qq(γ) satisfies (2.1).
For Q ∈ Qq(γ), the congested metric associated to Q is well-defined and given by:

Definition 2.3. For Q ∈ Qq(γ), the metric associated to Q, denoted ξQ is defined
by

ξQ(x) := g(x, iQ(x)), x ∈ Ω. (2.9)

Note that our assumptions on g imply that ξQ ∈ Lq
∗

whenever Q ∈ Qq(γ). Since
q∗ > 2, by the results recalled in paragraph 2.2, cξQ is a well-defined continuous
function, LξQ ∈ L1(C,Q) and (2.6) and (2.7) hold for ξ = ξQ.
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3 Wardrop Equilibria as solutions of a convex min-
imization problem

3.1 Equilibria

An equilibrium is a transportation strategy Q such that the congested metric ξQ
is well defined (i.e. Q ∈ Qq(γ) with q = α + 1 ∈ (1, 2)) and such that, given the
congestion resulting from ξQ, travellers only use shortest paths i.e. geodesics. This
stability requirement on the transportation strategy (all used routes connecting x
to y have the same commuting time and a shorter commuting time than unused
routes) was first introduced by Wardrop [17] in the case of a finite number of roads.
The generalization to our continuous setting then reads as:

Definition 3.1. A Wardrop equilibrium is a probability Q ∈ Qq(γ) such that

Q({σ ∈ C : LξQ(σ) = cξQ(σ(0), σ(1))}) = 1.

In other words, Q ∈ Qq(γ) is a Wardrop equilibrium if and only if Q gives full mass
to the set of geodesics for the metric ξQ defined by (2.9).

Of course, a necessary condition for the existence of a Wardrop equilibrium, in
our model where congestion effects are very strong, is that Qq(γ) is nonempty. As
shown in section 3.2, this condition is also sufficient for existence of equilibria. At
first glance however, the condition Qq(γ) 6= ∅ may seem difficult to check a priori if
we only know γ. Yet, in the case when there is a finite number of sources and des-
tinations (which is basically the situation considered in our numerical simulations),
this condition is automatically fulfilled.

Proposition 2. If γ is a discrete probability measure on Ω × Ω and Ω is further
assumed to be convex (for simplicity) then, for every p ∈ [1, 2), Qp(γ) 6= ∅.

Proof. It is of course enough to prove the claim when γ is a single Dirac mass
γ = δ(x0,y0) and up to a change of coordinates we may assume x0 = (0, 0) and
y0 = (1, 0). Now let β0 > 0 be such that for all β ∈ [0, β0], the curve σβ defined
below lies in Ω (this is where the convexity assumption simplifies the argument
eventhough it is not essential):

σβ(t) :=
{

(t, βt) if t ∈ [0, 1/2]
(t, β(1− t)) if t ∈ [1/2, 1].

We then define dQ := δσβ ⊗ 1[0,β0]
dβ
β0

, of course Q ∈ Q(γ) and Q satisfies (2.1). For
ϕ ∈ C0(Ω,R) we then have:∫

Ω

ϕ(x)diQ(x) =
1
β0

∫ β0

0

∫ 1

0

ϕ(σβ(t))
√

1 + β2 dtdβ

=
1
β0

∫ β0

0

∫ 1/2

0

ϕ(t, βt)
√

1 + β2dtdβ +
1
β0

∫ β0

0

∫ 1

1/2

ϕ(t, β(1− t))
√

1 + β2dtdβ

Denoting by T0 the triangle with vertices (0, 0), (1/2, 0), (1/2, β0/2) and performing
the change of variables (β, t) → σβ(t), the first integral in the expression above
equals

1
β0

∫
T0

ϕ(x, y)
1
x

√
1 +

y2

x2
dxdy
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and a similar expression gives the value of the second integral. Now remarking that√
1 + y2

x2 ≤
√

1 + β2
0 on T0 and that 1/x ∈ Lp(T0,L2) for all p ∈ [1, 2) we get the

desired result.

Remark 1. Some techniques from incompressible fluid mechanics, as Yann Brenier
pointed out to us, may be used to prove the existence of finite-energy Q′s in the case
where the transport plan γ is fixed but the marginal measures are not discrete. For
instance, if µ = ν = L2 and γ is a transport plan from µ to ν, one can find a measure
Q which is compatible with γ (i.e. (e0, e1)#Q = γ) and incompressible, in the sense
that it realizes at any time t the same density (et)#Q = µ, and this measure
may be chosen concentrated on K−Lipschitz curves. In this case one can see that
iQ ≤ KL2 ∈ L∞. Composing with diffeomorphisms (possibly time-dependent) one
can generalize the same idea to other pairs of measures.

3.2 Existence and characterization of equilibria

Our study of equilibria relies on the following convex optimization problem:

(P) inf
{∫

Ω

H(x, iQ(x))dx : Q ∈ Qq(γ)
}

(3.1)

where the function H is defined by

H(x, i) :=
∫ i

0

g(x, s)ds, ∀x ∈ Ω, ∀i ∈ R+. (3.2)

By the same arguments as in [8], one can prove the following.

Theorem 3.2. Assume that Qq(γ) 6= ∅ (q = 1 + α ∈ (1, 2)) then (P) admits at
least one solution.

Theorem 3.3. Assume that Qq(γ) 6= ∅ (q = 1 + α ∈ (1, 2)) and let Q ∈ Qq(γ),
then Q is an equilibrium if and only if Q solves (P).

Actually, the problem addressed in [8] is slightly different from the one consid-
ered here, but all the proofs can be straightforwardly adapted. Indeed, in [8], the
transport plan γ is not given a priori, only its marginals are, a situation slightly
more general than the present one. Also, in [8], the congestion function g only
depends on i but it is easy to check that the results of Theorems 3.2 and 3.3 extend
to the case where g also depends on x under the assumptions of the present paper.

From now on, we assume that Qq(γ) 6= ∅ (q = 1 +α ∈ (1, 2)). In this case, equi-
libria exist and finding them amounts to solve (P). Since H(x, .) is strictly convex,
if Q1 and Q2 are equilibria, then necessarily iQ1 = iQ2 . In other words, equilibria
are not necessarily unique but they all induce the same intensity or equivalently the
same metric ξ. The next section shows that finding the equilibrium metric amounts
to solve another optimization problem which is dual to (P). This dual problem
turns out to be easier than (P) to be numerically handled.

4 Dual formulation

For every x ∈ Ω and ξ ≥ 0, let us define

H∗(x, ξ) := sup{ξi−H(x, i), i ≥ 0}, ξ0(x) := g(x, 0).

7



By our assumptions on g, one has H∗(x, ξ) = 0 for every x ∈ Ω and ξ ≤ ξ0(x), and

1
b1/α

(ξ − b)q
∗

+

q∗
≤ H∗(x, ξ) ≤ 1

a1/α

ξq
∗

q∗
, ∀x ∈ Ω, ∀ξ ≥ ξ0(x).

Let us recall Young’s inequality:

H(x, i) +H∗(x, ξ) ≥ ξi, ∀i ≥ 0,∀ξ ≥ ξ0(x) (4.1)

and that inequality (4.1) is strict unless ξ = g(x, i) ≥ ξ0(x). In particular, for
Q ∈ Qq(γ), we have the identity

H(x, iQ(x)) +H∗(x, ξQ(x)) = ξQ(x)iQ(x) (4.2)

and
H(x, iQ(x)) +H∗(x, ξ) > ξiQ(x), ∀ξ ≥ ξ0(x), ξ 6= ξQ(x). (4.3)

Let us now define the functional

J(ξ) =
∫

Ω

H∗(x, ξ(x))dx−
∫

Ω×Ω

cξ(x, y)dγ(x, y) (4.4)

and consider:
(P∗) sup

{
−J(ξ) : ξ ∈ Lq

∗
, ξ ≥ ξ0

}
(4.5)

Theorem 4.1. Let us assume that Qq(γ) 6= ∅ (q = 1 + α ∈ (1, 2)), then

min(P) = max(P∗) (4.6)

and ξ ∈ Lq∗ solves (P∗) if and only if ξ = ξQ for some Q ∈ Qq(γ) solving (P).

Proof. Let Q ∈ Qq(γ) (so that ξQ ≥ ξ0) and ξ ∈ Lq∗ with ξ ≥ ξ0, from (4.1) and
(2.6) we first get: ∫

Ω

H(x, iQ(x))dx ≥
∫

Ω

ξiQ −
∫

Ω

H∗(x, ξ(x))dx

=
∫
C

Lξ(σ)dQ(σ)−
∫

Ω

H∗(x, ξ(x))dx.

Using (2.7) and Q ∈ Qq(γ) we then have∫
C

Lξ(σ)dQ(σ) ≥
∫
C

cξ(σ(0), σ(1))dQ(σ) =
∫

Ω×Ω

cξ(x, y)dγ(x, y).

Since Q ∈ Qq(γ) and ξ ∈ Lq∗ , ξ ≥ ξ0 are arbitrary and since we already know that
the infimum of (P) is attained we thus deduce

min(P) ≥ sup(P∗). (4.7)

Now let Q ∈ Qq(γ) solve (P) and let ξ := ξQ (recall that ξQ does not depend on
the choice of the minimizer Q), from Theorem 3.3, we know that

Lξ(σ) = cξ(σ(0), σ(1)) for Q-a.e. σ ∈ C
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with (2.6), integrating the previous identity and using Q ∈ Q(γ) we then get:∫
Ω

ξiQ =
∫
C

Lξ(σ)dQ(σ) =
∫

Ω×Ω

cξ(x, y)dγ(x, y).

Using (4.2), (4.7) and the fact that Q ∈ Qq(γ) solves (P) yields:

sup(P∗) ≤ min(P) =
∫

Ω

H(x, iQ(x))dx =
∫

Ω

ξiQ −
∫

Ω

H∗(x, ξ(x))dx

=
∫

Ω×Ω

cξ(x, y)dγ(x, y)−
∫

Ω

H∗(x, ξ(x))dx

so that ξ solves (P∗) and (4.6) is satisfied. Finally if ξ solves (P∗) and Q ∈ Qq(γ)
solves (P), then with (2.6) and (2.7), one has∫

Ω

ξiQ −
∫

Ω

H∗(x, ξ(x))dx ≥
∫

Ω×Ω

cξ(x, y)dγ(x, y)−
∫

Ω

H∗(x, ξ(x))dx

= max(P∗) = min(P) =
∫

Ω

H(x, iQ(x))dx

and thus we deduce from (4.1) and (4.3) that ξ = ξQ.

In the sequel, we numerically approximate the unique equilibrium metric ξQ by
a descent method on (P∗). One can recover the corresponding equilibrium intensity
iQ by inverting the relation ξQ(x) = g(x, iQ(x)).

5 Discrete Algorithm

The traffic intensity that we are looking for, which is both the optimal one and
the unique equilibrium, is determined by solving the dual problem in the variable
ξ = H ′(i). This section describes and justifies a numerical approximation of the
optimal ξ in the dual problem. This procedure (approximating the solution of
the dual problem instead of the primal one) is classical as far as discrete Wardrop
problems on networks are concerned (see [1] and the references therein). Obviously
our numerical procedure passes itself through a discretization, but this has nothing
to do with the network formulation of discrete Wardrop problem. The discretization
of ξ is indeed done on a square lattice and we prove the convergence of our scheme
to the solution of the continuous problem.

5.1 A discrete functional via Fast Marching

This section is concerned with the discrete formulation of the dual problem. After
setting the notations in this discrete setting, the convexity of the discrete functional,
with respect to the discrete metric, is proven. The convergence of this discretization
to its continuous counterpart is proven in the next section.

The metric is discretized as a vector ξ = (ξi,j)i,j ∈ RN where ξi,j represents the
value of the metric at a point xi,j = (ih, jh) ∈ Ω of a square lattice. The number
of grid points is N = h−2. The first term of the energy functional J defined in
equation (4.4) is easily discretized as h2

∑
i,j H

∗(xi,j , ξi,j).
The second term of the energy J requires the discretization of the geodesic

length cξ. This can be performed by computing the solution of a discretized Eikonal
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equation. For a fixed source S0, the geodesic distance to S0 is denoted as Uξ(x) =
cξ(S0, x). The function Uξ is the viscosity solution of the Eikonal equation

‖∇Uξ‖ = ξ with Uξ(S0) = 0. (5.1)

The vector (Ui,j)i,j is a discretization of the values Uξ(xi,j) of the geodesic distance
on the lattice vertices, where the dependence on ξ is dropped to ease notations. A
discrete version of (5.1) is solved in order to compute U = (Ui,j). For the Eikonal
equation, classic finite difference schemes tend to overshoot and are unstable. Rouy
and Tourin [11] showed that a correct scheme for approximating the viscosity solu-
tion for of (5.1) is given by the following first order accurate scheme:

(DxU)2
i,j + (DyU)2

i,j = h2(ξi,j)2, (5.2)

where we denote

(DxU)i,j := max{(Ui,j − Ui−1,j), (Ui,j − Ui+1,j), 0}/h,
(DyU)i,j := max{(Ui,j − Ui,j−1), (Ui,j − Ui,j+1), 0}/h,

and (DU)i,j :=
√

(DxU)2
i,j + (DyU)2

i,j .

In [11] the authors suggested an iterative algorithm for solving the above system of
finite difference equations and proved convergence.

On the other hand, a more efficient method for solving the isotropic Eikonal
equation (5.2) on a cartesian grid has been proposed later on: the Fast Marching
Method (FMM) is the numerical method introduced by Tsitsiklis [15] and Sethian
[12] (see also [13]) for efficiently solving the above equation. Values of U may be
regarded as the arrival times of wavefronts propagating from the source point S0

with velocity 1/ξ. The central idea behind the FMM is to visit grid points in an
order consistent with the way wavefronts propagate, i.e. with the Huygens principle.
The numerical complexity of the FMM is O(N log(N)) operations for a grid with
N points and the result is the exact solution of (5.2). For convergence issues on
the FMM, we refer not only to [11] (which developed in the case of the Eikonal
equations the results proposed in [2]) but also to [18]. For more general frameworks
(different Hamilton-Jacobi equations and anisotropic metrics) we refer to [9], [14]
and [20].

Let us call chξ (S0, T ) = U(T ) the value of this solution, computed with FMM,
at the target point T when the vanishing boundary datum is fixed at S0 and the
metric is ξ. The dependence with respect to the discretization parameter h will be
sometimes omitted in this section, since the lattice is fixed.

The functional to be minimized is the following

Jh(ξ) = h2
∑
i,j

H∗(xi,j , ξi,j)−
∑
α,β

chξ (Sα, Tβ)γα,β , (5.3)

where the weights γα,β represent the coupling on the set of pairs sources Sα - targets
Tβ and

∑
α,β γα,β = 1.

Lemma 5.1. The functional Jh is convex.

Proof. The only non trivial point is proving the concavity of the FMM term. It is
sufficient to prove that for fixed S0 and T the function ξ 7→ Uξ(T ) is concave in ξ
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and, thanks to the homogeneity, it is sufficient to prove super-additivity. We want
to prove the inequality

Uξ1+ξ2 ≥ Uξ1 + Uξ2 .

Thanks to the comparison principle of Lemma 5.2 below, it is sufficient to prove
that ξ1 + ξ2 ≥ D(Uξ1 + Uξ2). This is easily done if we notice that the operator D is
convex (as it is a composition of the function (x, y) 7→

√
x2 + y2, which is convex

and increasing in both x and y, and the operator Dx and Dy, which are convex
since they are produced as a maximum of linear operators) and 1−homogeneous,
and hence it is subadditive.

Lemma 5.2. If ξ ≤ η then Uξ ≤ Uη.

Proof. Let us suppose at first a strict inequality ξ < η. Take a minimum point
for Uη − Uξ and suppose it is not the fixed point S0. Computing D and using the
previously noticed sub-additivity, we have

η = DUη ≤ D(Uη − Uξ) +DUξ = D(Uη − Uξ) + ξ,

which gives D(Uη − Uξ) ≥ η − ξ > 0. Yet, at minimum points we should have
D(Uη − Uξ) = 0 and this proves that the minimum is realized at S0, i.e. that
Uη − Uξ ≥ 0.

To handle the case ξ ≤ η without a strict inequality, just replace η by (1 + ε)η
and notice that the application η 7→ Uη is continuous.

5.2 Description of the algorithm and convergence of its iter-
ations

The discrete function Jh, defined in equation (5.3) is convex and can be minimized
using standard methods from convex optimization. The first term of the functional
Jh is differentiable, while the second may not be. Hence a subgradient descent
algorithm can be used for the discrete optimization problem.

In the following, the dependence of H∗ on the position is omitted to ease nota-
tions and we write H∗(x, ξ) = f(ξ). The functional to optimize is written in the
form

Jh(ξ) =
∑
i,j

f(ξi,j) +K(ξ),

for a regular function f : R+ → R+ and a convex, but in general not C1, function
K which is not separable w.r.t. to the variables ξi,j .

The subgradient method corresponds (taking for simplicity ξ0 = g(., 0) = 0) to
the following iterative scheme

ξ(1) = 1; ξ(k+1) = max{0, ξ(k) − ρkw(k)} (5.4)

where (w(k))i,j = f ′(ξ(k)
i,j ) + (v(k))i,j ∈ ∂J(ξ(k))

where v(k) ∈ ∂K(ξ(k)) is a vector in the subdifferential of K at the previous point
ξ(k) and ρk is a suitable sequence of steps.

A well-known result on subgradient algorithms (see for instance [5]) states that
the sequence (ξ(k))k converges to the unique minimizer of J (uniqueness comes from
strict convexity) provided the following two constraints are enforced
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• The step sizes ρk satisfy∑
k

ρk = +∞ and
∑
k

ρ2
k < +∞.

This condition is satisfied for a sequence of steps such as ρk = 1/k.

• The sequence (w(k))k stays bounded, which can be enforced by slightly mod-
ifying the penalty function f . Since K is 1−homogeneous, it is Lipschitz
continuous and hence its subgradients are bounded. However, the original
penalty f is not necessarily Lipschitz, but, one can consider instead the fol-
lowing Lipschitz function f̃ defined as

f̃(t) =

{
f(t) if t ≤ t0,
f(t0) + (t− t0)f ′(t0) if t ≥ t0.

It happens that, if t0 is sufficiently large, the minimizers ξ of the modified
energy J̃ and of the original one are the same and satisfy ξi,j ≤ t0. This
choice of t0 may always be performed as far as f is superlinear at infinity.

A computation of an element v(k) of the subdifferential of K is required for the
gradient descent. Indeed, in [4] a recursive method that computes such a vector in
parallel to the iteration of the FMM is detailed. This methods produces a vector
which is the gradient of U w.r.t. ξ at differentiability points and a vector in the
subdifferential at all other points. The complexity of this algorithm depends on
the complexity of the original FMM, as it visits the points in the same order. Yet,
since it must compute a N−dimensional gradient at each iteration, the result has
complexity O(N2 log(N)) for a grid of N points.

Notice that, in the continuous framework, the gradient of Uξ(T ) with respect to
ξ is concentrated along geodesics joining T to S0. The discrete gradient which is
computed with the method of [4] is supported on the grid points explored by the
front propagation of the FMM in order to reach the point T (see figure 1, which
gives sort of fattened geodesics).
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Figure 1: Examples of the subgradient computation using our algorithm presented
in [4]. On the left, an element of the subdifferential of the geodesic with respect
to the metric. The metric is constant, and the geodesic is a straight line. In the
middle, we chose a non constant metric ξ(x) = 1/(1.5 − exp(−d(O, x))), where O
is the center of the image. On the right, an element of the subdifferential of the
geodesic with respect to the metric given on the second figure.

12



The method of [4] allows us to compute with a fast algorithm subgradients of
a single term ξ 7→ Uξ(T ) computed by FFM. Since the functional K is a conic
combination of terms of this kind, it requires to use this algorithm several times
and combines the resulting subgradient in a subgradient of K (we recall that the
sum of subdifferentials is always included in the subdifferential of the sum and, here,
since every term in K is continuous, we actually have the converse inclusion).

The convergence of the subgradient descent (5.4) ensures that one can find with
a fast iterative algorithm the minimizer of the discrete functional Jh. Section 5.3
relates this discrete solution to the original continuous solution and shows that they
are close in a suitable sense. Section 6 shows numerical simulations that use the
descent algorithm 5.4 for various examples of penalty functions H∗(x, ξ).

5.3 Γ−convergence of the discrete functionals to the contin-
uous one

This section considers the problem of the convergence of minima and minimizers of
the discretized problems (5.3) to the original minimal value and minimizer of the
functional (4.4). This allows to say that, as far as both the discretization step of the
lattice is small and the number of iterations of the subgradient descent algorithm
is large, one gets a good approximation of the desired optimal ξ.

The result is presented through a Γ−convergence proof, which implies the con-
vergences we want (see [10]). Both the discrete problems and the continuous one
are embedded in the Lq

∗
space. To do this, a vector ξ ∈ RN , with N = h−2,

is identified to the function ξ ∈ Lq
∗
(Ω) that takes the constant value ξi,j on the

axis-aligned square of width h centered around xi,j . This actually means that the
corresponding function are defined as piecewise constant on the dual lattice of the
discretization grid.

The discrete optimization problem we have on RN corresponds to solving

min JN (ξ) =
∫
H∗(x, ξ) dLd −

∫
c̃Nξ (S, T ) γN (dS, dT ), ξ ∈ Lq

∗

N (Ω),

where the space Lq
∗

N (Ω) is the space of Lq
∗

functions which are constant on every
square of the N−th lattice. The measure γN is a discretization of γ on points of
the lattice, and satisfies γN ⇀ γ. The function c̃Nξ is the piecewise affine extension
of chξ on a triangular grid refining the square lattice (each square being divided into
two triangles). One can notice that in order to compute integration, any extension
with the same values on the support of γN would have given the same result. The
same energy JN may be extended to the whole Lq

∗
(Ω) by +∞ outside Lq

∗

N (Ω).
Before presenting the Γ−convergence result, we need to add some notions and

equivalences concerning the meaning of cξ in the continuous case, when ξ ∈ Lq∗ .
Section 2.2 introduces the quantity cξ by approximation with continuous func-

tions. We are here concerned with the functions T 7→ cξ(S0, T ) that is denoted Uξ
for simplicity when the dependence on S0 is not ambiguous. Let us consider also
the function vξ given by

vξ = sup{v : v ∈W 1,q(Ω), v(S0) = 0, |∇v| ≤ ξ a.e. },

which is the maximal a.e. subsolution of |∇v| = ξ. What we are looking for is very
much linked to viscosity solution of the Hamilton-Jacobi equation |∇v| = ξ, when ξ
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is only Lq
∗

(see [6] for a definition via W 1,q test functions and local a.e. inequality
and [7] for some other notions and equivalences in the case ξ ∈ L∞). Yet, we are
here interested only in the following two notions: the one presented in [8] (and in
Section 2.2) and the maximal a.e. one.

Let us prove the following:

Lemma 5.3. We have Uξ := cξ(S0, .) = vξ = limε→0 cξ∗ρε(S0, ·).

Proof. From Lemma 3.5 in [8] we know that there exists a sequence of continuous
functions (ξn)n converging to ξ in Lq

∗
such that cξn → cξ (in C0 or weakly in

W 1,q∗). Since for continuous functions the equality between cξ(S0, ·) (which equals
cξ(S0, ·), thanks to Lemma 3.4 in [8]) and vξ is known, we may infer

ξn → ξ in Lq
∗
(Ω); cξn → cξ in C0(Ω); |∇cξn | ≤ ξn,

which implies at the limit |∇cξ| ≤ ξ. This means that Uξ is an a.e. subsolution of
|∇v| = ξ. Consequently, Uξ ≤ vξ.

Let us now take an a.e. subsolution v, i.e. a function v ∈ W 1,q∗(Ω) with
|∇v| ≤ ξ. Take a convolution kernel ρε and define vε = v ∗ ρε − (v ∗ ρε)(S0). We
have ∇vε = (∇v) ∗ ρε and consequently (it depends on the convexity of the norm)
|∇vε| ≤ ξ ∗ ρε := ξε. Moreover vε(S0) = 0. From these facts we get vε ≤ cξε(S0, ·),
as this comes from the equality which is known for continuous functions (and ξε is
continuous). Since (v ∗ ρε)(S0)→ 0, passing to the limit as ε→ 0 we get

v ≤ lim
ε→0

cξ∗ρε(S0, ·) + (v ∗ ρε)(S0) = lim
ε→0

cξ∗ρε(S0, ·) ≤ cξ(S0, ·),

the last inequality being justified by the definition of cξ. This proves the thesis, v
being arbitrary.

We can now go through the essential part of the Γ−convergence proof. We
denote by ŨNξN the functions T 7→ c̃NξN (S0, T ).

Lemma 5.4. Suppose ξN ⇀ ξ in Lq
∗
, with ξN ∈ Lq

∗

N (Ω). Then for each S0 the
sequence (ŨNξN )N is bounded in W 1,q∗ and any weak limit u satisifes u ≤ vξ.

Proof. Let us prove boundedness. We consider at first derivatives with respect to
the component x of the variable: since ŨNξN is an affine extension, its ∂/∂x derivative
on a triangular cell coincides with the same derivative on the horizontal side of the
cell. The slope on the side is bounded by the value of ξN at one of the vertices. If
T is a triangle of the partition (its area being A), P1 and P2 are the two vertices we
consider and Q1 and Q2 the two squares where ξN is constant (with area 2A each),
respectively centered around P1 and P2, we get∫

T

∣∣∣∣∣∂ŨNξN∂x

∣∣∣∣∣
q∗

dL2 ≤ Amax{ξN (P1)q
∗
, ξN (P2)q

∗
}

≤ A(ξN (P1)q
∗

+ ξN (P2)q
∗
) =

1
2

∫
Q1∪Q2

ξq
∗

N dL2.

Summing up over all triangles any square is counted at most four times, and in the
end we get ∫

Ω

∣∣∣∣∣∂ŨNξN∂x

∣∣∣∣∣
q∗

dx ≤ 2
∫

Ω

ξq
∗

N dx.
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This proves boundedness (since (ξN )N is bounded in Lq
∗

and the same argument
may be performed for ∂/∂y) and the existence of weak limits u (which are uniform
limits as well, and hence the condition u(S0) = 0 is conserved).

Let us now define

ξN,x = DxŨNξN , ξN,y = DyŨNξN , with the property ξN =
√
ξ2
N,x + ξ2

N,y.

Since ξN is bounded in Lq
∗
, the same is true for ξN,x and ξN,y and we denote by ξx

and ξy their weak limits (up to subsequences). Let us fix an arbitrary rectangle R
whose vertices belong to the N−th lattice. Let us now estimate the positive part
of ∂ŨNξN /∂x on R: in this case it is sufficient to estimate all ascending slopes. Take
an horizontal line in R: all these slopes coincide with the slopes on the horizontal
boundaries of the triangles and are hence bounded by the values of ξN,x at the
right extremal points of the segments bounding the triangles. Fixing the ascending
direction allows us to avoid superpositions in the choice of the extremal point. The
same can be done for descending slopes and for vertical slopes. In the case of
ascending horizontal slopes we get∫

R

(
∂ŨNξN
∂x

)+

dx ≤
∫
R′N

ξN,x dx ≤
∫
R

ξN,x dx+ ||ξN ||Lq∗ |R′N \R|1/q,

where R′N is a rectangle a little bit larger than R, since it includes all the squares
in the dual lattice around the points of ∂R. Yet, |R′N \ R| → 0 as N → ∞. When
N →∞ we can pass to the limit and obtain∫

R

(
∂u

∂x

)+

dx ≤
∫
R

ξx dx,

which, R being arbitrary, implies(
∂u

∂x

)+

≤ ξx a.e.

and, taking the maximum over the positive and the negative part,∣∣∣∣∂u∂x
∣∣∣∣ ≤ ξx a.e.

This proves |∇u| ≤
√
ξ2
x + ξ2

y .

It is sufficient to prove
√
ξ2
x + ξ2

y ≤ ξ to obtain that u is an a.e. subsolution
of the Hamilton-Jacobi equation, and hence u ≤ vξ. The inequality we want is a
consequence of standard properties of weak convergence: if a sequence of vector-
valued maps zN (in this case, the pairs (ξN,x, ξN,y)) weakly converges to a map z
(in this case z = (ξx, ξy)), then, for any convex function f (in this case f(x, y) =√
x2 + y2), f(zN ) ⇀ h implies f(z) ≤ h (to prove it, it is sufficient to express f as

a supremum of affine functions). The thesis in hence proven.

Theorem 5.5. The sequence of functionals JN previously defined Γ−converges
with respect to the weak Lq

∗
convergence to the limit functional J . Moreover, as the

sequence (JN )N is equi-coercive and every functional, J included, is strictly convex,
convergence of the unique minimizers and of the values of the minima is guaranteed.
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Proof. To prove Γ−convergence it is sufficient to prove that ξN ⇀ ξ implies

lim inf
N

JN (ξN ) ≥ J(ξ)

and that for every ξ there exists a sequence ξN ⇀ ξ such that JN (ξN )→ J(ξ).
For proving the first part (Γ−liminf inequality), it is sufficient to notice that

the first addend in the functionals is lower semicontinuous w.r.t. weak convergence,
and that by Lemma 5.4, the second behaves the same way (but we have to use the
equality provided by Lemma 5.3).

For the second part (Γ−limsup inequality), we know by [10] that it is sufficient
to prove it for ξ in a class which is sufficiently dense (“dense in energy”, i.e. so
that we can guarantee approximation with convergence of the limit energy J). The
class of regular functions satisfies this density property. Indeed, by convolution we
know that both terms of the functional J converge (for the first it is dominated
convergence and for the second use Lemma 5.3 again). For regular functions it is
a well known fact that we can choose ξN by taking the values of ξ at the points of
the lattice and we have uniform convergence of the solutions computed by the Fast
Marching Method to the true solution of the Eikonal equation. We refer again, as
in Section 5.1, to [2], [11], [20] and [18] for this proof in the case of the isotropic
FMM or in more general cases.

6 Numerical results

In this section some numerical results are shown. Algorithm described in section
5.2 is used. The equilibrium states are visualized using the metric ξ computed by
this algorithm.

The first example consists in a source-target pair (S, T ) and a homogeneous
functional H, which does not depend on the spatial location. As previously seen,
ξ = H ′(i), and H ′ is strictly increasing function, thus (at least in the case where
H does not depend on x), the visualizations of ξ and i are very similar. In the
first example, we took H∗(x, ξ) = 1

3ξ
3, so that H(x, i) = 2

3 i
3
2 . On Figure 2 the

equilibrium metric on a ”desert” square is shown. Note that the equilibrium metric
is symmetric as the initial configuration of the source and the target.

Next, we consider the case where the functional H is spatially varying. We
take H(x, i) = 2

3ξ0(x)i
3
2 (x), where ξ0 is a given fixed congestion metric. Thus

H∗(x, ξ) = 1
3ξ

3/ξ2
0 . The chosen congestion metric is

ξ0(x) = 1 +A exp
(
−|x−x0|2

σ2
1

)
+A exp

(
−|x−x1|2

σ2
1

)
+B exp

(
−|x−x3|2

σ2
2

)
+B exp

(
−|x−x4|2

σ2
2

)
.

Points xi for i ∈ {1, 2, 3, 4} are chosen in a symmetric manner (see figure 3 (a)).
We took A = 10, B = 4, σ1 = 15 and σ2 = 7 on a square grid of size 100× 100. For
figures 2 and 3, we used a single source-target pair, thus the traffic weight is γ = 1.

Let us now introduce obstacles and multiple sources and targets. In a symmetric
configuration of two sources S1 and S2, and two targets T1 and T2; we consider a
river where there is no traffic and a bridge linking the two sides of the river (see
figure 4 (a)). We chose the traffic weights such that γ1,1 + γ1,2 = 2(γ2,1 + γ2,2) and
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Figure 2: Traffic congestion equilibrium metric on a desert square between two
points. Top: the equilibrium metric ξ obtained via the subgradient descent is shown
as a 3D surface. Bottom, left: flat view of the same metric. Bottom, right: the
minimal action map U associated to ξ, together with some isolevels (black curve)
and some geodesics (white curves). On the last image, one can see that the Wardrop
conditions are satisfied.
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(a) Congestion metric ξ0
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(b) Equilibrium traffic intensity iQ = ξ2

ξ20

Figure 3: We chose parameters A, B, σ1 and σ2 such that the steady state traffic
intensity is concentrated between and outside the bumps.

γ2,2
γ2,1

= γ1,1
γ1,2

= 2. The traffic intensity going out from S1 is twice S2’s. One can note
the two hollows on each side of the river appearing because of the inter-sides and
intra-sides crossed traffics (see figure 4).

(a) 3D view of ξ
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(b) Flat view of log(ξ)

Figure 4: Two sources and two targets, with a river and a bridge on a symmetric
configuration with asymmetric traffic weights.

Finally, we solve with our algorithm an asymmetric and general problem with
several sources and targets. In figure 5 (a), the chosen traffic weights before nor-
malization are

(γi,j) =

0.5 0 0 0.5
0.3 0.3 0 1
1 1 1 1

 .

Figure 5 (b), shows that the traffic concentrates on the shortest paths between the
source and the target. For both last examples, the chosen function is homogenous
and H(ξ) = 1

3ξ
3.
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(a) log(ξ), with obstacles and several sources and targets

(b) log(ξ) for a pair of source / target in a cavern

Figure 5: Traffic congestion equilibrium metric in the case of several sources and
targets with obstacles. On figure (b), one can see that the traffic is higher on the
shortest (in the Euclidian sense) pathways.
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