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Abstract. We study the regularity properties of solutions to el-
liptic equations similar to the p(·)-Laplacian. Our main results
are a global reverse Hölder inequality, Hölder continuity up to the
boundary, and stability of solutions with respect to continuous per-
turbations in the variable growth exponent. We assume that the
complement of the domain is uniformly fat in a capacitary sense.
As technical tools, we derive a capacitary Sobolev–Poincaré in-
equality, and a version of Hardy’s inequality.

1. Introduction

We study regularity properties of solutions to quasilinear elliptic
equations

(1.1) − divA(x,∇u) = 0

with nonstandard structural conditions. These conditions involve a
variable growth exponent p(·), and the prototype of such equations is
the p(·)-Laplacian

(1.2) − div
(
|∇u(·)|p(·)−2∇u(·)

)
= 0.

We prove global higher integrability of the gradient, Hölder continuity
up to the boundary and stability of solutions with respect to continuous
perturbations in the growth exponent p(·).

Regularity results for (1.2) do not hold without additional assump-
tions on the function p, see the counterexamples in [24, 43]. However,
there is a condition, called logarithmic Hölder continuity, which seems
to be the right one for our purposes. This condition was originally
introduced by Zhikov [42] in the context of the Lavrentiev phenome-
non, and it has turned out to be very useful in regularity and other
applications, see, e.g., [1, 2, 6, 9, 12, 11, 10, 13, 40, 43]. In fact, there
are very few regularity results that do not assume logarithmic Hölder
continuity.
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In order to consider properties of solutions up to the boundary, one
needs a hypothesis on the domain. We assume that the complement of
the domain is uniformly fat in a capacitary sense, where the capacity
involves the variable exponent p(·) appearing in the equation. Such an
assumption is natural for a number of reasons. For instance, uniform
fatness itself is self-improving, see [32]. This property is a reasonable
criterion for a condition for higher integrability. One can also show that
this condition is sharp for global higher integrability and the stability
of solutions already in the constant exponent case, see [28, 34]. Uni-
form fatness is also a fairly weak assumption, since any domain whose
complement satisfies a measure density condition, for instance all do-
mains with a Lipschitz boundary, have uniformly fat complements for
all exponents.

Our first result is the global higher integrability of the gradient, along
the lines of [28]; see also [5, 39, 43]. This means that the gradient of a
weak solution u, of which we a priori only know that |∇u|p(·) ∈ L1(Ω),
actually satisfies |∇u|p(·)(1+δ) ∈ L1(Ω) for a small δ > 0, assuming that
its boundary values are sufficiently regular. Higher integrablity is a con-
sequence of a reverse Hölder inequality. Such an inequality follows by
combining a Caccioppoli estimate with a Sobolev-Poincaré inequality.
Thus to prove global higher integrabilty, one needs a Sobolev-Poincaré
inequality which is applicable up to the boundary. For this purpose, we
first prove a capacitary Sobolev–Poincaré inequality. Such inequalities
were first considered in [26, 37]. This inequality also matches well with
the capacity fatness condition, as we shall see below.

We also prove that solutions are Hölder continuous up to the bound-
ary, provided that the boundary data is also Hölder continuous. This
follows from a Maz’ya type boundary point estimate involving the natu-
ral capacity, since uniform fatness matches well with such an estimate.
For the class of equations considered here, an appropriate boundary
point estimate has been established in [4].

Our final result concerns the stability of solutions with respect to
perturbations in the growth exponent p(·). More spesifically, we con-
sider a sequence p(·)i of variable exponents converging uniformly to the
function p(·), and show that the corresponding sequence of solutions
with fixed boundary values converges, up to subsequences, to the so-
lution of the limit problem. Similar results are known for equations
similar to the p-Laplacian [33, 35], for principal eigenvalues [34], for
quasiminimizers [36], and for the p-parabolic equation [30]. See also
[43, Lemma 3.1]. The chief problem in these stability results is the
fact that perturbations in the structural exponent change the under-
lying Sobolev space. This difficulty can be dealt with by means of a
global reverse Hölder inequality, which enables us to work in a fixed
Sobolev space. Further, we derive a version of Hardy’s inequality for
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the purpose of verifying that the limit function has the right boundary
values.

2. The Dirichlet problem

In this section, we recall the definition of weak solutions to Dirichlet
boundary value problems. To this end, we first introduce some nota-
tion, and then record a number of facts about the variable exponent
function spaces.

We call a bounded measurable function p : Rn → (1,∞), n ≥ 2, a
variable exponent. We denote

p−E = inf
x∈E

p(x), and p+
E = sup

x∈E
p(x),

where E is a measurable subset of Rn. We assume that 1 < p−Ω ≤
p+

Ω < n, where Ω is an open, bounded subset of Rn. In the following,
for simplicity, we will often write p− and p+ instead of p−Ω and p+

Ω

respectively.
In this article, we always assume that p(·) is log-Hölder continuous

with 1 < p− ≤ p+ < n, except for Section 4 where we will assume
1 < p− ≤ p+ <∞ instead.

The variable exponent Lebesgue space Lp(·)(Ω) consists of all mea-
surable functions f defined on Ω for which∫

Ω

|f |p(x) dx <∞.

The Luxemburg norm on this space is defined as

‖f‖p(·) = inf

{
λ > 0 :

∫
Ω

∣∣∣∣f(x)

λ

∣∣∣∣p(x)

dx ≤ 1

}
.

Equipped with this norm Lp(·)(Ω) is a Banach space, see Kováčik and
Rákosńık [31]. For a constant function p(·) the variable exponent
Lebesgue space coincides with the standard Lebesgue space. The con-
jugate exponent p′(·) is defined pointwise. The Hölder inequality∫

Ω

fg dx ≤ C‖f‖p(·)‖g‖p′(·)

holds for functions f ∈ Lp(·)(Ω) and g ∈ Lp′(·)(Ω).
The variable exponent Sobolev space W 1,p(·)(Ω) consists of func-

tions f ∈ Lp(·)(Ω) whose distributional gradient ∇f exists and satisfies
|∇f | ∈ Lp(·)(Ω). This space is a Banach space with the norm

‖f‖1,p(·) = ‖f‖p(·) + ‖∇f‖p(·).

For basic properties of the spaces Lp(·) and W 1,p(·), we refer to [31].
Smooth functions are not dense in W 1,p(·)(Ω) without additional as-

sumptions on the exponent p(·). This was observed by Zhikov [42, 43]
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in the context of the Lavrentiev phenomenon, which means that min-
imal values of variational integrals may differ depending on whether
one minimises over smooth functions or Sobolev functions. Zhikov has
also introduced the logarithmic Hölder continuity condition to rectify
this. The condition is

(2.1) |p(x)− p(y)| ≤ C

− log (|x− y|)
for all x, y ∈ Ω such that |x − y| ≤ 1/2. If the exponent is bounded
and satisfies (2.1), smooth functions are dense in variable exponent
Sobolev spaces and we can define the Sobolev space with zero boundary

values, W
1,p(·)
0 (Ω), as the completion of C∞0 (Ω) with respect to the

norm ‖ · ‖1,p(·). We refer to [6, 17, 25, 40] for density results in variable
exponent Sobolev spaces.

We will use logarithmic Hölder continuity in the form

(2.2) r−(p+
B−p

−
B) ≤ C,

where B = B(x0, r). It is well-known that requiring (2.2) to hold for
all balls is equivalent with condition (2.1); a proof of this is given in [6,
Lemma 3.2]. An elementary consequence of (2.2) is the inequality

(2.3) C−1r−p(y) ≤ r−p(x) ≤ C r−p(y),

which holds for any points x, y ∈ B(x0, r) with a constant depend-
ing only on the constant of (2.2). We use phrases like “by log-Hölder
continuity” when applying either (2.2) or (2.3).

We need the following assumptions, with positive constants α and
β, to hold for the operator A : Ω× Rn → Rn.

(1) x 7→ A(x, ξ) is measurable for all ξ ∈ Rn,
(2) ξ 7→ A(x, ξ) is continuous for almost all x ∈ Ω,
(3) A(x, ξ) · ξ ≥ α|ξ|p(x) for almost all x ∈ Ω and ξ ∈ Rn,
(4) |A(x, ξ)| ≤ β|ξ|p(x)−1 for almost all x ∈ Ω and ξ ∈ Rn,
(5) (A(x, η)−A(x, ξ)) · (η − ξ) > 0 for all x ∈ Ω and η 6= ξ ∈ Rn.

We may assume that α ≤ β by choosing β larger if necessary. These
are called the structure conditions of A.

We say that a function u ∈ W 1,p(·)(Ω) is a solution to the Dirichlet
problem with boundary values given by a function f ∈ W 1,p(·)(Ω),

(2.4)

{
divA(x,∇u) = 0 in Ω

u = f on ∂Ω,

if u− f ∈ W 1,p(·)
0 (Ω) and∫

Ω

A(x,∇u) · ∇ϕ dx = 0

for all test functions ϕ ∈ C∞0 (Ω). Due to the structural conditions, we

can employ test functions ϕ ∈ W 1,p(·)
0 (Ω) by the usual approximation
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argument. Under our assumptions on p(·), the existence of solutions
in the sense of the above definition follows from standard functional
analysis results, see, e.g., [41]. Alternatively, we may assume that (2.4)
is the Euler-Lagrange equation of a variational integral and use the
direct method of the calculus of variations, see [21].

3. A Sobolev-Poincaré inequality

In this section, we prove a capacitary Sobolev-Poincaré inequality.
We begin by recalling the definitions of the p(·)-capacity of a condenser,
the Sobolev p(·)-capacity and the notion of quasicontinuity, see [4, 19,
20].

Definition 3.1. The relative capacity of a compact K ⊂ Ω is defined
by setting

capp(·)(K,Ω) = inf
u

∫
Ω

|∇u|p(x) dx,

where the infimum is taken over all u ∈ C0(Ω) ∩W 1,p(·)(Ω) such that
u ≥ 1 in K. The definition is then extended to open sets U ⊂ Ω by

capp(·)(U,Ω) = sup
K⊂U compact

capp(·)(K,Ω),

and to arbitrary sets E ⊂ Ω by

capp(·)(E,Ω) = sup
E⊂U⊂Ω open

capp(·)(U,Ω).

If p is bounded, then the relative p(·)-capacity is a Choquet capacity.
We need the fact that

C−1rn−p(y) ≤ capp(·)(B(x, r), B(x, 2r)) ≤ Crn−p(y)

for every y ∈ B(x, 2r). The upper estimate, that holds also if p−2B ≥ n,
can be easily derived by testing the definition of capacity with a func-
tion that equals 1 in B(x, r), 3− 2|y− x|/r in B(x, 3r/2) \B(x, r) and
0 otherwise. The upper bound then follows by log-Hölder continuity.
The lower estimate can be found in [4, Proposition 5.1]

Definition 3.2. For E ⊂ Rn we denote

Sp(·)(E) =
{
u ∈ W 1,p(·)(Rn) : u ≥ 1 in an open set U b Rn containing E

}
and define the Sobolev p(·)-capacity Cp(·) to be the number

Cp(·)(E) = inf
u∈Sp(·)(E)

∫
Rn
|u|p(x) + |∇u|p(x) dx.

Here we use the convention that Cp(·)(E) =∞ if Sp(·)(E) = ∅.

Since smooth functions are dense in the Sobolev space, for E ⊂ Ω
holds that Cp(·)(E) = 0 if and only if capp(·)(E,Ω) = 0. For the proofs
see [19].
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A function u : Ω→ [−∞,∞] is p(·)-quasicontinuous if for every ε > 0
there exists a set E, with Cp(·)(E) ≤ ε, so that u is continuous when
restricted to Ω \E. Since the Sobolev capacity is an outer capacity, we
can assume that E is open. Every Sobolev function has a representative
that is quasicontinuous, see [20].

We are now ready to prove our capacitary Sobolev-Poincaré inequal-
ity. For a constant exponent the result is originally due to V. G. Mazya
[37] and L. I. Hedberg [26]. We need the result in the modular form and
since the modular is not homogenous we get an extra measure term.

Lemma 3.3 (Sobolev-Poincaré). Let B be a ball such that |B| ≤ 1.
Let p be a bounded log-Hölder continuous exponent on 2B with 1 <
p− ≤ p+ < n. Then every p(·)-quasicontinuous u ∈ W 1,p(·)(2B), such
that ‖u‖W 1,p(·)(2B) ≤ 1, satisfies

−
∫
B

|u|
np(x)

n−p−
B dx ≤

(
C

capp(·)(N(u), 2B)

(∫
2B

|∇u|p(x) dx+ |B|
)) np−

B

p+
B

(n−p−
B

)

,

where N(u) := {x ∈ B : u(x) = 0}. The constant C depends only on
the dimension n, p−, p+ and the log-Hölder constant of p.

Proof. We write p∗(x) := np(x)
n−p(x)

and p#(x) := np(x)

n−p−B
. By [7, 18] we have

‖u− uB‖Lp#(·)(B)
≤ C‖u− uB‖Lp∗(·)(B) ≤ C‖∇u‖Lp(·)(B),

for every u ∈ W 1,p(·)(B), where the constant is independent of B and u.
Note that we write uB := −

∫
B
u dx. Since ‖∇u‖Lp(·)(B) ≤ 1, this yields∫

B

|u− uB|p
#(x) dx ≤ C‖∇u‖(p#)−B

Lp(·)(B)
≤ C

(∫
B

|∇u|p(x) dx

) (p#)−
B

p+
B

and furthermore

−
∫
B

|u− uB|p
#(x) dx ≤ C

(
|B|
−

p+
B

(p#)−
B

∫
B

|∇u|p(x) dx

) (p#)−
B

p+
B

≤ C

(
|B|

1−
p+
B

p−
B

−1+
p+
B
n

∫
B

|∇u|p(x) dx

) (p#)−
B

p+
B .

(3.4)

Since p is log-Hölder continuous, |B|
1−

p+
B

p−
B is bounded. We have

capp(·)(N(u), 2B) ≤ capp(·)(B, 2B) ≤ C|B|1−
p+
2B
n ≤ C|B|1−

p+
B
n ,

where the last inequality follows since p is log-Hölder continuous. Using
this in (3.4), we obtain

−
∫
B

|u− uB|p
#(x) dx ≤ C

(
1

capp(·)(N(u), 2B)

∫
B

|∇u|p(x) dx

) (p#)−
B

p+
B .
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If uB = 0, then the above inequality yields the claim.
Assume then that uB 6= 0 and u is continuous. We have

−
∫
B

|u(x)|p#(x) dx ≤ 2(p#)+
B−
∫
B

|u(x)− uB|p
#(x) dx+ 2(p#)+

B−
∫
B

|uB|p
#(x) dx.

The first term on the right hand side is estimated as earlier. Next we
estimate the second one.

We write v := |u − uB|. Since u is continuous, the set N(u) is
compact and the function v is continuous. Let η ∈ C∞0 (2B) be such
that, 0 ≤ η ≤ 1, η = 1 in B and |∇η| ≤ C/ diam(B). Then vη/|uB| is
a test function for capp(·)(N(u), 2B). Since ‖u‖Lp(·)(B) ≤ 1 and |B| ≤ 1,
we obtain

capp(·)(N(u), 2B) ≤
∫

2B

(
|∇(vη)|
|uB|

)p(x)

dx

≤ |B|p−B∣∣∣ ∫B u dy∣∣∣p+
B

∫
2B

|∇(vη)|p(x) dx

and thus∣∣∣ ∫
B

u dy
∣∣∣ ≤ ( |B|p−B

capp(·)(N(u), 2B)

∫
2B

|∇(vη)|p(x) dx

) 1

p+
B

.

Using the assumptions ‖u‖Lp(·)(B) ≤ 1 and |B| ≤ 1, the above estimate
and log-Hölder continuity of p, we get

−
∫
B

|uB|p
#(x) dx ≤

∣∣∣ ∫B u dy∣∣∣(p#)−B

|B|(p#)+
B

≤ |B|−(p#)+
B

(
|B|p−B

capp(·)(N(u), 2B)

∫
2B

|∇(vη)|p(x) dx

) (p#)−
B

p+
B

≤ |B|
p−B
p+
B

(p#)−B−(p#)+
B

(
1

capp(·)(N(u), 2B)

∫
2B

|∇(vη)|p(x) dx

) (p#)−
B

p+
B

≤ C

(
1

capp(·)(N(u), 2B)

∫
2B

|∇(vη)|p(x) dx

) (p#)−
B

p+
B

.

Next we estimate the integral on the right hand side. We have∫
2B

|∇(vη)|p(x) dx ≤ C

∫
2B

(
|v|

diam(B)

)p(x)

dx+ C

∫
2B

|∇v|p(x) dx
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and, furthermore, for the first term on the right hand side∫
2B

(
|v|

diam(B)

)p(x)

dx =

∫
2B

(
|u− uB|
diam(B)

)p(x)

dx

≤ C

∫
2B

(
|u− u2B|
diam(B)

)p(x)

dx

+ C diam(B)−p
+
2B |B|max

{
|u2B − uB|p

−
2B , |u2B − uB|p

+
2B

}
.

Following the proof of Lemma 3.6 in [23], we obtain∫
2B

(
|u− u2B|
diam(B)

)p(x)

dx ≤ C

∫
2B

|∇u|p(x) dx+ C|B|.

Since

|u2B − uB| ≤ C−
∫
B

|u− u2B| dx ≤ C−
∫

2B

|u− u2B| dx

≤ C diam(B)−
∫

2B

|∇u| dx ≤ C diam(B)

(
−
∫

2B

|∇u|p
−
2B dx

) 1

p−
2B

,

we obtain by ‖∇u‖Lp(·)(B) ≤ 1 and by log-Hölder continuity of p that

diam(B)−p
+
2B |B|max

{
|u2B − uB|p

−
2B , |u2B − uB|p

+
2B

}
≤ C max

diam(B)p
−
2B−p

+
2B

∫
2B

|∇u|p
−
2B dx, |B|

1−
p+

2B

p−2B

(∫
2B

|∇u|p
−
2B dx

) p+
2B

p−
2B


≤ C max

diam(B)p
−
2B−p

+
2B , |B|

1−
p+

2B

p−2B


∫

2B

|∇u|p
−
2B dx

≤ C

∫
2B

|∇u|p(x) dx+ C|B|.

Collecting the above inequalities together we see that

−
∫
B

|uB|p
#(x) dx ≤ C

(
1

capp(·)(N(u), 2B)

(∫
2B

|∇u|p(x) dx+ |B|
)) (p#)−

B

p+
B

,

and hence the claim follows for continuous Sobolev functions.
Assume then that u ∈ W 1,p(·)(2B) is quasicontinuous. Since smooth

functions are dense in the Sobolev space, we find a sequence (φi) of
C∞(2B) ∩W 1,p(·)(2B) functions converging to u in the Sobolev sense
and also φi → u pointwise q.e. Thus the claim follows also for quasi-
continuous functions. �
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4. Uniformly fat sets

In this section, we discuss uniformly fat sets, fatness being taken in
a capacitary sense. The key fact here is that in domains whose comple-
ment is uniformly fat, we can employ our Sobolev-Poincaré inequality
up to the boundary. This, together with the fact that uniform fatness
is a self-improving property, makes it a natural assumption for the pur-
poses of global higher integrability. In this section only, we assume that
1 < p− ≤ p+ <∞.

Definition 4.1. Let E be a closed subset of Rn. We say that E is
locally uniformly p(·)-fat, if there exist a radius r0 and a constant C
such that

(4.2) capp(·)(E ∩B(x, r), B(x, 2r)) ≥ Ccapp(·)(B(x, r), B(x, 2r))

for all x ∈ E and all r ≤ r0.

We start with proving that uniform q(·)-fatness implies uniform p(·)-
fatness, provided that q is strictly below p. The constant exponent case
is a simple consequence of Hölder’s inequality. However, the variable
exponent version of Hölder’s inequality only holds with Luxemburg
norms on the right hand side. Hence we give the simple proof here to
show that this defect is not essential.

Proposition 4.3. Let q and p be log-Hölder continuous variable expo-
nents, bounded and bounded away from one. Assume that

q(x) ≤ p(x)− δ

for some δ > 0. If a set E is locally uniformly q(·)-fat, it is also locally
uniformly p(·)-fat.

Proof. Let B = B(x0, r) be a ball for which the fatness condition is
to be verified. We may assume that p−2B < n, for otherwise there is
nothing to prove. Pick a function u ∈ C0(2B) ∩W 1,p(·)(2B) such that
u ≥ 1 in B ∩ E. The variable exponent Hölder’s inequality gives∫

2B

|∇u|q(x) dx ≤ C‖1‖(p(·)/q(·))′‖|∇u|q(·)‖p(·)/q(·).

By log-Hölder continuity,

‖1‖(p(·)/q(·))′ ≤ C|B|1−q(x0)/p(x0);

this is where we need the assumption q(x) ≤ p(x) − δ. By the ele-
mentary relations between the Luxemburg norm and the modular, we
get

‖|∇u|q(x)‖ p(·)
q(·)
≤ max

{(∫
2B

|∇u|p(x) dx

)q−2B/p+
2B

,

(∫
2B

|∇u|p(x) dx

)q+
2B/p

−
2B

}
.
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Combining the above inequalities and taking infimum over u we obtain

capq(·)(B ∩ E, 2B)

≤ Cr
n−n q(x0)

p(x0) max
{(

capp(·)(B ∩ E, 2B)
)q−2B/p+

2B ,
(
capp(·)(B ∩ E, 2B)

)q+
2B/p

−
2B

}
.

Since E is locally uniformly q(·)-fat, we have

rn−q(x0) ≤ C capq(·)(B, 2B) ≤ C capq(·)(B ∩ E, 2B).

Putting the estimates together, we arrive at

r
(n
q(x0)
p(x0)

−q(x0))s ≤ C capp(·)(B ∩ E, 2B)

where s is either p+
2B/q

−
2B or p−2B/q

+
2B. In both cases, log-Hölder continu-

ity allows us to replace s with p(x0)/q(x0), and thus the claim follows
since capp(·)(B ∩ E, 2B) ≤ Crn−p(x0). �

It turns out that the variable exponent uniform fatness condition is
self-improving. This means that there is a number δ > 0 such that a
p(·)-fat set is also (p(·)−δ)-fat. We can deduce this fact by employing a
localization argument and the corresponding constant exponent result,
which is is due to Lewis, see [32]. A different proof of Theorem 4.4 can
be found in [38].

Theorem 4.4. Let E be a locally p-fat set, 1 < p <∞. Then there is
an exponent 1 < q < p such that E is also q-fat.

The self-improving property of uniform p(·)-fatness now follows from
Proposition 4.3. and the proof of Theorem 4.4.

Corollary 4.5. Suppose that E is is locally uniformly p(·)-fat. Then
there are positive numbers δ and r0 such that

(1) The estimate (4.2) holds with the exponent p−B(x0,3r0) − δ for all

balls B = B(x, r) with x ∈ E ∩B(x0, r0) and r ≤ r0.
(2) E is locally uniformly p(·)− δ–fat with radius r0.

Proof. Let x0 ∈ E. Proposition 4.3 implies that the uniform fatness
estimate holds with the exponent p+

B(x0,3r0) + 2δ in balls with centers in

E ∩ B(x0, r0) and radii less than r0. Using this fact, for each x ∈ E ∩
B(x0, r0) and r ≤ r0 it is possible to find a compact set F ⊂ E∩B(x, r)
which is uniformly p+

B(x0,3r0) + 2δ-fat. See the proofs of Theorem 1 in

[32] or Theorem 8.2 in [38] for the construction of F . With the help of
the set F , the same argument as in proof of Theorem 8.2 in [38] gives
us a small number δ > 0 such that the estimate

capq(E ∩B(x, r), B(x, 2r)) ≥ Ccapq(B(x, r), B(x, 2r))

holds with q = p+
B(x0,3r0) − 2δ. Note that δ and C can be chosen

to depend only on n, p+, p−, and the constant in (4.2). Choosing a
smaller r0 if necessary, we can assume that p+

B(x0,3r0) − p
−
B(x0,3r0) < δ/2.

Then we can apply Proposition 4.3 to get both of the claims. �
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Our next goal is a variable exponent Hardy inequality in domains
whose complement is uniformly p(·)-fat. We will use it below in con-
nection with the next lemma in order to verify that the limit function
found in Section 7 below has the right boundary values in Sobolev’s
sense.

Lemma 4.6. If u ∈ W 1,p(·)(Ω) and
u

dist(x, ∂Ω)
∈ Lp(·)(Rn),

then u ∈ W 1,p(·)
0 (Ω)

Proof. The proof of [8, Theorem 4.3, p. 223] can be adapted to cover
the variable exponent case. �

Proposition 4.7. Suppose that the complement of Ω is locally uni-
formly p(·)-fat. Then the variable exponent Hardy inequality

(4.8)

∥∥∥∥∥ u

dist(x, ∂Ω)

∥∥∥∥∥
Lp(·)(Ω)

≤ C‖∇u‖Lp(·)(Ω)

holds for all functions u ∈ W
1,p(·)
0 (Ω). The constant C depends only

on the dimension, δ, r0, the constant in the uniform fatness condition,
diam(Ω)/r0, p−, p+ and log-Hölder constant of p. The parameter r0 is
from Corollary 4.5.

Proof. Let v ∈ C∞0 (Ω). By homogeneity we may assume that ‖∇v‖Lp(·)(Ω) ≤
1. Let r0 be the radius from Corollary 4.5. We can cover ∂Ω by a finite
number of balls B(xi, r0/4), xi ∈ ∂Ω. The number of balls depends on
diam(Ω)/r0. We write Bi := B(xi, r0/2) and set p−i := infx∈2Bi p(x).
The proof of the pointwise Hardy inequality in [16, 29] is local in nature,
so that we may localize the situation by studying Ω∩2Bi and multiply
v a suitable cut of -function so that is belongs to C∞0 (Ω∩2Bi). Then, in
view of the first conclusion in Corollary 4.5, locally uniform p(·)-fatness
of the complement implies that the pointwise Hardy inequality

|v(x)| ≤ C dist(x, ∂Ω)
(
M |∇v|p

−
i −δ(x)

) 1

p−
i
−δ

holds for smooth functions v ∈ C∞0 (Ω) and all points x ∈ Bi, see
Theorem 1 in [16] and Theorem 3.9 in [29]. The constant depends
only on the dimension, p−, δ and the constant in the uniform fatness
condition. Let Ω 1

4
r0

:= {x ∈ Ω : dist(x, ∂Ω) ≤ r0/4}. Thus we obtain

∫
Ω 1

4 r0

(
|v(x)|

dist(x, ∂Ω)

)p(x)

dx ≤
∑
i

∫
Bi

(
|v(x)|

dist(x, ∂Ω)

)p(x)

dx

≤ C
∑
i

∫
Bi

(
M |∇v|p

−
i −δ(x)

) p(x)

p−
i
−δ dx.

(4.9)
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Since p(·)
p−i −δ

is log-Hölder continuous, bounded and its infimum is greater

than one, the maximal operator is bounded on L
p(·)
p−
i
−δ , see [6]. This and

the fact that ‖∇v‖Lp(·)(Ω) ≤ 1 yields that
∫
Bi

(
M |∇v|p−i −δ(x)

) p(x)

p−
i
−δ dx

is uniformly bounded depending on the dimension, p−, p+, log-Hölder
continuous constant of p and δ. Hence the right hand side of (4.9)
depends also on the number of the balls i.e. diam(Ω)/r0.

We obtain by the Poincaré inequality∫
Ω\Ω 1

4 r0

(
|v(x)|

dist(x, ∂Ω)

)p(x)

dx ≤ Crp
+

0

∫
Ω

|v(x)|p(x) dx ≤ Crp
+

0

for every v ∈ C∞0 (Ω). Combining this with (4.9) we obtain∫
Ω

(
|v(x)|

dist(x, ∂Ω)

)p(x)

dx ≤ C,

where the constant C depends only on the dimension, δ, r0, the constant
in the uniform fatness condition, diam(Ω)/r0, p−, p+ and log-Hölder
constant of p. This yields the claim for smooth functions. For gen-
eral Sobolev functions, the claim follows by a standard approximation
argument. �

Note that the above version of Hardy’s inequality is rather coarse,
due to the fact that the constant depends on the domain Ω. However,
it is quite sufficient for our current purposes.

The next lemma generalizes [33, Lemma 3.25] to the variable expo-
nent case.

Lemma 4.10. Let (pi) be a sequence of log-Hölder continuous variable
exponents with 1 < infi p

−
i ≤ supi p

+
i <∞ and with uniformly bounded

log-Hölder constants so that pi → p almost everywhere in Ω. Suppose
that Ω is bounded and locally uniformly p(·)-fat.

Let u ∈ W 1,p(·)(Ω) and ui ∈ W 1,pi(·)(Ω) for every i so that ui → u
almost everywhere in Ω. If θ ∈ W 1,p(·)(Ω)∩

⋂
iW

1,pi(·)(Ω) and ui− θ ∈
W

1,pi(x)
0 (Ω) for every i with

(4.11)

∫
Ω

|∇(ui − θ)|pi(x) dx ≤M,

where M is finite and independent of i, then u− θ ∈ W 1,p(·)
0 (Ω).

Proof. Due to the assumptions, the Hardy inequality

(4.12)

∥∥∥∥∥ |v|
dist(x, ∂Ω)

∥∥∥∥∥
Lpi(·)(Ω)

≤ C‖∇v‖Lpi(·)(Ω)
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holds for all v ∈ W
1,pi(·)
0 (Ω), with the constant independent of i. By

(4.11) and (4.12) we obtain

∫
Ω

(
|ui − θ|

dist(x, ∂Ω)

)pi(x)

dx ≤ C(M)

and Fatou’s lemma gives∫
Ω

(
|u− θ|

dist(x, ∂Ω)

)p(x)

≤ lim inf
i→∞

∫
Ω

(
|ui − θ|

dist(x, ∂Ω)

)pi(x)

dx ≤ C(M).

Since u− θ ∈ W 1,p(·)(Ω), the claim follows by Lemma 4.6. �

5. Global higher integrability

In this section we prove a global higher integrability result for the
gradient of the solution u to (2.4). We will use a proper combination
of a Caccioppoli type inequality together with the capacitary Sobolev-
Poincaré inequality proved in Lemma 3.3.

Theorem 5.1. Suppose that the complement of Ω is locally uniformly
p(·)-fat, and let u be the solution to the Dirichlet boundary value prob-

lem (2.4) with u − f ∈ W
1,p(·)
0 (Ω), where |∇f | ∈ Lp(·)(1+δ)(Ω). Then

there exist a positive number δ0 and a constant C depending on n, p−,
p+, the structure of A, ‖∇f‖Lp(·)(Ω), and the constant in the uniform

fatness condition, such that |∇u| ∈ Lp(·)(1+δ)(Ω) whenever 0 < δ < δ0,
and

(5.2)

∫
Ω

|∇u|p(x)(1+δ) dx ≤ C

[∫
Ω

|∇u|p(x) dx+

∫
Ω

|∇f |p(x)(1+δ) + 1

]
Proof. Let B0 be a ball with Ω ⊂ 1

2
B0. Fix r > 0 and let B ≡ B(x0, r)

with 4B ⊂ B0. This ball 4B will come out in the last part of the proof.
• Case 1: 2B ⊂ Ω
Let η ∈ C∞0 (2B) be a cut-off function such that η = 1 in B̄, 0 ≤ η ≤ 1

and |∇η| ≤ C/ diam(B). We test (2.4) with ϕ := ηp
+
2B (u−u2B), where

u2B = −
∫

2B
u(x) dx. We have

0 =

∫
2B

A(x,∇u) · ∇ϕdx

=

∫
2B

p+
2B A(x,∇u) ηp

+
2B−1 (u− u2B) · ∇η dx

+

∫
2B

A(x,∇u) ηp
+
2B · ∇(u− u2B) dx.
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We estimates the second term using the structure conditions on A∫
2B

A(x,∇u) ηp
+
2B · ∇(u− u2B) dx =

∫
2B

ηp
+
2B A(x,∇u) · ∇u dx

≥ α

∫
2B

ηp
+
2B |∇u|p(x) dx.

For the first term we obtain by the structure conditions on A and
Young’s inequality, ζ ∈ (0, 1), that∣∣∣∣∫

2B

A(x,∇u) ηp
+
2B−1 (u− u2B) · ∇η dx

∣∣∣∣ ≤ ζ

∫
2B

ηp
+
2B |∇u|p(x) dx

+cζ

∫
2B

∣∣∣∣ u− u2B

diam(B)

∣∣∣∣p(x)

dx.

Observe that we used the definition of p+
2B to deduce

p̃ :=
p(x)(p+

2B − 1)

p(x)− 1
≥ p+

2B ∀x ∈ 2B.

and to estimate ηp̃ ≤ ηp
+
2B in the second inequality. Now, if we choose

ζ, which depends on n, p−, p+, α, β, small enough and connect all the
previous estimates, after taking the mean values, we finally deduce the
following Caccioppoli type inequality

−
∫
B

|∇u|p(x) dx ≤ C −
∫

2B

∣∣∣∣ u− u2B

diam(B)

∣∣∣∣p(x)

dx,

where C only depends on n, p−, p+, α, β. At this point, arguing as in
[43], Theorem 1.3, or [9], Theorem 3.1, we can use a standard Sobolev-
Poincaré inequality and the log-Hölder continuity which yield the fol-
lowing reverse Hölder estimate

−
∫
B

|∇u|p(x) dx ≤ C

(
−
∫

2B

|∇u|
p(x)

θ̄ dx

)θ̄
+ C,

with C ≡ C(n, p−, p+, α, β,M), M is such that
∫

Ω
|∇u|p(x) dx ≤ M ,

and θ̄ := min
{√

n+1
n
, p−
}

. We can take M = C
∫

Ω
|∇f |p(x) dx, see the

arguments leading to (7.5) in the proof of Theorem 7.3 below.
• Case 2: 2B \ Ω 6= ∅.
This case is more complicated than the previous one, as the boundary

of Ω will be involved in the analysis. We have to use the fact that
the complement of Ω is locally uniformly p(·)-fat and therefore the
capacitary version of the Sobolev-Poincaré inequality established in
Lemma 3.3. We divide this case in a couple of steps.

step 1: Caccioppoli type inequality. Let η ∈ C∞0 (2B) be the
cut-off function chosen at the previous step. This time we test (2.4)
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with ϕ := ηp
+
D (u − f), where u − f ∈ W 1,p(·)

0 (Ω). If D = 2B ∩ Ω, we
have

0 =

∫
D

A(x,∇u) · ∇ϕdx

=

∫
D

p+
DA(x,∇u) ηp

+
D−1 (u− f) · ∇η dx

+

∫
D

A(x,∇u) ηp
+
D · ∇(u− f) dx.

Using the structure conditions on A we deduce

α

∫
D

ηp
+
D |∇u|p(x) dx ≤

∫
D

ηp
+
D β |∇u|p(x)−1 |∇f | dx

+

∫
D

ηp
+
D β |∇u|p(x)−1|u− f | |∇η| dx.

Exploiting the Young inequality and taking the mean values, we obtain
the following Caccioppoli type inequality

1

|2B|

∫
D

ηp
+
D |∇u|p(x) dx ≤ C

1

|2B|

∫
D

∣∣∣∣ u− f
diam(B)

∣∣∣∣p(x)

dx

+C
1

|2B|

∫
4B∩Ω

|∇f |p(x) dx.

Here the constants C only depend on n, p−, p+, α, β. The choice to
replace D with 4B ∩ Ω in the last integral will be clear later.

step 2: choice of θ and localization. In order to obtain a
suitable reverse Hölder inequality, we have to choose a proper value
of the parameter θ. First of all, we choose 1 < θ < n such that the

complement of Ω is p(·)
θ

-fat and, taking a smaller value of θ if necessary,
we suppose that

n/θ

n− 1/θ
> 1.

Note that this last assumpion implies 1 < θ < n+1
n
< 2. We choose now

diam(2B) ≤ 1 so small that |2B| ≤ 1, (1 + |2B|)‖u− f‖W 1,p(·)(2B) ≤ 1,
and further such that

p+
2B <

n/θ

n− 1/θ
p−2B.

This implies that p+
2B is always less than the Sobolev conjugate of p−2B.

step 3: Application of Sobolev–Poincaré. Since u − f ∈
W

1,p(·)
0 (Ω), u − f has an extension belonging to W 1p(·)(Rn) which is

zero p(·)-q.e. in the complement of Ω. Then we can use the capacitary
version of the Sobolev-Poincaré inequality of Lemma 3.3 together with
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Hölder’s inequality to get

−
∫

2B

∣∣∣∣ u− f
diam(B)

∣∣∣∣p(x)

dx

≤ diam(B)−p
+
2B

(
−
∫

2B

|u− f |(n
p(x)
θ

)/(n−
p−
2B
θ

) dx

)θ n−p−2B/θ
n

≤ diam(B)−p
+
2B

×

[
C

cap p(x)
θ

(N(u− f), 4B)

(∫
4B

|∇(u− f)|
p(x)
θ dx+ |B|

)]θ p−2B
p+
2B

,

where N(u − f) = {x ∈ 2B : u(x) = f(x)}. In the complement of Ω,
u− f = 0 except for a set of p(·)-capacity zero. Since the complement

of Ω is p(·)
θ

-fat and p is log-Hölder continuous, we obtain

cap p(·)
θ

(N(u− f), 4B) ≥ cap p(·)
θ

(2B \ Ω, 4B) ≥ C diam(B)n−
p+
2B
θ .

We use this in the previous inequality, and obtain

−
∫

2B

∣∣∣∣ u− f
diam(B)

∣∣∣∣p(x)

dx

≤ C diam(B)p
−
2B−p

+
2B

(
−
∫

4B

|∇(u− f)|
p(x)
θ dx+ 1

)θ p−2B
p+
2B

≤ C

(
−
∫

4B

|∇(u− f)|
p(x)
θ dx+ 1

)θ
by log-Hölder continuity. Combining the above inequalities, we get

1

|B|

∫
B∩Ω

|∇u|p(x) dx ≤C
(
−
∫

4B

|∇(u− f)|
p(x)
θ dx+ 1

)θ
+ C

1

|4B|

∫
4B∩Ω

|∇f |p(x) dx+ C

≤C
(

1

|4B|

∫
4B∩Ω

|∇u|
p(x)
θ + |∇f |

p(x)
θ dx

)θ
+ C

1

|4B|

∫
4B∩Ω

|∇f |p(x) dx+ C

≤C
(

1

|4B|

∫
4B∩Ω

|∇u|
p(x)
θ dx

)θ
+ C

1

|4B|

∫
4B∩Ω

|∇f |p(x) dx+ C,

where the constants depends on θ.
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step 5: Gehring lemma and conclusion. Summing up, we ob-
tained in both of the above cases the following reverse Hölder estimate

1

|B|

∫
B∩Ω

|∇u|p(x) dx ≤C
(

1

|4B|

∫
4B∩Ω

|∇u|
p(x)
θ dx

)θ
+ C

1

|4B|

∫
4B∩Ω

|∇f |p(x) dx+ C,

which holds for sufficiently small balls with constants C depending on
n, p−, p+, α, β, θ, ‖∇f‖p(·) but independent of the radius of the ball. We
therefore make the following conclusion: set θ1 := min{θ̄, θ} and let

g(x) =

{
|∇u|

p(x)
θ1 , if x ∈ Ω

0 otherwise

and

h(x) =

{
|∇f |

p(x)
θ1 , if x ∈ Ω

0 otherwise

so that the previous reverse Hölder inequality reads

−
∫
B

gθ1 dx ≤ C

(
−
∫

4B

g dx

)θ1
+ C −

∫
4B

hθ1 dx+ C,

whenever 4B ⊂ B0. Now we can use a standard version of Gehring’s
lemma (see for example [14], Chap. V, or [15], Theorem 6.6), and find
a number δ > 0 and a constant C such that

−
∫
B

|∇u|p(x)(1+δ) dx ≤ C

[(
−
∫

4B

|∇u|p(x) dx

)1+δ

+−
∫

4B

|∇f |p(x)(1+δ) dx+ 1

]
.

The estimate (5.2) then follows from this by noting that due to the
boundedness of Ω, Ω can be covered by a finite number of balls such
that the previous inequality holds. �

6. Hölder continuity up to the boundary

In this section we show that the uniform fatness condition is suf-
ficient for Hölder continuity up to the boundary, provided that the
boundary values are given by a Hölder continuous function. This is
a consequence of a Maz’ya type boundary point estimate of Alkhutov
and Krashenninikova, see [4]. We denote

γ(t) =

(
capp(·)(B(x0, t) \ Ω, B(x0, 2t))

capp(·)(B(x0, t), B(x0, 2t))

)1/(p(x0)−1)

,

and note that the p(·)-fatness of the complement of Ω implies

γ(t) ≥ γ0 > 0

for some constant γ0 and all t ≤ r0.
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Theorem 6.1 ([4], Theorem 1.2). Let f ∈ C(Ω) ∩W 1,p(·)(Ω), denote
M = supx∈∂Ω |f(x)|, and let u be the solution with the boundary value
function f . Then there are constants C and θ such that for all ρ > 0,
0 < r ≤ ρ/4 and x0 ∈ ∂Ω
(6.2)

sup
x∈Ω∩B(x0,r)

|u(x)−f(x0)| ≤ C

(
osc

∂Ω∩B(x0,ρ)
f + ρ+ osc

∂Ω
f exp

(
−θ
∫ ρ

r

γ(t)
dt

t

))
.

An immediate consequence of the uniform fatness condition is fol-
lowing refinement.

Corollary 6.3. Assume that the complement of Ω is uniformly p(·)-fat,
with u and f as above. Then for ρ ≤ r0, r ≤ ρ/4 we have

(6.4) sup
x∈Ω∩B(x0,r)

|u(x)− f(x0)| ≤ C

(
osc

∂Ω∩B(x0,ρ)
f + ρ+ osc

∂Ω
f

(
r

ρ

)δ)
,

where δ depends on the uniform fatness constant and the constant θ in
(6.2).

We also record the following interior Hölder estimate. It follows, e.g.,
by iterating Harnack’s inequality [3, 22] in a standard fashion.

Theorem 6.5. Let u be a solution, in Ω, B(x0, R) b Ω, and 0 < r <
R. Then

(6.6) osc
B(x0,r)

u ≤ C
( r
R

)κ(
osc

B(x0,R)
u+R

)
.

The following elementary lemma will be used in the proof, see [27,
Lemma 6.47].

Lemma 6.7. Assume that u is a function such that the estimate (6.6)
holds. If there are constants L ≥ 0 and 0 < γ < 1 such that

|u(x)− u(x0)| ≤ L|x− x0|γ,
for all x ∈ Ω and x0 ∈ ∂Ω, then

|u(x)− u(y)| ≤ L1|x− y|γ1

for all x, y ∈ Ω. We can choose γ1 = min(γ, κ), where κ is the exponent
in (6.6).

The boundary continuity result now follows from Theorem 6.1.

Theorem 6.8. Let u be a solution with boundary values f , and assume
that f is Hölder continuous, i.e.

|f(x)− f(y)| ≤M |x− y|γ

for all x, y ∈ ∂Ω for some 0 < γ < 1. Then

|u(x)− u(y)| ≤M1|x− y|δ1
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for all x, y ∈ Ω, where δ1 depends only n, p+, p−, the log-Hölder con-
stant of p, the structural constants and the constant in the uniform
fatness condition.

Proof. By Theorem 6.5, the claim will follow by verifying the assump-
tion of Lemma 6.7. We may assume that r0 ≤ 1. Let x ∈ Ω and
x0 ∈ ∂Ω, and consider first the case r = |x − x0| ≤ r2

0. Then the
boundary point estimate (6.4) of Corollary 6.3 with ρ = 4

√
r yields

|u(x)− u(x0)| ≤CMrγ/2 + Cr1/2 + C osc
∂Ω

frδ/2

≤Crmin(γ/2,1/2,δ/2).

Thus the assumption holds if |x− x0| ≤ r2
0.

If |x− x0| ≥ r2
0, we have the trivial estimate

|u(x)− u(y)| ≤2(sup
x∈Ω

u(x))r−2γ
0 |x− x0|γ

≤2(sup
x∈Ω

f(x))r−2
0 |x− x0|γ,

so that the assumption holds also in this case. �

7. Stability of solutions

The goal of this section is to show that solutions are stable under
suitable assumptions. More precisely, let pi : Rn → (1,∞) be continu-
ous functions that converge pointwise to a function p, and assume that
they satisfy the log-Hölder condition

|pi(x)− pi(y)| ≤ C

− log (|x− y|)
with a constant independent of i. By Arzela–Ascoli’s theorem, we
may assume that the convergence is uniform. Further, let the vector
fields Ai(x, ξ) have pi(x)-growth with structural constants α and β
independent of i, and assume they converge to A(x, ξ) uniformly on
compact subsets of Rn. Suppose that ui is the solution to the Dirichlet
problem

(7.1)

{
− divAi(x,∇ui) = 0

ui − f ∈ W 1,pi(·)
0 (Ω),

and u0 is the solution to

(7.2)

{
− divA(x,∇u0) = 0

u0 − f ∈ W 1,p(·)
0 (Ω).

Provided that the boundary values f are sufficiently regular, we will
extract a limit function u from the sequence (ui), and then show that
u = u0.
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Note that for the prototype case Ai(x, ξ) = |ξ|pi(x)−2ξ, the uniform
convergence of Ai(x, ξ) when |ξ| ≤ M < ∞ is a consequence of the
uniform convergence of the functions pi:

|Ai(x, ξ)−A(x, ξ)| ≤ |ξ|
∣∣∣|ξ|pi(x)−2 − |ξ|p(x)−2

∣∣∣
≤ log |ξ|(|ξ|max(p+

i ,p
+)−2 + |ξ|min(p−i ,p

−)−2)|pi(x)− p(x)|,
where the second inequality follows from the mean value theorem.

Theorem 7.3. Let (pi) be variable exponents with 1 < infi p
−
i ≤

supi p
+
i < n, and log-Hölder continuous with a constant independent

of i. Let Ai(x, ξ) be vector fields exhibiting pi(x)-growth with constants
independent of i that convergence locally uniformly to a vector field
A(x, ξ).

If the boundary value function f is in W 1,p(·)(1+γ)(Ω) for some γ > 0,
then the sequence (ui) of solutions to (7.1) has a subsequence which con-
verges in W 1,p(·)(1+δ)(Ω) for any δ < γ, and in Cα

loc(Ω), to the solution
u0 of (7.2). Further, if the boundary values are Hölder continuous, the
subsequence can be taken to converge in Cα(Ω) also.

Proof. We proceed along the lines of [33]. To get started, assume that
f ∈ W 1,p(·)(1+γ)(Ω), and choose i sufficiently large, so that (1+γ/2)pi ≤
(1 + γ)p. Then f ∈ W 1,pi(·)(1+γ/2)(Ω). The first step is to prove the
estimate

(7.4)

∫
Ω

|∇ui|p(x)(1+γ/4) dx ≤ C,

for large i, with C < ∞ independent of i. We use ui − f as a test
function in (7.1); this gives∫

Ω

Ai(x,∇ui) · ∇ui dx =

∫
Ω

Ai(x,∇ui) · ∇f dx.

The left hand side can be estimated from below by∫
Ω

Ai(x,∇ui) · ∇ui dx ≥ α

∫
Ω

|∇ui|p(x) dx,

and the right hand side from above by means of Young’s inequality∫
Ω

Ai(x,∇ui) · ∇f dx ≤β
∫

Ω

|∇ui|pi(x)−1|∇f | dx

≤α
2

∫
Ω

|∇ui|p(x) dx+ C

∫
Ω

|∇f |pi(x) dx,

where C depends on α and β. Hence we have∫
Ω

|∇ui|pi(x) dx ≤ C

∫
Ω

|∇f |pi(x) dx

≤ C

(
|Ω|+

∫
Ω

|∇f |p(x)(1+γ) dx

)
.

(7.5)



GLOBAL REGULARITY AND STABILITY 21

We combine this estimate with the global reverse Hölder inequality,
Theorem 5.1,

(∫
Ω

|∇ui|pi(x)(1+γ/2) dx

)1/(1+γ/2)

≤C
[ ∫

Ω

|∇ui|pi(x) dx

+

(∫
Ω

|∇f |pi(x)(1+γ/2) dx

)1/(1+γ/2) ]
.

To get (7.4) we choose i such that (1 + γ/4)p ≤ (1 + γ/2)pi,
We continue by establishing the bound

(7.6) ‖ui‖W 1,p(·)(1+γ/4)(Ω) ≤ C.

Let κ = n
n−1

; then Sobolev embedding for ui − f ∈ W
1,pi(·)
0 (Ω) and

choosing i so large that (1 + γ/4)p ≤ κpi and pi ≤ (1 + γ/4)p imply

‖ui − f‖p(·)(1+γ/4) ≤C‖ui − f‖κpi(·)
≤C‖∇(ui − f)‖pi(·)
≤C

(
‖∇ui‖p(·)(1+γ/4) + ‖∇f‖p(·)(1+γ/4)

)
.

Continuing the estimates, we have

‖ui‖p(·)(1+γ/4) ≤C
(
‖(ui − f)‖p(·)(1+γ/4) + ‖f‖p(·)(1+γ/4)

)
≤C

(
‖∇ui‖p(·)(1+γ/4) + ‖∇f‖p(·)(1+γ/4) + ‖f‖p(·)(1+γ/4)

)
,

and (7.6) follows by combining this estimate and (7.4).
Let us now simplify notation by writing δ = γ/4. Having estab-

lished (7.6), compactness arguments let us extract a subsequence, still
denoted by (ui), such that ui → u weakly in W 1,p(·)(1+δ)(Ω), ui → u in
Lp(·)(1+δ)(Ω), and ui → u pointwise almost everywhere in Ω. The next
stage is to extract a further subsequence so that ∇ui → ∇u point-
wise almost everywhere in Ω. From this, it follows that ui → u in
W 1,p(·)(1+δ′)(Ω) for all δ′ < δ, and this allows us to conclude that u is
the solution to (7.2) with boundary values f , i.e. u = u0.

Let G b G′ b Ω and pick ε > 0. We write

Eε
i = {x ∈ G : (Ai(x,∇ui)−Ai(x,∇u)) · (∇ui −∇u) > ε}
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for i = 1, 2, . . .. Pick a cutoff function η ∈ C∞0 (G′): 0 ≤ η ≤ 1 and
η = 1 on G. To estimate |Eε

i |, we first note that

1

ε

∫
G′∩{|ui−u|<ε2}

(Ai(x,∇ui)−Ai(x,∇u)) · (∇(ui − u))η dx

=
1

ε

∫
G′∩{|ui−u|<ε2}

Ai(x,∇ui) · (∇(ui − u)) dx

− 1

ε

∫
G′∩{|ui−u|<ε2}

(Ai(x,∇u)−A(x,∇u)) · (∇(ui − u)) dx

− 1

ε

∫
G′∩{|ui−u|<ε2}

A(x,∇u) · (∇(ui − u)) dx

=I i1 + I i2 + I i3.

To estimate I i1, we set

wi = min{max{0, u+ ε2 − ui}, 2ε2}.

Then ηwi ∈ W 1,p(·)(1+δ)
0 (G′), and using it as a test function we have∫

G′∩{|ui−u|<ε2}
Ai(x,∇ui)·(η∇(ui−u)) dx ≤

∫
G′
A(x,∇ui)·(wi∇η) dx

≤Cε2

∫
G′
|Ai(x,∇ui)| dx ≤ Cε2

∫
G′
|∇ui|pi(x)−1 dx

≤Cε2

∫
G′

1 + |∇ui|pi(x) dx ≤ Cε2,

with a constant C independent of i. Here (7.5) is used in the last
inequality.

For I i2, we have

|I i2| ≤
C

ε
‖Ai(x,∇u)−A(x,∇u)‖p′i(·)‖∇(u− ui)‖pi(·)

≤C
ε
‖Ai(x,∇u)−A(x,∇u)‖p′i(·)‖|∇u|+ |∇ui|‖pi(·).

Hence I i2 can be controlled by showing that

(7.7)

∫
Ω

|Ai(x,∇u)−A(x,∇u)|p′i(x) dx→ 0

as i → ∞. By the uniform convergence assumption, Ai(x,∇u) →
A(x,∇u) almost everywhere in Ω. Since

|Ai(x,∇u)−A(x,∇u)|p′i(x) ≤ C|∇u|pi(x) + C|∇u|(p(x)−1)p′i(x)

≤ C + C|∇u|p(x)(1+δ) + C|∇u|p(x)(1+δ),

(7.7) follows by Lebesgue’s dominated convergence theorem.
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To estimate |I i3|, we simply note that

|I i3| ≤
1

ε

∫ ′
G

A(x,∇u) · (∇ui −∇u) dx,

and use the fact that ∇ui → ∇u weakly in Lp(·)(1+δ)(Ω), so that |I i3| ≤ ε
for large i.

By the above estimates, we see that

|Eε
i | ≤|Eε

i ∩ {|ui − u| ≥ ε2}|

+
1

ε

∫
Eεi ∩{|ui−u|<ε2}

(Ai(x,∇ui)−Ai(x,∇u)) · (∇ui −∇u) dx

≤|{|ui − u| ≥ ε2}|+ Cε ≤ Cε

for sufficiently large i, since ui → u almost everywhere. It follows that

lim
i→∞

(Ai(x,∇ui)−Ai(x,∇u)) · (∇ui −∇u) = 0

for almost every x ∈ G. We write

Ii(x) = (Ai(x,∇ui)−Ai(x,∇u)) · (∇ui −∇u).

Let x0 be a point in G such that

(1) Ii(x0)→ 0 as i→∞,
(2) |∇u(x0)| <∞,
(3) Structural conditions hold at x0, and
(4) Ai(x0, ξ)→ A(x0, ξ) uniformly on compact subsets of Ω.

If now |∇ui(x0)| → ∞ for any subsequence, we would have a contra-
diction since

α|∇ui(x0)|pi(x0) ≤ Ai(x0,∇ui(x0)) · ∇ui(x0)

= Ii(x0) +Ai(x0,∇u(x0)) · (∇ui(x0)−∇u(x0))

+Ai(x0,∇ui(x0)) · ∇u(x0)

≤ Ii(x0) + β|∇u(x0)|pi(x0)−1(|∇ui(x0)|+ |∇u(x0)|)
+ β|∇ui(x0)|pi(x0)−1|∇u(x0)|,

where the left hand side grows with the exponent pi(x0) while the right
hand side grows with the exponent pi(x0) − 1. Further, if ∇ui(x0) →
ξ ∈ Rn for any subsequence, we must have ξ = ∇u(x0). To see this,
note that

0 = lim
i→∞

Ii(x0) = (A(x0, ξ)−A(x0,∇u(x0))) · (ξ −∇u(x0)) > 0,

where the last inequality follows by the structural conditions if ξ 6=
∇u(x0). It follows that ∇ui → ∇u almost everywhere.

Next we show that u has the boundary values given by f in Sobolev’s

sense. To this end, recall that f ∈ W 1,p(·)(1+δ)(Ω), ui− f ∈ W 1,pi(x)
0 (Ω),
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and the sequence (ui) is bounded in W 1,p(·)(1+δ)(Ω). We have∫
Ω

|∇(ui−f)|pi(x) dx ≤ C

(
1 +

∫
Ω

|∇ui|p(x)(1+δ) dx+

∫
Ω

|∇f |p(x)(1+δ) dx

)
for i sufficiently large, such that pi ≤ p(1 + δ). We combine (7.4) with

Lemma 4.10 to get that u− f ∈ W 1,p(·)
0 (Ω).

Write u − u0 = (u − f) + (f − u0) to see that u − u0 ∈ W 1,p(·)
0 (Ω).

Since u0 is a solution, it follows that∫
Ω

A(x,∇u0) · (∇u−∇u0) dx = 0.

Since the functions ui are solutions of their respective equations, we
have similarly ∫

Ω

Ai(x,∇ui) · (∇u0 −∇ui) dx = 0.

Letting i→∞ we get∫
Ω

A(x,∇u) · (∇u0 −∇u) dx = 0,

since ui → u in W 1,p(·)(1+δ)(Ω). It follows that u = u0, since

0 ≤
∫

Ω

(A(x,∇u)−A(x,∇u0)) · (∇u−∇u0) dx = 0.

The convergence can also be taken to be locally uniform, since Hölder
regularity estimates hold for ui with constants independent of i. Simi-
larly, if the boundary data is Hölder continuous, we have convergence
in Cα(Ω). �
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