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Abstract
For a class of anisotropic elliptic problems in bounded domains Ω we show that

the convexity of Ω plays an important role in regularity and nonexistence results.
Using recent results in [9] we improve some statements in [3].
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1 Introduction

Let Ω ⊂ Rn (n ≥ 3) be a smooth bounded domain, consider n numbers mi ≥ 2 for all

i = 1, ..., n, take λ > 0 and p > 1. In a recent paper [3], it was shown that existence

and nonexistence results for nontrivial solutions to the following anisotropic quasilinear

elliptic problem 



−
n∑

i=1

∂i

(|∂iu|mi−2∂iu
)

= λup−1 in Ω

u ≥ 0 in Ω

u = 0 on ∂Ω

(1)
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are in fact related to the regularity of the solutions to the following “coercive regularized”

problem





−
n∑

i=1

∂i

[
(|∂iw|mi−2 + ε(1 + |Dw|2)(m−−2)/2)∂iw

]
+ λ|w|p−2w = f in Ω

w = 0 on ∂Ω

(2)

where ε > 0, m− := min{m1, . . . , mn} and f is a smooth function; here and in the sequel,

∂i = ∂/∂xi for i = 1, ..., n.

If mi = 2 for all i, then (1) reduces to the widely studied semilinear equation −∆u =

λup−1. In recent years, an increasing interest has turned towards anisotropic problems.

With no hope of being complete, let us mention the pioneering works on anisotropic

Sobolev spaces [6, 11, 14, 15, 16] and more recent regularity results for anisotropic prob-

lems [1, 2, 4, 8, 9, 10, 19].

Since the anisotropy in (1) weights differently each single partial derivative, one expects

the geometry of the domain Ω to play a crucial role in related results. This is precisely

what happens for optimal Sobolev embedding theorems which only hold under suitable

assumptions on the geometry of Ω, see examples and counter-examples in [6, 14, 15].

In view of these facts, also results concerning (1) and (2) should strongly depend on

the geometry of Ω. In the present note, we show that the regularity and nonexistence

results in [3] can be strengthened provided the domain Ω is convex. In [3] it was shown

that any weak solution of (1) (see Definition 1 below) is in fact bounded whenever p

is at most critical in a suitable sense; by taking advantage of recent results in [9] (see

also [8]), in Theorem 1 we prove that if Ω is convex then the solutions are also globally

Lipschitz continuous. Similarly, the full C2,γ regularity of the solution of (2) was obtained

in [3] assuming that the exponents mi’s are not too spread; it was also suggested in [3,

Problem 3] that this condition could possibly be removed. In Theorem 2, we show that

this assumption can indeed be dropped, whenever Ω is convex. By combining a nice idea

by Otani [12] with the celebrated Pohožaev identity [13], one can show that this regularity

result for (2) is related to nonexistence results for (1) when the exponent p is critical with

respect to Sobolev inequality. As a consequence, for convex domains Ω we can drop again

the assumption on the mi’s in [3]: in Theorem 3 we obtain a nonexistence result for (1)

for at least critical exponents p in convex α-starshaped domains Ω (see Definition 2).

This paper is organized as follows. In next section we introduce the basic tools needed to

study (1) and (2) and we state our results. The proofs are postponed to the last section.
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2 Results

Throughout the paper we assume that Ω is an open bounded domain of Rn. Further, we

always require that the exponents p and mi’s appearing in (1) satisfy

p > 1 , mi ≥ 2 ∀i = 1, ..., n ,

n∑
i=1

1

mi

> 1 (3)

(notice that, as a consequence, we necessarily have n ≥ 3). Set

m− := min{m1, . . . ,mn} , m+ := max{m1, . . . , mn} ,

m∗ =
n∑n

i=1
1

mi
− 1

, m∞ = max{m+,m∗} .

For every q ∈ [1, +∞] we denote by q′ := q/(q − 1) its conjugate exponent. Let m =

(m1, ...,mn), and denote by W 1,m
0 (Ω) the closure of C∞

c (Ω) with respect to the norm

‖u‖1,m =
n∑

i=1

‖∂iu‖mi
.

When the exponents mi’s are not “too far apart”, the critical exponent for the embedding

W 1,m
0 (Ω) ⊂ Lq(Ω) is m∗ (which coincides with nm/(n −m), the usual critical exponent

for the harmonic mean m of the mi’s). On the other hand, if the mi’s are “too much

spread out” it coincides with m+. Therefore, since possibly m+ > m∗, the effective critical

exponent is in fact m∞. In [3] it was shown that existence results for (1) are quite different

according to whether m∞ equals m∗ or m+.

Let us first make clear what we mean by solution of (1):

Definition 1. We say that u ∈ W 1,m
0 (Ω) ∩ L(p−1)m′∞(Ω) is a weak solution of (1) if u ≥ 0

a.e. in Ω and

n∑
i=1

∫

Ω

|∂iu|mi−2∂iu∂iv = λ

∫

Ω

up−1v ∀v ∈ W 1,m
0 (Ω) . (4)

If in addition u ∈ L(p−1)m′
−(Ω), we say that u is a mild solution. If u ∈ L∞(Ω) we say

that u is a strong solution.

In [3, Theorem 2] it was proved that every weak solution to (1) is actually a strong solution

provided one of the following situations occurs

(i) p < m∞ (ii) p = m∞ and m∞ > m+ .

Here we strengthen such result with the following (note that no regularity is assumed on

the boundary):
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Theorem 1. Assume that the exponents mi’s and p satisfy (3), and that one of the above

conditions (i) or (ii) holds. If u is a weak solution to (1), then, u ∈ W 1,∞
loc (Ω). Moreover,

if Ω is convex, then u ∈ W 1,∞(Ω).

In a completely different fashion we also prove a regularity result for the coercive problem

(2):

Theorem 2. Assume that Ω is convex with ∂Ω ∈ C2,γ, and that the exponents mi’s and p

satisfy (3). Let λ > 0 and f ∈ C∞
c (Ω). Then, for all ε > 0, problem (2) admits a unique

(classical) solution w ∈ C2,γ(Ω).

This statement should be compared with [3, Theorem 5], where the same thesis was

obtained on possibly non convex domains under the additional assumption m+/m− <

(n + 2)/n, here dropped.

If we keep the convexity assumption on the domain Ω, thanks to Theorem 2 we may also

improve the nonexistence result obtained in [3, Theorem 6] for problem (1) in the at least

critical case p ≥ m∗. Such result is stated on α-starshaped domains, according to the

definition below applied with

αi = n

(
1

mi

− 1

m∗

)
; (5)

notice that the above αi are all strictly positive provided

m+ < m∗ . (6)

Definition 2. Let α = (α1, ..., αn) ∈ Rn with αi > 0 for all i. We say that a bounded

smooth domain Ω ⊂ Rn is α-starshaped with respect to the origin if
n∑

i=1

αixiνi ≥ 0 on ∂Ω , (7)

with ν = (ν1, . . . , νn) denoting the outer normal to ∂Ω. We say that Ω is strictly α-

starshaped with respect to the origin if (7) holds with strict inequality. If these inequalities

hold after replacing xi by xi − Pi, we say that Ω is (strictly) α-starshaped with respect

to the center P = (P1, . . . Pn). If Ω is (strictly) α-starshaped with respect to some of its

points, we simply say that Ω is (strictly) α-starshaped.

We refer to [3] for some properties of α-starshaped domains. Let us just mention that

a convex domain is not necessarily α-starshaped and that a simple example of a convex

α-starshaped domain (for any α) is a ball.

We can now state our main nonexistence result:

Theorem 3. Assume that Ω is convex with ∂Ω ∈ C2,γ, and that the exponents mi’s and

p satisfy (3) and (6). Let α = (α1, ..., αn) with αi as in (5). Assume that either p > m∗

and Ω is α-starshaped, or p = m∗ and Ω is strictly α-starshaped. Then, for every λ > 0,

the unique mild solution of (1) is u ≡ 0.
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3 Proofs

We first prove Theorem 2. To this end, we establish a uniform boundary gradient estimate;

it can essentially be drawn from [5, Chapter XIV], but for the sake of completeness we

enclose a quick proof via a barrier argument.

Lemma 1. Assume that Ω is convex, and let u ∈ C2(Ω) ∩ C1(Ω) be a solution to the

boundary value problem





Qu := aij(Du)Diju + b(x, u) = 0 in Ω

u = 0 on ∂Ω ,

where the operator Q is elliptic, the function b = b(x, z) is nonincreasing in z, and the

following structure condition holds for some nondecreasing function µ on R+:

|b(x, z)| ≤ µ(|z|)aij(ξ)ξiξj for |ξ| ≥ µ(|z|) . (8)

Then there exists a constant C = C(M, µ(M)), with M = supΩ |u|, such that |Du| ≤ C

on ∂Ω.

Proof. For x0 ∈ ∂Ω, let P = P(x0) be a hyperplane with x0 ∈ P ∩ Ω = P ∩ ∂Ω, and set

d(x) := dist(x,P). Define the parameters k and a by

k := (µ(M))2eMµ(M) and a :=
eMµ(M) − 1

k
.

We claim that the functions

w± := ±ψ(d) = ± 1

µ(M)
log(1 + kd) ,

are respectively a so-called upper and lower barrier at x0 for the function u and the

operator Q on the neighborhood N of x0 given by N := {x ∈ Ω : d(x) < a}. Were this

claim proved, the lemma would follow at once. Indeed recall that, by definition of upper

and lower barrier, one has

(i) ±Qw± < 0 in N ∩ Ω;

(ii) w±(x0) = 0;

(iii) w− ≤ u ≤ w+ on ∂(N ∩ Ω).
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Then the comparison principle ensures that w− ≤ u ≤ w+ in N ∩Ω; using (ii), it follows
∂w
∂ν

−
(x0) ≤ ∂u

∂ν
(x0) ≤ ∂w

∂ν

+
(x0), and so

|Du(x0)| ≤ ψ′(0) = µ(M)eMµ(M) =: C .

It remains to show that w± are actually barriers. Let us check that w+ satisfies conditions

(i)-(iii) above (the check for w− being completely analogous). One has

Qw+ = ψ′(d)aij(Dw+)Dijd + ψ′′(d)aij(Dw+)DidDjd + b(x,w+)

=
ψ′′(d)

(ψ′(d))2
aij(Dw+)Diw

+Djw
+ + b(x,w+) .

Now observe that, for all x ∈ N ∩ Ω, there holds

|Dw+(x)| = ψ′(d(x)) =
k

µ(M)(1 + kd(x))
≥ k

µ(M)(1 + ka)
= µ(M) ≥ µ(w+(x)) ,

where in the last inequality we have used the fact that µ is nondecreasing and w+(x) ≤
ψ(a) = M in N ∩ Ω. Hence, by (8) and using again the monotonicity of µ, we get

Qw+ ≤
{ ψ′′(d)

(ψ′(d))2
+ µ(M)

}
aij(Dw+)Diw

+Djw
+ = 0 ,

and (i) is proved. Condition (ii) is immediately satisfied. Finally, also (iii) is fulfilled since,

for x ∈ ∂(N ∩ Ω), there holds w+(x) ≥ 0 = u(x) if x ∈ ∂Ω ∩ N , and w+(x) = M ≥ u(x)

otherwise. ¤
Another tool needed for the proof of Theorem 2 is the following Leray-Schauder principle

(see [7]):

Lemma 2. Let X be a Banach space and let T : X → X be a compact operator. Assume

that there exists K > 0 such that ‖x‖X ≤ K for all x ∈ X satisfying x = σTx for some

σ ∈ [0, 1]. Then, T has a fixed point.

Proof of Theorem 2. It is not restrictive to assume that λ = 1. Fix γ ∈ (0, 1). For all

v ∈ C1,γ(Ω) define

b(x, v) := f(x)− |v|p−2v ,

ai(x, v) := |∂iv|mi−2 + ε(1 + |Dv|2)(m−−2)/2 (i = 1, ..., n) ,

and consider the following linear problem




−
n∑

i=1

∂i

(
ai(x, v)∂iu

)
= b(x, v) in Ω

u = 0 on ∂Ω .

(9)
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By Theorem 6.16 in [5], problem (9) admits a unique solution u ∈ C2,γ(Ω). Hence,

together with the compact embedding C2,γ(Ω) ⊂ C1,γ(Ω), (9) defines a compact operator

T : C1,γ(Ω) → C1,γ(Ω) such that Tv = u = unique solution of (9).

Take σ ∈ [0, 1] and assume that u ∈ C1,γ(Ω) solves u = σTu, namely





−
n∑

i=1

∂i

(
ai(x, u)∂iu

)
= σb(x, u) in Ω

u = 0 on ∂Ω ;

(10)

then, we just said that u ∈ C2,γ(Ω).

We want now to prove uniform (w.r.t. σ) boundedness for solutions of (10). Set k :=

(sup |f |)1/(p−1) and Ωk := {x ∈ Ω : |u(x)| > k}. By multiplying the equation in (10) with

ϕ = (sign u) max{|u| − k, 0} and integrating over Ω, we have

∫

Ωk

n∑
i=1

|∂iu|mi ≤
∫

Ωk

[ n∑
i=1

|∂iu|mi + ε(1 + |Du|2)(m−−2)/2|Du|2
]

= σ

∫

Ωk

(|u| − k)[f · (sign u)− |u|p−1] ≤ 0 ,

which shows that

‖u‖∞ ≤ k ∀σ ∈ [0, 1] . (11)

Now, observe that the boundary value problem (10) satisfies the assumptions of Lemma

1. Indeed, the first equation in (10) can be written under the form

aij(Dv)Dijv + b(x, v) = 0 ,

where the coefficients aij satisfy the ellipticity condition aij(ξ)ξiξj ≥ ε|ξ|2, and the struc-

ture condition (8) is fulfilled: in fact, for |ξ| ≥ µ(|z|) :=
{
(‖f‖∞ + |z|p−1)/ε

}1/3
, there

holds

|b(x, z)| =
∣∣f(x)− |z|p−2z

∣∣ ≤ ‖f‖∞ + |z|p−1

= εµ3(|z|) ≤ εµ(|z|)|ξ|2 ≤ µ(|z|)aij(ξ)ξiξj .

Then, taking (11) into account, Lemma 1 gives a uniform boundary gradient bound:

∃C > 0 such that |Du| ≤ C on ∂Ω ∀σ ∈ [0, 1] . (12)

In turn, together with Theorems 15.6 and 13.2 in [5], (12) gives a uniform C1,γ-bound,

namely

∃C > 0 such that ‖u‖C1,γ(Ω) ≤ C ∀σ ∈ [0, 1] . (13)
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This enables us to apply Lemma 2 and ensures the existence of a solution u ∈ C2,γ(Ω)

of problem (2). On the other hand, a solution of (2) is a critical point of the integral

functional

J(u) =

∫

Ω

[
j(Du) +

1

p
|u|p − fu

]
,

with j(ξ) :=
n∑

i=1

|ξi|mi

mi

+
ε

m−

(
1 + |ξ|2)m−/2. Therefore, the uniqueness of the solution

follows by the strict convexity of the functional J . ¤

Proof of Theorem 1. By [3, Theorem 2], we have u ∈ L∞(Ω). The local Lipschitz

continuity follows from Example 4 of [8] with the choices gi(t) = tmi−1 and ai ≡ 1. (See

also Example 7 of [9]).

The global Lipschitz continuity is only a little harder. We follow the argument in [17,

Theorem 5] (or [18, Theorem 7.2]) except that those references assume that the solution is

continuously differentiable in Ω; in other words, since we already have an interior gradient

bound, we must construct a barrier to deduce a global gradient bound. This may be done

as in the proof of Theorem 2. Indeed, (8) may be satisfied recalling that u is bounded

and that by (3)

δ := min
|ξ|≥1

n∑
i=1

|ξi|mi

mi

> 0 .

To deduce the claimed global bound, fix a point x0 ∈ Ω and set R =dist(x0, ∂Ω). It

follows from the just mentioned barrier argument that |u(x)| ≤ CR in B(x0, R). Then,

the form of the gradient estimate in [8] (with ρ there equal to R here, so the quantity σ/ρ

in the last display on page 518 of [8] is bounded by a known constant) implies that Du is

bounded in B(x0, R/2) by a constant independent of R. Hence u is globally Lipschitz. ¤

Proof of Theorem 3. Since the solution in Theorem 2 is smooth up to the boundary,

we may write the corresponding Pohožaev identity [13]. Then, repeating the same steps

in the proof of [3, Theorem 6] (a suitable double passage to the limit, inspired by a nice

paper of Otani [12]), one obtains Theorem 3. ¤
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