Stepanov's Theorem in Wiener spaces

Luigi AmbrosioEstibalitz Durand-Cartagena *Classe di ScienzeDepartamento de Análisis MatemáticoScuola Normale SuperioreFacultad de Ciencias MatemáticasPiazza Cavalieri 7Universidad Complutense de Madrid56100 Pisa, Italy28040 Madrid, Spaine-mail: l.ambrosio@sns.ite-mail: estibalitzdurand@mat.ucm.es

March 18, 2010

1 Introduction and main results.

One important generalization of Rademacher's theorem due to Stepanov [S], [S1], [F, 3.1.8], states that a function $f : \mathbb{R}^n \to \mathbb{R}$ is differentiable at a.e. $x \in S(f)$ with respect to the Lebesgue measure, where

$$S(f) := \Big\{ x \in \mathbb{R}^n : \operatorname{Lip} f(x) := \limsup_{y \to x} \frac{|f(y) - f(x)|}{|y - x|} < \infty \Big\}.$$

The proof of the theorem is traditionally based on the well-known fact that, for every Lebesgue measurable set $A \subset \mathbb{R}^n$, almost every point of A is point of density, that is,

$$\lim_{r \to 0^+} \frac{\mathscr{L}^n(A \cap B(x, r))}{\mathscr{L}^n(B(x, r))} = 1 \text{ for almost all } x \in A.$$

This result has found many applications in geometric measure theory [F] and in the differentiability of quasiconformal and quasiregular mappings [V].

One generalization of this result has been given in [BRZ], when the domain X is a metric measure space. In this case, the authors deal with metric spaces endowed with a doubling measure and supporting Poincaré-type inequalities. Both conditions ensure the existence of a strong measurable differentiable structure on the space X which provides a differentiation theory for Lipschitz functions in this setting [Ch]. It turns out that for doubling measures, Lebesgue differentiation theorem still holds (see for instance [H, Thm. 1.8]), and so, it is an useful tool when proving Stepanov's theorem as in the classical setting.

^{*}The second author is supported in part by DGES (Spain) Project MTM2009-07848 and by the Grant AP2006-00620. Part of this research was conducted while EDC visited Scuola Normale Superiore di Pisa in February 2010. This author would like to thank this institution for its kind hospitality.

In [Bo], [D] Stepanov's theorem has been generalized to mappings between Banach spaces, when the domain is separable, using the concept of *Aronszajn null* sets. Moreover, the proof of Stepanov's theorem for separable Banach spaces domains is based on Aronszajn's theorem on differentiability of Lipschitz functions, applied to the distance function from the set; this concept is used as a replacement of the density theorem, because no longer a measure is needed to define negligible sets.

Our aim is to obtain an Stepanov-type theorem in the context of abstract Wiener spaces. Recall that an *abstract Wiener space* (E, \mathcal{H}, γ) consists of a separable Banach space E, a gaussian measure γ on E and the Cameron Martin space $\mathcal{H} = \mathcal{H}(\gamma)$ associated to (E, γ) . A *Gaussian measure* γ on E equipped with its Borel σ -algebra \mathscr{B} is a probability measure on (E, \mathscr{B}) such that the law (pushforward measure) of each continuous linear functional on E is Gaussian, that is, $\gamma \circ (e^*)^{-1}$ is a Gaussian measure on \mathbb{R} for each $e^* \in E^* \setminus \{0\}$, possibly a Dirac mass. If we assume, as we shall do, that γ is not supported in a proper subspace of E, then all such measures are Gaussian measures with positive variance. The Cameron Martin space $\mathcal{H} = \mathcal{H}(\gamma)$ is a separable Hilbert space, whose norm is denoted by $\|\cdot\|_{\mathcal{H}}$, compactly and densely embedded into E and uniquely determined by (E, γ) . Whenever E is infinite-dimensional, \mathcal{H} is much smaller than E, since $\gamma(H) = 0$. The precise characterization of \mathcal{H} and its norm are given by the Cameron-Martin theorem (see [B, 2.4.3]): if $v \in E$ and $T_v \gamma(B) = \gamma(B+v)$ is the shifted measure, then $T_v \gamma \ll \gamma$ if and only if $v \in \mathcal{H}$; in addition $\|v\|_{\mathcal{H}}$ can be computed in terms of the densities of $T_{th}\gamma$ with respect to γ , for $t \in \mathbb{R}$. For a complete description of abstract Wiener spaces we refer the reader to [B].

D. Preiss proved in [P] that the density theorem for gaussian measures is no longer true, at least if balls for the norm of E are involved; on the other hand, these balls are not natural in the differential calculus (Sobolev and BV functions, integration by parts, etc.) in Wiener spaces, that involves only directions in \mathcal{H} . For these reasons, we use \mathcal{H} -Gâteaux differentiability (i.e. Gâteaux differentiability, along directions in \mathcal{H}) of \mathcal{H} -distance functions, in the same spirit of [Bo],[D].

The following definition arises naturally in this context.

Definition 1 Let (E, \mathcal{H}, γ) be an abstract Wiener space. We say that a function $f : E \to \mathbb{R}$ is \mathcal{H} - pointwise Lipschitz at x if

$$\operatorname{Lip}_{\mathcal{H}} f(x) := \limsup_{\|h\|_{\mathcal{H}} \to 0} \frac{|f(x+h) - f(x)|}{\|h\|_{\mathcal{H}}} < \infty.$$

Let us denote

$$S(f) := \{ x \in E : f \text{ is } \mathcal{H}- \text{ pointwise Lipschitz at } x \}$$
$$= \{ x \in E : \exists \delta_x > 0, \exists C_x \ge 0 \text{ s.t. } |f(x+h) - f(x)| \le C_x ||h||_{\mathcal{H}}, \forall h \in \mathcal{H}, ||h||_{\mathcal{H}} < \delta_x \}.$$

We will use an useful decomposition of the set S(f) as follows. For each natural number $m \in \mathbb{N}$ consider the set

$$A_m := \left\{ x \in E : |f(x+h) - f(x)| \le m \|h\|_{\mathcal{H}}, \text{ for all } h \in \mathcal{H} \text{ with } \|h\|_{\mathcal{H}} < \frac{1}{m} \right\}.$$
(1)

Then we have that $S(f) = \bigcup_{m \in \mathbb{N}} A_m$ and $A_n \subset A_m$ if $n \leq m$.

Proposition 2 Let $f : E \to \mathbb{R}$ be a Borel function. Then the sets A_m in (1) are γ -measurable. In particular the set S(f) is γ -measurable.

Proof. We claim that the vector space

$$\{g: E \to \mathbb{R}: g(x+h) - g(x) \text{ is Borel in } E \times \mathcal{H}\}$$

contains all Borel functions: indeed, it contains bounded continuous functions and it is stable under monotone equibounded limits. Hence, it contains all Borel functions.

The claim implies that the set

$$\Lambda_m := \left\{ (x,h) \in E \times \mathcal{H} : 0 < \|h\|_{\mathcal{H}} < \frac{1}{m}, \ \frac{|f(x+h) - f(x)|}{\|h\|_{\mathcal{H}}} \ge m \right\}$$

is Borel in $E \times \mathcal{H}$. By [F, 2.2.10] we obtain that Λ_m is Suslin. Since $E \setminus A_m$ is the projection of Λ_m on the first variable, and since Suslin sets are stable under continuous projections, we get that $E \setminus A_m$ is Suslin. By [F, 2.2.12] we conclude that $E \setminus A_m$, and hence A_m , is γ -measurable.

Note that \mathcal{H} -Lipschitzian functions are \mathcal{H} - pointwise Lipschitz γ -a.e. Recall that a Borel mapping $f: E \to \mathbb{R}$ is said to be \mathcal{H} -Lipschitzian at x with constant C if

$$|f(x+h) - f(x)| \le C ||h||_{\mathcal{H}} \qquad \forall h \in \mathcal{H},$$

and that f is \mathcal{H} -Lipschitzian with constant C if f is \mathcal{H} -Lipschitzian at x with constant C for γ -a.e. x.

We state in the next theorem two properties of \mathcal{H} -Lipschitzian functions; the first one corresponds, in this context, to Rademacher's theorem.

Theorem 3 [ES], [B, 5.11.8] Let $f : E \to \mathbb{R}$ be \mathcal{H} -Lipschitzian. Then

- (i) there exists a Borel γ -negligible set $N \subset E$ such that, for all $x \in E \setminus N$, the map $h \mapsto f(x+h)$ is Gâteaux differentiable at 0;
- (ii) there exists a Borel modification \tilde{f} of f in a γ -negligible set which is \mathcal{H} -Lipschitzian at all $x \in E$.

Now we state the main result of the paper, a generalization of Stepanov's theorem in the context of abstract Wiener spaces.

Theorem 4 (Stepanov's theorem) Let (E, H, γ) be an abstract Wiener space and let $f : E \to \mathbb{R}$ be a Borel function. Then the Gâteaux derivative exists γ -a.e. in S(f).

Before proving the main theorem we need to introduce some terminology and preliminary results.

First of all, we recall the definition of \mathcal{H} -distance function which will be useful in the following: for $K \subset E$ Borel we define

$$d_{\mathcal{H}}(x,K) := \begin{cases} \inf\{\|h\|_{\mathcal{H}} : x+h \in K, h \in \mathcal{H}\} & \text{if } (x+\mathcal{H}) \cap K \neq \emptyset \\ \infty & \text{otherwise,} \end{cases}$$

which is easily seen to be \mathcal{H} -Lipschitzian with constant 1, i.e.

$$d_{\mathcal{H}}(x+h,K) \le d_{\mathcal{H}}(x,K) + \|h\|_{\mathcal{H}} \qquad \forall x \in X, \ h \in \mathcal{H}.$$

The measurability of $d_{\mathcal{H}}(\cdot, K)$ is proved in [B, 5.4.10]. Even though the Cameron-Martin space is small in X, we will see that $d_{\mathcal{H}}(\cdot, B)$ is finite γ -a.e. x, provided $\gamma(K) > 0$; if this happens, then Theorem 3 yields that $d_{\mathcal{H}}(\cdot, K)$ is \mathcal{H} -Gâteaux differentiable γ -a.e.

In order to explain why $d_{\mathcal{H}}(\cdot, K)$ is finite γ -a.e. we briefly recall some basic results on the Monge-Kantorovich problem in abstract Wiener spaces, with a singular quadratic cost. Let $\mathcal{P}(E)$ denote the space of probability measures on E. We define a cost function $c : E \times E \to \mathbb{R}_+ \cup \{+\infty\}$ by $c(x, y) = |x - y|_{\mathcal{H}}^2$ if $x - y \in \mathcal{H}$ and $c(x, y) = +\infty$ if $x - y \notin \mathcal{H}$. Observe that, by the continuity of the embedding of \mathcal{H} in E, the function c is lower semicontinuous in $E \times E$.

Monge problem of quadratic cost on E is the following: given $\mu, \nu \in \mathcal{P}(E)$, consider the minimization problem

$$\inf_{T \not\equiv \mu = \nu} \int_E c(x, T(x)) \, d\mu(x).$$

Here the infimum is taken over all Borel maps $T: E \to E$, called transports of μ to ν , such that the push-forward $T_{\sharp}\mu$ of μ by T coincides with ν , i.e. $\nu(A) = \mu(T^{-1}(A))$ for all Borel subsets A of E. This problem has a nice interpretation: if we interpret c(x, y) as the cost of moving a unit mass from x to y, then the above minimization problem simply consists in minimizing the total cost (work) by optimizing the destination T(x) for each x.

The Kantorovich problem is a kind of relaxation of Monge's problem: it consists in finding a probability measure on $E \times E$ which minimizes the function

$$\int_{E\times E} c(x,y) \, d\beta(x,y)$$

among all probability measures β in $E \times E$ whose first and second marginal are respectively μ and ν , i.e., $\mu(A) = \beta(A \times E)$ and $\nu(A) = \beta(E \times A)$ for all Borel sets $A \subset E$. Since c is lower semicontinuous it is not hard to show that the infimum is attained, and its value shall be denoted by $W_2^2(\mu, \nu)$ (the square of the so-called quadratic optimal transportation distance). In [FeU, 3.1,4.1], passing to the limit in the celebrated Talagrand's optimal transportation inequality in finite-dimensional Gaussian spaces [T], the following estimate is proved:

$$W_2^2(\gamma, \rho\gamma) \le 2 \int \rho \ln \rho \, d\gamma.$$
⁽²⁾

Here ρ is any nonnegative function in $L^1(\gamma)$ with $\int \rho \, d\gamma = 1$ and $\rho\gamma \in \mathcal{P}(E)$ is defined by $\rho\gamma(A) = \int_A \rho d\gamma$ for all Borel subsets A of E. In addition, the authors show that the optimal β in Kantorovich problem corresponds to a map T, and therefore also Monge's problem has a solution, but we won't need this fact.

Now, we are in a position to prove that $d_{\mathcal{H}}(\cdot, K)$ is finite γ -a.e. in E.

Lemma 5 Let K be a Borel set in E such that $\gamma(K) > 0$. Then $d_{\mathcal{H}}(\cdot, K)$ is finite γ -a.e. in E. In addition, $\nabla_{\mathcal{H}} d_{\mathcal{H}}(\cdot, K) = 0 \gamma$ -a.e. on K.

Proof. We have to prove that for γ -a.e. $x \in E$ there exists $h \in \mathcal{H}$ such that $x + h \in K$. Let $\rho = \frac{\chi_K}{\gamma(K)} \in L^1(\gamma)$. Observe that $\int_E \rho \, d\gamma = 1$ and that

$$\int_E \rho \ln \rho \, d\gamma = \frac{1}{\gamma(K)} \int_E \chi_K \ln \frac{\chi_K}{\gamma(K)} d\gamma = \ln \frac{1}{\gamma(K)} < \infty.$$

Now, applying the estimation (2) we know that there exists $\beta \in \mathcal{P}(E \times E)$ having γ as first marginal and $\rho\gamma$ as second marginal such that $\int c d\beta$ is finite. We have $y - x \in \mathcal{H} \beta$ -a.e., by the finiteness of the integral, and $y \in K \beta$ -a.e., since the second marginal of β is $\rho\gamma$. It follows that $d_{\mathcal{H}}(\cdot, K)$ is finite β -a.e., and using the fact that γ is the first marginal we obtain the finiteness γ -a.e. of $d_{\mathcal{H}}(\cdot, K)$.

In the sequel we denote by $j: E^* \to E$ the map

$$j(e^*) := \int_E \langle e^*, x \rangle x \, d\gamma(x).$$

It is well-known that this map takes its values in \mathcal{H} and its image is a dense subspace of \mathcal{H} .

Now, we have all the ingredients to prove Theorem 4.

Proof of Theorem 4. The strategy of the proof is the following. First, we show that for a fixed direction $h \in j(E^*)$, f is differentiable along $h \gamma$ -a.e. in S(f). Second, we fix a sequence $(e_i^*) \subset E^*$ and consider the Q-subspaces \mathcal{H}'_n spanned on Q by $j(e_1^*), \ldots, j(e_n^*)$, and also \mathcal{H}_n the corresponding R-subspaces; obviously we can choose (e_i^*) in such a way that $(j(e_i^*))$ are an orthonormal basis of \mathcal{H} . We prove in Step 2 that for γ -a.e. x the derivative along directions in \mathcal{H}_n exists and is Q-linear. Once this is done, we construct in Step 3 a continuous linear functional $\nabla f(x) : \bigcup_n \mathcal{H}'_n \to \mathbb{R}$ for γ -a.e. $x \in S(f)$. Finally, we show in Step 4 that ∇f is the \mathcal{H} -Gateâux derivative of f at γ -a.e. point of S(f).

Step 1. We show that, for a fixed direction $h \in j(E^*)$, f is differentiable along $h \gamma$ -a.e. in S(f). We have to prove that the set

 $N_h := \{ x \in S(f) : f \text{ is not differentiable along } h \text{ at } x \},\$

is γ -negligible. Observe first that the set N_h is γ -measurable. Indeed, for each $t \in \mathbb{R}$, define the function

$$F_t(x) = \frac{f(x+th) - f(x)}{t}$$

Following the proof of Proposition 2, one can check that F_t is γ -measurable, and therefore the functions

$$x \mapsto \liminf_{t \to 0} F_t(x)$$
 and $x \mapsto \limsup_{t \to 0} F_t(x)$

are also γ -measurable. To finish, notice that

$$N_h = \{x \in S(f) : \limsup_{t \to 0} F_t(x) > \liminf_{t \to 0} F_t(x)\}$$

Now, let $x \in E$ and set $D_x = \{t \in \mathbb{R} : x + th \in S(f)\}$. The function $f_x : t \to f(x + th)$ satisfies Lip $f_x(t) \leq \text{Lip}_{\mathcal{H}} f(x + th) < \infty$ in D_x and so, applying the 1-dimensional Stepanov's theorem ([F, 3.1.8]) we obtain that f_x is differentiable at \mathscr{L}^1 -a.e. $t \in D_x$, that is, $\mathscr{L}^1(\{t \in \mathbb{R} : x + th \in N_h\}) = 0$ for all $x \in E$. By [AD, Lem. 1] (or (3) with $B = N_h$ in Step 2 below), we obtain that $\gamma(N_h) = 0$.

Step 2. We fix an integer $n \ge 1$ and prove that the set

$$S^n := \left\{ x \in S(f) : \partial_h f(x) \text{ exists for all } h \in \mathcal{H}'_n \text{ and is } \mathbb{Q}\text{-linear in } \mathcal{H}'_n \right\}$$

has full measure in S(f), i.e. $\gamma(S(f) \setminus S^n) = 0$. Notice that, by Step 1, it is easily seen that S^n is γ -measurable and that for γ -a.e. $x \in S(f)$, $\partial_h f(x)$ exists for all $h \in \mathcal{H}'_n$. Therefore, we need only to check the Q-linearity property, that is, that for γ -a.e. $x \in S(f)$ the map $\mathcal{H}'_n \to \mathbb{R}$, $h \mapsto \partial_h f(x)$ is linear over the field of rationals.

We denote by $\pi: E \to \mathcal{H}_n$ the canonical projection map

$$\pi(x):=\sum_{i=1}^n \langle e_i^*,x\rangle j(e_i^*)$$

and by E_n the kernel of π , so that $E = E_n \bigoplus \mathcal{H}_n$ algebraically. Using the process of decomposing a gaussian measure (see for example [B, 3.10.2]), for all γ -measurable sets B one has

$$\gamma(B) = \int_{E_n} \mathscr{L}^n(B_y) \, d\nu(y),\tag{3}$$

where ν is the image of γ under π and

$$B_y := \left\{ z \in \mathbb{R}^n : \ y + \sum_{i=1}^n z_i \, j(e_i^*) \in B \right\}.$$

Fix $y \in E_n$. Let us observe that $f_{n,y}(z) := f(y + \sum_i z_i j(e_i^*))$ is pointwise Lipschitz on $(S(f))_y$, since $\operatorname{Lip} f_{n,y}(z) \leq \operatorname{Lip}_{\mathcal{H}} f(y + \sum_i z_i j(e_i^*))$. Applying the n-dimensional Stepanov's theorem ([F, 3.1.8]) we obtain that $f_{n,y}$ is differentiable \mathscr{L}^n -a.e. in $(S(f))_y$, so that f is Gateâux differentiable along directions in \mathcal{H}_n at $y + \sum_i z_i j(e_i^*)$ for \mathscr{L}^n -a.e. $z \in (S(f))_y$. Since y is arbitrary we conclude from (3) with $B = S(f) \setminus S^n$ the claimed property of S^n .

Step 3. We construct for $x \in \bigcap_n S^n$ a continuous linear functional $\nabla f(x) : \mathcal{H} \to \mathbb{R}$ with norm less than $\operatorname{Lip} f(x)$ such that $\langle \nabla f(x), h \rangle = \partial_h f(x)$. Indeed, Step 2 provides us with a

continuous Q-linear functional $\nabla f(x) : \bigcup_n \mathcal{H}'_n \to \mathbb{R}$ with norm less than Lip f(x), and by density we have a unique continuous linear extension.

Step 4. We prove that $\nabla f(x)$ is γ -a.e. the \mathcal{H} -Gateâux derivative of f. Now, given $\varepsilon > 0$, fix $m \in \mathbb{N}$ sufficiently large, so that $\gamma(S(f) \setminus A_m) < \varepsilon$ and set $K = A_m$. By the definition of A_m we have

$$\|f(x+h) - f(x)\| \le m \|h\|_{\mathcal{H}} \quad \forall x \in K, h \in \mathcal{H} \text{ with } \|h\|_{\mathcal{H}} < \frac{1}{m}.$$
(4)

Now we consider a point $x_0 \in \bigcap_n S^n$ where $d_{\mathcal{H}}(\cdot, K)$ has null Gateâux \mathcal{H} -derivative and prove that f is Gateâux \mathcal{H} -differentiable at x_0 . Since (by Step 2) γ -a.e. $x_0 \in K$ has this property and $\gamma(S(f) \setminus K) < \varepsilon$, this will conclude the proof.

Fix $h \in \mathcal{H}$, $\delta > 0$ and find $h_k \in \bigcup_n \mathcal{H}'_n$ with $||h - h_k||_{\mathcal{H}} < \delta$. We can find $\bar{t} > 0$ (depending only on h and δ) such that $\delta \bar{t} < 1/(2m)$ and

$$d_{\mathcal{H}}(x_0 + th, K) < \delta|t|, \qquad \forall t \in (-\bar{t}, \bar{t}).$$
(5)

This means that for $t \in (-\bar{t}, \bar{t})$ we can write $x_0 + th = x + u$ with $x \in K$ and $||u||_{\mathcal{H}} < \delta|t|$; we can apply (4) to obtain

$$|f(x_0 + th) - f(x)| = |f(x + u) - f(x)| \le m\delta|t|$$

and analogously

$$|f(x_0 + th_k) - f(x)| = |f(x + u + t(h_k - h)) - f(x)| \le m(\delta + ||h - h_k||_{\mathcal{H}})|t| \le 2m\delta|t|.$$

It follows that $|f(x_0 + th) - f(x_0 + th_k)| \le 3m\delta|t|$ for $|t| < \overline{t}$, hence

$$\limsup_{t \to 0} \left\| \frac{f(x_0 + th) - f(x_0)}{t} - \nabla f(x_0)(h) \right\|$$

can be estimated from above with

$$\limsup_{t \to 0} \left\| \frac{f(x_0 + th_k) - f(x_0)}{t} - \nabla f(x_0)(h_k) \right\| + (3m + \operatorname{Lip}_{\mathcal{H}} f(x_0))\delta.$$

Since $x_0 \in \bigcap_n S^n$, the lim sup above is null. Since δ is arbitrary we conclude.

References

- [AD] L. Ambrosio, E. Durand-Cartagena: Metric differentiability of Lipschitz maps defined on Wiener spaces. *Rendiconti del Circolo Matematico di Palermo* 58 (2009), 1–10.
- [B] V. Bogachev: Gaussian measures. Mathematical Surveys and Monographs, 62. American Mathematical Society, Providence, RI, 1998.

- [BRZ] Z. M. Balogh, K. Rogovin, T. Zürcher: The Stepanov Differentiability Theorem in Metric Measure Spaces. J. Geom. Anal. 14(3) (2004), 405–422.
- [Bo] D. Bongiorno: Stepanoff's theorem in separable Banach spaces. Comment. Math. Univ. Carolin. 39 (1998), 323–335.
- [Ch] J. Cheeger: Differentiability of Lipschitz Functions on metric measure spaces. Geom. Funct. Anal. 9 (1999), 428–517.
- [D] J. Duda: Metric and w*-differentiability of pointwise Lipschitz mappings. Z. Anal. Anwend. 26(3) (2007), 341–362.
- [ES] O. Enchev, D.W. Stroock: Rademacher's Theorem for Wiener Functionals. Ann. Probab. 21(1) (1993), 25–33.
- [F] H. Federer: Geometric measure theory. Grundlehren der mathematischen Wissenschaften, 153. Springer, Berlin-New York, 1969.
- [FeU] D. Feyel, A. S. Üstünel: Monge-Kantorovitch measure transportation and Monge-Ampère equation on Wiener space. Probab. Theory Related Fields 128 (2004), 347–385.
- [H] J. Heinonen: Lectures on Analysis on Metric Spaces. Springer (2001).
- [P] D. Preiss: Gaussian measures and the density theorem. Comment. Math. Univ. Carolin 22(1) (1981), 181–193.
- [S] W. Stepanoff: Über totale Differenzierbarkeit. Math. Ann. 90 (1923), 318–320.
- [S1] W. Stepanoff: Sur les conditions de l'existence de la differentielle totale. Rec. Math. Soc. Math. Moscou 32 (1925), 511–526.
- [T] M. Talagrand: Transportation cost for Gaussian and other product measures. Geom. Funct. Anal. 6 (1996), 587–600.
- [V] J. Väisälä: Lectures on n-dimensional quasiconformal mappings, Lecture Notes in Mathematics 229, Springer-Verlag, Berlin, 1971.