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Abstract. This paper addresses a three-dimensional model for isothermal stress-induced transforma-

tion in shape memory polycrystalline materials in presence of permanent inelastic effects. The basic

features of the model are recalled and the constitutive and the three-dimensional quasi-static evolution

problem are proved to be well-posed. Finally, we discuss the convergence of the model to reduced/former

ones by means of a rigorous Γ-convergence analysis.

1. Introduction

Shape-memory alloys (SMA) are active materials showing an amazing thermo-mechanical behavior.

At high temperatures they are super-elastic, namely they fully recover comparably large strains up to

5-8% (note that ordinary steels plasticize around 1% strains). At lower temperatures, deformations are

permanent but the material can be forced to recover its original shape by means of a thermal cycle. This

is the so called shape memory effect. Additionally, some SMAs are ferromagnetic and large strains can

be activated at a distance by controlling a magnetic field. At the microscopic level, SMAs experience an

abrupt structural phase change at the metallic lattice level between a highly symmetric crystallographic

phase called austenite (mostly cubic, predominant at higher temperatures) and less symmetric phases

called martensites (different variants due to symmetry breaking, energetically favorable at lower temper-

atures). The different geometry of these crystallographic phases is responsible for the macroscopically

observed inelastic strain.

The amazing material behavior of SMAs is nowadays exploited in a variety of different technological

contexts ranging from Aerospace, to Earthquake, to Biomechanical Engineering. New applications of

SMAs are constantly emerging. This fact triggers an intense research in the direction of the efficient

description of the corresponding material behavior. In fact, the Engineering and Materials literature on

SMAs models is vast and SMA behavior has been investigated at all scales (microscopic, mesoscopic with

volume fractions, macroscopic) and by means of a full menagerie of models. The reader should refer to

[2, 11, 12, 22, 23, 25, 27, 29, 31, 36, 53, 49, 52, 54, 55, 57, 59, 60] for some references. On the other

hand, the mathematical treatment of SMA model is comparably less developed. Some comprehensive

results in this sense refer to either the original formulations or modifications of the Frémond [23] and

the Falk, Falk & Konopka [21, 22] models. With no claim of completeness, the reader is referred to

[1, 3, 15, 17, 18, 30, 51, 62] and the related references for a collection of mathematical results.

We shall here focus on a phenomenological model for polycrystalline materials originally advanced

by Souza, Mamiya, & Zouain [58] and subsequently refined by Auricchio & Petrini [7, 8] (the

SA model in the following). The SA model shows some distinctive advantage with respect to former
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contributions in terms both of simplicity (8 easily fitted material parameters are required for the full 3D

thermo-mechanical description) and robustness with respect to discretizations. These desirable features

are distinguishing the SA model with respect to competitors and have recently attracted a growing

attention in the SMA Engineering community. As for the mathematical viewpoint, the isothermal SA

model has been already addressed from the mathematical and numerical-theoretical viewpoints in [6] and

[42, 43], respectively. As regards, the non-isothermal situation, one has to mention the papers [44, 41]

where the temperature of the specimen is assumed to be changing in time, being however given a-priori

and the more recent [32, 33] where a fully coupled thermo-mechanical in one dimension is addressed.

Some extensions of the SA model to non-symmetric material behaviors and ferromagnetic SMAs have

been also considered [10, 13].

Experimental evidence shows that SMAs present permanent inelasticity and degradation effects during

iterated loading and unloading cycles. As an example, Figure 1 from [4] reports the experimental stress-

strain response of a Ni-Ti wire subjected to a strain driven uniaxial cyclic tension test. The material

shows an increasing level of permanent inelasticity that saturates on a stable value after a certain number

of cycles. The same Figure highlights also the occurrence of degradation, namely the lowering of both

activation stresses for the transformation (i.e. the top and the bottom branches of the hysteretic loop).

The relevance of these permanent inelastic effects is crucial as most SMA devices works under cyclic
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Figure 1. Experimental results on a SMA Ni-Ti wire. Cyclic tension test: stress versus

strain up to 6% strain [4].

actions. In this regard, some models taking into account permanent inelastic effects are available [14,

28, 37, 50] but, to our knowledge, the only mathematical results in this direction have been obtained

by Chemetov [16] for the training effect in Frémond’s model [24] and by Kruž́ık & Zimmer [35] in a

rate-independent context.

This paper is focused on a new model for SMAs including permanent inelastic effects. The model

has been introduced in [9] as an extension of the original SA model in the direction of the description

of training and degradation. This extension basically relies on the introduction of an extra (tensorial)

internal variable in order to keep track of the accumulated plastic history. In particular, the good features

of the original SA model (namely its variational structure, simplicity, robustness, and effectiveness) are

here preserved. The model is recalled in Section 2 below whereas numerical experiments and validation

are to be found in the original paper [9].



PERMANENT INELASTIC EFFECTS IN SHAPE MEMORY MATERIALS 3

The main result of this paper is the well-posedness analysis of both the constitutive material relation

(a tensorial nonlinear variational inequality) and the corresponding full quasi-static evolution problem

(i.e., its coupling with the equilibrium system). In particular, we shall frame our analysis within the

by-now classical theory of energetic formulations of rate-independent processes advanced by Mielke &

Theil [47]. By-products of the existence argument are convergence results for time discretizations.

Eventually, we shed light on the connection of the current model with former/reduced ones by means

of a rigorous analysis based on the variational concept of Γ-convergence. In particular, we present some

convergence analysis with respect specific parameters asymptotics and, by letting the permanent plastic

transformation radius to infinity, we show that the model reduces to the original SA model, with no

permanent inelastic effects. On the other hand, some constrained plasticity model can be obtained as an

asymptotic limit of the model. These convergences confirm once again the robustness of the proposed

modeling perspective.

2. The model

We recall here the basic features of our SMA model with permanent inelastic effects. Further details

are reported in the above-mentioned contributions where the reader can find a thorough discussion on

motivation, numerical experiments, and validation.

Let us denote by R
3×3
sym the space of symmetric 3 × 3 tensors endowed with the usual scalar product

a:b = tr(ab) := aijbij (summation convention) and the corresponding norm |a| =
√

a:a. Recall that the

space R3×3
sym can be orthogonally decomposed as R3×3

sym = R
3×3
dev ⊕ R12, where R12 is the subspace spanned

by the identity 2-tensor 12, while R
3×3
dev is the subspace of all deviatoric symmetric 3 × 3 tensors. Given

the displacement u : Ω → R3 from the fixed reference configuration Ω ⊂ R3 we let

ε = (εij) =
1

2

(

ui,j + uj,i

)

be the corresponding linearized strain (ui,j = ∂jui).

Moving within the classical theory of inelasticity at small strains (see [39]), we additively decompose

ε = εel + εin where εel represents the elastic part of the strain and εin is the inelastic part due to the

martensitic transformation in the material. Further, we again decompose the latter as εin = εtr + εpl

into a recoverable (or transformation) part εtr and a non-recoverable permanent (or plastic) part εpl.

Eventually, we have

ε = εel + εtr + εpl.

We prescribe the stored energy (density) of the system E = E(ε, εtr, εpl) in the form

E(ε, εtr, εpl) :=
1

2
(ε − εtr − εpl):C:(ε − εtr − εpl)

+ αT |εtr| + 1

2
εtr:Htr:εtr +

1

2
εpl:Hpl:εpl + εtr:A:εpl + I(εtr + εpl),

where C is the elasticity tensor, H
tr and H

pl are hardening tensors, A is a linear symmetric coupling

tensor, and I is the indicator function of the ball B := {a ∈ R
3×3
dev : |a| ≤ εL} for some εL > 0.

In particular I(a) = 0 if a ∈ B and I(a) = ∞ elsewhere. The material parameter αT depends on

temperature and behaves like β(T − T∗)
+ where β > 0 plays the role of the latent heat related to the

first-order phase transition between austenite and martensite and T∗ is the critical transition temperature

at zero stress. As here we are interested in the isothermal situation, we shall fix the temperature from

the very beginning to be higher than T∗ so that the linear term αT |εtr| occurs yielding the classical

superelestic behavior which is distinctive of shape memory alloys [7, 8, 58]. Note incidentally the latter

behavior is not induced by the plastic evolution of εpl. The first term in the definition of E is the fairly
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classical leading term in linearized (or small strain) plasticity whereas the quadratic terms are describing

a combined hardening effect and the constraining term I(εtr + εpl) refers to the experimental evidence

that the inelastic behavior of the material is confined to some bounded strain proportion. In particular,

εL > 0 measures the maximal inelastic strain which can be obtained via reorientation of martensitic

variants. Note that in the original formulation of [9] the constraining term I(εtr) appears in the energy

whereas here we have I(εtr + εpl) instead in order to bound the full inelastic strain (the experimental

effectiveness of these two options being comparable). Other options such that considering two indicator

functions I(εtr) + I(εpl) in the energy may also be considered with minor modifications.

The constitutive equations of the model read

σ =
∂E

∂ε
, ξtr = − ∂E

∂εtr
, ξpl = − ∂E

∂εpl
, (2.1)

where σ is the stress and ξtr and ξpl are the thermodynamic forces associated with the internal variables

εtr and εpl, respectively.

The model is completed by prescribing a flow rule for the internal variables εtr and εpl. This is achieved

by introducing the positively 1-homogeneous dissipation (density) function D : R
3×3
dev × R

3×3
dev → [0,∞)

D(ε̇tr, ε̇pl) =
(

(Rtr)p|ε̇tr|p + (Rpl)p|ε̇pl|p
)1/p

, p ∈ [1,∞]

where Rtr, Rpl are representing positive transformation radii. As usual, in case p = ∞ the latter means

D(ε̇tr, ε̇pl) = max
{

Rtr|ε̇tr|, Rpl|ε̇pl|
}

.

The generalized normality assumption [39] entail that the constitutive material relation reads








0

∂ε̇trD(ε̇tr, ε̇pl)

∂ε̇plD(ε̇tr, ε̇pl)









+









∂εE(ε, εtr, εpl)

∂εtrE(ε, εtr, εpl)

∂εplE(ε, εtr, εpl)









∋









σ

0

0









. (2.2)

Here, the symbol ∂ is systematically used for the subdifferential (with respect to the indicated variables)

in the sense of Convex Analysis. Along with the above choices for E and D, by fixing for instance p = 1,

the latter constitutive relations read

C(ε − εtr − εpl) = σ,

Rtr∂|ε̇tr| + αT ∂|εtr| + H
trεtr + ∂I(εtr + εpl) ∋ σ − Aεpl,

Rpl∂|ε̇pl| + H
plεpl + ∂I(εtr + εpl) ∋ σ − Aεtr.

Note that the dynamics of the internal parameters is here fully reversible. In particular, the residual

plasticity tensor εpl is not subject to irrevesibility constraints, for simplicity. Let us however mention that

it would be possible to augment the model by adding an extra internal scalar variable, the accumulated

plastic hystory, say, in order to take irreversibility into account.

As for the full quasi-static evolution of the material we shall couple the constitutive relation (2.2) with

the equilibrium equation

div σ + f = 0 in Ω, (2.3)

where f is a given body force, along with the boundary conditions

σn = g on Γtr, u = uDir on ΓDir. (2.4)

Here n is the outer unit normal to the boundary ∂Ω, g is a given traction on Γtr ⊂ ∂Ω, and uDir is a

prescribed displacement on ΓDir = ∂Ω \ Γtr, respectively.

The evolution problems (2.2) and (2.2)-(2.4) consist in a tensorial evolutionary variational inequality,

possibly coupled with a linear elliptic PDE system. As inertia and viscosity effects are neglected, time



PERMANENT INELASTIC EFFECTS IN SHAPE MEMORY MATERIALS 5

plays here the role of a parameter and the whole problem is invariant under time rescalings. Namely,

the model is rate-independent and we frame our analysis in the context of energetic formulations of rate-

independent processes recently proposed by Mielke & Theil [47] (see also [38, 48]). This approach is

based on equivalently reformulating the differential problems as the coupling of a global stability condition

and an energy conservation relation. Relevant definitions and details are given below.

3. Assumptions and preliminaries

We shall now prepare some notation and summarize our assumptions.

3.1. Reference configuration and prescribed boundary displacement. For all u ∈ H1
loc(R

3; R3)

the standard symmetric gradient (∇u + ∇u⊤)/2 of u will be denoted by ε(u) ∈ L2
loc(R

3; R3×3
sym).

Let Ω be a non-empty, connected, bounded, and open subset of R3 with Lipschitz boundary. Let

Γtr, ΓDir ⊂ ∂Ω with Γtr ∪ ΓDir = ∂Ω, Γtr ∩ ΓDir = ∅. We will assume that H2(ΓDir) > 0. This implies

that the well known Korn inequality (see, for instance, [20], Thm. 3.1) holds:

cKorn||u||2H1(Ω;R3) ≤ ||u||2L2(ΓDir;R3) + ||ε(u)||2
L2(Ω;R3×3

sym)
(3.1)

for any u ∈ H1(Ω; R3), and for some constant cKorn > 0. Finally we prescribe some non-homogeneous

Dirichlet boundary condition uDir on ΓDir which we think as the trace of a (not renamed) function

uDir ∈ W 1,1(0, T ; H1(Ω; R3)).

Given any A, B ∈ R3×3×3 (3-tensors), we define the triple contraction product A ∵ B as the scalar

A ∵ B := AijkBijk.

3.2. Elastic energy. Let C be the elastic tensor, i.e. a symmetric and positive definite 4-tensor C ∈
R

3×3×3×3
sym . The stored elastic energy functional C : L2(Ω; R3×3

sym) → [0, +∞) is given by

C(a) :=
1

2

∫

Ω

a:C:a dx.

3.3. Inelastic energy. As for the stored inelastic (transformation and plastic) energy, we shall prescribe

the function F0 : R
3×3
dev × R

3×3
dev → [0, +∞] as

F0(a, b) := αT |a| +
1

2
a:Htr:a +

1

2
b:Hpl:b + a:A:b + I(a + b)

where Htr, Hpl, A ∈ R3×3×3×3
sym are symmetric 4-tensors mapping R

3×3
dev into itself and such that

(a, b) 7→ 1

2
a:Htr:a +

1

2
b:Hpl:b + a:A:b

is positive definite. The stored inelastic energy functional F0 : L2(Ω; R3×3
dev × R

3×3
dev ) → [0, +∞] is defined

as

F0(a, b) :=















∫

Ω

F0(a, b) dx, if F0(a, b) ∈ L1(Ω)

∞ else.

In the following we will also deal with some regularization of F . More precisely we introduce an

approximation parameter ρ > 0 and some functions Fρ ∈ C2,1(R3×3
dev ×R

3×3
dev ) with Fρ pointwise increasing

in ρ, ∇2Fρ bounded and uniformly positive definite, and Fρ(0) = 0. For all ρ ≥ 0, let Fρ : L2(Ω; R3×3
dev ×

R
3×3
dev ) → [0, +∞) be defined by

Fρ(a, b) :=

∫

Ω

Fρ(a, b) dx.
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Note that the original modelling choice from [9] corresponds to the non-regularized case ρ = 0. Still,

the smooth situation ρ > 0 bears some interest as it allows a continuous dependence result and is hence

better suited for numerical implementation.

3.4. State space and stored energy. We specialize the definition of energy density functional, for all

ρ ≥ 0, as

Eρ(ε, ε
tr, εpl) :=

1

2
C(ε − εtr − εpl):(ε − εtr − εpl) + Fρ(ε

tr, εpl).

Let us now define the space

Y := H1(Ω; R3) × H1(Ω; R3×3
dev ) × H1(Ω; R3×3

dev ).

For the sake of taking into account Dirichlet boundary conditions we shall define, for all ū ∈ H1(Ω; R3),

Y(ū) := {(u, εtr, εpl) ∈ Y : u = ū on ΓDir}.

We are now in the position of defining the total stored energy functional Eρ : Y → [0,∞] as

Eρ(u, εtr, εpl) := C(ε(u) − εtr − εpl) + Fρ(ε
tr, εpl) +

ν

2

∫

Ω

|∇εtr|2dx +
ν̄

2

∫

Ω

|∇εpl|2dx,

where ν, ν̄ > 0 are given. The last two terms above are expected to measure some non-local interaction

effect for the internal variables. Indeed, gradients of inelastic strains have already been considered in the

frame of shape-memory materials by Frémond [24] and the reader is referred also to Arndt et al. [3],

Fried & Gurtin [26], Kruž́ık et al. [34], Mielke & Roub́ıček [45], Roub́ıček [56, 57] for examples

and discussions on nonlocal energy contributions.

Before moving on, let us explicitly note that both Eρ and Eρ are uniformly convex, independently of

ρ, with respect to the metric in

Y := R
3×3
sym × R

3×3
dev × R

3×3
dev

and that of Y, respectively. We shall term the corresponding uniform convexity constant with cconv > 0

in the following.

3.5. Load and traction. We assume to be given the body force f ∈ W 1,1(0, T ; L2(Ω; R3)) and a surface

traction g ∈ W 1,1(0, T ; L2(Γtr; R
3)). Then the total load ℓ ∈ W 1,1(0, T ; (H1(Ω; R3))′) for the system is

given by

〈ℓ(t), u〉 :=

∫

Ω

f ·u dx +

∫

Γtr

g·u dH2,

for all u ∈ H1(Ω; R3) and t ∈ [0, T ], where, as usual, 〈·, ·〉 denotes the duality pairing between (H1(Ω; R3))′

and H1(Ω; R3).

3.6. Dissipation potential. Recall that D : R
3×3
dev × R

3×3
dev → [0, +∞) is continuous, positively 1-

homogeneous, and fulfills the triangle inequality

D(a1 + a2, b1 + b2) ≤ D(a1, b1) + D(a2, b2) (3.2)

for all a1, a2, b1, b2 ∈ R
3×3
dev .

Next, we define the corresponding dissipation functional D : L1(Ω; R3×3
dev × R

3×3
dev ) → [0, +∞) as

D(a, b) :=

∫

Ω

D(a, b) dx.



PERMANENT INELASTIC EFFECTS IN SHAPE MEMORY MATERIALS 7

Finally, for any (εtr, εpl) : [0, T ] → R
3×3
dev × R

3×3
dev and [s, t] ⊂ [0, T ] we let

DissD(εtr, εpl; [s, t])

:= sup

{

N
∑

i=1

D(εtr(ti) − εtr(ti−1), ε
pl(ti) − εpl(ti−1)) : {s = t0 < t1 < · · · < tN−1 < tN = t}

}

(3.3)

where the supremum is taken over the set of all finite partitions. An analogous notion DissD(εtr, εpl; [s, t])

based on the functional D for functions of time taking values in L1(Ω; R3×3
dev ×R

3×3
dev ) will also be considered.

4. The constitutive relation

This section focuses on the constitutive relation problem. For a fixed ρ ≥ 0, we aim at determining

conditions on the given stress σ : [0, T ] → R3×3
sym and initial values (ε0, ε

tr
0 , εpl

0 ) in order to possibly solve

the constitutive relation (2.2) along with

(ε(0), εtr(0), εpl(0)) = (ε0, ε
tr
0 , εpl

0 ). (4.1)

The interest for the constitutive relation problem is twofold. From the one hand, a detailed study of

the latter is usually an important step toward the direction of the investigation of the full quasi-static

evolution problem. This is especially true with respect to numerics where generally material updates are

computed only locally. On the other hand, the full quasi-static evolution problem might reduce to the

zero-dimensional constitutive relation problem under specific geometric restrictions or symmetries. This

is particularly the case of the evolution of a shape memory wire which is clamped on one and subject to

a specific time-dependent traction at the other (no distributed forces). By assuming that the material is

homogeneous in space at the initial time, one gets that the same holds for all future times. In particular,

the material evolves according solely to the constitutive relation.

Our first aim is to provide an equivalent version of (2.2), (4.1) in the frame of energetic formulations

[40]. In particular, let us define the set of stable states at time t ∈ [0, T ] as

Sρ(t) :=
{

(ε, εtr, εpl) ∈ Y such that Eρ(ε, ε
tr, εpl) < ∞ and, for all (ε̄, ε̄tr, ε̄pl) ∈ Y,

Eρ(ε, ε
tr, εpl) − σ(t):ε ≤ Eρ(ε̄, ε̄

tr, ε̄pl) − σ(t):ε̄ + D(εtr − ε̄tr, εpl − ε̄pl)
}

.
(4.2)

For an energetic solution we mean an everywhere defined triplet (ε, εtr, εpl) : [0, T ] → Y such that

(ε(0), εtr(0), εpl(0)) = (ε0, ε
tr
0 , εpl

0 ), the function t 7→ σ̇(t):ε(t) is integrable, and, for all t ∈ [0, T ], we have

Global stability:

(ε(t), εtr(t), εpl(t)) ∈ Sρ(t) (4.3)

Energy conservation:

Eρ(ε(t), ε
tr(t), εpl(t)) − σ(t):ε(t) + DissD((εtr, εpl), [0, t])

= Eρ(ε(0), εtr(0), εpl(0)) − σ(0):ε(0) −
∫ t

0

σ̇(s):ε(s) ds. (4.4)

As the energy Eρ is uniformly convex, energetic solutions and classical strong solutions coincide [40]

(σ being sufficiently smooth). We however focus here on the energetic formulation as is enlightens the

variational structure of the problem and is somehow more suited for proving convergence results. In

particular, energetic formulations are quite naturally linked to time discretizations.
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4.1. The incremental problem. In order to construct an energetic solution to the constitutive relation

problem, one considers an implicit time discretization procedure. Let us fix the partition P := {0 = t0 <

t1 < · · · < tN−1 < tN = T } with diameter τ := maxi=1,...,N(ti − ti−1). Moreover, let (ε0, ε
tr
0 , εpl

0 ) ∈ Sρ(0)

be a given initial datum. We solve iteratively the minimum problem

(εi, ε
tr
i , εpl

i ) = Arg Min
(ε,εtr,εpl)∈Y

(

Eρ(ε, ε
tr, εpl) − σ(ti):ε + D(εtr − εtr

i−1, ε
pl − εpl

i−1)
)

(4.5)

for i = 1, . . . , N . This can be uniquely done as, for all (ε̄tr, ε̄pl) ∈ R
3×3
dev ×R

3×3
dev and t ∈ [0, T ], the function

(ε, εtr, εpl) 7→ Eρ(ε, ε
tr, εpl) − σ(t):ε + D(εtr − ε̄tr, εpl − ε̄pl),

is uniformly convex. The latter procedure is generally referred to as the the incremental problem associ-

ated to the constitutive relation.

By using the triangle inequality (3.2) we show that the minimization property (4.5) entails that

(εi, ε
tr
i , εpl

i ) ∈ Sρ(ti) that is

(εi, ε
tr
i , εpl

i ) = Arg Min
(ε̄,ε̄tr,ε̄pl)∈Y

(

Eρ(ε̄, ε̄
tr, ε̄pl) − σ(ti):ε̄ + D(ε̄tr − εtr

i , ε̄pl − εpl
i )
)

(4.6)

for all i = 1, . . . , N . Indeed, for any (ε̄, ε̄tr, ε̄pl) ∈ Y , we get

Eρ(εi, ε
tr
i , εpl

i ) − σ(ti):εi + D(εtr
i − εtr

i−1, ε
pl
i − εpl

i−1)

≤ Eρ(ε̄, ε̄
tr, ε̄pl) − σ(ti):ε̄ + D(ε̄tr − εtr

i−1, ε̄
pl − εpl

i−1)

≤ Eρ(ε̄, ε̄
tr, ε̄pl) − σ(ti):ε̄ + D(ε̄tr − εtr

i , ε̄pl − εpl
i ) + D(εtr

i − εtr
i−1, ε

pl
i − εpl

i−1)

where in the last line we used (3.2). Now the term D(εtr
i − εtr

i−1, ε
pl
i − εpl

i−1) cancels out and we are done.

Finally, note that, given εtr
i and εpl

i , the tensor εi ∈ R3×3
sym minimizing ε 7→ Eρ(ε, ε

tr
i , εpl

i ) − σ(ti):ε is

uniquely determined and depends linearly on εtr
i , εpl

i , and σ(ti). In particular, we have that

εi = L(εtr
i , εpl

i , σ(ti))

for some given linear and continuous operator L : R
3×3
dev ×R

3×3
dev ×R3×3

sym → R3×3
sym. Note that, if (ε, εtr, εpl) ∈

Sρ(t) then necessarily ε = L(εtr, εpl, σ(t)).

4.2. Well-posedness result. We have the following.

Theorem 4.1 (Well-posedness for the constitutive relation). Let ρ ≥ 0. Given σ ∈ W 1,1(0, T ; R3×3
sym) and

(ε0, ε
tr
0 , εpl

0 ) ∈ Sρ(0) there exists an energetic solution t 7→ (ε(t), εtr(t), εpl(t)) to (4.3)-(4.4). Moreover,

t 7→ (ε(t), εtr(t), εpl(t)) ∈ W 1,1(0, T ; Y ).

If ρ > 0, the solution depends continuously on data. In particular, there exists a positive constant

cdep depending just on parameters such that, given two solutions t 7→ (εj(t), ε
tr
j (t), εpl

j (t)) corresponding

to data (σj , ε0,j , ε
tr
0,j, ε

pl
0,j) for j = 1, 2, one has

|(ε1 − ε2)(t)|2 + |(εtr
1 − εtr

2 )(t)|2 + |(εpl
1 − εpl

2 )(t)|2

≤ cdep

(

|ε0,1 − ε0,2|2 + |εtr
0,1 − εtr

0,2|2 + |εpl
0,1 − εpl

0,2|2 + ‖σ1 − σ2‖2
W 1,1(0,t;R3×3

sym)

)

∀t ∈ [0, T ]. (4.7)

In particular, if ρ > 0 the solution is unique.

We shall not provide here a full proof of this result. Indeed, in the smooth situation of ρ > 0, the

result follows at once from the general theory from [40]. The non-smooth case of ρ = 0 the argument is

just slightly more delicate and has been already detailed in the close situation in [6]. We provide here a

sketch of the argument for the reader’s convenience.
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The construction of an energetic solution builds up on the passage to the limit in the time-discretization

diameter in incremental solutions, namely solutions of incremental problems. Assume to be given a

sequence of partitions Pn = {0 = tn0 < · · · < tnNn = T } with diameters τn = maxi=1,...,Nn(tni −tni−1) going

to 0 and solve the corresponding incremental problems (4.5). We denote by (εn, εtr
n , εpl

n ) the incremental

solutions, i.e. the right-continuous piecewise constant interpolants of {(εn
i , εtr,n

i , εpl,n
i )}Nn

i=0 on the partitions

Pn. Moreover, let us denote by τn : [0, T ] → [0, T ] the function τn(t) := tin for t ∈ [tin, ti+1
n ), i =

0, . . . , Nn − 1.

By using the minimality from (4.5) one deduces that

max
t∈[0,T ]

Eρ(εn(t), εtr
n (t), εpl

n (t)) and DissD((εtr
n , εpl

n ), [0, T ]) are bounded independently of n. (4.8)

Now, Helly’s selection principle, entails the possibility of finding a (not relabelled) subsequence of parti-

tions and a non-decreasing function φ : [0, T ] → [0, +∞) such that

(εtr
n (t), εpl

n (t)) → (εtr(t), εpl(t)), DissD((εtr
n , εpl

n ), [0, t]) → φ(t) ∀t ∈ [0, T ], (4.9)

DissD((εtr, εpl), [s, t]) ≤ φ(t) − φ(s) ∀[s, t] ⊂ [0, T ]. (4.10)

Hence, for all t ∈ [0, T ], we finally obtain the unique limit ε(t) = L(εtr(t), εpl(t), σ(τn(t))) since

εn(t) = L(εtr
n (t), εpl

n (t), σ(τn(t))) → L(εtr(t), εpl(t), σ(t)) = ε(t).

It is a standard matter to check the global stability of t 7→ (ε(t), εtr(t), εpl(t)) as the set of stable states

is closed due to the continuity of σ, Eρ, and D.

An upper estimate on the energy comes from choosing (ε, εtr, εpl) = (εi−1, ε
tr
i−1, ε

pl
i−1) in (4.5) and

summing on i as we have

Eρ(εn(t), εtr
n (t), εpl

n (t)) − σ(τn(t)):εn(t) + DissD((εtr
n (t), εpl

n (t)), [0, τn(t)])

≤ Eρ(ε0, ε
tr
0 , εpl

0 ) − σ(0):ε0 −
∫ τn(t)

0

σ̇:εn ds.

The lower energy estimate is instead a consequence of global stability (4.3) in the same spirit of [40, Prop.

5.7]. Hence, the absolute continuity of t 7→ (ε(t), εtr(t), εpl(t)) ensues uniformly with respect to n and ρ.

As a consequence, (εtr
n , εpl

n ) → (εtr, εpl) uniformly by the Ascoli-Arzelà Theorem and

εn = L(εtr
n , εpl

n , σn) → L(εtr, εpl, σ) = Lε uniformly in [0, T ]

by the continuity of L. Moreover, the convergence of energy and dissipation can also be achieved. We

summarize these facts in the following.

Lemma 4.2 (Convergence of incremental solutions). Let (εn, εtr
n , εpl

n ) denote the (unique) incremental

solutions related to a sequence of partitions Pn with diameters τn = maxi=1,...,Nn(tni − tni−1) going to

0. Then, we have that, at least for a not relabeled subsequence (the whole sequence for ρ > 0), for all

t ∈ [0, T ],

(εn(t), εtr
n (t), εpl

n (t)) → (ε(t), εtr(t), εpl(t)), (4.11)

DissD((εtr
n , εpl

n ), [0, t]) → DissD((εtr, εpl), [0, t]), (4.12)

Eρ(εn(t), εtr
n (t), εpl

n (t)) → Eρ(ε(t), ε
tr(t), εpl(t)) (4.13)

where (ε, εtr, εpl) in an energetic solution.

Let us now provide a uniform bound on the continuity modulus of t 7→ (εtr(t), εpl(t)) by exploiting

uniform convexity and global stability. Let [s, t] ⊂ [0, T ] be given. Since (ε(s), εtr(s), εpl(s)) ∈ Sρ(s), we
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get

cconv(|ε(t) − ε(s)|2 + |εtr(t) − εtr(s)|2 + |εpl(t) − εpl(s)|2)
≤ Eρ(ε(t), ε

tr(t), εpl(t)) − σ(s) : ε(t) + D(εtr(t) − εtr(s), εpl(t) − εpl(s))

− Eρ(ε(s), ε
tr(s), εpl(s)) + σ(s) : ε(s)

≤ Eρ(ε(t), ε
tr(t), εpl(t)) − σ(t) : ε(t) + DissD((εtr, εpl), [s, t]) − Eρ(ε(s), ε

tr(s), εpl(s))

+ σ(s) : ε(s) − (σ(s) − σ(t)) : ε(t)

≤ −
∫ t

s

σ̇(r) : (ε(r) − ε(t)) dr

where cconv is the uniform convexity constant of Eρ. By applying the Gronwall Lemma we deduce that

|ε(t) − ε(s)| + |εtr(t) − εtr(s)| + |εpl(t) − εpl(s)| ≤ cabs

∫ t

s

|σ̇(r)| dr,

for some cabs > 0 depending only on cconv.

The continuous dependence proof follows at once by repeating the argument of [6, Thm. 3.4]. Moreover,

in the very same spirit of [6, Lemma 3.6], in case ρ > 0 we are in the position of proving an a priori error

bound on the discretization. In particular, we have the following.

Lemma 4.3 (Error bound). Let ρ > 0. Then, there exists a positive constant cerr depending on data

such that

max
t∈[0,T ]

(

|(ε − εn)(t)| + |(εtr − εtr
n )(t)| + |(εpl − εpl

n )(t)|
)

≤ cerr

√
τ.

Moreover, for ρ > 0, the convergence in (4.11) is uniform in time.

5. The quasi-static evolution problem

The results of Section 4 can be reproduced at the level of the full three-dimensional quasi-static

evolution problem ensuing from the combination of the constitutive relation (2.2) and the corresponding

initial condition (4.1) with the quasi-static equilibrium equation (2.3) along with the boundary conditions

(2.4).

By recalling the notation and assumptions of Section 3, we shall start by making precise the notion

of energetic solution of the quasi-static evolution problem. Energetic solutions are everywhere defined

functions t ∈ [0, T ] 7→ (u(t), εtr(t), εpl(t)) ∈ Y(uDir(t)) such that (u(0), εtr(0), εpl(0)) = (u0, ε
tr
0 , εpl

0 ) for

some given initial datum (u0, ε
tr
0 , εpl

0 ) ∈ Y(uDir(0)), the function t 7→ 〈ℓ̇(t), u(t)〉 is integrable and, for any

t ∈ [0, T ], we have

Global stability:

(u(t), εtr(t), εpl(t)) ∈
{

(u, εtr, εpl) ∈ Y(uDir(t)) such that

Eρ(u, εtr, εpl) < ∞ and, for all (ū, ε̄tr, ε̄pl) ∈ Y(uDir(t)),

Eρ(u, εtr, εpl) − 〈ℓ(t), u〉 ≤ Eρ(ū, ε̄tr, ε̄pl) − 〈ℓ(t), ū〉 + D(εtr − ε̄tr, εpl − ε̄pl)
}

. (5.1)

Energy conservation:

Eρ(u(t), εtr(t), εpl(t)) − 〈ℓ(t), u(t)〉 + DissD((εtr, εpl), [0, t])

= Eρ(u(0), εtr(0), εpl(0)) − 〈ℓ(0), u(0)〉 −
∫ t

0

〈ℓ̇(s), u(s)〉ds. (5.2)
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In case ρ > 0, the energy functional Eρ is uniformly convex and smooth and the analysis of the

latter energetic formulation follows from the general theory of [40]. Some extra care is needed in case

ρ = 0 where smoothness is lost. In this case, the analysis of Section 4 can be adapted to the quasi-static

evolution problem, possibly referring to [6] for analogous computations. Alternatively, one can rely on the

asymptotic analysis of the forthcoming Subsection 6.4 and deduce the existence of an energetic solution

for ρ = 0 from the forthcoming Theorem 6.3.

5.1. Well-posedness result. First of all, we perform a change of variables in (5.1)-(5.2) in order to

reduce to the case of homogeneous Dirichlet boundary conditions. Indeed, we let v = u−uDir ∈ Y0 := Y(0)

and compute that

Eρ(u, εtr, εpl) − 〈ℓ, u〉

= Eρ(v, εtr, εpl) +

∫

Ω

C(ε(v) − εtr − εpl):ε(uDir) − 〈ℓ, v〉 + C(ε(uDir)) − 〈ℓ, uDir〉,

we conclude that (u, εtr, εpl) is an energetic solution of (5.1)-(5.2) if and only if (v, εtr, εpl) : t ∈
[0, T ] 7→ Y0 is such that (v(0), εtr(0), εpl(0)) = (v0, ε

tr
0 , εpl

0 ) = (u0 − uDir(0), εtr
0 , εpl

0 ), the function t 7→
〈 ˙̃
ℓ(t), (v(t), εtr(t), εpl(t))〉 is integrable, and, for all t ∈ [0, T ],

Global stability in the variable v:

(v(t), εtr(t), εpl(t)) ∈ Sρ(t) :=
{

(v, εtr, εpl) ∈ Y0 such that Eρ(v, εtr, εpl) < ∞

and, for all (v̄, ε̄tr, ε̄pl) ∈ Y0,

Eρ(v, εtr, εpl) − 〈ℓ̃(t), (v, εtr, εpl)〉 ≤ Eρ(v̄, ε̄tr, ε̄pl) − 〈ℓ̃(t), (v̄, ε̄tr, ε̄pl)〉 + D(εtr − ε̄tr, εpl − ε̄pl)
}

, (5.3)

Energy conservation in the variable v:

Eρ(v(t), εtr(t), εpl(t)) − 〈ℓ̃(t), (v(t), εtr(t), εpl(t))〉 + DissD((εtr, εpl), [0, t])

= Eρ(v(0), εtr(0), εpl(0)) − 〈ℓ̃(0), (v(0), εtr(0), εpl(0))〉 −
∫ t

0

〈 ˙̃ℓ(s), (v(s), εtr(s), εpl(s))〉ds, (5.4)

where ℓ̃ : [0, T ] → Y ′
0 is defined, for all t ∈ [0, T ], as

〈ℓ̃(t), (v, εtr, εpl)〉 := −
∫

Ω

C(ε(v) − εtr − εpl) : ε(uDir) + 〈ℓ(t), v〉 ∀(v, εtr, εpl) ∈ Y0, t ∈ [0, T ].

Notice that uDir ∈ W 1,1(0, T ; H1(Ω; R3)) and ℓ ∈ W 1,1(0, T ; (H1(Ω; R3))′) entail that ℓ̃ ∈ W 1,1(0, T ;Y ′
0).

Now we are in position of stating our well-posedness result.

Theorem 5.1 (Well-posedness for the quasi-static evolution problem). Let ρ ≥ 0. Given ℓ̃ ∈ W 1,1(0, T ;Y ′
0)

and (v0, ε
tr
0 , εpl

0 ) ∈ Sρ(0), there exists an energetic solution (v, εtr, εpl) of the quasi-static evolution problem

(5.3)-(5.4). Moreover, (v, εtr, εpl) ∈ W 1,1(0, T ;Y0).

If ρ > 0, the solution depends continuously on data. In particular, there exists a positive constant

cdep,2 depending just on parameters such that, given two solutions t 7→ (vj(t), ε
tr
j (t), εpl

j (t)) corresponding

to data (ℓ̃j , v0,j , ε
tr
0,j, ε

pl
0,j) for j = 1, 2, one has

‖(v1 − v2)(t)‖2
H1(Ω;R3) + |(εtr

1 − εtr
2 )(t)|2

H1(Ω;R3×3

dev
)
+ |(εpl

1 − εpl
2 )(t)|2

H1(Ω;R3×3

dev
)

≤ cdep,2

(

|v0,1 − v0,2|2H1(Ω;R3) + |εtr
0,1 − εtr

0,2|2H1(Ω;R3×3

dev
)

+ |εpl
0,1 − εpl

0,2|2H1(Ω;R3×3

dev
)
+ ‖ℓ̃1 − ℓ̃2‖2

W 1,1(0,t;Y′

0)

)

∀t ∈ [0, T ]. (5.5)

In particular, if ρ > 0 the solution is unique.
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As already mentioned, we shall not provide a full proof of the latter result. For the sake of definite-

ness, we however present here the corresponding incremental problems which read: given a sequence of

partitions Pn = {0 = tn0 < tn1 < · · · < tnNn−1 < tnNn = T } with diameters τn = maxi=1,...,Nn(tni − tni−1)

going to 0, find

(vn
i , εtr,n

i , εpl,n
i ) = Arg Min

(v,εtr,εpl)∈Y0

(

Eρ(v, εtr, εpl) − 〈ℓ̃(tni ), (v, εtr, εpl)〉 + D(εtr − εtr,n
i−1 , εpl − εpl,n

i−1 )
)

(5.6)

for i = 1, . . . , Nn along with (vn
0 , εtr,n

0 , εpl,n
0 ) = (v0, ε

tr
0 , εpl

0 ). The latter minimum problems are uniquely

solvable as the underlying functionals are uniformly convex.

By denoting by (vn, εtr
n , εpl

n ) the incremental solution (see Section 4) and along the lines of Lemmas

4.2-4.3 above we also have the following.

Lemma 5.2 (Convergence of incremental solutions). Let (vn, εtr
n , εpl

n ) denote the (unique) incremental

solutions of (5.6) related to a sequence of partitions Pn with diameters τn = maxi=1,...,Nn(tni − tni−1)

going to 0. Then we have that, at least for a not relabeled subsequence (the whole sequence for ρ > 0),

for all t ∈ [0, T ],

(vn(t), εtr
n (t), εpl

n (t)) → (v(t), εtr(t), εpl(t)), (5.7)

DissD((εtr
n , εpl

n ), [0, t]) → DissD((εtr, εpl), [0, t]), (5.8)

Eρ(un(t), εtr
n (t), εpl

n (t)) → Eρ(u(t), εtr(t), εpl(t)) (5.9)

where (v, εtr, εpl) in an energetic solution.

The main difference here from the proofs of Lemmas 4.2-4.3 is that the strong convergence in (5.7)

cannot be inferred by compactness (which would indeed yield weak convergence only) but is recovered

from the convergence of energies (5.9) as the functional Eρ is uniformly convex [61, Thm. 2.2, p. 252].

6. Asymptotic analysis

In this last section we shall prove some asymptotic results connecting the present model with former

ones. In particular, we are mainly concerned with the limits Rtr → ∞ and Rpl → ∞ which correspond

to the pure plastic and pure SMA limits, respectively, and the regularization limit ρ → 0.

By formally taking Rtr = ∞, we have that the energetic solution of the constitutive material relation

(2.2) and (4.1) with εtr
0 = 0 is indeed solving the constrained linearized plasticity problem

(

0

∂ε̇plD(0, ε̇pl)

)

+

(

∂εEρ(ε, 0, εpl)

∂εplEρ(ε, 0, εpl)

)

∋
(

σ

0

)

, (ε(0), εpl(0)) = (ε0, ε
pl
0 ). (6.1)

On the other hand, the formal choice Rpl = ∞ with εpl
0 = 0 consists in solving the original SA model

without permanent inelastic effects [6]. Namely,

(

0

∂ε̇trD(ε̇tr, 0)

)

+

(

∂εEρ(ε, ε
tr, 0)

∂εtrEρ(ε, εtr, 0)

)

∋
(

σ

0

)

, (ε(0), εtr(0)) = (ε0, ε
tr
0 ). (6.2)

The aim of this section is to provide a rigorous analysis of the latter limits as well as the discussion of

the limit ρ → 0 in the regularization parameter.



PERMANENT INELASTIC EFFECTS IN SHAPE MEMORY MATERIALS 13

6.1. The general strategy. In the following, we systematically exploit the theory of [46] where sufficient

conditions in order to possibly pass to the limit within a sequence of energetic formulations are discussed.

By referring specifically to the notation of the quasi-static evolution problem, assume to be given a

sequence of functionals (Ek,Dk) for k ∈ N ∪ {∞} and assume, for simplicity, that (v0, ε
tr
0 , εpl

0 ) = (0, 0, 0)

and that the load ℓ and the boundary datum uDir are fixed independently of k (more elaborated situations

may be discussed with little additional intricacy).

Let now (vk, εtr
k , εpl

k ) be an energetic solution associated to the pair (Ek,Dk) for k ∈ N and assume

that Ek are uniformly convex in Y0, independently of k, and

E∞ ≤ Γ–liminf
k→∞

Ek w.r.t. the weak topology in Y0, (6.3)

D∞ ≤ Γ–liminf
k→∞

Dk w.r.t. the strong topology in (L1(Ω; R3×3
dev ))2, (6.4)

where we have used a standard notation for the lim inf of a sequence of functionals with respect to

Γ-convergence. The reader is referred to [19] for relevant materials and a collection of results.

The corresponding sets of stable states Sk(t) depending on k ∈ N∪ {∞} and t ∈ [0, T ] are defined via

Sk(t) :=
{

(v, εtr, εpl) ∈ Y0 such that Ek(v, εtr, εpl) < ∞ and, for all (v̄, ε̄tr, ε̄pl) ∈ Y0, we have

Ek(v, εtr, εpl) − 〈ℓ̃(t), (v, εtr, εpl)〉 ≤ Ek(v̄, ε̄tr, ε̄pl) − 〈ℓ̃(t), (v̄, ε̄tr, ε̄pl)〉 + Dk(εtr − ε̄tr, εpl − ε̄pl)
}

.

Given any m 7→ km ∈ N increasing and unbounded, the sequence (tm, vkm
, εtr

km
, εpl

km
)m∈N is called a

stable sequence if

(vkm
, εtr

km
, εpl

km
) ∈ Skm(tm) and sup

m∈N

Ekm(vkm
, εtr

km
, εpl

km
) < ∞.

For the sake of notational simplicity we shall let

Wk(t, v, εtr, εpl) := Ek(v, εtr, εpl) − 〈ℓ̃(t), (v, εtr, εpl)〉 for k ∈ N ∪ {∞}.
We shall assume that the set of stable states shows some specific upper semicontinuity property [46,

(2.11)]. In particular, we ask that for each stable sequence (tm, vkm
, εtr

km
, εpl

km
) → (t, v, εtr, εpl) weakly in

[0, T ] × Y0 and for each (ṽ, ε̃tr, ε̃pl) ∈ Y0 there exist (ṽkm
, ε̃tr

km
, ε̃pl

km
) ∈ Y0 (not necessarily converging as

m → ∞) such that

lim sup
m→∞

(

Wkm(tm, ṽkm
, ε̃tr

km
, ε̃pl

km
) + Dk(εtr

km
− ε̃tr

km
, εpl

km
− ε̃pl

km
) −Wkm(tm, vkm

, εtr
km

, εpl
km

)
)

≤ W∞(t, ṽ, ε̃tr, ε̃pl) + D∞(εtr − ε̃tr, εpl − ε̃pl) −W∞(t, v, εtr, εpl). (6.5)

By assuming the Γ–liminf relations (6.3)-(6.4) and the upper semicontinuity condition (6.5), the result

[46, Theorem 3.1] ensures that, at least for some relabeled subsequence,

(vk, εtr
k , εpl

k ) → (v∞, εtr
∞, εpl

∞) at least pointwise in time and weakly in Y0

where (v∞, εtr
∞, εpl

∞) is an energetic solution associated to (E∞,D∞). We shall specifically use this result

in the following.

6.2. The limit Rtr → ∞. Let us firstly concentrate on the pure plastic limit by letting Rtr → ∞. In

this case, the convergence result reads as follows.

Theorem 6.1 (Plastic limit). Let (vk, εtr
k , εpl

k ) be energetic solutions of the quasi-static evolution problem

(5.3)-(5.4) for given ℓ ∈ W 1,1(0, T ;Y ′) and (v0, ε
tr
0 , εpl

0 ) = (0, 0, 0) along with the choice

Ek = Eρ, Dk(a, b) = D(ka, b) ∀a, b ∈ L1(Ω; R3×3
dev ).
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Then, we have that, for all t ∈ [0, T ],

(vk(t), εpl
k (t)) → (v∞(t), εpl

∞(t)) weakly in H1(Ω; R3) × H1(Ω; R3×3
dev )

where (v∞, εpl
∞) is an energetic solution of the constrained linearized plasticity problem (6.1). In case

ρ > 0 the whole sequence converges.

Proof. Let us observe that

Ek Γ→ Eρ w.r.t. the weak topology of Y0,

Dk(a, b)
Γ→ D∞(a, b) :=

{

Rpl|b| a = 0

∞ a 6= 0
w.r.t. the strong topology of (L1(Ω; R3×3

dev ))2.

The first convergence obviously follows from the lower semicontinuity of Eρ. As for the second, for all

(ak, bk) → (a, b) strongly in (L1(Ω; R3×3
dev ))2 we have that

lim inf
k→∞

Dk(ak, bk) < ∞ =⇒ a = 0.

Hence, we have that

D∞(a, b) ≤ lim inf
k→∞

Dk(ak, bk).

On the other hand, Dk → D∞ pointwise and the above mentioned Γ-convergence follows.

In the spirit of Subsection 6.1, in order to possibly pass to the limit in the sequence of energetic

solutions (vk, εpl
k , εtr

k ) we shall now check for the upper semicontinuity condition (6.5). Let us start by

letting

Q := {(a, b) ∈ R
3×3
dev × R

3×3
dev : |a + b| ≤ εL}.

The set Q is non-empty, convex, and closed. We let π : R
3×3
dev × R

3×3
dev → Q be the standard projection

and assume ν = ν̄ for simplicity (the case ν 6= ν̄ would require to project with respect to a different

metric). Moreover, let π1 : R
3×3
dev × R

3×3
dev → R

3×3
dev and π2 : R

3×3
dev × R

3×3
dev → R

3×3
dev be the projections on

the first and the second component, respectively. Let the stable sequence (tm, vkm
, εtr

km
, εpl

km
) converges

to (t, v, εtr, εpl) weakly in [0, T ] × Y0 and fix (ṽ, ε̃tr, ε̃pl) ∈ Y0. We shall define

(ṽkm
, ε̃tr

km
, ε̃pl

km
) := (ṽ, π(εtr

km
− εtr + ε̃tr, εpl

km
− εpl + ε̃pl)).

Let us fix, for notational simplicity

am := π1(π(εtr
km

− εtr + ε̃tr, εpl
km

− εpl + ε̃pl)), bm := π2(π(εtr
km

− εtr + ε̃tr, εpl
km

− εpl + ε̃pl)).

Note that clearly (ε̃tr
km

, ε̃pl
km

) ∈ Q and (ṽkm
, ε̃tr

km
, ε̃pl

km
) → (ṽ, ε̃tr, ε̃pl) weakly in Y0 owing to the strong

continuity of π on (L2(Ω; R3×3
dev ))2 and the fact that

|∇π(εtr
km

− εtr + ε̃tr, εpl
km

− εpl + ε̃pl)| ≤ |∇(εtr
km

− εtr + ε̃tr, εpl
km

− εpl + ε̃pl)| a.e. in Ω (6.6)

as the projection is contractive.

We shall now check that the choice for (ṽkm
, ε̃tr

km
, ε̃pl

km
) fulfills (6.5). Indeed, we are just interested in

the situation when εtr = ε̃tr almost everywhere as, if this was not the case, the right hand side of (6.5)

is ∞. Let us observe that

Dkm(εtr
km

− ε̃tr
km

, εpl
km

− ε̃pl
km

) = Dkm(εtr
km

− am, εpl
km

− bm)

(εtr
km

,εpl

km
)∈Q

≤ Dkm(εtr − ε̃tr, εpl − ε̃pl) = D∞(0, εpl − ε̃pl). (6.7)
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As for the autonomous part of the energy we compute

Ekm(ṽkm
, ε̃tr

km
, ε̃pl

km
) − Ekm(vkm

, εtr
km

, εpl
km

) = Eρ(ṽ, am, bm) − Eρ(vkm
, εtr

km
, εpl

km
)

= C(ε(ṽ) − am − bm) + Fρ(am, bm) +
ν

2

∫

Ω

|∇am|2dx +
ν

2

∫

Ω

|∇bm|2dx

− C(ε(vkm
) − εtr

km
− εpl

km
) −Fρ(ε

tr
km

, εpl
km

) − ν

2

∫

Ω

|∇εtr
km

|2dx − ν

2

∫

Ω

|∇εpl
km

|2dx (6.8)

By the strong convergence (am, bm) → (ε̃tr, ε̃pl) in (L2(Ω; R3×3
dev ))2 we get

lim sup
m→+∞

(

C(ε(ṽ) − am − bm) − C(ε(vkm
) − εtr

km
− εpl

km
)
)

≤ C(ε(ṽ) − ε̃tr − ε̃pl) − C(ε(v) − εtr − εpl).

Moreover, also exploiting the lower semicontinuity of Fρ with respect to the weak topology of

L2(Ω; R3×3
dev × R

3×3
dev ) and its continuity with respect to the strong one, we obtain

lim sup
m→∞

(

Fρ(am, bm) −Fρ(ε
tr
km

, εpl
km

)
)

= lim sup
m→∞

(

Fρ(ε
tr
km

− εtr + ε̃tr, εpl
km

− εpl + ε̃pl) −Fρ(ε
tr
km

, εpl
km

)
)

≤ Fρ(ε̃
tr, ε̃pl) −Fρ(ε

tr, εpl).

Finally, the quadratic terms in (6.8) can be handled as follows

ν

2

∫

Ω

|∇am|2dx +
ν

2

∫

Ω

|∇bm|2dx − ν

2

∫

Ω

|∇εtr
km

|2dx − ν

2

∫

Ω

|∇εpl
km

|2dx

(6.6)

≤ ν

2

∫

Ω

|∇(εtr
km

− εtr + ε̃tr)|2dx +
ν

2

∫

Ω

|∇(εpl
km

− εpl + ε̃pl)|2dx

− ν

2

∫

Ω

|∇εtr
km

|2dx − ν

2

∫

Ω

|∇εpl
km

|2dx

=
ν

2

∫

Ω

|∇ε̃tr|2dx +
ν

2

∫

Ω

|∇εtr|2dx + ν

∫

Ω

∇ε̃tr
∵ ∇(εtr

km
− εtr)dx − ν

∫

Ω

∇εtr
km

∵ ∇εtrdx

+
ν

2

∫

Ω

|∇ε̃pl|2dx +
ν

2

∫

Ω

|∇εpl|2dx + ν

∫

Ω

∇ε̃pl
∵ ∇(εpl

km
− εpl)dx − ν

∫

Ω

∇εpl
km

∵ ∇εpldx

so that, by passing to the lim sup, we have

lim sup
m→∞

(

ν

2

∫

Ω

|∇am|2dx +
ν

2

∫

Ω

|∇bm|2dx − ν

2

∫

Ω

|∇εtr
km

|2dx − ν

2

∫

Ω

|∇εpl
km

|2dx

)

≤ ν

2

∫

Ω

|∇ε̃tr|2dx +
ν

2

∫

Ω

|∇ε̃pl|2dx − ν

2

∫

Ω

|∇εtr|2dx − ν

2

∫

Ω

|∇εpl|2dx.

Eventually, we can pass to the lim sup in (6.8) and, using also (6.7), conclude that

lim sup
m→∞

(

Ekm(ṽkm
, ε̃tr

km
, ε̃pl

km
) + Dk(εtr

km
− ε̃tr

km
, εpl

km
− ε̃pl

km
) − Ekm(vkm

, εtr
km

, εpl
km

)
)

≤ E∞(ṽ, ε̃tr, ε̃pl) + D∞(εtr − ε̃tr, εpl − ε̃pl) − E∞(v, εtr, εpl).

As the treatment of the time-dependent terms is immediate due to the continuity of ℓ̃, we readily conclude

for the limsup condition (6.5) and the assertion follows from the general theory in [46]. �

6.3. The limit Rpl → ∞. By passing to the limit as Rpl → 0 starting from εpl = 0 no permanent

inelastic evolution takes place and the model reduces to the original SA one. More precisely, we have the

following.
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Theorem 6.2 (Shape memory limit). Let (vk, εtr
k , εpl

k ) be energetic solutions of the quasi-static evolution

problem (5.3)-(5.4) for given ℓ ∈ W 1,1(0, T ;Y ′) and (v0, ε
tr
0 , εpl

0 ) = (0, 0, 0) along with the choice

Ek = Eρ, Dk(a, b) = D(a, kb) ∀a, b ∈ L1(Ω; R3×3
dev ).

Then, we have that

(vk(t), εtr
k (t)) → (v∞(t), εtr

∞(t)) weakly in H1(Ω; R3) × H1(Ω; R3×3
dev )

where (v∞, εtr
∞) is an energetic solution of the original SA model (6.2). In case ρ > 0 the whole sequence

converges.

We report here no proof of the latter as it may be easily obtained by suitably modifying the argument

for Theorem 6.1.

6.4. The limit ρ → 0. Let us now comment on the possibility of passing to the limit as the regularization

parameter ρ → 0. One shall recall that the original modeling choice is ρ = 0 whereas the interest in

considering the smooth situation ρ > 0 is related to uniqueness and discretizations. We prove the

following.

Theorem 6.3 (Regularization limit). Let (vk, εtr
k , εpl

k ) be energetic solutions of the quasi-static evolution

problem (5.3)-(5.4) for given ℓ ∈ W 1,1(0, T ;Y ′) and (v0, ε
tr
0 , εpl

0 ) = (0, 0, 0) along with the choice

Ek = E1/k, Dk = D.

Then, we have that

(vk(t), εtr
k (t), εpl

k (t)) → (v∞(t), εtr
∞(t), εpl

∞(t)) weakly in Y0

where (v∞, εtr
∞, εpl

∞) is an energetic solution associated with the pair (E0,D).

Proof. This argument is very close to that of Theorem 6.1. Note that

Dk Γ→ D w.r.t. the strong topology in (L1(Ω; R3×3
dev ))2, Ek Γ→ E0 w.r.t. the weak topology in Y0

the first convergence being ensured by lower semicontinuity and the second by the monotone pointwise

convergence of Fρ to F0.

Let now the stable sequence (tm, vkm
, εtr

km
, εpl

km
) converging to (t, v, εtr, εpl) weakly in [0, T ] × Y0 be

given and fix (ṽ, ε̃tr, ε̃pl) ∈ Y0. Exactly as in the proof of Theorem 6.1, the recovery sequence

(ṽkm
, ε̃tr

km
, ε̃pl

km
) := (ṽ, π(εtr

km
− εtr + ε̃tr, εpl

km
− εpl + ε̃pl))

turns out to be well-suited for the sake of proving (6.5). Indeed,

Dkm(εtr
km

− ε̃tr
km

, εpl
km

− ε̃pl
km

) = D(εtr
km

− am, εpl
km

− bm)

(εtr
km

,εpl

km
)∈Q

≤ D(ε̃tr − εtr, ε̃pl − εpl).

As for the energy, we have

lim sup
m→∞

(

Ekm(ṽkm
, ε̃tr

km
, ε̃pl

km
) − Ekm(vkm

, εtr
km

, εpl
km

)
)

≤ lim sup
m→∞

E0(ṽkm
, ε̃tr

km
, ε̃pl

km
) − lim inf

m→∞
Ekm(vkm

, εtr
km

, εpl
km

)
)

≤ E0(ṽ, ε̃tr, ε̃pl) − E0(v, εtr, εpl) (6.9)

where we used the monotone convergence of Fρ to F0, the lower semicontinuity of F0 with respect to the

weak topology of L2(Ω; R3×3
dev ×R

3×3
dev ) and its continuity with respect to the strong one whenever restricted

to its effective domain, and the argument on the gradient terms in the energy from the proof of Theorem
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6.1. Once again, the time-dependent linear terms make no trouble and we have (6.5). Eventually, the

convergence statement follows from the general theory of [46]. �

Acknowledgment. The authors are gratefully indebted to the anonymous Referees for their careful

reading of the manuscript.

References

1. T. Aiki: A model of 3D shape memory alloy materials, J. Math. Soc. Japan, 57 (2005), 3:903–933.

2. S. Antman, J.L. Ericksen, D. Kinderlehrer and I. Müller: Metastability and incompletely posed problems.

Springer (1987).
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