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Abstract. We study the Kantorovich-Rubinstein transhipment problem when
the difference between the source and the target is not anymore a balanced
measure but belongs to a suitable subspace X(Ω) of first order distribution. A

particular subclass X
♯
0(Ω) of such distributions will be considered which includes

the infinite sums of dipoles
∑

k(δpk
− δnk

) studied in [28, 29]. In spite of this
weakened regularity, it is shown that an optimal transport density still exists
among nonnegative finite measures. Some geometric properties of the Banach

spaces X(Ω) and X
♯
0(Ω) can be then deduced.
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1. Introduction

In the recent years, motivated by many applications, a lot of attention has been
devoted by the mathematical community to mass transportation problems. They
can be expressed in different equivalent formulations, that we will shortly recall
below. The usual setting for these problems requires to consider source and target
in the space of probability measures on a domain of R

N , on a manifold, or more
generally on a metric space. On the other hand, for various applications (see for
instance [12, 28, 29]) it is interesting to develop a theory of optimal transportation
(and Wasserstein distances) for more general objects. In this paper Ω will be a
convex compact subset of R

N and we will focus our attention on the space of
distributions of order one and zero “average”

X0(Ω) := {f ∈ D′(RN) | ∀ϕ ∈ D(RN), 〈f, ϕ〉 ≤ C(‖ϕ‖L∞(Ω)+

‖∇ϕ‖L∞(Ω)), 〈f, 1〉 = 0}. (1.1)

Such distributions are compactly supported in Ω and the condition 〈f, 1〉 = 0
above means that whenever ϕ ∈ D(RN) is constant in Ω then 〈f, ϕ〉 = 0. From
(1.1), it is natural to endow X0(Ω) with the dual of the Lipschitz norm on smooth
functions and we may identify X0(Ω) with a closed subspace of the dual of C1(Ω).
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Let us notice that , although it is tempting, we are not allowed to identify X0(Ω)
with a subspace of the dual of Lip(Ω) since the extension of an element f ∈ X0(Ω)
to all Lipschitz functions given by Hahn-Banach Theorem is non unique ! .

As far as the usual setting for the Monge-Kantorovich problem is considered,
one needs to work only with the subspace of measures of X0(Ω) given by

M0(Ω) :=

{
f ∈ M(Ω) |

∫

Ω

f = 0

}
.

It is shown in [6] that the closure X♯
0(Ω) of M0(Ω) can be characterized as

X♯
0(Ω) := {f ∈ X0(Ω) | ∀ε > 0 ∃ Cε > 0 s.t.

|〈f, ϕ〉| ≤ Cε‖ϕ‖L∞(Ω) + ε‖∇ϕ‖L∞(Ω) ∀ϕ ∈ D(RN)} .

This strict subspace can can be seen also as the completion of M0(Ω) with respect

to the Monge-Kantorovitch norm. In [6] it is proved that elements of X♯
0(Ω) can

be represented as the distributional divergence of functions in L1(Ω; RN ) (or more
in general of a suitable class of tangential vector measures). The role of this
space will stand out for different reasons which will be clear through the paper. In
particular by suitably extending the Monge-Kantorovich problem to all X0(Ω), we

will construct a linear continuous projector from X0(Ω) onto X♯
0(Ω) (see theorem

4.2).

Before considering the details of the weakened formulation of the Monge-Kanto-
rovich mass transportation problem let us first recall the main issues about the
classical version of the problem and its various formulations. Also in this short
survey, for simplicity, we will limit ourselves to the case when Ω is a convex
compact subset of R

N .

• The most classical formulation of a mass transportation problem goes back to
Monge (1781) and in modern terminology (Kantorovich 1942) consists, given two
probabilities f+ and f− on Ω, in finding a measure γ on Ω × Ω which minimizes
the total transportation cost

∫

Ω×Ω

|x− y| dγ(x, y) (1.2)

among all admissible transport plans γ such that π1
♯ γ = f+ and π2

♯ γ = f−. Here

π1
♯ and π2

♯ are the usual push-forward operators associated to the projections π1

and π2 from Ω × Ω on the first and second factors respectively. Notice that
the formulation above is meaningless if f+ and f− are distributions that are not
measures.

We say that the problem is of transhipment type (see Kantorovich and Rubin-
stein [26]) when only the difference f+ − f− is specified.
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Definition 1.1. The quantity

W1(f+, f−) := inf
π1

♯
γ=f+, π2

♯
γ=f−

∫

Ω×Ω

|x− y| dγ(x, y) (1.3)

is called Wasserstein distance of f+, f−. Setting f = f+ − f− the quantity above
may be redefined as:

inf
π1

♯ γ−π
2
♯ γ=f

∫

Ω×Ω

|x− y| dγ(x, y) (1.4)

and we will denote it by W1(f). This last quantity is a norm in the space of
measures f such that

∫
df = 0 and it is called the Kantorovich norm.

• The dual formulation of the mass transportation problem (1.2) introduces the
Kantorovich potential u which is a solution of the maximization problem

max
{∫

u d(f+ − f−) : u ∈ Lip1(Ω)
}

= W1(f). (1.5)

The value of (1.5) is called flat dual norm ‖f+−f−‖ in the duality 〈Lip(Ω), Lip′(Ω)〉.
In the classical setting u plays a key role in proving many of the results of the
Monge-Kantorovich theory.

• The mass transportation problem above can be equivalently expressed through
the Kantorovich potential u and the transport density µ which solve the system
(see [3, 21, 1])

{
− div(µDµu) = f+ − f− in Ω
|Dµu| = 1 on sptµ, u is 1-Lipschitz on Ω

(1.6)

which consists of an elliptic PDE coupled with an eikonal equation. For general
measures µ the precise sense of the PDE above has to be intended by means of a
weak formulation involving the theory of Sobolev spaces with respect to a measure
(see [4, 3]). The following representation formula for µ holds:

µ =

∫
H1 Sx,y dγ(x, y)

where γ is an optimal transport plan for the cost (1.2), H1 is the 1-dimensional
Hausdorff measure and Sx,y is the geodesic line (the segment in our Euclidean case)
connecting x to y. The transport density µ appears in various applications whose
models admit a Monge-Kantorovich type formulation (see for example [3, 4, 15]).
Moreover the transport density was also used to prove an existence result for
optimal transport maps (see [21]).

Several results on the formulations above have been obtained; in particular, it
has been shown that the regularity of the measure µ (called transport density)
depends on the regularity of the data f+ and f−. More precisely, we summarize
here below what is known on this dependence.
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• When f+ and f− are merely nonnegative measures, the transport density µ

is a nonnegative measure too (see [3]). As already mentioned above, the Monge-
Kantorovich PDE (1.6) has to be intended in the sense of Sobolev spaces with
respect to a measure.

• Additional assumptions on the source terms f+ and f− have to be made in
order to provide more regularity to the transport density µ; more precisely, if f+

and f− are in Lp(Ω) with 1 ≤ p ≤ +∞ then µ is in Lp(Ω) too (see [18], [17]).
Moreover, in these cases the transport density µ turns out to be unique (see [1]).

• Some recent results on the particular case of mass transportation problems
that intervene in the identification of sand pile shapes (see [15], [25]) indicate that
the Hölder continuity of µ has to be expected, under additional regularity on the
data, while simple examples show that nothing more than Lipschitz regularity can
be obtained for µ even if very strong regularity hypotheses on the data are made.

• The continuity of µ, when f is continuous, as been obtained in [23] under
some additional geometric assumptions on the supports of f+ and f−. However
the continuity of µ in the general case is an open problem.

In the present paper we will also consider the opposite question of the existence
of a transport density µ when the source datum f = f+ − f− is less regular than
a measure. Indeed, we assume that f only belongs to the space X0(Ω).

As it is well explained in [14, 28, 29] in some applications f describes the location
and the topological degree of singularities of a map u with values in the sphere.

Indeed if u belongs to W 1,N−1(Ω,RN) and is bounded (u ∈W 1,N−1(Ω,SN−1) is
a particular case) then by the ∗-Hodge operator we can say that the N − 1 form

D(u) :=

N∑

i=1

(−1)i−1

N
uid̂u

i
, (where d̂u

i
:= dui ∧ · · · ∧ d̂ui ∧ . . . )

corresponds to an L1(Ω,RN) vector field, and then

− div(∗D(u)) ∈ D′(Ω).

More precisely − div(∗D(u)) belongs to X0(Ω). For a smooth map u

− div(∗D(u)) = ∗dD(u) = ∗J(u)

then with a little abuse of words the Jacobian of a bounded map in W 1,N−1(Ω,RN )

belongs to X0(Ω) (actually to the smaller subspace X♯
0(Ω) as we will see).

If J(u) is a measure then the Kantorovich norm of J(u) correspond to the mass
of the minimal connection of J(u) which plays a key role in the relaxation of the
Dirichlet functional (see [14]) as well as in the Ginzburg-Landau theory [14, 31].

Another interesting issue is to establish weather an N -form (or equivalently
a distribution) is a distributional Jacobian or not (see for example [16, 30]). A
related question is to establish when a distribution in X0(Ω) can be approximated
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weakly by Jacobians and in the negative case one may try to give a quantitative
answer. We will study this question in the last section of the paper.

The next example introduces a relevant class of distributions in X0(Ω) which
appear as distributional Jacobians in the theory of the Ginzburg-Landau equations
and which has been studied in [11, 28, 29].

Example 1.2. Given two sequences of points {pi}, {ni} in Ω such that
∑∞

i=0 |pi −
ni| <∞ we consider the distribution

〈T, u〉 :=

∞∑

i=1

u(pi) − u(ni) ∀u ∈ Lip(Ω).

It is easy to see that T ∈ X0(Ω); let us show that T is also in the space X♯
0(Ω).

Let ε > 0 and consider k such that
∑

i>k |pi − ni| ≤ ε; then

|〈T, u〉| ≤
∑

i≤k

|u(pi) − u(ni)| +
∑

k<i

|u(pi) − u(ni)| ≤ 2k‖u‖∞ + εLip(u).

Notice that in this case it is not possible to define a positive and a negative part
of f .

The plan of the paper is the following: we will extend the Kantorovich norm
and the mass transportation problem to the space of distributions f ∈ X0(Ω). We

show that for a wide class of source data (namely for f ∈ X♯
0(Ω)) the transport

density µ still remains a measure. We will then show that the space X0(Ω) may

be decomposed in the direct sum of X♯
0(Ω) and of the space of divergences of

normal measures. This decomposition is “orthogonal” in the sense of the Wasser-
stein norm. Some of the ideas are connected with the papers [28, 29], [6] and
[27], where very interesting tools for studying the distributions of X0(Ω) have
been introduced. In particular our Theorem 3.8 extends (in the most natural
reformulation) Theorem 1 of [27] to the case k = 1 of functions in C0,1(Ω).

2. Preliminary results of Functional Analysis and Measure
Theory

2.1. Completion of dual spaces. It looks nice to formulate the question of
existence of a Kantorovich potential (see (1.5)) in an abstract setting. We are
then considering two separable normed spaces X and Y , with Y →֒ X (in our
context X will be C(Ω) and Y = Lip(Ω)). We assume that the injection above
is dense (i.e. Y is dense in X with the norm of X) and compact (i.e. bounded
sequences in Y are relatively compact in X). Moreover we assume that the norm
of Y is l.s.c. with respect to the convergence in X.

It is well known as James’s theorem (see for instance Remark 3 in Chapter 1 of
[13]) that Y is reflexive if and only if the supremum in the dual norm of Y ′

‖f‖Y ′ := sup{〈f, u〉 : u ∈ Y, ‖u‖Y ≤ 1}
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is attained for every f ∈ Y ′. In the situation which is interesting for our purposes
Y is not reflexive and we are going to consider the elements f of a space that is
smaller than the whole dual space Y ′. More precisely, we denote by Y # the space
of all f ∈ Y ′ such that for every ε > 0 there exists Cε > 0 which verifies

|〈f, u〉| ≤ Cε‖u‖X + ε‖u‖Y ∀u ∈ Y.

We endow Y # with the norm of Y ′. The obvious inclusions are that X ′ ⊂ Y # ⊂
Y ′. In addition to the conditions above on X and Y we assume that there exists
a family Tδ ∈ L(X, Y ) such that

lim
δ→0

‖Tδu− u‖X = 0 for every u ∈ Y ; (2.1)

Tδ is bounded in L(X, Y ). (i.e. ‖Tδu‖Y ≤ C‖u‖X). (2.2)

When X and Y are Hilbert spaces it is enough to take Tδ = jt for all δ, where
jt is the transpose of the injection map j : Y →֒ X. When X = Cb(Ω) or C(Ω)
and Y = Lip(Ω) it is enough to take Tδu = ρδ ∗ u where ρδ is a family of smooth
convolution kernels converging weakly* to δ0.

Proposition 2.1. The space Y # coincides with the closure of X ′ in the dual space
Y ′.

Proof. If {fn} is a sequence in X ′ which converges to f in the dual space Y ′ we
have

|〈f, u〉| ≤ |〈fn, u〉| + |〈f − fn, u〉| ≤ Cn‖u‖X + ε‖u‖Y

where we denoted

Cn = ‖fn‖X′ , ε = ‖f − fn‖Y ′ .

Therefore f ∈ Y #. Vice versa, if f ∈ Y #, take fδ = f ◦ Tδ; in order to show that
f is in the closure of X ′ in the dual space Y ′ it is enough to show that

lim
δ→0

〈fδ, u〉 = 〈f, u〉 ∀u ∈ Y.

Fix u ∈ Y ; by the definition of Y # we have for every ε > 0

|〈f − fδ, u〉| = |〈f, u− Tδu〉| ≤ Cε‖u− Tδu‖X + ε‖u− Tδu‖Y .

By the assumptions (2.1) and (2.2), passing to the limit as δ → 0 in the inequality
above gives

lim sup
δ→0

|〈f − fδ, u〉| ≤ ε‖u‖Y (1 + C)

which implies our claim since ε > o was arbitrary. �

Proposition 2.2. For every f ∈ Y # the supremum in the dual norm

sup{〈f, u〉 : u ∈ Y, ‖u‖Y ≤ 1}

is attained.
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Proof. Let {un} be a maximizing sequence for the dual norm above; since the
injection Y →֒ X is compact, we may assume that un → u in X for some u ∈ Y

with ‖u‖Y ≤ 1. Therefore by using the fact that f ∈ Y #,

|〈f, un〉 − 〈f, u〉| = |〈f, un − u〉| ≤ Cε‖un − u‖X + 2ε.

Passing now to the limit as n → ∞ and using the fact that ε > 0 is arbitrary, we
obtain that

lim
n→∞

〈f, un〉 = 〈f, u〉

which shows that u is a maximizer for the dual norm. �

There is another characterization of the elements of Y #.

Proposition 2.3. We have f ∈ Y # if and only if 〈f, un〉 → 0 for every un → 0
in X with ‖un‖Y bounded.

Proof. Take f ∈ Y ′ and un → 0 in X with ‖un‖Y bounded. Then

|〈f, un〉| ≤ Cε‖un‖X + ε‖un‖Y

which gives, at the limit as n→ ∞, 〈f, un〉 → 0.
Vice versa assume by contradiction that there exist ε0 > 0 and a sequence {un}

such that

〈f, un〉 ≥ n‖un‖X + ε0‖un‖Y . (2.3)

With no loss of generality we can suppose ‖un‖Y = 1 so that

‖un‖X ≤
1

n
(〈f, un〉 − ε0) ≤

K

n
.

Then un → 0 in X, which implies 〈f, un〉 → 0 by the hypothesis. This is a
contradiction with (2.3), which gives 〈f, un〉 ≥ ε0. �

2.2. Some tangential calculus for measures. Let µ be a Radon measure in
R
N . Following [7, 8, 9], we introduce the tangent space Tµ to the measure µ which

is defined µ a.e. by setting Tµ(x) := N⊥
µ (x) where (see [6] for further details

related to the L∞-case under consideration here):

Nµ(x) = {ξ(x) : ξ ∈ Nµ} being

Nµ = {ξ ∈ (L∞
µ )N : ∃un → 0, un smooth, ∇un ⇀ ξ weakly* in L∞

µ }

It turns out that the subspaces Tµ and Nµ) are local in the sense that ξ ∈ Tµ (resp.
Nµ) iff ξ(x) ∈ Tµ(x) (resp. ξ(x) ∈ Nµ(x)) holds µ-a.e.

We may now define an intrinsic notion of tangential and normal vector measures
in MN(Ω). It will be useful in the construction of a complement X♯

0(Ω) in the
space X0(Ω).
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Definition 2.4. Let λ ∈ M(Ω)N . If λ can be decomposed as λ = v µ where µ is a
positive Radon measure and v ∈ (L1

µ)
N satisfies v(x) ∈ Tµ(x) µ-a.e., then we say

that λ is a tangential measure. If alternatively v(x) ∈ Nµ(x) µ-a.e. we say that λ
is a normal measure. We will denote by T the space of tangential measures and
by N the space of normal measures.

Clearly we have the decomposition in direct sum

(M(Ω))N = T⊕ N .

The following is a basic and intuitive lemma on tangent spaces which will be
used in the last section of the paper.

Lemma 2.5. Let α and µ be two nonnegative Radon measures in R
N such that

µ = α + µs where µs is singular with respect to α. Then

Tµ(x) ⊂ Tα(x) α− a.e..

Proof. We will prove that Nα ⊂ Nµ and then the thesis will follow from the
definition of tangent space. Since µ = α+ µs where µs is singular with respect to
α, if g ∈ (L1

µ)
N then g ∈ (L1

α)
N . Consider ξ ∈ Nα, then ξ is the weak-* limit in

(L∞
α )N of a sequence {∇ϕn} with |ϕn| ≤ c and ϕn → 0 uniformly. The sequence

{∇ϕn} is bounded in (L∞
µ )N and up to subsequences converges to ξ̃ weakly* in

(L∞
µ )N . Let g ∈ (L1

µ)
N ; then on the one hand

∫
∇ϕn · gdα→

∫
ξ · gdα

on the other hand ∫
∇ϕn · gdµ→

∫
ξ̃ · gdµ.

The last equality reads as
∫

∇ϕn · gdα+

∫
∇ϕn · gdµs →

∫
ξ̃ · gdα+

∫
ξ̃ · gdµs,

then ξ̃ = ξ α−a.e. and the conclusion follows.
�

3. The Optimal Transport Problem

We will now extend the different formulations of the optimal transport problem
to a distribution f ∈ X0(Ω), we will compare these formulations to the classical
case of measures and then prove the main existence theorems for minimizers.
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3.1. Kantorovich potential and optimal transport measure. In this sub-
section we will see that the classical theory can be easily extended provided the
distribution f belongs to the subspace X♯

0(Ω). To that aim we simply particularize
the results of the previous section in the case X = C(Ω) and Y = Lip(Ω) endowed

with their natural norms. Then Y ♯ coincides with X♯
0(Ω) and by Proposition 2.2

if f ∈ X♯
0(Ω) then

sup{〈f, u〉 : u ∈ Lip(Ω), ‖u‖Lip(Ω) ≤ 1} (3.1)

is attained. If f has “zero average”, that is 〈f, 1〉 = 0, we may replace the
constraint ‖u‖Lip(Ω) ≤ 1 by the seminorm inequality ‖∇u‖L∞(Ω) ≤ 1 thus obtaining
the flat norm of f . The subspace of the restrictions to Ω of functions in C1

0(R
N)

is dense in Lip(Ω) for the C0 topology. Then if f ∈ X♯
0(Ω) by Proposition 2.3

max
ϕ∈Lip1

〈f, ϕ〉 = sup
C1
0 (RN )∩Lip1

〈f, ϕ〉.

Definition 3.1. For every f ∈ X0(Ω) the Wasserstein norm of f is defined by

W1(f) := sup{〈f, u〉 : u ∈ C1
0(R

N), ‖∇u‖∞ ≤ 1}. (3.2)

By Proposition 2.3 if f ∈ X♯
0(Ω) the sup in (3.2) does not change if performed

on Lip1(Ω) instead than C1
0(R

N) ∩ Lip1 and it is attained on Lip1(Ω). We notice

however that the supremum is not achieved in general for f ∈ X0(Ω) ⊂ X♯
0(Ω). It

is therefore worth to characterize those elements f which belong to X♯
0(Ω). Two

such characterizations appeared in [6]; we report here the first one while the second
will be given later in this section.

Theorem 3.2 ([6]). Let f ∈ X0(Ω), then f ∈ X♯
0(Ω) if and only if there exists a

vector field ν in L1(Ω,RN) such that − div ν = f .

Let us now introduce a duality argument: if we define the mapping

h(p) = − sup{〈f, u〉 : u ∈ Lip(Ω), ‖∇u+ p‖L∞(Ω) ≤ 1}

for every continuous function p, we have that the Fenchel transform defined for
all vector measure λ by

h∗(λ) = sup
p

〈λ, p〉 − h(p) = sup
p,u

{〈λ, p〉 + 〈f, u〉 : ‖∇u+ p‖L∞(Ω) ≤ 1},

is given by

h∗(λ) =

{ ∫
|λ| if − div λ = f in D′

+∞ otherwise.

The duality relation infλ h
∗(λ) = −h(0) then reads

max{〈f, u〉 : ‖∇u‖L∞(Ω) ≤ 1}

= min{

∫
|λ| : λ ∈ Mn(Ω), − div λ = f ∈ D′}. (3.3)



10 GUY BOUCHITTÉ, GIUSEPPE BUTTAZZO, LUIGI DE PASCALE

The existence and the structure of an optimal λ for the right hand side of (3.3)

has been discussed in [6] for f ∈ X♯
0(Ω) and will be analyzed for f ∈ X0(Ω) in the

next section. We summarize as follows.

Theorem 3.3. For every f ∈ X♯
0(Ω)

(1) there exists a Kantorovich potential u which maximizes the quantity

W1(f) = max{〈f, u〉 : ‖∇u‖L∞(Ω) ≤ 1};

(2) there exists an optimal measure λ which solves the problem

min{‖λ‖ : − div λ = f ∈ D′}; (3.4)

(3) the two extremal values in (3.1) and (3.4) are equal; i.e.

W1(f) = min{‖λ‖ : − div λ = f ∈ D′}. (3.5)

Note that, being f ∈ X♯
0(Ω), the equality − div λ = f can be equivalently

considered either in D′ or in the duality 〈Lip′(Ω), Lip(Ω)〉. If µ denotes the total
variation |λ| of λ, we can write λ = vµ for a suitable vector field v ∈ (L1

µ(Ω))N .
The measure µ is the transport density which appear in the Monge-Kantorovich
PDE (1.6) and we remark that µ is still a measure even if f is only in X♯

0(Ω).

The next proposition (proved in [6]) characterizes the distributions in X♯
0(Ω) as

the divergence of tangential measures in T. We report here the proof of one of
the two implications.

Proposition 3.4. If v ∈ (L1
µ)
N is such that div(vµ) ∈ X♯

0(Ω), then we have v(x) ∈

Tµ(x) for µ-a.e. x. Vice versa if v(x) ∈ Tµ(x) µ-a.e. then div(vµ) ∈ X♯
0(Ω).

Proof. We prove only the first of the two implications, for the complete proof we
refer to [6]. If ξ is a normal vector field to µ, that is ξ(x) ∈ Nµ(x) for µ-a.e. x, we
have, denoting by {un} the sequence corresponding to ξ

∫
ξ · v dµ = lim

n→∞

∫
∇un · v dµ = lim

n→∞
−〈un, div(vµ)〉.

This last limit vanishes because div(vµ) ∈ X♯
0(Ω) by hypothesis, and un → 0

uniformly with ‖∇un‖L∞(Ω) bounded (see Proposition 2.3). Therefore v(x) ∈ Tµ(x)
for µ-a.e. x. �

The analysis performed in [3] can be made also in the more general case of

f ∈ X♯
0(Ω); it is enough to repeat step by step what done in [3]: we obtain then

the Monge-Kantorovich PDE




− div(µDµu) = f in D′

u ∈ Lip1(Ω)
|Dµu| = 1 µ− a.e.

(3.6)

In the system above the measure µ is called transport density and plays a role in
the transport problem and in some of its applications.
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Remark 3.5. The same conclusion holds in the more general framework of elasticity
considered in [3] in which the function u is vector valued, a Dirichlet region Σ is
present, the bulk energy 1

2
|∇u|2 is replaced by a convex p-homogeneous function

j(∇symu). For f ∈ Lip1,ρ(Ω,R
n)# the Monge-Kantorovich PDE (3.6) then takes

the form 




− div(σµ) = f in D′(Ω \ Σ)
σ ∈ ∂jµ(x, eµ(u)) µ− a.e. on Ω
u ∈ Lip1,ρ(Ω,Σ)
jµ(x, eµ(u)) = 1

p
µ− a.e.

µ(Σ) = 0

(3.7)

where we refer to [3] for the precise meaning of jµ, eµ, Lip1,ρ. The analogy with the
quoted results remains also in the scalar case where the transportation problem
can be written for f ∈ X♯

0(Ω). Note that in this case we cannot decompose f into
f+ − f− because f is not in general a measure.

3.2. Duality, transport plan and transport densities. In order to construct
the analogous of an optimal transport measure in the general case of a distribution
f ∈ X0(Ω), we need to extend the Monge-Kantorovich duality and also to find
a suitable generalization of the concept of transport plan. To that aim we now
present a construction which will be shown to encompass the classical theory.

To each ϕ ∈ C1
0(R

N ) we associate the function

Dϕ(x, v, t) :=

{
ϕ(x+tv)−ϕ(x)

t
if t 6= 0

Dϕ(x) · v if t = 0,

which belongs to C0(Ω×SN−1 × [0,∞)). Then we can seek for a positive measure
σ ∈ M(Ω × SN−1 × [0,∞)) which minimizes the total variation among all the
positive measures σ such that∫

Ω×SN−1×[0,∞)

Dϕ(x, v, t) dσ = 〈f, ϕ〉 ∀ϕ ∈ C1
0(R

N). (3.8)

Then the new variational problem that we will consider reads as:

min{‖σ‖ : σ ∈ M+(Ω × SN−1 × [0,∞)), σ satisfies (3.8)}. (3.9)

Before getting into the proof of existence in the general case of f ∈ X0(Ω) let
us compare problem (3.9) with the classical Monge-Kantorovich problem so that
we can understand the meaning of an optimal σ in the classical case. We will see
that σ contains both optimal transport plans and optimal transport densities.

3.3. Comparisons with the classical case. Let f+ and f− be two finite and
positive measures in Ω of equal total mass and let f = f+ − f−. Consider the
map p : Ω × Ω → Ω × SN−1 × [0,∞) defined by

p(x, y) :=

{
(x, x−y

|x−y|
, |x− y|) if x 6= y

(x, e1, 0) if x = y,
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where the choice of e1 is arbitrary and it is not relevant for what follows.

Proposition 3.6. Let f be a measure as above and let γ be a transport plan for
f ; then the measure p♯(|x− y|γ) ∈ M+(Ω × SN−1 × [0,∞)) satisfies the property
(3.8). Moreover if γ is an optimal transport plan then p♯(|x− y|γ) is optimal for
problem (3.9). Therefore

W1(f) = inf
σ∈M+(Ω×SN−1×[0,∞))

π♯σ=f

‖σ‖.

Proof. Let ϕ ∈ C1
0(R

N) then
∫

Ω×SN−1×[0,∞)

Dϕ(x, v, t) dp♯(|x− y|γ) =

∫

Ω×Ω

Dϕ(p(x, y))|x− y| dγ

=

∫

Ω×Ω

ϕ(x) − ϕ(y) dγ = 〈f, ϕ〉
(3.10)

which shows the first part of the claim.
For the minimality: given a measure σ which satisfies (3.8) we have the inequal-

ity

‖σ‖ ≥ sup
ϕ∈C1

0(RN )∩Lip1(Ω)

∫

Ω×SN−1×[0,∞)

Dϕ(x, v, t) dσ

= sup
ϕ∈C1

0 (RN )∩Lip1(Ω)

〈f, ϕ〉 =

∫

Ω

|x− y| dγ.
(3.11)

On the other hand equation (3.10) implies that
∫

Ω

|x− y| dγ = sup
ϕ∈C1

0 (RN )∩Lip1(Ω)

∫

Ω×SN−1×[0,∞)

Dϕ(x, v, t) dp♯(|x− y|γ)

≤ sup
ψ∈Cb(Ω×SN−1×[0,∞)

∫

Ω×SN−1×[0,∞)

ψ(x, v, t) dp♯(|x− y|γ)

≤

∫

Ω

|x− y| dγ

(3.12)

and the third term in the last inequality is the total variation of p♯(|x− y|γ). �

However, in the classical setting there is another way to build an optimal σ.
Indeed let ν be optimal for problem (3.4) and consider the polar decomposition
of ν as v|ν| where v is an unitary vector field. Define the map pν : spt ν →
Ω × SN−1 × [0,∞) which to x associates (x, v(x), 0).

Proposition 3.7. Let f be a measure as above and let ν be optimal for problem
(3.4). Then the measure (pν)♯ν ∈ M+(Ω× SN−1 × [0,∞)) is optimal for problem
(3.9) and it is supported on Ω × SN−1 × {0}.
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Proof. First let us show that σ = (pν)♯ν satisfies (3.8). For every ϕ ∈ C1
0(R

N)
∫

Ω×SN−1×[0,∞)

Dϕ(x, v, t) dσ =

∫

Ω

Dϕdν = 〈ϕ, f〉.

As in (3.11) above the fact that σ satisfies (3.8) already implies the inequality

sup
ϕ∈Lip1(Ω)

〈ϕ, f〉 ≤ ‖σ‖.

On the other hand by definition of σ we have ‖σ‖ = ‖ν‖ and by the optimality of
ν we obtain

sup
ϕ∈Lip1(Ω)

〈ϕ, f〉 = ‖ν‖.

�

3.4. Existence and structure of minimizers for problem (3.9). Let us now
prove the existence of an optimal σ for general f ∈ X0(Ω).

Theorem 3.8. Let f ∈ X0(Ω). Then there exists an optimal measure σ for
the transportation problem (3.9). Moreover the minimal value for problem (3.9)
coincides with the supremal value for problem (3.1).

Proof. Again for each ϕ ∈ C1
0(R

N) we define Dϕ as above and we consider Y :=
{Dϕ : ϕ ∈ C1

0(R
N)} equipped with the L∞ norm.

Define the linear functional F : Y → R by F (Dϕ) := 〈f, ϕ〉 and notice that

|F (Dϕ)| ≤ ‖f‖X0(Ω)‖ϕ‖Lip(Ω) = ‖f‖X0(Ω)‖Dϕ‖∞ ∀Dϕ ∈ Y.

The Hahn-Banach theorem then provides an extension F̃ of F to the space of
bounded and continuous functions on Ω×SN−1× [0,∞) which preserves the norm
of F , and such extension is represented by a measure σ ∈ M(Ω× SN−1 × [0,∞))
which verifies

(1) F (Dϕ) =
∫
Ω×SN−1×[0,∞)

Dϕ dσ for all ϕ ∈ C1
0(R

N);

(2) ‖σ‖ = ‖F̃‖ = ‖F‖.

In particular the first of the previous conditions implies that σ satisfies (3.8) and
this gives

〈f, ϕ〉 =

∫

Ω×SN−1×[0,∞)

Dϕ dσ ≤ ‖σ‖ ∀ϕ ∈ C1
0(R

N).

Then the equality

‖σ‖ = ‖F̃‖ = ‖F‖

implies both the equality

‖σ‖ = sup{〈f, ϕ〉 : ϕ ∈ C1
0(R

N) ∩ Lip1(Ω)} (3.13)

and the minimality of σ. �
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When f is a measure, in [3] it is shown that an optimal transportation density
can be obtained through an optimal plan γ considering the total variation of the
measure ν defined by the formula

〈ν, ϕ〉 =

∫ (∫

Sx,y

ϕdH1
)
γ(dx, dy) (3.14)

where Sx,y denotes the segment joining x to y (a geodesic line in the general case).
We show that the same can be done when f ∈ X0(Ω). Decompose an optimal σ
in the sum of two parts:

σ0 := σ (Ω × SN−1 × {0}), σ+ = σ − σ0,

and define the map π : Ω × SN−1 × (0,+∞) → Ω × R
N as

π(x, v, t) = (x, x+ tv).

Using a notation which is reminiscent of transport plans we define γ+ := π♯σ+,

and then in correspondence with σ+ we consider the measures ν+ defined by:

〈ψ, ν+〉 :=

∫

Ω×Ω

1

|x− y|

∫
y − x

|y − x|
· ψ(·) dH1 [x, y] dγ+(x, y). (3.15)

To σ0 instead we associate ν0 defined by

〈ψ, ν0〉 :=

∫

Ω×SN−1

ψ(x) · V dσ0(x, V ). (3.16)

Theorem 3.9. Let ν0 and ν+ be defined by (3.16) and (3.15). Then

− div(ν0 + ν+) = f. (3.17)

Moreover if σ is optimal then ν = ν0 + ν+ is also optimal for (3.4).

Proof. For every ϕ ∈ C1
0(Ω) one has

〈− div(ν0 + ν+), ϕ〉 =

∫

Ω×Ω

1

|y − x|

∫ 1

0

∇(x+ t(y − x)) · (y − x) dt dγ̃(x, y)

+

∫

Ω×SN−1

∇ϕ(x) · V dσ0(x, V, 0)

=

∫

Ω×Ω

ϕ(y) − ϕ(x)

|y − x|
dσ+(x, y)

+

∫

Ω×SN−1

∇ϕ(x) · V dσ0(x, V, 0)

=

∫

Ω×SN−1×[0,∞)

Dϕ(x, v, t) dσ = 〈f, ϕ〉.
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About the minimality first observe that directly from the formula above one ob-
tains an estimate on the total variation of ν:

‖ν‖ ≤ ‖σ‖. (3.18)

On the other hand

|ν| = sup
ψ∈C0(Ω), ‖ψ‖∞≤1

〈ν, ψ〉 ≥ sup
ϕ∈C1(Ω)∩Lip1

〈ν,∇ϕ〉

= sup
ϕ∈C1(Ω)∩Lip1

〈f, ϕ〉 = ‖f‖X0(Ω)
(3.19)

and if σ is optimal ‖f‖X0(Ω) = ‖σ‖ thus giving equality in (3.18) and the mini-
mality of ν. �

Remark 3.10. In particular Theorem 3.9 allows us to prove the formula

W1(f) = min{‖ν‖ : ν ∈ M(Ω,RN), − div ν = f}.

4. A decomposition of X0(Ω) and the distance to X♯
0(Ω)

We will now apply the theory constructed so far to give an “orthogonal decom-
position” of X0(Ω) and to compute the distance of a distribution f ∈ X0(Ω) to the

space X♯
0(Ω) in terms of the problems introduced in the previous sections. Let us

recall that, as remarked in the introduction, the space X♯
0(Ω) is a closed subspace

of X0(Ω) and contains the weak Jacobians of maps in certains Sobolev spaces.
Let f ∈ X0(Ω); then by Theorem 3.9 f may be written as f = − div ν for a

suitable vectorial measure. Recalling definition 2.4 we can further decompose ν as

ν = νT + νN

where the measure νT ∈ T is a tangent measure and νN ∈ N is a normal measure.
In other words we may write νT = vT |ν| and νN = vN |ν| where vT (x) ∈ T|ν|(x)
and vN(x) ∈ N|ν|(x) for |ν|-a.e. x. We will use the following technical result:

Lemma 4.1. Let α be a positive Radon measure in R
N and let η ∈ (L1

α)
N . Then

there exists a sequence {ϕn} ⊂ C1
0(R

N) such that: ϕn → 0 uniformly, |∇ϕn| ≤ 1
and

lim
n→∞

∫
∇ϕn(x) · η(x)dα =

∫
|ηN(x)|dα,

where ηN(x) ∈ (Tα(x))
⊥ denotes the normal component of η(x).

Proof. Consider the integrand

j(x, z) = η(x) · z + χ{|z|≤1},

and the functional

F (ϕ) =

{ ∫
j(x,∇ϕ)dα if ϕ ∈ C1

0(R
N),

+∞ otherwise.
(4.1)
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Denote by F : C0(R
N) → R the relaxed functional of F with respect to the uniform

convergence, then we claim that

F (0) = −

∫
|ηN(x)|dα. (4.2)

By definition of relaxed functional (4.2) implies that there exists a sequence {ψn} ⊂
C1

0(R
N) such that: ψn → 0 uniformly, |∇ψn| ≤ 1 and limn→∞

∫
∇ψn(x) · η(x)dα =

−
∫
|ηN (x)|dα. Then it is enough to consider ϕn := −ψn to obtain the conclusion

of the lemma. Let us then prove (4.2). By convexity F (0) = F ∗∗(0) and by
definition F ∗∗(0) = supg∈M(Ω) −F

∗(g) = − infg∈M(Ω) F
∗(g). We compute now

F ∗ .We notice that F = J ◦ A where J denotes the integral functional J : p ∈
C0(R

N ; RN) 7→
∫
j(x, p) dα and A : u ∈ C1

0(R
N) 7→ ∇u ∈ C0(R

N ; RN). As J is
convex continuous at p = 0, by a classical duality result (see for instance [2]), we
have

F ∗(g) = inf{J∗(σ) | − div σ = g},

where J∗ is the Fenchel conjugate of J on the dual space M(RN ; RN). A simple
computation shows that j∗(x, w) = |w − η(x)| and by applying [10], we have

J∗(σ) =

∫
j∗(

dσ

dα
)dα +

∫
h(x, σs)

where σs represent the singular part of σ with respect to α and

h(x, z) = sup{ψ(x) · z |

∫
j(x, ψ(x))dα <∞, ψ ∈ C0(R

N ; RN) , |ψ| ≤ 1 } = |z|.

Therefore if we decompose all measures σ such that − div σ = g in its absolutely
continuous and singular parts with respect to α so that σ = wα+σs, we can write

F ∗(g) = inf{

∫

RN

|w − η|dα+

∫

sptα

|σs| | − div(wα+ σs) = g}.

Let us choose w = ηT , σs = 0. Then g = − div(ηTα) and we get

inf F ∗(g) ≤ F ∗(g) =

∫
|ηN |dα,

and this prove the first inequality of (4.2). To prove the opposite inequality for a
given g = − div(wα+ σs) define m = α + σs and set

q(x) =

{
w(x) α− a.e.
dσs

d|σs|
σs − a.e..

Since g = − div (q(x)m) is a measure, by Proposition 3.4, there holds q(x) ∈ Tm(x)
for m-a.e. x and then by Lemma 2.5 w ∈ Tα(x) for α-a.e. x. Thus

∫

RN

|w − η|dα+

∫

sptα

|σs| =

∫

RN

(|w − ηT | + |ηN |)dα+

∫

sptα

|σs| ≥

∫

RN

|ηN |dα.

It follows that inf F ∗ ≥
∫

RN |ηN |dα and we are led to the equality in (4.2).
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�

We are now in position to state the main theorem of this section.

Theorem 4.2. For every f ∈ X0(Ω), there holds

W1(f,X♯
0(Ω)) = min

{∫
|νN | : ν ∈ M(Ω,RN), − div ν = f

}
.

Moreover there exists a unique decomposition f = fT + fN with fT ∈ X♯
0(Ω) and

fN = div β for some normal measure β ∈ N. We have in addition

W1(f) = W1(fT ) + W1(fN ).

Proof. By Theorem 3.9, there exists a measure ν such that − div ν = f . By the
definition of W1(f,X♯

0(Ω)) and recalling that elements of X♯
0(Ω) can be represented

as divergence of tangential measures (see 3.4), we derive successively

W1(f,X♯
0(Ω)) = inf

g∈X
♯
0(Ω)

sup
u∈C1

0∩Lip1

〈f − g, u〉 = (4.3)

= inf
g∈X

♯
0(Ω)

sup
u∈C1

0∩Lip1

〈− div νN − div νT − g, u〉 = (4.4)

= inf
G∈T sup

u∈C1
0∩Lip1

〈− div νN − divG, u〉 = (4.5)

= inf
G∈T sup

u∈C1
0∩Lip1

〈νN +G,∇u〉 ≤

∫
|νN | . (4.6)

On the other hand, by applying Lemma 4.1 to the measure νN + G of the last
inequality, we obtain an equality. It follows in particular that for all ν such that
− div ν = f

W1(f,X♯
0(Ω)) =

∫
|νN |. (4.7)

The decomposition f = fT + fN of an element f ∈ X0(Ω), is obtained by consid-
ering any ν such that − div ν = f and W1(f) =

∫
|ν| (see Remark 3.10) and then

by setting: fT := − div νT and fN = − div νN . The uniqueness of such decompo-
sition is straightforward since the divergence of a normal measure cannot belong
to X♯

0(Ω) unless it vanishes. �

A second formula is related to the measures σ ∈ M+(Ω × SN−1 × [0,∞)) such
that π♯σ = f which are then admissible for problem (3.9). Indeed we introduced
the natural decomposition σ = σ0 + σ+ and by equations (3.16) and (3.15) we
associated a measure ν0 to σ0 and a measure ν+ to σ+. By construction ν+ is
always a tangential measure while ν0 is not necessarily so.

Theorem 4.3. For every f ∈ X0(Ω) we have

W1(f,X♯
0(Ω)) = inf{‖σ0‖ : σ ∈ M+(Ω × SN−1 × [0,∞)) and π♯σ = f}.
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Proof. Let σ be such that π♯σ = f then as noticed before the measure ν+ associated
to σ by equation (3.15) is always tangential and then:

W1(f,X♯
0(Ω)) ≤ W1(f,− div ν+) ≤ ‖ν0‖ ≤ ‖σ0‖. (4.8)

Let fn be a sequence of measures in M(Ω) such that fn = f+
n − f−

n with
‖f+

n ‖ = ‖f−
n ‖ <∞ and

W1(f, fn) ≤ W1(f,X♯
0(Ω)) + εn.

Let ξn ∈ M(Ω × SN−1 × [0,∞)) of minimal total variation among the positive
measures such that π♯σ = f − fn. We decompose ξn as ξn0 + ξn+. Then ‖ξn‖ =
‖ξn0 ‖ + ‖ξn+‖ and therefore

‖ξn+‖ ≤ W1(f,X♯
0(Ω)) + εn − ‖ξn0 ‖ ≤ W1(f,X♯

0(Ω)) + εn. (4.9)

Let γn be an optimal transport plan for fn and consider σn := ξn + p♯(|x− y|γn)
where p is the map introduced in Subsection 3.3. By the linearity π♯σ

n = f that is
σn is admissible and by construction σn0 = ξn0 . Then (4.9) shows that σn is optimal
up to infinitesimal constant εn. �
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