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Abstract

This paper is devoted to the analysis of the asymptotic behaviour when the parameter λ goes

to +∞ for operators of the form −∆+λa or more generally, cooperative systems operators of the

form
(−∆+λa −b

−c −∆+λd

)
where the potentials a and d vanish in some subregions of the domain Ω.

We use the theory of Γ-convergence, even for the non-variational cooperative system, to prove

that for any reasonable bounded potentials a and d those operators converge in the strong

resolvent sense to the operator in the vanishing regions of the potentials, so does the spectrum.

The class of potentials considered here is fairly large, substantially improving previous results,

allowing in particular ones that vanish on a Cantor set, and forcing us to enlarge the class

of domains to the so-called quasi-open sets. For the system various situations are considered

applying our general result to the interplay of the vanishing regions of the potentials of both

equations.
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Introduction

The aim of this paper is to ascertain the asymptotic behaviour of the spectrum of a certain class of

linear eigenvalue problems of the following form

(L+ λa)wλ = σk(λ)wλ, (0.1)

in a bounded domain Ω ⊂ RN when the parameter λ goes to infinity. Here L is a linear elliptic

operator and a is a potential that is non negative. We denote σk(λ) the kth-eigenvalue for the

operator A(λ) := L + λa under homogeneous Dirichlet boundary conditions or Neumann-type

boundary conditions and wλ an eigenfunction associated with σk(λ), normalized in L2. Depending

on the operator those eigenfunctions may be vectorial. We are particularly interested in the problem

when the potential a may vanish in a quite large subregion of Ω as was studied before by Dancer

[9], Dancer and López-Gómez [10] and [2].

In our approach we shall use the so-called Gamma-Convergence theory (Γ-convergence in short)

to describe the behaviour of the equations asymptotically when λ tends to infinity. Relying on

an idea of Ennio De Giorgi [13], the powerful tool of Γ-convergence was developed by the Italian

School in the seventies in order to study the convergence of variational problems in several and quite

different contexts (e.g. Buttazzo [5], De Giorgi-Franzoni [14], Spagnolo [30] and others). It rapidly

became the required point of view to carry out in a skillful way, through easy to use necessary and

sufficient conditions, the convergence of minimizers associated to a family of functionals. The survey

of Dal Maso [8], from which we were inspired for the preliminary section of the present paper, is

now a classic in the field. We refer to its bibliography for a more precise history of the theory.

Primarily, the Γ-convergence related to quadratic forms and elliptic operators (see [30] and [8]

Chapter 12) will stand for our principal interest. As a first case we study the limiting behaviour

of the eigenvalues and eigenfunctions for one single equation with the operator −∆ + λa. In this

particular case we suppose that the potential a in front of the parameter λ is a non-negative function

vanishing in a subdomain (maybe disconnected) Ωa0 . In the same spirit as Buttazzo and Dal Maso

[6, 7] (see also Stollmann [31] and Simon [25] for similar approaches), we cover this convergence

under very general assumptions on the potentials (Theorem 30), where the potential a is a Borel

function from Ω to R+ satisfying

sup
x∈Ω

a(x) < +∞ and H1
0 (Ωa0) = {u ∈ H1

0 (Ω);u = 0 a.e. on Ωa+}.

For instance, the case when a is not continuous and vanishing on a dense set is supposed. It also

includes the particular situation when a is any function in C0(Ω). Under our circumstances we

obtain the desired convergence, when the parameter λ goes to infinity, for the whole spectrum in Ω.

Indeed, we prove that the eigenvalues always converge to the eigenvalues in the domain where the

potential vanishes, denoted by Ωa0 := {x ∈ Ω̄ ; a(x) = 0}. In other words, within our Γ-convergence

context, to the Laplacian defined in H1
0 (Ωa0). Since Ωa0 might not be an open set, H1

0 (Ωa0) has to be

understood in a general sense lying on quasi-open sets (see Section 1.2). That forces us to work on

a wider class of sets in order to achieve our more general results. However, under some additional

stability properties on the interior of Ωa0 we have that H1
0 (Ωa0) = H1

0 (IntΩa0), obtaining the limiting

problem in the classical sense on a domain.

In our setting it turns out that the convergence of the operators −∆ + λa to the operator −∆

in the strong resolvent sense, reduces naturally to the Γ-convergence of the associated quadratic
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form, which holds here quite efficiently. It is worth mentioning that the convergence of all the

eigenvalues follows quasi-automatically from this convergence. It seems that these techniques were

not exploited in the past despite its efficient and elegant consequences. Indeed, the present paper

provides a different perspective and maybe a more synthetic and simplified way of proving some

convergence results that were established in the past in a more laborious fashion. Moreover, this

allows us to improve previous results since we are imposing less restrict regularity conditions for the

domains and, as mentioned before, a more general class of potentials, obtaining the convergence of

the whole spectrum, not just for the first eigenvalue (cf. [1, 9, 10]).

Note that when h := 1√
λ

, the equation (0.1), with A(λ) = −∆ + λa, becomes(
−h2∆ + a(x)

)
wh = σk(h)wh, which plays an important role in Semiclassical Analysis. It is said

in Semiclassical Analysis that when h, the Planck’s constant, approximates zero all quantum effects

are neglected. Indeed, this transition between classical and quantum mechanics is what was coined

as Semiclassical Analysis. Actually, there is a huge amount of literature on the aforementioned

semi-classical problem so that is would be difficult to give some exhaustive references. However we

shall quote some related work going back to Simon [26–29], Helffer and Sjöstrand [18], Stollmann

[31] (see also the book of Dimassi and Sjöstrand [15] and the references therein).

Furthermore, the analysis carried out here might play a relevant role in the context of Semiclas-

sical Analysis, at the difference that we are dealing with highly degenerate potentials that possibly

vanish on a full-measure set that most of the time implies an upper bound on the first eigenvalue

which is slightly different from the situation usually treated in the work mentioned just before.

In continuation we also treat the case of a cooperative system corresponding to the operator

A(λ) :=

(
−∆ + λa −b
−c −∆ + λd

)
, with wλ := (uλ, vλ). (0.2)

The system is supposed to be cooperative in the sense that the terms outside the principal diagonal

b and c are two point-wise positive functions in Ω. Moreover, as an extension from the case of one

single equation the potentials a and d in front of the parameter are two non-negative functions still

fulfilling our same general conditions.

As we shall see in the penultimate section, the direct method of Γ-convergence is no more

pertinent for the case of an elliptic system which is not of variational type, as the one associated

to the operator (0.2) when b 6= c. However, we are able in this situation to benefit from the Γ-

convergence of the single equations to get a clear vision of the problem, which leads us to obtain at

the end a substantial improvement of the known results about the non-variational system. To be

more precise, let us denote

Ωa0 := {x ∈ Ω; a(x) = 0}, Ωd0 := {x ∈ Ω; d(x) = 0},

Ω0 := {x ∈ Ω; a(x) = 0 = d(x)},

the subdomains where the potentials a and d vanish. Note that the particular structural assumptions

on Ωa0 and Ωd0 supposed in [2] were pivotal. Moreover, the situation when both potentials vanish

in the same region was covered in [24] basing the proof upon the construction of an appropriate

supersolution. A method that is no longer available in a general distribution as the one consid-

ered here. In this work those assumptions are eventually relaxed generalizing and improving those

findings. Indeed in our result, no tight restrictions are imposed on the regularity and the spatial
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distribution of the subdomains Ωa0 and Ωd0. We manage to identify a limiting problem for almost any

reasonable bounded potentials a and d without any structural assumption on the vanishing domains

(see Theorem 30). Then, with further assumptions on the structural compositions of the vanishing

domains, we are able to recover some of the results that were dealt with before in the literature and

give some examples when the convergence is substantially different (see our last section).

We would like to mention that all the results of this paper could be easily extended without any

important changes in the proofs replacing the standard Laplace operator by any elliptic operator of

the form

L(u) =
N∑

i,j=1

Di(aijDju),

with coefficients aij ∈ L∞(Ω) such that aij = aji and

c0|ξ|2 ≤
N∑

i,j=1

aij(x)ξjξi ≤ c1|ξ|2,

for a.e. x ∈ Ω, for every ξ ∈ RN and for some positive constants 0 < c0 ≤ c1. However, we found it

clearer to simply write everything in the special case of the classical Laplacian.

The distribution of the present paper is as follows. In the first Section we give some preliminary

results. In particular in Section 1.1, we recall briefly some elements from the Theory of Γ-convergence

and quadratic forms that will be needed throughout the paper. We have tried through this section

to make this paper self contained and accessible to nonspecialists. In Section 1.2, we give a general

definition of H1
0 (E) when E is any subset (not necessarily open), using the capacity and the notion

of quasi-open sets. Then, we define in Section 1.3 the general class of nice potentials for which the

convergence results hold and also recall some stability results on the space H1
0 (Ω) that will give some

further information on the limiting problem when some more regularity is supposed. Some examples

of such nice potentials are exhibited. In Section 2, we apply the Theory shown in the preliminaries

to study the limiting behaviour of a single Linear Problem. We first study the asymptotic for the

Dirichlet problem (Section 2.1) and then, in a similar way, deal with Neumann boundary conditions

(Section 2.2). Section 3 is devoted to the case of a cooperative system. In the case when the matrix

operator is symmetrical (it is then a variational problem), we can argue as for the single equation

and use the Theory of Γ-convergence directly on the system to study its asymptotic. This is done

in Section 3.1. Finally in Section 3.2, we get the same conclusions for a non-symmetrical system

using this time, in a suitable way, the Γ-convergence of each component of the system given by the

result of Section 2 about one single equation. In the last section we describe more precisely this

convergence for some explicit examples.
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Some Notations :

L(H) : the space of bounded linear operators from H to H;

L N : the N -dimensional Lebesgue measure;

A4B := A\B ∪B\A : the symmetric difference between two sets A and B;

Ac = RN\A : the complement of A;

A : the closure of A;

IntA : the interior of A;

cap(E) : the capacity of E (defined in (1.4)).

H ′ : the topological dual of the Hilbert space H.

1 Preliminaries

1.1 Short review on Γ-convergence and quadratic forms

We recall here some results that are contained in the survey of Dal Maso [8] about Gamma-

convergence, principally in Chapter 11 and Chapter 12. In what follows H denotes a Hilbert space

with scalar product 〈., .〉 and norm ‖.‖. If Q : H → R is any quadratic form on H, the domain of Q

is defined by D(Q) := {u ∈ H;Q(u) < +∞}. The bilinear form associated to Q is the only bilinear

form

B : D(Q)×D(Q)→ R,

such that Q(u) = B(u, u) for every u ∈ D(Q). We say that Q is lower semi-continuous on H if

Q(u) ≤ lim inf
n→+∞

Q(un),

for any u ∈ H and any sequence {un} converging to u.

We denote V := D(Q). The operator A associated with Q is the linear operator A on V defined

as follows : the domain D(A) of A is the set of all u ∈ D(Q) such that there exists f ∈ V satisfying

B(u, v) = 〈f, v〉, for every v ∈ D(Q), and A(u) = f for every u ∈ D(A) (the uniqueness of such an

f follows from the density of D(Q) in V ). This operator A is positive and symmetric. In addition,

if Q is lower semi-continuous on H then A is self-adjoint on V ([8] Theorem 12.13).

Given a constant α > 0, any quadratic form Q : H → R on H will be said to be α-coercive

if Q(u) ≥ α‖u‖2 for every u ∈ H. A sequence Qn of quadratic forms are equi-coercive if they are

α-coercive with same constant α > 0.

If Q is α-coercive then the associated operator A is invertible and the inverse map A−1 is a

bounded operator on W := D(A). If Q is positive then for every µ > 0 the operator A + µId is

µ-coercive thus invertible.

Let us now describe our different notions of convergence.

Definition 1 (G-convergence). We say that a sequence An of α-coercive and self-adjoint operators

G-converges to an α-coercive and self-adjoint operator A in the strong topology if for every f ∈ H,

A−1
n Pnf strongly converges to A−1Pf in H, where Pn and P are the orthogonal projections onto

Wn := D(An) and W := D(A) respectively.

Definition 2 (Convergence in the resolvent sense). We say that a sequence An of positive self-

adjoint operators converges to a positive self-adjoint operator A in the strong resolvent sense if for

every µ > 0, µId +An G-converges to µId +A in the strong topology.
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Definition 3 (Γ-convergence). Given a sequence Qn of quadratic forms from H into R we say that

Qn Γ-converges to a quadratic form Q if for every u ∈ H the two following properties hold :

i) for every sequence {un} that converges to u one has Q(u) ≤ lim inf
n→+∞

Qn(un);

ii) there exists {un} that converges to u and such that Q(u) ≥ lim sup
n→+∞

Qn(un).

Corollary 13.7 in [8] says in particular that for a sequence of semi-continuous and equi-coercive

quadratic forms, the G-convergence and the convergence in the strong resolvent sense for the asso-

ciated operators are equivalent. It also shows the link with respect to Γ-convergence in this general

setting (G-convergence is equivalent with Γ-convergence in the strong and weak topology).

However, we will always use the notion of Γ-convergence in a particular case where our quadratic

forms admit as domain a subspace compactly embedded into H (typically, the Sobolev space H1

into L2). In this setting the link between Γ-convergence and convergence in the strong resolvent

sense is slightly simpler. Let us define our class of quadratic forms Qα(X,Y ).

Definition 4. Let X ⊆ H be a subspace of H, which is a Hilbert space with scalar product 〈., .〉X .

Assume also that the imbedding of X into H is compact. Given a constant α we denote Qα(X,H)

the class of all lower semi-continuous quadratic forms Q : H → [0,+∞] such that D(Q) ⊆ X and

Q(x) ≥ α‖x‖2X for every x ∈ D(Q).

From Theorem 13.12. in [8] we deduce the following.

Theorem 5. Let α > 0 and X ⊆ H be as in the Definition 4. Let Qn be a sequence of quadratic

forms in the class Qα(X,H) and let An be the associated operators. Then, the following statements

are equivalent:

(a) Qn Γ-converges to Q in the strong topology of H;

(b) An converges to A in the the strong resolvent sense;

(c) An G-converges to A.

The following Lemma coming from the book of Dunford and Schwartz ([16] Lemma XI.9.5. page

1091) will be used in the sequel.

Lemma 6. [16] Let Tn and T be compact operators, and let Tn → T in the operator norm of

L(H). Let σk(T ) be an enumeration of the non-zero eigenvalues of T , each repeated according to

its multiplicity. Then, there exist enumerations σk(Tn) of the non-zero eigenvalues of Tn, with

repetitions according to multiplicity, such that

lim
n→+∞

σk(Tn) = σk(T ), k ≥ 1,

the limit being uniform in k.

We still denote Pn and P the projection of H onto D(Qn) and D(Q) respectively. Now we can

prove the following useful result.

Proposition 7. Assume that we are under the same assumptions as for Theorem 5. If one of the

conditions (a), (b), (c) holds, then A−1
n Pn converges to A−1P in the operator norm of L(H). In

addition, denoting σk,n the eigenvalues of An labelled in increasing order and σk the ones of A, we

have that σk,n converges to σk for every k ≥ 0.
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Proof. Since (a), (b) and (c) are equivalent we may assume that (c) it is true. Let us denote

Rn := A−1
n Pn and R := A−1P . We have that

‖Rn −R‖L(H) = sup
‖f‖H≤1

‖Rn(f)−R(f)‖H . (1.1)

Suppose that fn ∈ H is such that ‖fn‖H ≤ 1 and

‖Rn −R‖L(H) ≤ ‖Rn(fn)−R(fn)‖H +
1
n
, (1.2)

(such a sequence {fn} exists by the definition of the supremum in (1.1)). We can assume up to a

subsequence (not relabelled) that fn weakly converges to f in H. By (1.2), to prove the convergence

of Rn for the operator norm, it is enough to prove that Rn(fn) converges strongly in H to R(f).

Since (c) holds and f ∈ H we already know that Rn(f) strongly converges to R(f). Now

‖Rn(fn)−R(fn)‖H ≤ ‖Rn(fn)−Rn(f)‖H + ‖Rn(f)−R(f)‖H + ‖R(f)−R(fn)‖H . (1.3)

On the other hand, since the Qn are equi-coercive, we deduce from the inequality

α‖Rn(g)‖2 ≤ Qn(Rn(g)) = 〈AnRn(g), Rn(g)〉H = 〈Pn(g), Rn(g)〉H ≤ ‖g‖H′‖Rn(g)‖H ,

that for any g ∈ H ′,
‖Rn(g)‖ ≤ 1

α
‖g‖H′ .

Hence, the Rn are equi-continuous on H ′ and passing to the limit in (1.3) we get that

‖Rn(fn)−R(fn)‖H → 0.

Finally, observe that under our assumptions, the operators A−1
n Pn and A−1P are compact (be-

cause they are bounded respectively from D(An) to X and D(A) to X, and because the embedding

of X into H is compact). Therefore, the convergence of the eigenvalues of An is a direct consequence

of the convergence of Rn for the operator norm together with Lemma 6.

1.2 A general definition of H1
0 (E)

In order to be able to deal with very general situations, we need to define the space H1
0 (E) even in

the case when E may not be an open set. As we shall see in the following, the good point of view

to understand the space H1
0 is to enlarge the class of open sets and deal with quasi-open sets that

are defined below as in [7].

For any set E ⊂ RN we define

cap(E) := inf
{∫

RN

|∇v|2; v ∈ H1(RN ), v ≥ 1 a.e. on a neighborhood of E
}
, (1.4)

as being the capacity of E (a.e. denotes almost everywhere). Now, we define the class of quasi-open

sets.

Definition 8. The class of quasi-open sets F(Ω), with Ω ⊂ RN a bounded open set, is defined as

the class of all the subsets A of Ω such that for every ε > 0 one can find an open subset Ωε of Ω

satisfying cap(Ωε4A) < ε.
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It is well known that any open set is the level set of a continuous function. Analogously, an

alternative way to define quasi-open sets is to say that they are level sets of quasi-continuous

functions. Here is the definition.

Definition 9. A function u : Ω→ R is quasi-continuous if there is a non-increasing sequence of

open sets An ⊂ Ω such that lim
n→+∞

cap(An) = 0 and the restriction of u to Ω\An is continuous for

any n ≥ 0.

It turns out (see for instance Theorem 3.3.29 of [19] or [33]) that any u ∈ H1(Ω) has a represen-

tative ũ which is quasi-continuous in Ω. The following result is quoted here for sake of completeness

but will not be needed.

Theorem 10 ([4] Theorem 4.1.4.). Suppose that A ⊆ RN . Then, the following assertions are

equivalent:

i) A is quasi-open;

ii) A is the union of a finely open set and a set of zero capacity;

iii) A = {u > 0} for some non-negative quasi-continuous function u ∈ H1(RN ).

We should mention that in ii) a finely open set means an open set for the fine topology, which is

defined as the coarsest topology making the super-harmonic functions continuous. Let us introduce

some more definitions.

Definition 11. We say that a property holds quasi-everywhere (and we denote q.e.) if it holds

everywhere except on a set of zero capacity.

For any open set Ω ⊂ RN there is a nice characterization of H1
0 (Ω) using capacity (see for

instance [4] Theorem 4.1.2. or [33]), namely we have

u ∈ H1
0 (Ω)⇔ (u ∈ H1(RN ) and u = 0 q.e. on RN\Ω).

This suggest to define, when E ⊆ RN is any measurable subset (not necessarily open),

H1
0 (E) := {u ∈ H1(RN ) such that u = 0 q.e. on RN\E}. (1.5)

Note that H1
0 (E) is a closed subspace of H1(RN ) and inherits its Hilbert structure. Consequently,

the imbedding H1
0 (E) into L2(E) remains compact. Notice also that according to our definition

H1
0 (E) is never empty, because it always contains the function identically equal to 0. It is also clear

from the definition that H1
0 (E) = {0} when cap(E) = 0.

The following Proposition shows that the case when A is quasi-open is actually the standard

case.

Proposition 12. ([19] Proposition 3.3.44.) For every subset E ⊂ RN , there exists a unique quasi-

open set A, such that

H1
0 (E) = H1

0 (A).

Observe in particular that H1
0 (E) = {0} if and only if cap(A(E)) = 0, where A(E) is the quasi-

open set given by the above proposition associated with E. This also implies that any quasi-open

set A ⊆ RN such that cap(A) > 0 satisfies L N (A) > 0 (because in this case H1
0 (E) 6= {0}).
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Now, in order to fix everything within the framework we are working on we consider the linear

problem

(−∆ + λa)u = f, u ∈ H1
0 (A), (1.6)

such that A ∈ F(Ω) is a quasi-open set. The operator is defined through the dual form,

−∆ + λa : H1
0 (A)→ H−1(A),

f ∈ H−1(A) and a ∈ L∞(A). Thus, u ∈ H1
0 (A) is a solution of (1.6) if∫

A

(∇u∇ϕ+ λauϕ) = 〈f, ϕ〉 , ∀ϕ ∈ H1
0 (A),

where 〈·, ·〉 denotes the duality pairing between H−1(A) and H1
0 (A).

1.3 Stability for H1
0 (Ω) and nice potentials

In this section we introduce the class of nice potentials that will allow us to prove some convergence

results associated to a very general class of potentials a.

Let Ω ⊂ RN be open. For any Borel function a : Ω→ R+ we denote

Ωa0 := {x ∈ Ω ; a(x) = 0} and Ωa+ := {x ∈ Ω ; a(x) > 0} = Ω\Ωa0 .

Notice that for a general a the subdomains Ωa0 and Ωa+ might not be open nor closed. However,

when a is continuous Ωa0 is closed and Ωa+ is open. Moreover, we will always assume a to be a Borel

function so that Ωa0 and Ωa+ are Lebesgue measurable.

Let us now define the type of potentials that fulfill our framework.

Definition 13. Let Ω ⊂ RN be an open set. A Borel function a : Ω → R+ is said to be a nice

potential, and we denote a ∈ A(Ω), if the following two properties hold :

sup
x∈Ω

a(x) < +∞, (1.7)

H1
0 (Ωa0) = {u ∈ H1

0 (Ω);u = 0 a.e. on Ωa+}. (1.8)

Notice that our Nice potentials are not necessarily smooth, not even continuous. We shall see,

for instance in Section 1.3.2, an example of nontrivial nice potential that vanishes on a dense set.

We call them Nice because we can prove the desired convergence result for some eigenvalue problems

when the potentials lie in this class. The only kind of regularity assumption is contained in (1.8)

which can be understood as a stability-type property for H1
0 . More precisions are given in the

remark and section below.

Remark 14. Observe that by our general definition of H1
0 (given by (1.5)) we always have that

H1
0 (Ωa0) = {u ∈ H1

0 (Ω);u = 0 q.e. on Ωa+}. (1.9)

This means that the assumption (1.8) is lying on some very thin regularity property of Ωa+, depending

on the given potential a. This will be studied with more details below when we will introduce the

notion of stable domains. It is worth mentioning that when Ωa+ is open (and this is the case when
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a is continuous), the term at the right hand side of (1.9) and (1.8) are equal because of the quasi-

continuity of u. This is no more the case in general if Ωa+ is not open, as it can be shown by the

following example : a := χR2\D where D ⊂ R2 is the open set defined by

D := B(0, 1)\([0, 1]× {0}).

It is clear in this case that one can find a smooth function u in H1(R2) that vanishes a.e. in R2\D
but that is not vanishing q.e. on [0, 1]× R since

L 2([0, 1]× {0}) = 0 and cap([0, 1]× {0}) > 0,

and, hence, u may not belong to H1
0 (D).

Subsequently, from the above remark we deduce the following consequence.

Remark 15. A Borel function a : Ω → R+ satisfying (1.7) and such that Ω+
a is open, is a nice

potential.

A particular and important case is when a is continuous.

Proposition 16. Let Ω ⊆ RN be a bounded domain. Then

C0(Ω) ⊆ A(Ω).

Proof. Since any function a ∈ C0(Ω) is bounded we automatically get (1.7), and (1.8) follows from

Remark 15.

As the last proposition says our definition of nice potentials will allow us to prove the convergence

of some linear eigenvalue problems, for instance, when a is any continuous function. On the other

hand, due to our very general setting the limiting problem could be defined on a space H1
0 (A) where

A is not an open set (but quasi-open). However, we would like to go further and give some regularity

assumptions on a and its level sets to guarantee that the limiting problem will be actually defined on

the standard space H1
0 (Ω′), with Ω′ an open set. For this purpose we recall some stability properties

of H1
0 . A good reference for those results could be for instance [19] Chapter 3, [4] Section 4.1 or

[33].

1.3.1 Nice potentials and Stable domains

Let Ω ⊆ RN be open. In this section (and only here) we assume a ∈ C0(Ω). In the sequel we give a

criterion on a to insure that H1
0 (Ωa0) = H1

0 (IntΩa0). In other words, we want to find some conditions

to put on an open set Ω that implies u ∈ H1
0 (Ω) as soon as u ∈ H1(RN ) and u = 0 a.e. in RN\Ω.

This is the case when Ω is stable.

Recall that for any open set Ω it holds

H1
0 (Ω) := {u ∈ H1(RN ) and u = 0 q.e. on RN\Ω}.

Now, if u = 0 q.e. only on RN\Ω, we cannot say a priori that u ∈ H1
0 (Ω). However, domains

that have this property, also called stable, have been studied a long time ago ([4, 17, 19, 21, 22]) and

the following statement summarizes the known characterization of such domains (see for instance

Theorem 3.4.6. in [19]).
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Theorem 17. Let Ω ⊆ RN be a bounded domain. Then, the following properties are equivalent.

(i) For every v ∈ H1(RN ), v = 0 q.e. on Ω
c

implies v = 0 q.e. on Ωc;

(ii) For any open set A, cap(A\Ω) = cap(A\Ω));

(iii) For any x ∈ RN and r > 0, cap(B(x, r)\Ω) = cap(B(x, r)\Ω));

(iv) lim inf
r→0

cap(B(x, r)\Ω)
cap(B(x, r)\Ω)

> 0 q.e. x ∈ ∂Ω.

Definition 18. If Ω satisfies one of the properties (i) − (iv) of Theorem 17 we will say that Ω is

stable.

Observe that being stable imposes on the domain some sort of regularity on the boundary. For

instance, a Lipschitz domain is stable. More generally, a domain satisfying a Corkscrew condition

is stable. Recall that Ω satisfies a corkscrew condition if there exists r0 and λ such that for every

x ∈ ∂Ω and r ≤ r0 one can find y ∈ B(x, r) such that B(y, λr) ⊆ Ωc.

Remark 19. Let Ω′ and Ω be two open sets such that Ω′ ⊆ Ω ⊆ RN . Also let u ∈ H1
0 (Ω) and let

ũ be a quasi-continuous representative of u. Then, since Ω\Ω′ is open we have that

(ũ = 0 q.e. on Ω\Ω′)⇔ (ũ = 0 a.e. on Ω\Ω′).

In addition, it is clear that for any u ∈ H1
0 (Ω) we have that uχΩ ∈ H1(RN ).

In our applications we will need a localized version of Theorem 17. More precisely, we assume

that Ω′ ⊆ Ω ⊆ RN and Ω′ is stable in RN . Then, we want to say that u ∈ H1
0 (Ω′) as soon as

u ∈ H1
0 (Ω) and vanishes outside Ω′. From Remark 19 we can state the following consequence of

Theorem 17.

Corollary 20. Let Ω′, Ω be two open sets such that Ω′ ⊆ Ω ⊆ RN and assume that Ω′ is stable.

Then,

(u ∈ H1
0 (Ω) and u = 0 a.e. on Ω\Ω′)⇒ u ∈ H1

0 (Ω′).

As an application we can be more precise in the case when Int(Ωa0) is stable.

Proposition 21. Let Ω ⊂ RN be bounded and let a ∈ C0(Ω). If Int(Ωa0) is stable then

H1
0 (Ωa0) = H1

0 (Int(Ωa0)).

The advantage of Proposition 21 is to provide a sufficient condition to insure that H1
0 (Ωa0), which

is a priori defined by the general identity (1.5), actually coincides with the classical Sobolev space

defined on open domains.

1.3.2 A nice potential vanishing on a dense set

Now, to show how general our results are we want to give explicit examples of non trivial nice

potentials which are not continuous and that vanishes respectively on a dense set and a Cantor set.

According to [19] exercise 3.9., we construct a compact set K ⊂ [0, 1] of empty interior with positive

Lebesgue measure by setting

E :=
+∞⋃
n=2

2n⋃
k=0

B(k2−n, 2−2n)∩]0, 1[,

11



and

K := [0, 1]\E.

The following properties are satisfied.

i) E is open and E = [0, 1];

ii) K is compact and IntK = ∅;
iii) L 1(K ∩B(x, ε)) > 0 for all x ∈ K and ε > 0;

iv) H1
0 (E) = {u ∈ H1

0 (]0, 1[);u = 0 a.e on K};
v) E is not stable.

Actually i), ii) and v) are clear from the construction of E and iii) comes from the definition of

E and a computation made by summing the length of all the intervals of the form B(k2−n, 2−2n)

that lie in B(x, ε) when x ∈ K (the total sum is strictly less than 2ε). Thus, only iv) may require

some explanations. We know by definition that H1
0 (E) := {u ∈ H1

0 (]0, 1[);u = 0 q.e on K}. Now,

if u ∈ H1
0 (]0, 1[) is such that u = 0 a.e. on K, we claim that u = 0 everywhere on K. Indeed,

since we are in dimension 1 we know that u admits a continuous representative and, hence, the set

O := {u > 0} is open. Assume by contradiction that O∩K is not empty and pick a point x ∈ O∩K.

Then, there exists ε > 0 such that B(x, ε) ⊂ O. Now, using iii) we have that L 1(K ∩B(x, ε)) > 0,

so that there exists a point y ∈ K ∩B(x, ε) such that u(y) = 0 and this is not possible. After this,

iv) is proved.

From the latter properties we deduce the following.

Proposition 22. Under the above notations we have that χK and χE both belong to A(]0, 1[).

Proof. It is clear that both χK and χE are Borel measurable and satisfy (1.7). Then, from iv) we

deduce that χK satisfies (1.8), and since [0, 1]\K is open we deduce by Remark 15 that χE also

satisfies (1.8).

Remark 23. Notice that since H1
0 (]0, 1[) ⊆ C0(]0, 1[) we have that

H1
0 (K) := {u ∈ H1

0 (]0, 1[);u = 0 q.e on E} = {0}.

1.4 A classical semi-continuity result

In the sequel we will need the following lemma which is quite standard (see for instance [8], Propo-

sition 1.18.).

Lemma 24. Let H be a Hilbert space and let F : H → R be a convex function. Then, F is lower-

semicontinuous on H in the strong topology if and only if F is lower semicontinuous on H in the

weak topology.

Remark 25. A consequence of Lemma 24 and the convexity of u 7→ (
∫

Ω
|∇u|2)

1
2 is that for any

Ω ⊆ RN and any {un} that weakly converges to u in H1
0 (Ω),∫

Ω

|∇u|2 ≤ lim inf
n→+∞

∫
Ω

|∇un|2.
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Now, let A be any subset of Ω and consider the quadratic form Q : L2(Ω) 7→ R̄ defined by

Q(u) :=


∫
A

|∇u|2, if u ∈ H1
0 (A),

+∞, otherwise.
(1.10)

Proposition 26. The quadratic form Q defined by (1.10) is semicontinuous on L2(Ω).

Proof. We have to prove that for any sequence {un} that strongly converges to u in L2(Ω),

Q(u) ≤ lim inf
n→+∞

Q(un). (1.11)

To prove (1.11) it is enough to consider the case when limQ(un) exists and is finite. In particular,

in the latter situation we have Q(un) ≤ M for n big enough, say n ≥ n0. By definition of Q this

automatically implies that un ∈ H1
0 (A) for n ≥ n0. Moreover, since the sequence is bounded in

H1
0 (A) and H1

0 (A) is compactly imbedded in L2(A), we can extract a subsequence {unk
} that con-

verges weakly in H1
0 (A) and strongly in L2(A). Note that this imbedding remains in our framework

of quasi-open sets. Thus, by uniqueness of the limit in L2(Ω) the weak limit of {unk
} is equal to u.

Hence, by Remark 25 we have that∫
A

|∇u|2 ≤ lim inf
k→+∞

Q(unk
) = lim

n→+∞
Q(un) < +∞, (1.12)

Now since u ∈ H1
0 (A) we have that Q(u) =

∫
A
|∇u|2 and (1.12) says that (1.11) holds which proves

the proposition.

2 Semiclassical analysis for highly degenerate potentials

2.1 The Dirichlet case

In this section we use the Γ-convergence theory to study the asymptotic as λ→ +∞ for the following

linear eigenvalue problem

−∆u+ λau = σk(λ)u, u ∈ H1
0 (Ω), (2.1)

where Ω ⊂ RN is a bounded domain, the potential a ∈ A(Ω) and σk(λ) is the kth-eigenvalue of

the operator −∆ + λa under homogeneous Dirichlet boundary conditions. Under the additional

assumption ‖u‖L2(Ω) = 1, u will be called a normalized eigenfunction associated with the eigenvalue

σk(λ). Observe that the solution u of problem (2.1) may not be unique for k 6= 0. We still denote

Ωa0 the subset of Ω defined by

Ωa0 := {x ∈ Ω ; a(x) = 0}.

Moreover, we introduce the following quadratic forms on the Hilbert space L2(Ω) :

Qλ(u) =

{ ∫
Ω

(|∇u(x)|2 + λa(x)u2(x))dx, if u ∈ H1
0 (Ω),

+∞, otherwise,

and

Q∞(u) =

{ ∫
Ω
|∇u(x)|2dx, if u ∈ H1

0 (Ωa0),

+∞, otherwise.
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We denote Lλ := −∆ + λa the operator associated with Qλ, and −∆Ωa
0

the one associated with

Q∞. We begin with three remarks.

Remark 27. By the Sobolev inequality Qλ and Q∞ are all CN -coercive on H1
0 (Ω) with same

constant C depending only on N and |Ω|. In addition, Qλ and Q∞ are semicontinuous on L2(Ω)

(by Proposition 26). In other words, Qλ and Q∞ belong to QC(H1
0 (Ω), L2(Ω)) (see Definition 4).

Remark 28. It is not difficult to see using an integration by parts that the operator Lλ associated

with Qλ is exactly −∆ + λa in the distributional sense. Moreover, from the regularity theory of

elliptic PDE, we deduce that the weak solutions of Problem (2.1) are also strong solutions and the

eigenvalues of Lλ are solving Problem (2.1) in the strong sense.

Remark 29. Observe that C∞0 (Ω) ⊆ D(Lλ). This can be easily seen using an integration by parts

to obtain Bλ(φ, u) = 〈fλ, u〉L2 for any φ ∈ C∞0 (Ω) and u ∈ H1
0 (Ω) , where fλ = −∆φ + λaφ and

Bλ is the bilinear forms associated to Qλ. Now, since C∞0 (Ω) is dense in L2(Ω), we deduce that

D(Lλ) = L2(Ω). This means that for every f ∈ L2(Ω), Pλ(f) = f (where Pλ is the projection onto

D(Lλ)).

The main result of this section is the following.

Theorem 30. Assume that a ∈ A(Ω). Then, Lλ converges to −∆Ωa
0

in the strong resolvent sense

when λ→ +∞. As a consequence

lim
λ→+∞

σk(λ) = σk,

where σk are the (ordered) eigenvalues of the Dirichlet Laplacian −∆Ωa
0
. In addition, any sequence

of normalized solution uλ of Problem (2.1) admits a subsequence that converges strongly in H1
0 (Ω)

to a normalized eigenfunction u ∈ H1
0 (Ωa0) of −∆Ωa

0
associated to its kth-eigenvalue. If in addition,

σk is simple, this convergence holds for the whole sequence {uλ}.

Remark 31. By convention we fix σk = +∞, for all k ≥ 0, when H1
0 (Ωa0) = {0}. Note that

this convention is coherent with the lower bound based on the Faber-Krahn inequality in terms of

|Ω| when |Ω| tends to 0 (see [2] and references therein for further details). With this convention,

Theorem 30 says in particular that σk(λ) → +∞ if and only if H1
0 (Ωa0) = {0}, and this happens

if and only if cap(A(Ωa0)) = 0, where A(Ωa0) is the quasi-open set associated with Ωa0 and given by

Proposition 12.

As we shall see later, Theorem 30 will be seen as a consequence of the following Γ-convergence

result.

Theorem 32. Assume that a is a nice potential. Then, Qλ Γ-converges to Q∞ when λ→ +∞.

Proof. We begin with the proof of ii) which is very simple. Indeed, for any v ∈ L2(Ω) let us consider

the identically constant sequence {vλ}, with vλ = v for every λ, that obviously converges strongly

to v in L2(Ω). We have to prove that

Q∞(v) ≥ lim sup
λ→+∞

Qλ(vλ). (2.2)

If v is not in H1
0 (Ωa0) then, by definition, we have that Q∞(v) = +∞ and (2.2) trivially holds.

Now, if v ∈ H1
0 (Ωa0), by definition of Ωa0 and H1

0 (Ωa0) we find that a(x)v(x) = 0 a.e. in Ω, so that

Q∞(v) = Qλ(v) and (2.2) is again satisfied, which proves condition ii) in full generality.

14



Let us now prove i). To this aim we consider a sequence {vλ} that converges strongly to v in

L2(Ω) and we have to prove that

Q∞(v) ≤ lim inf
λ→+∞

Qλ(vλ). (2.3)

We may assume that

lim inf
λ→+∞

Qλ(vλ) < +∞, (2.4)

otherwise (2.3) is trivial. In the latter situation we claim that v ∈ H1
0 (Ωa0). Indeed, (2.4) implies in

particular that

lim inf
λ→+∞

λ

∫
Ω

av2
λdx < +∞. (2.5)

Since {vλ} converges strongly in L2(Ω) to v, (2.5) actually implies that∫
Ω

av2dx = 0,

from which we easily deduce that v = 0 a.e. in Ωa+. Now, since a is a nice potential, from (1.8) we

conclude that v ∈ H1
0 (Ωa0), and this allows us to write, using also Proposition 26,

Q∞(v) =
∫

Ωa
0

|∇v|2dx =
∫

Ω

|∇v|2dx ≤ lim inf
λ→+∞

∫
Ω

|∇vλ|2dx ≤ lim inf
λ→+∞

Qλ(vλ)

and the proof is complete.

Theorem 32 already implies that Lλ converges to −∆Ωa
0

in the strong resolvent sense and the

eigenvalues σk(λ) converges to the eigenvalues σk respectively, as λ → +∞. Now to prove the

strong convergence of the eigenfunctions in H1
0 (Ω) we will need some further lemmas, that will also

be used later in the analysis of the system. We begin with the following result that can be seen as

a modification of [1] Theorem 3.1.

Lemma 33. Assume that a ∈ A(Ω) and let f ∈ L2(Ω). For any λ > 0 we denote vλ the unique

solution for the problem

(−∆ + λa)vλ = f, vλ ∈ H1
0 (Ω),

and we also denote

α(λ) :=
∫

Ω

|∇vλ|2 + λ

∫
Ω

av2
λ − 2

∫
Ω

fvλ. (2.6)

Then, α ∈ C1(]0,+∞[),

α′(λ) =
∫

Ω

av2
λ,

and (
sup
λ>0

α(λ) < +∞
)
⇒
(

lim inf
λ→+∞

λ

∫
Ω

av2
λ = 0

)
.

Proof. It is well known (see e.g. [8] Proposition 12.12.) that

α(λ) := min
v∈H1

0 (Ω)

(∫
Ω

|∇v|2 + λ

∫
Ω

av2 − 2
∫

Ω

fv

)
.
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Then, for any λ, λ′ > 0 such that λ < λ′ we have

α(λ) ≤
∫

Ω

|∇vλ′ |2 + λ

∫
Ω

av2
λ′ − 2

∫
Ω

fvλ′

= α(λ′) + (λ− λ′)
∫

Ω

av2
λ′ < α(λ′),

for every v′λ ∈ H1
0 (Ω). Hence, λ→ α(λ) is increasing and by continuity of λ→ vλ we deduce that

α′(λ) = lim
λ′→λ

|α(λ)− α(λ′)|
|λ− λ′|

=
∫

Ω

av2
λ

and α′(λ) is continuous so that α ∈ C1. Now suppose that

sup
λ>0

α(λ) < +∞, (2.7)

and assume by contradiction that there exists λ0, ε > 0 such that

λ

∫
Ω

av2
λ = λα′(λ) > ε > 0 for λ > λ0.

Thus, integrating the last inequality between λ0 and λ we deduce that

α(λ) ≥ α(λ0) + ε ln
(
λ

λ0

)
which contradicts (2.7) and completes the proof of the Lemma.

Further, we will need the following result which is a consequence of Γ-convergence and Lemma

33.

Lemma 34. Assume that a ∈ A(Ω) is such that H1
0 (Ωa0) 6= {0} and let f ∈ L2(Ω). For λ > 0 we

denote vλ the solution of

(−∆ + λa)vλ = f, vλ ∈ H1
0 (Ω), (2.8)

and v the solution of

−∆v = f, v ∈ H1
0 (Ωa0). (2.9)

Then, there exists a subsequence λk such that {vλk
} converges strongly to v in H1

0 (Ω) when λk goes

to +∞.

Remark 35. The existence of the solutions for the problem (2.9) is guaranteed and understood in

the sense of (1.6). Observe in particular that f ∈ L2(Ω) can be considered as belonging to H1
0 (Ωa0)′

via the bounded linear form on H1
0 (Ωa0) given by u 7→

∫
Ω
fu.

Proof of Lemma 34. Applying Theorem 32, Theorem 5 and Proposition 7, we already know that

the resolvent operator Rλ := L−1
λ Pλ converge to the resolvent R := −∆−1

Ωa
0
P for the topology of

operator norm in L(L2). Thus, we deduce that {vλ} converges to v strongly in L2(Ω), where v is

the solution of (2.9). Hence, we are left with the proof of the strong convergence in H1
0 (Ω).

Multiplying (2.8) by vλ and integrating by parts in Ω we get∫
Ω

|∇vλ|2 +
∫

Ω

λav2
λ =

∫
Ω

fvλ.

Moreover, since v is a solution of the problem (2.9), by our definition we also have∫
Ω

|∇v|2 = 〈f, v〉 =
∫

Ω

fv,
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where 〈., .〉 is the duality pairing between H1
0 (Ωa0) and its dual. On the other hand, since {vλ} is

converging in L2(Ω) we know that
∫

Ω
fvλ converges to

∫
Ω
fv. The latter implies that∫

Ω

|∇vλ|2 +
∫

Ω

λav2
λ =

∫
Ω

fvλ →
∫

Ω

fv =
∫

Ω

|∇v|2. (2.10)

This means in particular that α(λ) (defined by (2.6)) is bounded and by Lemma 33 we deduce that

there exists a subsequence such that λk
∫

Ω
av2
λk

tends to 0, as λk → +∞. Therefore, (2.10) shows

that ∫
Ω

|∇vλk
|2 →

∫
Ω

|∇v|2.

Extracting a further subsequence (not relabelled) me may assume that {vλk
} converges weakly to

v. Consequently, by the weak convergence together with the convergence of norms we obtain

‖vλk
− v‖2H1

0
= ‖vλk

‖2H1
0

+ ‖v‖2H1
0
− 2〈vλk

, v〉H1
0
→ 0,

which proves that {vλk
} converges strongly to v in H1

0 (Ω).

Remark 36. For any f ∈ L2(Ω) and any λ > 0, if vλ is the solution of (2.8) by equi-coercivity of

−∆ + λa on H1
0 (Ω) one can easily obtain that

‖vλ‖H1
0 (Ω) ≤ C‖f‖L2(Ω),

where C does not depend on λ. Therefore, the following inequality holds

‖L−1
λ (f)‖H1

0 (Ω) ≤ C‖f‖L2(Ω),

with C independent of λ.

Now, we prove that when fλ converges to f we still obtain the convergence of the corresponding

solutions.

Lemma 37. Assume that a ∈ A(Ω) and let fλ ∈ L2(Ω) be a sequence of functions that converges

strongly to f ∈ L2(Ω). Let vλ be the solution of

(−∆ + λa)vλ = fλ, vλ ∈ H1
0 (Ω),

and v the one of

−∆v = f, v ∈ H1
0 (Ωa0).

Then, there exists a subsequence λk such that {vλk
} converges strongly to v in H1

0 (Ωa0).

Proof. Let us write

‖vλ − v‖H1
0 (Ω) = ‖L−1

λ (fλ)− L−1
λ Pλ(f)‖H1

0 (Ω) + ‖L−1
λ (f)− (−∆Ωa

0
)−1P (f)‖H1

0 (Ω).

Then, by Lemma 34 we know that up to a subsequence

‖L−1
λ (f)− (−∆Ωa

0
)−1P (f)‖H1

0 (Ω) → 0.

Furthermore, by Remark 36 we have that

‖L−1
λ (fλ)− L−1

λ (f)‖ ≤ C‖fλ − f‖L2 → 0.

Therefore, the Lemma is proved.
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We are now ready to prove Theorem 30.

Proof of Theorem 30. As was said before, gathering together Theorem 32, Theorem 5 and Proposi-

tion 7 we directly get that Lλ converges to −∆Ωa
0

in the strong resolvent sense and the eigenvalues

σk(λ) converges to the eigenvalues σk respectively, as λ → +∞. This includes the particular case

when H1
0 (Ωa0) = {0} and if this occurs, σk(λ) → +∞ for every k ≥ 0. So it remains only to prove

the strong convergence of the normalized eigenfunctions to the normalized eigenfunction in H1
0 (Ω).

Then, let {uλ} ∈ D(Lλ) be a sequence of eigenfunctions for Lλ associated to σk(λ) and such that

‖uλ‖2 = 1. Multiplying the equation in (2.1) by uλ and integrating by parts in Ω, we easily deduce

that {uλ} is uniformly bounded in H1
0 (Ω), provided that H1

0 (Ωa0) 6= {0}. Hence, we can extract

a subsequence such that {uλk
} converges to some v weakly in H1

0 (Ω) and strongly in L2(Ω). By

applying Lemma 37 with fλ := σk(λ)uλ we deduce that v is an eigenfunction for −∆Ωa
0

associated

to σk, and that up to take a further subsequence the convergence of {uλk
} holds strongly in H1

0 (Ω).

Then, if σk is simple, since ‖v‖2 = limk ‖uλk
‖2 = 1, we have that v is the unique normalized

eigenfunction associated to the eigenvalue σk. In other words, in the latter case v is the unique

point in the adherence of {uλ} and this proves actually that the whole sequence {uλ} converges to

v strongly in H1
0 (Ω).

2.2 The Neumann case

Here we observe that in the proofs of the above section if we replace H1
0 (Ω) by H1(Ω) we get the

same result, provided a slight modification of the definition of nice potentials. For any a : Ω→ R+

we still denote

Ωa0 := {x ∈ Ω ; a(x) = 0} and Ωa+ := {x ∈ Ω ; a(x) > 0}.

Definition 38. Let Ω ⊂ RN be an open set. A Borel function a : Ω → R+ is said to be a nice

potential for Neumann and we denote a ∈ AN (Ω), if the following two properties hold.

sup
x∈Ω

a(x) < +∞, (2.11)

H1
0 (Ωa0) = {u ∈ H1(Ω);u = 0 a.e. on Ωa+}. (2.12)

We have a similar result as Corollary 20, provided this time that Ω′ is compactly contained in

Ω. The proof uses a similar argument as for Corollary 20 and has been omitted here.

Corollary 39. Let Ω′, Ω be two bounded open sets such that Ω′ ⊆ Ω ⊆ RN and assume that Ω′ is

stable. Then,

(u ∈ H1(Ω) and u = 0 a.e. on Ω\Ω′)⇒ u ∈ H1
0 (Ω′).

We deduce in particular the following interesting case.

Proposition 40. Let Ω ⊂ RN be an bounded open set and a ∈ C0(Ω) be such that Ωa0 ⊂ Ω. Then,

a ∈ AN (Ω).

We are now ready to study the asymptotic as λ → +∞ for the following Neumann eigenvalue

problem −∆u+ λau = µk(λ)u, in Ω,
∂u
∂ν = 0, on ∂Ω,

(2.13)
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where as before, Ω ⊂ RN is a bounded domain and the potential a ∈ AN (Ω). Since no regularity

is assumed on Ω, the solutions for problem (2.13) have to be understood only as weak solutions,

namely ∫
Ω

(∇u · ∇ϕ+ λauϕ)dx = µk(λ)
∫

Ω

uϕdx, ∀ϕ ∈ H1(Ω).

Now we consider the following quadratic form on L2(Ω)

Q̃λ(u) =


∫

Ω

(
|∇u(x)|2 + λa(x)u(x)2

)
dx, if u ∈ H1(Ω),

+∞, otherwise,

and Q∞ still denotes

Q∞(u) =


∫

Ωa
0

|∇u(x)|2dx, if u ∈ H1
0 (Ωa0),

+∞, otherwise.

The domain of Q̃λ is now D(Q̃λ) = H1(Ω). Moreover, they remain equi-coercive on H1(Ω)

and semicontinuous on L2(Ω). As before we know by standard arguments that the operator LNλ

associated with Q̃λ with domain D(LNλ ) ⊆ H1(Ω) coincides with the operator −∆ + λa in the

distributional sense and its eigenfunctions are weak solutions for Problem (2.13). The corresponding

eigenvalues µk(λ) are called the Neumann eigenvalues of −∆ + λa in Ω.

Analogously, as Theorem 30 we have the following result regarding to the Neumann eigenvalues.

Theorem 41. Assume that a ∈ AN (Ω). Then, LNλ converges to −∆Ωa
0

in the strong resolvent sense

when λ→ +∞. As a consequence

lim
λ→+∞

µk(λ) = σk,

where σk are the (ordered) eigenvalues of the Dirichlet Laplacian −∆Ωa
0
. In addition, any sequence

of normalized solution uλ of Problem (2.1) admits a subsequence that converges strongly in H1(Ω)

to a normalized eigenfunction u ∈ H1
0 (Ωa0) of −∆Ωa

0
associated to its kth-eigenvalue. If in addition

σk is simple this convergence holds for the whole sequence {uλ}.

Proof. The proof is the same as for Theorem 30, using this time the property (2.12) instead of (1.8)

of nice potentials in the proof of the Γ-convergence of Q̃λ to Q.

Remark 42. In the same spirit as Theorem 41, in the general case when Ωa0 ⊆ Ω, one could imagine

any boundary conditions on ∂Ω and shall prove that, under suitable stability assumptions on Ωa0
and good definition of nice potentials, the solution uλ converges to the solution u with a Dirichlet

condition on ∂Ωa0\∂Ω and the original boundary conditions given on ∂Ω ∩ ∂Ωa0 .

3 A cooperative system

In this section we ascertain the limiting behaviour as λ ↑ ∞ of the eigenvalues and its associated

eigenfunctions of the linear eigenvalue problem{
(−∆ + λa)u− bv = τk(λ)u,

(−∆ + λd)v − cu = τk(λ)v,
; (u, v) ∈ H1

0 (Ω)×H1
0 (Ω), (3.1)
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where Ω is a bounded domain of RN . We assume that a, d are nice potentials (as in Definition 13).

We also suppose that b, c ∈ C0(Ω) and (3.1) is strongly cooperative in the sense that

b(x) > 0 and c(x) > 0, for all x ∈ Ω̄.

We still denote

Ωa0 := {x ∈ Ω; a(x) = 0}, Ωd0 := {x ∈ Ω; d(x) = 0},

and define

Ω0 := Ωa+d
0 = Ωa0 ∩ Ωd0 = {x ∈ Ω; a(x) = d(x) = 0}.

Next, we denote by

L(V1, V2) :=

(
−∆ + V1 −b
−c −∆ + V2

)
, V1, V2 ∈ L∞(Ω̄), (3.2)

the differential operator involved in the linear eigenvalue problem (3.1) (with V1 = λa and V2 = λd),

which is strongly cooperative as discussed by Figueiredo & Mitidieri [12], Sweers [32], López-Gómez

& Molina-Meyer [23]. The following result, which we state without proof, provides us with the

existence of solutions for the systems (3.1).

Proposition 43. For any potential V1, V2 ∈ L∞(Ω,R+), the operator L(V1, V2) admits a discrete

set of eigenvalues that tend to +∞ and there exists at least a solution (u, v) ∈ H1
0 (Ω)×H1

0 (Ω).

Remark 44. To prove Proposition 43, one firstly have that for a sufficiently big α > 0 the resolvent

of the operator L(V1, V2) +αId is a compact positive linear operator in H1
0 (Ω)×H1

0 (Ω) [32]. Then,

owing to [3, Theorem V I.8] the spectrum might contain either infinitely many isolated eigenvalues

or a finite number of isolated eigenvalues. Note that when the operator is self-adjoint the method

shown in [20] can be used to prove that there are infinitely many eigenvalues.

Remark 45. Furthermore, due to the proof of Proposition 43 for every λ the system (3.1) admits

at least a solution (u, v) ∈ H1
0 (Ω)×H1

0 (Ω).

Remark 46. It should be pointed out that the eigenvalues might be complex apart from the first

one, which might be also positive. Then, according to a version for systems of a very classical

result establishing the existence and dominance of the first eigenvalue (see [1, Theorem 2.1] and the

references therein), for any other eigenvalue τk of the operator L(V1, V2) we find that Re τk > τ0,

for any k ≥ 1.

We also consider the limiting system{
−∆u− bv = τku,

−∆v − cu = τkv,
; (u, v) ∈ H1

0 (Ωa0)×H1
0 (Ωd0) (3.3)

We say that (u, v) is a solution for the system (3.3) when each equation of the system is satisfied in

the sense of (1.6).

Remark 47. Observe that from Proposition 43 we also know that the spectrum for the problem

(3.3) is a discrete set of eigenvalues that tends to +∞ and the resolvent of the operator L∞ + αId

is compact in H1
0 (Ωa0)×H1

0 (Ωd0), for a sufficiently big α > 0.
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We assume that τk(λ) and τk are labelled in an increasing order with respect to real part. The aim

of this section is to prove that τk(λ) converges to τk (see Theorem 51 and Theorem 56). Hereafter,

we will distinguish two different situations when the system is of variational type or not. The first

case is in particular contained in the second one, which is more general, but we found it interesting

in order to give an alternative proof of this particular situation where the limiting problem can be

solved by a direct method of Γ-convergence (Section 3.1). In the general case (Section 3.2) we use a

different argument, considering the system as two separated equations and using the Γ-convergence

results obtained in Section 2 for one single equation to conclude. As mentioned before, the latter

gives in particular a second proof of the result of Section 3.1.

In all the sequel, we deal only with the case of homogeneous Dirichlet boundary problems but as

in Section 2, one can also consider some Neumann or mixed boundary condition without substantial

changes in the proofs.

3.1 Variational cooperative system

In this section we assume that

b(x) = c(x) =: γ(x), ∀x ∈ Ω.

Furthermore, in order to have coerciveness we denote

α := max
x∈Ω

γ(x) (3.4)

and we consider the following elliptic system{
(−∆ + λa+ α)u− γv = σαk (λ)u,

(−∆ + λd+ α)v − γu = σαk (λ)v,
; (u, v) ∈ H1

0 (Ω)×H1
0 (Ω), (3.5)

where

Sλ + αId =

(
−∆ + λa −γ
−γ −∆ + λd

)
+ α

(
1 0

0 1

)
, (3.6)

and σαk (λ) denotes the eigenvalue for the operator Sλ +αId under homogeneous Dirichlet boundary

conditions which we know is well defined.

Remark 48. In order to prove the convergence of eigenvalues for the operator Sλ (defined as (3.2)

with b = c in Ω), it is enough to prove the convergence of the eigenvalues for Sλ + αId. Indeed, it

holds σαk = σk + α.

Multiplying (3.5) by a test function (ϕ,ψ) ∈ C∞0 (Ω) × C∞0 (Ω), integrating in Ω and applying

the formula of integration by parts yields∫
Ω

∇u · ∇ϕ+
∫

Ω

∇v · ∇ψ + λ

[∫
Ω

auϕ+
∫

Ω

dvψ

]
+ α

[∫
Ω

uϕ+
∫

Ω

vψ

]
−
∫

Ω

γvϕ−
∫

Ω

γuψ − σαk (λ)
[∫

Ω

uϕ+
∫

Ω

vψ

]
= 0.

This suggests to introduce

Iλ(u, v) :=
∫

Ω

(
|∇u|2 + |∇v|2 + λ(au2 + dv2)

)
− 2

∫
Ω

γuv + α

∫
Ω

(u2 + v2),
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and define Qλ the quadratic form on the Hilbert space L2(Ω)× L2(Ω) by

Qλ(u, v) =

{
Iλ(u, v), if u, v ∈ H1

0 (Ω),

+∞, otherwise .

We begin by showing that the solutions (u, v) for the system (3.5) are eigenfunctions for the

operator Sλ + αId defined by (3.6) and associated with Qλ. We denote S∞ := S(0, 0).

Lemma 49. Qλ is C-coercive on H1
0 (Ω) × H1

0 (Ω), with constant C depending on Ω (in partic-

ular does not depend on λ). Also, the operator associated with Qλ with domain contained in

H1
0 (Ω)×H1

0 (Ω) is equal to Sλ + αId (defined in (3.6)) in the distributional sense. In particular the

eigenfunctions of Sλ + αId are solutions for the system (3.5).

Proof. The Hilbert space H := H1
0 (Ω)×H1

0 (Ω) is endowed with the scalar product

〈(u, v), (f, g)〉H := 〈u, f〉H1
0 (Ω) + 〈v, g〉H1

0 (Ω).

Therefore, it is easy to see using Poincaré-Sobolev inequality that Qλ is C-coercive for a positive

constant C by the definition of α (see (3.4)).

Let A be the operator associated to Qλ and Bλ its corresponding bilinear form given, for any

û := (u1, u2), v̂ := (v1, v2) in D(Qλ), by the formula

Bλ(û, v̂) := 〈∇û,∇v̂〉L2×L2 + 〈(λa+ α− σαk (λ)− 2γ)û, v̂〉L2×L2 .

We already know by definition that D(A) ⊆ D(Qλ) = H1
0 (Ω) × H1

0 (Ω). On the other hand, for

every û, v̂ ∈ H1
0 (Ω)×H1

0 (Ω), an integration by parts in the distributional sense yields

〈(Sλ + αId)(û), v̂〉 = Bλ(û, v̂), (3.7)

which in particular for û ∈ D(A) allows us to identify Sλ + αId with A as claimed in the state-

ment of the Lemma. Finally, from classical regularity result for elliptic PDE we deduce that the

eigenfunctions of A are strong solutions for the system (3.5).

Remark 50. Observe that in the case if b 6= c, equality (3.7) is false, so that the present method

does not extend to this situation.

Let us now introduce the quadratic form on L2(Ω)× L2(Ω),

Q∞(u, v) :=


∫

Ω

(
|∇u|2 + |∇v|2

)
− 2

∫
Ω

γuv + α

∫
Ω

(u2 + v2), if (u, v) ∈ H1
0 (Ωa0)×H1

0 (Ωd0),

+∞, otherwise .

Note that Qλ and Q∞ are equi-coercive on H1
0 (Ω)2 and thus belong to QC(H1

0 (Ω)2, L2(Ω)2) for

some constant C depending on Ω. Denoting σk the eigenvalues of S∞ such that S∞ + αId is the

operator associated with Q∞, we prove the following result.

Theorem 51. Assume that a and d are nice potentials and that c = b =: γ. Then, for every k ≥ 0

we have

lim
λ→+∞

σk(λ) = σk.
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In addition, any sequence of normalized solution (uλ, vλ) of Problem (3.1) admits a subsequence that

converges strongly in H1
0 (Ω) ×H1

0 (Ω) to a normalized eigenfunction (u, v) ∈ H1
0 (Ωa0) ×H1

0 (Ωd0) of

S∞ associated to its kth-eigenvalue. If in addition σk is simple, this convergence holds for the whole

sequence {(uλ, vλ)}.

Owing Remark 48 and arguing as in Theorem 30, Theorem 51 will be a consequence of the

following result.

Theorem 52. Assume that a and d are nice potentials. Then, Qλ Γ-converges to Q∞ when λ →
+∞.

Proof. The proof is very similar to the proof of Theorem 32. We begin as before with the proof of

ii) and consider for any (u, v) ∈ L2(Ω) × L2(Ω) the identically constant sequence {(uλ, vλ)}, with

(uλ, vλ) = (u, v) for every λ, that obviously converges strongly to (u, v). We have to prove that

Q∞(u, v) ≥ lim sup
λ→+∞

Qλ(uλ, vλ). (3.8)

If (u, v) is not in H1
0 (Ωa0) × H1

0 (Ωd0) then, by definition, we have that Q∞(u, v) = +∞ and (3.8)

trivially holds. On the other hand, if (u, v) ∈ H1
0 (Ωa0)×H1

0 (Ωd0) then Q∞(u, v) = Qλ(u, v), since by

definition of Ωa0 , Ωd0 and H1
0 (Ωa0) ×H1

0 (Ωd0) we find that a(x)u(x) = 0 and d(x)v(x) = 0 a.e. in Ω.

Hence, (3.8) is again satisfied and condition ii) is proved in full generality.

Let us now prove i). So let {(uλ, vλ)} be a sequence that strongly converges to (u, v) in L2(Ω)×
L2(Ω), and let us prove that

Q∞(u, v) ≤ lim inf
λ→+∞

Qλ(uλ, vλ). (3.9)

We may assume that

lim inf
λ→+∞

Qλ(uλ, vλ) < +∞, (3.10)

otherwise (3.9) is trivial. In the latter situation we claim that (u, v) ∈ H1
0 (Ωa0) ×H1

0 (Ωd0). Indeed,

(3.10) implies in particular that

lim inf
λ→+∞

(λ
∫

Ω

au2
λdx+ λ

∫
Ω

dv2
λdx) < +∞. (3.11)

Since {(uλ, vλ)} strongly converges in L2(Ω)× L2(Ω) to (u, v), (3.11) actually implies that∫
Ω

au2dx = 0 and
∫

Ω

dv2dx = 0,

from which we easily deduce that u = 0 a.e. in Ωa+ and v = 0 a.e. in Ωd+. Moreover, since a and d

are nice potentials we conclude that u ∈ H1
0 (Ωa0) and v ∈ H1

0 (Ωd0), and this allows us to write, using

Proposition 26,

Q∞(u, v) =
∫

Ω

|∇u|2dx+
∫

Ω

|∇v|2dx− 2
∫

Ω

γuvdx+ α

∫
Ω

(u2 + v2)

≤ lim inf
λ→+∞

(∫
Ω

|∇u|2dx+
∫

Ω

|∇v|2dx− 2
∫

Ω

γuvdx+ α

∫
Ω

(u2 + v2)
)

≤ lim inf
λ→+∞

Qλ(uλ, vλ),

and the proof is now complete.
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Proof of Theorem 51. The proof is similar to the one for Theorem 56 applied for the auxiliary

problem (3.5). Namely the convergence of eigenvalues and of the operator in the strong resolvent

sense follows from the Γ-convergence of the quadratic forms (Theorem 52) and the convergence of

eigenfunctions strongly in H1
0 (Ω) follows using some analogue of Lemma 33 and Lemma 37 that are

omitted here. Finally, since σαk = σk + α the proof is complete.

Let us mention a further monotonicity property on the first eigenvalue σ0(λ) which is easy to

prove in the variational context. In what follows σ0[A,Ω′] denotes the smallest eigenvalue of the

operator A with domain contained in H1
0 (Ω′).

Lemma 53. Consider the cooperative system{
(−∆ + λa)u− γv = σ0(λ)u,

(−∆ + λd)v − γu = σ0(λ)v,
; (u, v) ∈ H1

0 (Ω)×H1
0 (Ω).

Then the real function λ 7→ σ0(λ) is increasing and bounded above by

σ0(λ) ≤ min
(
σ0[S∞,Ω0], σ0[−∆,Ωa], σ0[−∆,Ωd]

)
. (3.12)

Proof. Since we are in a variational type framework, we know that σ0(λ) is obtained by minimizing

the Rayleigh quotient

σ0(λ) = min{Q̂λ(u, v); u, v ∈ H1
0 (Ω) and ‖(u, v)‖2 = 1},

where Q̂λ is the quadratic form associated with Sλ. In particular, if λ1 < λ2, denoting (ui, vi) (for

i = 1, 2) the eigenfunctions associated to σ0(λi), we have that

σ0(λ1) = Q̂λ1(u1, v1) ≤ Q̂λ1(u2, v2) = Q̂λ2(u2, v2) + (λ1 − λ2)
∫

Ω

(au2
2 + dv2

2) < σ0(λ2) (3.13)

which proves the monotonicity in λ.

Now to prove (3.12) it suffice to compare Q̂λ(uλ, vλ) with Q̂λ(u, v) where the competitor (u, v)

is successively (u0, v0) (an eigenfunction associated with σ0[S∞,Ω0]), (ua, 0) (where ua is an eigen-

function associated with σ0[−∆,Ωa]) and (0, vd) (where vd is an eigenfunction associated with

σ0[−∆,Ωd]).

Remark 54. Actually using (3.13) together with the fact that λ→ vλ is continuous in λ, one can

prove that λ → σ0(λ) is C1 and the derivative σ′0(λ) with respect to λ is σ′0(λ) =
∫

Ω
(au2

λ + dv2
λ)

(compare with (3.4) in [1]).

Finally, let us say a few words about what happens with the equations in the “cross region”

Ωa04Ωd0. Let us consider, for instance, the region Ωa := Ωa0\Ωd0 where a = 0 but d > 0 (the other

part will follow exchanging the role of uλ and vλ). In this region the two following equations hold:{
−∆uλ − γvλ = σk(λ)uλ,

−∆vλ + λdvλ − γuλ = σk(λ)vλ.
(3.14)

Since vλ tends to 0 and σk(λ)uλ tends to σku in L2(Ωa), passing the first equation to the limit

(which is justified by standard convergence results on the resolvent −∆−1 on L2) we obtain that u

is the solution of the following problem{
−∆w = σkw, in Ωa,

w − u ∈ H1
0 (Ωa).

(3.15)
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Now, as far as the second equation of (3.14) is concerned, multiplying by a test function, passing to

the limit and bearing in mind that v = 0 in Ωa we obtain that

λd(x)vλ(x) ⇀ γu in L2(Ωa). (3.16)

Remark 55. By the same argument as for Proposition 33, one can prove that if σk(λ) is bounded,

then

lim inf
λ→+∞

λ
( ∫

Ω

au2
λ +

∫
Ω

dv2
λ

)
= 0

which implies in particular that up to a subsequence,
√
λdvλ converges to 0 strongly in L2(Ω). We

would like to point out that in (3.16) it is a different limit since we are considering λd(x)vλ(x)

and not
√
λd(x)vλ(x). Actually, one can find in our last section an example of system for which

λd(x)vλ(x) do not converges to 0 in Ωa (Proposition 61 case 2).

3.2 Non-Variational cooperative system

We are now considering the general case when b and c could be different in (3.1) and we give an

alternative proof in this context. Indeed, the aim of the present section is to prove the following.

Theorem 56. Let Ω ⊂ RN be an open set and assume that a and d are nice potentials. Then, we

have

lim
λ→+∞

τk(λ) = τk, (3.17)

where τk(λ) is the kth-eigenvalue associated to the system (3.1), and τk is the one corresponding to

(3.3). In addition, any sequence of normalized eigenfunctions {(uλ, vλ)} associated with τk(λ) admits

a subsequence that converges strongly in H1
0 (Ω)×H1

0 (Ω) to the normalized eigenfunction associated

with τk. In particular if τk is simple, then the whole sequence {(uλ, vλ)} converges strongly in

H1
0 (Ω)×H1

0 (Ω) to the corresponding normalized eigenfunction.

Remark 57. As usual, here we set τk = +∞ for all k ≥ 0 if H1
0 (Ωa0)×H1

0 (Ωd0) = {0}.

Proof of Theorem 56. Let us first prove the convergence of the spectrum. Owing to Lemma 6, it is

sufficient to prove that the inverse of the operators

Lλ + αId :=

(
−∆ + λa+ α −b

−c −∆ + λd+ α

)

are compact and converge to the inverse of the limiting operator (denoted by L∞ + αId) in the

topology of operator norm on L2 × L2. We will soon prove that those operators are actually

invertible. Observe that we add αId to the operator Lλ with a positive α big enough, that will be

chosen later (similarly to (3.4)) in order to guarantee the compactness of the inverse (Lλ + αId)−1.

The desired convergence will follow from an idea given to us by Prof. Norman Dancer who we would

like to thank for his suggestion. Firstly, let Raλ := (−∆ + λa + α)−1 and Rdλ := (−∆ + λd + α)−1

be the resolvents associated with each equation of the system depending on α, which exist for any

λ. Now for any f and g in L2 one can write the system (Lλ + αId)(uλ, vλ) = (f, g) in the following

form(
uλ
vλ

)
−A(λ)

(
uλ
vλ

)
=
(
Raλf

Rdλg

)
, where A(λ) :=

(
0 b(−∆ + λa+ α)−1

c(−∆ + λd+ α)−1 0

)
.
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Next, since the principal eigenvalue of the operator Id − A(λ) is positive we find that Id − A(λ) is

invertible for any λ. This is true because the principal eigenvalue for that operator has the form

τ0[Id−A(λ),Ω] = 1− τα0 (λ)
τ∗0 (λ)

, where τ∗0 := τ0

[(
−∆ + λa+ α 0

0 −∆ + λd+ α

)
,Ω

]
,

and τα0 (λ) := τ0[Lλ + αId,Ω]. Thanks to the monotonicity of the principal eigenvalue with respect

to the potential we have that τ∗0 (λ) > τα0 (λ). Hence, τ0[Id−A(λ),Ω] > 0.

Then, according to that equivalence we deduce that Lλ + αId is invertible and the inverse can

be written as

(Lλ + αId)−1 = (Id−A(λ))−1Rλ

where Rλ is the matrix operator containing (Raλ, R
d
λ) on its diagonal and 0 elsewhere. Moreover for

α large enough, (Lλ +αId)−1 are all compact operators. This is a consequence of Remark 44 but it

also follows from the easy a priori estimate

‖(uλ, vλ)‖H1
0×H1

0
≤ C‖f, g‖L2×L2

which holds when (uλ, vλ) is the solution of the system (Lλ + αId)(uλ, vλ) = (f, g) and provided a

sufficiently big constant α > 0.

Now, we use the fact that since a and d are nice potentials, we know by our Γ-convergence results

that Raλ and Rdλ converge to R := (−∆)−1 in the topology of operator nom in L2. This implies the

convergence of both Rλ, to the diagonal matrix RId, and A(λ) to the operator

A :=

(
0 b(−∆ + α)−1

c(−∆ + α)−1 0

)
.

Therefore, since Id − A is invertible (for the same reason that Id − A(λ) was), passing to the

inverse we deduce that (Lλ + αId)−1 converge in the topology of operator norm to (L∞ + αId)−1

as λ → +∞. Applying Lemma 6, and since the inverses are compact operators, we obtain the

convergence of the eigenvalues ταk (λ) to ταk , as λ goes to infinity, for the operators Lλ + αId and

L∞ + αId respectively. Consequently, by the equalities ταk (λ) = τk(λ) + α and ταk = τk + α (3.17)

holds. In particular |τk(λ)| → +∞ if and only if H1
0 (Ωa0)×H1

0 (Ωd0) = {0}. It is not restrictive now

to assume that limλ→+∞ |τk(λ)| < +∞.

To conclude the proof let {(uλ, vλ)} be a sequence of normalized solutions for (3.1). This implies

that the H1
0 (Ω) norms are bounded. Indeed, multiplying (3.1) by (uλ, vλ) and integration by parts

yields ∫
Ω

|∇uλ|2 +
∫

Ω

|∇vλ|2 + λ

∫
Ω

(au2
λ + dv2

λ) = τk(λ) +
∫

Ω

buλvλ +
∫

Ω

cuλvλ.

Then, by Hölder inequality we find that∫
Ω

|∇uλ|2 ≤ K,
∫

Ω

|∇vλ|2 ≤ K, λ

∫
Ω

(au2
λ + dv2

λ) ≤ K,

for some positive constant K. Hence, we can extract a subsequence, again labelled by {(uλ, vλ)},
weakly convergent in H1

0 (Ω)×H1
0 (Ω) and strongly in L2(Ω)× L2(Ω) to some function (u, v). This

implies that τk(λ)uλ + bvλ and τk(λ)vλ + cuλ converges strongly in L2(Ω)× L2(Ω) to τku+ bv and

τkv+ cu respectively. Then, using that a and d are nice potentials and applying Lemma 37 to both

equations of the system (3.1), with fλ equals τk(λ)uλ + bvλ and τk(λ)vλ + cuλ respectively, we can

26



assure that, up to a subsequence, {(uλ, vλ)} converges strongly in H1
0 (Ω) × H1

0 (Ω) and the limit

(u, v) ∈ H1
0 (Ωa0)×H1

0 (Ωd0) is a solution of{
−∆u− bv = τku,

−∆v − cu = τkv,
; (u, v) ∈ H1

0 (Ωa0)×H1
0 (Ωd0). (3.18)

Finally, if τk is simple, by uniqueness of the normalized solution (u, v) of the problem (3.18)

associated with τk, the limit of the whole sequence converges to the eigenfunction associated with

τk.

Remark 58. Observe that to prove the convergence of the spectrum in Theorem 56, it is enough

to prove first that the |τk(λ)| are bounded (and this can be obtained by monotonicity results) and

then up to a subsequence, pass to the limit in the system (as we did for proving the convergence of

eigenfunctions) to conclude. However, here we obtain more by proving directly the convergence of

resolvents in the topology of operator norm which is a stronger result.

4 Some concrete examples

In this last section we present some explicit examples that shows how the limiting behaviour of the

eigenvalues can differ from one situation to another, depending on the structural configuration of

the vanishing domains of the potentials.

4.1 The case of two distinct components

Let Ω be a bounded connected and smooth domain in RN and let a ∈ C0(Ω) be a nice potential such

that Ωa0 (which is closed) is of the form Ωa0 := Ω1 ∪Ω2 where Ω1 and Ω2 are two disjoint connected

components, that for simplicity we assume to be smooth domains (at least stable). Moreover assume

that the smallest Dirichlet eigenvalue in Ω2 is strictly larger than the one in Ω1, in other words

σ0[−∆,Ω1] < σ0[−∆,Ω2].

From the latter assumption we know that σ0[−∆,Ωa0 ] is simple and

σ0[−∆,Ωa0 ] = σ0[−∆,Ω1].

Then, according to Theorem 30 we know that the normalized solution uλ of the eigenvalue problem

−∆uλ + λauλ = σ0(λ)uλ, uλ ∈ H1
0 (Ω),

(where σ0(λ) is the smallest Dirichlet eigenvalue for the operator −∆ + λa) strongly converges

in H1
0 (Ω) to the unique normalized eigenvalue for the Dirichlet Laplacian in Ω1 (and, thus, van-

ishes everywhere else). On the whole, we do not know what the limit is of uλ in the case when

σ0[−∆,Ω1] = σ0[−∆,Ω2], although we know that the limit exists and is unique (because it is a

Cauchy sequence in H1
0 (Ω) thank to [1]). However, some numerical computations1 can give us an

1All the numerical simulations of this paragraph have been computed with the freeware Freefem++ available

on the website freefem.org. The resolution of the eigenvalue problem is based on the Arpack++ subroutines which

implements a variant of the Arnoldi process for finding eigenvalues called Implicit restarted Arnoldi method (IRAM).

The 3D pictures has been made using the OpenGL-based scientific visualization software Medit 3.0. We thank Jimmy

Lamboley for bringing to our attention the existence of the quite powerful and intuitive software Freefem++.
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idea of what happen. Indeed, let us consider the rectangular domain [−π, 2π] × [−π, 0] ⊂ R2 and

the potential

a1(x, y) := max(0, sin(x) + sin(y) + 1),

that vanishes in the two disjoints balls B± := B(x±, r0) with

x− = (−π
2
, 0), x+ = (

3π
2
, 0) and r0 :=

π

2
.

Figure 1.

a1(x, y) := max(0, sin(x) + sin(y) + 1), (x, y) ∈ [−π, 2π]× [−π, 0].

Since a1 is symmetrical, it is not difficult to see that when λ → +∞, the normalized functions uλ
converge to 1

2 (φ+ + φ−), where φ+ is the state function in B+ and φ− the one in B−.

Figure 2.

uλ → 1
2 (φ− + φ+) when a := a1.

Now, we want to brake the symmetry of the potential. For this purpose we consider the step function

f(x, y) := exp(max((x− 2π + 0.3), 0))− 1,

which is a continuous function equal to 0 when x ∈ [−π, 2π − 0.3] and very positive when x ∈
[2π − 0.3, 2π]. Next we define

a2(x, y) := a1(x, y) + f(x, y).

By this way, a2 still vanishes in B± but now the region around B+ is “advantaged” compared to

B−. Then, as the numerical computations seems to show, the functions uλ this time tend to ϕ+.

Figure 3.

uλ → φ+ when a := a2.
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This phenomenon seems to be linked with the so-called “Tunnel effect” in semi-classical analysis

that was studied by Simon [29] and Helffer-Sjöstrand [18] in the case of a double well the potential.

Our observations suggest that the “flea on the elephant” leads to the same consequences in our

situation with highly degenerate potential as the ones that Simon observes in his paper [29] for

the case of a double well potential. We would like to thank B. Helffer for communicate to us this

remark.

4.2 The one dimensional Cantor set

Let us consider the potentials χE and χK introduced in Proposition 22. Recall that E is an open

and dense set in ]0, 1[ and K = [0, 1]\E is a Cantor set, compact of empty interior but with positive

Lebesgue measure.

Let us consider first χE . Recall that E is an open set in ]0, 1[ which is not stable. However using

our results one can still prove the convergence of eigenvalues. Indeed, since a is a nice potential we

deduce from Theorem 30 that for each k ≥ 0 the kth-eigenvalue σk(λ) for the problem

−∆u+ λχEu = σk(λ)u, u ∈ H1
0 (]0, 1[),

has a finite limit, namely converges to the eigenvalue σk of the limiting problem

−∆u = σku, u ∈ H1
0 (E).

Now for the case a(x) := χK(x) we also get the convergence of σk(λ) but now by Remark 23 we

know that H1
0 (Ωa0) = {0} so that σk = +∞ for every k ≥ 0. We deduce the following interesting

fact.

Proposition 59. There exists a nice potential a ∈ A(]0, 1[) satisfying

L 1(Ωa0) > 0,

and such that

lim
λ→+∞

σ0(λ) = +∞, (4.1)

where σ0(λ) is the first Dirichlet eigenvalue of −∆ + λa in ]0, 1[.

Notice that (4.1) is always true when cap(Ωa0) = 0. Proposition 59 shows in particular that the

reverse implication is false in general.

4.3 Different behaviours for the limiting system

Now we want to study a particular situation for the system in order to recover some results shown

in [2] and maybe extend them for slightly more general situations (cf. [11]). Let Ω be a bounded

connected and smooth domain in RN and let a, d ∈ C0(Ω) be some nice potentials. We denote as

usual the closed sets

Ωa0 := {a = 0}, Ωd0 := {d = 0}, Ω0 := {a = 0 = d},

and we also introduce

Ωa := Ωa0\Ω0, Ωd := Ωd0\Ω0.
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Let us assume that all those sets are disjoint and the following particular configuration holds:

Ωa ∩ Ωd = ∅, Ωa ∩ Ω0 = ∅ and Ωd ∩ Ω0 = ∅ (4.2)

For simplicity we also assume all those domains to be smooth. We will need an analogue of

Lemma 53 about the monotonicity of τ0(λ) with respect to λ. In our general context this property

cannot be proved by the traditional min-max principle, except from the case when b = c. However, it

will follows from an argument shown in [2] based upon a characterization of the Maximum Principle

in terms of the positivity of the first eigenvalue and the existence of a positive strict supersolution

(c.f. [23]).

Lemma 60. Under the above assumptions the real function τ0(λ) is continuous in λ, increasing

and bounded above by

τ0(λ) ≤ min
(
τ0[L∞,Ω0], σ0[−∆,Ωa], σ0[−∆,Ωd]

)
.

Proof. The continuity and the fact that τ0(λ) is increasing is a consequence from the monotonicity

of the eigenvalues with respect to the potential, that was shown in [2], provided some regularity on

the boundary of Ω. Moreover, in the case when the domain Ω0, is regular, say Lipschitz, we can

apply directly the monotonicity properties with respect to the domain to obtain that

τ0(λ) = τ0[L(λa, λd); Ω] < τ0[L(λa, λd); Ω0] = τ0[L∞,Ω0],

because a = d = 0 in Ω0. This provides us with an upper bound for the function τ0(λ).

On the other hand, assuming now that Ωa and Ωd are Lipschitz and taking into account the first

equation of the eigenvalue problem (3.1), and particularizing it in Ωa, we find that

−∆uλ − τ0(λ)uλ = bvλ > 0, in Ωa,

uλ > 0, on ∂Ωa
.

Hence, applying the main theorem in [23] it yields

τ0(λ) < σ0[−∆,Ωa].

Similarly for the second equation of (3.1), we obtain that

τ0(λ) < σ0[−∆,Ωd],

and this ends the proof.

Proposition 61. Assume that we are under the same assumptions as above and denote

β0 = min(σ0[−∆,Ωd], σ0[−∆,Ωa]).

Then, the following alternative holds :

Case 1. if τ0[L∞,Ω0] < β0 then, lim
λ→+∞

τ0(λ) = τ0[L∞,Ω0] and the normalized eigenfunctions

(uλ, vλ) of Lλ associated to τ0(λ) strongly converge in H1
0 (Ω)×H1

0 (Ω) to the normalized first eigen-

functions (u, v) ∈ H1
0 (Ω0)×H1

0 (Ω0) of L∞ in Ω0;
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Case 2. If τ0[L∞,Ω0] > β0 then, lim
λ→+∞

τ0(λ) = β0 and the normalized solutions (uλ, vλ) of Lλ

associated to τ0(λ) strongly converge in H1
0 (Ω)×H1

0 (Ω) as follows

lim
λ→+∞

(uλ, vλ) =

{
(u, 0), if σ0[−∆,Ωa] < σ0[−∆,Ωd],

(0, v), if σ0[−∆,Ωa] > σ0[−∆,Ωd],

where u and v are respectively the eigenfunctions of −∆ associated to smallest Dirichlet eigenvalue

in Ωa and Ωd.

Proof. By Theorem 56 we have that any converging subsequence of (uλ, vλ) converges to some (u, v)

satisfying the following limiting problem{
−∆u− bv = τ0u,

−∆v − cu = τ0v,
; (u, v) ∈ H1

0 (Ωa0)×H1
0 (Ωd0). (4.3)

for some τ0 > 0. Notice that under assumption (4.2), we have that

H1
0 (Ωa0) = H1

0 (Ω0) ∩H1
0 (Ωa) and H1

0 (Ωd0) = H1
0 (Ω0) ∩H1

0 (Ωd).

Therefore, from (4.3) we deduce that (u, v) satisfies in particular
−∆u− bv = τ0u, (u, v) ∈ H1

0 (Ω0)×H1
0 (Ω0),

−∆v − cu = τ0v, (u, v) ∈ H1
0 (Ω0)×H1

0 (Ω0),

−∆u = τ0u, u ∈ H1
0 (Ωa),

−∆v = τ0v, v ∈ H1
0 (Ωd),

(4.4)

and the conclusion follows from a careful inspection of the compatibility of the above equations

together with the inequality

τ0 := lim
λ→+∞

τ0(λ) ≤ min(β0, τ0[L∞,Ω0])

(coming from Lemma 60) and the fact that ‖(u, v)‖L2(Ω) = 1.

Remark 62. Observe that similarly to Section 4.1, in the case when β0 = τ0[L∞,Ω0] or τ0 <

τ0[L∞,Ω0] and σ0[−∆,Ωa] = σ0[−∆,Ωd], the precise limit of (uλ, vλ) remains uncertain.

Remark 63. We would like to point out that just before the submission of this work we have been

informed by E.N. Dancer of the existence of a pre-print [11] in which, independently, similar results

to our Proposition 61 are obtained. We would also like to thank him for sharing his results with us.
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[1] Pablo Álvarez-Caudevilla and Julián López-Gómez, Semiclassical analysis for highly degenerate

potentials, Proc. Amer. Math. Soc., 136, (2008), 665–675 (electronic).
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sous-variétés, Ann. Inst. H. Poincaré Phys. Théor., 46, (1987), 353–372.
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