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Abstract. In 1955, Martin Kneser showed that the Minkowski content of a

compact p-rectifiable subset M of Rn is equal to its p-Hausdorff measure:

lim
t→0,t>0

Ln
`
B(M, t)

´
α(n− p) tn−p

= Hp(M).

We extend his result to the reachable sets of a linear control system

ẋ = f(x) u,

and we give an interpretation in terms of Riemannian distance.

1. Introduction

The tube of radius t around a subset M of Rn is the set of points at distance
less than t to M :

B(M, t) =
{
x
∣∣∣ d(M,x) ≤ t

}
.

The behavior of its volume
Ln
(
B(M, t)

)
-assuming that M is compact- as a function of t has been studied from different
point of view.

Exact -polynomial- formulas are given under regularity assumptions on the set
M . When it is convex, Steiner’s formula holds for any positive t (see Steiner [St1840],
Federer [Fed]). When M is a C2 submanifold, Weyl’s formula holds for t ≤ t0
(Weyl [We39]). Both approaches have been unified by Herbert Federer [Fe59] with
the sets of positive reach, that he defined for this purpose.

As motivations for the calculus of the volume of tubes, we should first mention
the paper of Herbert Hotelling [Ho39] who gave a polynomial formula when M
is a curve on a sphere, for purposes in statistics. His work apparently motivated
Hermann Weyl who’s paper is published right after Hotelling’s paper. Since then,
many applications have been given in probability and statistics.

When exact formulas are not known, the other important issue is the asymptotic
behavior of the volume of the tube Ln

(
B(M, t)

)
. Two cases are to be looked at,

t→ +∞ and t→ 0.
The study of the asymptotic behavior at infinity gives information on the space

and is of interest in the Riemmannian setting, and trivial in Rn.
When t → 0, with very little regularity (M rectifiable, i.e., M is the image of

a compact subset of Rp by a Lipschitzian map), the asymptotic begavior is given
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by the formula on the Minkowski content (name of the left-hand side), by Martin
Kneser (1955):

Theorem A. [Kn55, Satz 3], [Fed, Theorem 3.2.39] Let M be a compact p-rectifiable
subset of Rn. Then

lim
t→0,t>0

Ln
(
B(M, t)

)
α(n− p) tn−p

= Hp(M),

where α(i) = Li(BRi(0, 1)).

The regularity assumption on M is close to be minimal: take M = ∪n∈N{1/2n}∪
{0}, it is countably 0-rectifiable, L1(B(M, δn)) = δn(−2 log(δn)/ log 2 + 2) for

δn = 1/2n, and lim supt→0,t>0

L1(B(M,t))
t = +∞. See [Kn55, Satz 5] and [Fed,

3.2.40] for other counter-examples and references. However an extension has been
given by Ambrosio, Fusco, Pallara [AmbFusPal, Theorem 2.104], assuming M to
be countably rectifiable together with a weak regularity assumption.

The aim of our paper is to extend Kneser’s result on the Minkowski content to
reachable sets. Take a dynamic

ẋ = f(x) u,

with f(x) ∈ GLn(R) -f continuous-, and u being a measurable map with values in
B(0, 1). The reachable set at time t is the set of points that can be reached by a
trajectory of the control system, at time t:

Rf (M, t) =
{
x
∣∣ ∃x0 ∈M, ∃u, x = x(t;x0, u)

}
In our setting (since u can take any values in B(0, 1)), it is also the reachable set
at time less than t.

Different issues are studied on reachable sets. Regularity, estimates on the
perimeter, on the volume. In fact our paper was initially motivated by Alvarez,
Cardaliaguet, Monneau [AlCaMo05, 2005], on dislocation dynamics. To make it
short, they realize a dislocation (a closed curve moving with normal velocity) as a
reachable set of a time-dependent system

ẋ = f(t, x) u,

with f(t, x) ∈ GLn(R) and u having values in the unit ball.
The link with tubes can easily be seen taking f(x) = id, the identity map, for

every x. The trajectory x(t;x0, u) = x0+
∫ t

0
u is equal to x0+t u when u is constant,

and
Rf (M, t) = B(M, t).

More generally, take the minimum time function

τf (x, y) = inf{t | ∃u, x(t;x, u) = y},

which is a “quasi-distance” (possible infinite values) in our setting. Then

Rf (M, t) ≈ Bτf
(M, t),

precisely, Rf (M, t) ⊂ Bτf
(M, t) ⊂ Rf (M, t′) for every t < t′. So our question was:

can we extend Kneser’s result on the Minkowski content, something like
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Question.

lim
t→0,t>0

Ln
(
Bτf

(M, t)
)

α(n− p) tn−p
= Hpτf

(M) ?

With Hτf
denoting the Haussdorff measure associated to the metric τf . If we take

f(x) = λid for every x,

Rf (M, t) = B(M,λt) = Bτf
(M, t),

τf (x, y) =
‖x− y‖

λ
,

lim
t→0,t>0

Ln (Rf (M, t))
α(n− p) tn−p

= lim
t→0,t>0

Ln
(
B(M,λt)

)
α(n− p) (λ t)n−p

λn−p = λn−pHp(M)

but
Hpτf

(M) = λ−pHp(M).

This non-intrinsic factor λn prevents a direct extension like the above question. We
need to adapt the Hausdorff measure, following Cannarsa and Cardaliaguet [CaCa06],
to the dynamic f and we obtain the following extension:

Theorem B. Let M be a compact p-rectifiable subset of Rn. Then

lim
t→0,t>0

Ln(Rf (M, t))
α(n− p) tn−p

= Hpf (M),

This result can be translated in terms of Riemannian distance. Take a continuous
Riemannian tensor F and its associated distance dF . Then:

Theorem C. Let M be a compact p-rectifiable subset of Rn. Then

lim
t→0,t>0

Ln
(
BdF

(M, t)
)

α(n− p) tn−p
= HpF(M),

with an adapted Hausdorff measure HpF(M). This is obtained by the dictionary

F ↔ tf−1 f−1.

Associated to the dynamic f is the Riemannian tensor tf−1 f−1, and the recip-
rocal follows from Cholesky’s decomposition.

Many extensions of the theories covering the formulas on the volume of tubes
have been given in the Riemannian setting. Federer explains how to extend the the-
ory of Hausdorff measures to Riemannian manifolds [Fed, paragraph 3.2.46]. Joseph
H. G. Fu [Fu89] extended much of the theory of Federer on curvature measures.
Steiner-Weyl formulas have been extended to the Riemannian setting, assuming
regularity of the set M (see, for example Gray and Vanhecke [GrVa81]). But ap-
parently, there has been no strict extension of Kneser’s result on the Minkowski
content.

Our paper is organised as follows. We present our main results in Section 2.
Section 2.1 gives the setting, our main result (Theorem B) is properly stated in
Section 2.2, reformulated in terms of minimum time function in Section 2.3 and in
terms of Riemannian distance in Section 2.4; Section 2.5 is devoted to some remarks
on the dynamic f . In Section 3, we state and prove results on the adapted Hausdorff
measure and on reachable sets, that will be useful for the forthcoming proofs. Our
main result is proved in Section 4, and the equivalence with the Riemannian setting
in Section 5.
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2. Main results

2.1. Basic definitions. 1

2.1.1. The control system. Consider a continuous map

f : Ω→ GLn(R),

where Ω is a non empty open subset of Rn. For any measurable function (control)

u : [0,+∞)→ B(0, 1)

and initial point x0 ∈ Ω, consider the Cauchy problem

(2.1) ẋ = f(x) u, x(0) = x0

Denote by X(x0, u) the solution set of (2.1):

(2.2) X(x0, u) =
{

(I, x)
∣∣∣ I is an interval containing 0,

x ∈ C0(I,Rn), ∀t ∈ I, x(t) = x0 +
∫ t

0

f(x(s)) u(s)ds
}

The solutions are clearly absolutely continuous, hence a.e. differentiable, and:

ẋ(t) = f(x(t)) u(t) a.e. t

In view of the classical existence theorem of Peano and Carathéodory, and of Zorn’s
lemma, the set X(x0, u) is non empty, contains maximal elements (I, x(.;x0, u))
which all satisfy:

(2.3) for every r < d(Rn \ Ω, x0) ,
r

supB(x0,r)
‖f‖
∈ I.

In other words, we have an estimation (lower bound) of the time for wich the
trajectories are defined. The reachable set, or attainable set, at time t, from a set
M , is defined by:

Rf (M, t) =
{
x
∣∣ ∃x0 ∈M, ∃u ∈ L1

loc([0,+∞), B),∃(I, x(.;x0, u)) ∈ X(x0, u),

t ∈ I, x = x(t;x0, u)
}
.

The reachable sets have the semi-group property, which follows from the defini-
tion: for every non negative t and τ ,

Rf (M, t+ τ) = Rf (Rf (M, t), τ).

One easily proves thatRf (M, t) is compact, if M is compact and for t small enough.

1For a linear map A ∈ Mn(R), we denote its associated norm by ‖A‖ = supx∈B(0,1) A x. For

any Ω ⊂ Rn and f : Ω→ GLn(R) we let

‖f‖∞ = sup
x∈Ω
‖f(x)‖ .

Ln denotes the Lebesgue measure on Rn.
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2.1.2. The adapted Hausdorff measure. For a given map

f : Ω→ GLn(R),

where Ω is a non empty subset of Rn, and for a fixed integer p ∈ {1, . . . , n}, we will
now recall the notion of the adapted p-dimensionnal Hausdorff measure to f , Hpf ,
that was introduced in [CaCa06] for p = n− 1.

First of all, for any set K ⊂ Ω let us denote by diamf,p(K) the (adapted)
diameter of K, that is,

diamf,p(K) := sup
x,y∈K

|det(f(x))|1/p
∣∣f(x)−1(x− y)

∣∣ .
Then, for any set E ⊂ Ω and any number δ > 0, let

Hpf,δ(E) := inf
{α(p)

2p

∞∑
i=1

(
diamf,p(Ki)

)p ∣∣∣ E ⊂ ∞⋃
i=1

Ki , diamf,p(Ki) ≤ δ
}
,

where α(p) is the volume of the unit ball of Rp. Finally, define

Hpf (E) := lim
δ→0+

Hpf,δ(E).

In fact this is exactly the Carathéodory’s construction (see for example [Fed]) on
the set Ω associated to the map diamf,p. If E ⊂ Ω, the construction on the set
Rn and the construction on the set Ω give the same value for Hpδ(E) and Hp(E),
hence removing any ambiguity. It is easily seen that the above quantities Hpf,δ(E)
and Hpf (E) reduce to the usual ones, Hpδ(E) and Hp(E), when f(x) coincides with

the identity matrix. Let us notice at this point that the factor |det(f(x))|1/p -when
differing from 1!- in the definition of the diameter diamf,p(K) makes the adapted
Hausdorff measure heavily depend on the dimension of the ambient space, and thus
somewhat non intrinsic, contrarily to the classical Hausdorff measure. We address
this issue in Section 2.4.

2.1.3. Rectifiable sets. We take the terminology of Federer [Fed, 3.2.14]. A subset
M of a metric space X is p rectifiable if and only if there exists a Lipschitzian
function mapping some bounded subset of Rp onto M .

2.2. Statement of the results. Our main result, which clearly implies Theorem
B in the introduction, extends Theorem A of Kneser, on the Minkowski content of
a compact p-rectifiable subset M of Rn, to a dynamic of the type presented above,
for a continuous map

f : Ω→ GLn(R),

where Ω is a non empty open subset of Rn. Then the adapted p-Minkowski content
of the set M , where the reachable sets Rf (M, t) replace the tubes B(M, t), is equal
to the adapted p-dimensionnal Hausdorff measure to f of M .

Theorem 2.1. Let M be a compact p-rectifiable subset of Ω. Then

lim
t→0,t>0

Ln(Rf (M, t))
α(n− p) tn−p

= Hpf (M),

where α(i) = Li(BRi(0, 1)).
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The proof of Theorem 2.1 is given in Section 4 . The upper bound of the
Minkowski content, Section 4.2, is quite straightforward, by mean of local linear
approximations. It could also be obtained by the general theory, following the lines
of Federer [Fed] on the Minkowski content and on the Carathéodory construction.
The lower bound, Section 4.3, is more tricky to obtain, it still uses local linear
approximations, but it also requires to locally shrink the covering cubes used in the
local linear approximation.

2.3. With the minimum time function. Associated to the control system is
the minimum time function

τf (x1, x2) = inf{t | ∃u, x(t;x1, u) = x2}.

This is the distance induced by the control system: it is symmetric, due to the
particular form of the dynamic that we consider. It also enjoys the other properties
of a distance -note that it can be infinite, if Ω is not connected. The natural
extension, to our control system, of the definition of an Euclidean tube around a
set M , is the tube for the distance τf :

Bτf
(M, t) =

{
x
∣∣∣ inf
y∈M

τf (x, y) ≤ t
}
.

The extension of Theorem 2.1 on the Minkowski content should then be stated in
terms of tubes Bτf

(M, t).

Theorem 2.2. Let M be a compact p-rectifiable subset of Ω. Then

lim
t→0,t>0

Ln
(
Bτf

(M, t)
)

α(n− p) tn−p
= Hpf (M).

For a general control system, and every 0 ≤ t < t′, the following inclusions hold:

∪s≤tRf (M, s) ⊂ Bτf
(M, t) ⊂ ∪s≤t′Rf (M, s),

with possible strict inclusions, hence

lim
t→0,t>0

Ln
(
Bτf

(M, t)
)

α(n− p) tn−p
= lim
t→0,t>0

Ln (∪s≤tRf (M, s))
α(n− p) tn−p

.

With the control system that we consider, because of its linear structure and because
of the control space equal to the unit ball,

Rf (M, t) = ∪s≤tRf (M, s).

So both statements, Theorem 2.1 in terms of reachable sets, and Theorem 2.2 in
terms of tubes for the minimum time function, are equivalent. Because of our
interest in control, where the notion of reachable sets prevails, we have chosen
a presentation in terms of reachable sets. Also, we have seen that the natural
extension, to reachable sets, of the definition of a tube, would rather be the reachable
set at time less than t:

∪s≤tRf (M, s).

Since in our case Rf (M, t) = ∪s≤tRf (M, s), we stick to the traditional definition of
reachable sets, and we keep the lighter writing Rf (M, t) for the convenience of the
reader. Only keep this notice in mind when thinking to other possible dynamics.
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2.4. Interpretation (translation) in terms of Riemannian distance. The-
orem 2.1 can be equivalently reformulated in a Riemannian setting, in terms of
Riemannian distance. We briefly recall the setting, see for example Federer [Fed,
p. 281]. Let Ω be an open subset of Rn, and

F : Ω→ S++
n (R)

be a continuous map such that F (x) is positive and definite for every x ∈ Ω. Cor-
responding to the Riemannian tensor F , we define the distance dF (x, y) (possibly
infinite) between two elements x and y in Ω by:

dF (x, y) = inf
{∫ 1

0

(
tγ′(t)F (γ(t))γ′(t)

)1/2
dt
∣∣∣ γ : [0, 1]→ Ω,

γ(0) = x, γ(1) = y, γ is Lispschitzian
}
.

The fact that dF satisfies the properties of a (quasi)-distance can be found for
example in Federer [Fed]. Associated to dF is the notion of tube around a subset
M of Ω:

BdF
(M, t) =

{
x
∣∣∣ inf
y∈M

dF (x, y) ≤ t
}
.

Following Carathéodory’s construction of the Hausdorff measure on the metric
space (Ω,dF ), we obtain the p-dimensional Hausdorff measure HpdF

. But the result
on the Minkowski content does not extend with the Hausdorff measure HpdF

. This
can easily be seen by taking F = λ2idRn , λ 6= 0. Then

dF (x, y) = |λ| |x− y|

BdF
(M, t) = B

(
M,

t

|λ|

)

lim
t→0,t>0

Ln(BdF
(M, t))

α(n− p) tn−p
= lim

t→0,t>0

Ln
(
B

(
M, t|λ|

))
α(n− p)

(
t
|λ|

)n−p |λ|p−n
= |λ|p−n Hp(M), with M p-rectifiable,

but
HpdF

= |λ|pHp(M).

Since the behavior of the Minkowski content depends on the local variations of F ,
we have little hope of a direct change in the formula of the Minkowski content, that
would yield the Hausdorff measure HpdF

.
So we introduce an adapted, non intrinsic, Hausdorff measureHpF -with hopefully

no confusion on the notations!- as in Section 2.1.2, by defining

(2.4) diamF,p(K) := sup
x,y∈K

|det(F (x))|−1/2p dF (x, y),

and following Carathéodory’s construction. We can now give the result on the
Minkowski content in this simple Riemannian setting, which clearly implies Theo-
rem C in the introduction:
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Theorem 2.3. Let M be a compact p-rectifiable subset of Ω. Then

lim
t→0,t>0

Ln
(
BdF

(M, t)
)

α(n− p) tn−p
= HpF(M).

Theorem 2.1 and Theorem 2.3 are equivalent. A control system ẋ = f(x)u, with
a continuous map f and a control u with values in B(0, 1), induces a Riemannian
tensor

F =tf−1 f−1,

and the continuity of F is obvious. Conversely, given a Riemannian tensor F ,
Cholesky’s decomposition provides a (unique) map f such that F =tf−1 f−1, with
f(x) upper triangular for every x. The elementary operations yielding Cholesky’s
decomposition and the continuity of A 7→ A−1 in GLn(R), allow to derive the
continuity of the map f from the continuity of F .

The equivalence between Theorem 2.1 and Theorem 2.3 follows then from the
following two observations. First,

τf = dtf−1 f−1 ,

which implies that
Bτf

(M, t) = BdF
(M, t),

with F =tf−1 f−1. Second, the adapted p-dimensional Hausdorff measure to f , Hpf ,
is also obtained on compact sets by Carathéodory’s construction, taking

(2.5) diamτf ,p(K) := sup
x,y∈K

|det(f(x))|1/p τf (x, y),

which is obviously equal to diamF,p(K). Thus Hpf , the adapted Hausdorff measure
to the dynamic f , and HpF, the adapted Hausdorff measure to the Riemannian
tensor F = tf−1 f−1, do coincide on the set M :

HpF(M) = Hpf (M).

These two observations imply the equivalence between Theorem 2.2 and Theo-
rem 2.3, hence between Theorem 2.1 and Theorem 2.3.

We prove these two facts in Section 5.

2.5. Remarks about the dynamic.

2.5.1. Considering more general dynamics. The control system that we consider im-
mediately extends the usual euclidean distance, keeping its main properties. Among
others, the distance induced by the control system, namely the minimum time func-
tion is locally Lipschitz equivalent to the euclidean distance. More precisely, the
associated ball is almost the linear transformation of the euclidean ball

f(x0)B(x0, t).

This explains why the Minkowski content extends so nicely to this control system.
Of course one would want to extend the Minkowski content type result to more
general control system

ẋ = f(x, u).

With comparisons between Rf (x0, t) and sets of the type A(x0) B(x0, τ), with τ
depending on t, one can expect bounds on the upper and lower Minkowski contents.
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But, in general, two difficulties immediately appear, already with the linear control
system

ẋ = f(x) u.
One from the configuration of the control space. The other from the rank of the
linear map f . In R2, consider, for example,

f = idR2 , u(t) ∈ [0, 1]× {0}.

Or

f =
(

1 0
0 0

)
, u(t) ∈ B(0, 1).

In both cases, the associated dynamic is

ẋ =
(
u1

0

)
, u1(t) ∈ [0, 1],

and

Rf ([0, 1]× {0}, t) = [0, 1 + t]× {0};
Rf ({0} × [0, 1], t) = [0, t]× [0, 1].

This makes a general formulation already more tricky! Although one can look at
a degenerate linear map f as a limit of linear maps of full rank, and consider the
possible limit of the associated formulas, given by Theorem 2.1. Such a study is of
deep interest, but it goes beyond the scope of our paper.

2.5.2. Regularity of the dynamic. The continuity of the function f is not essential
to define the adapted Hausdorff measure Hpf . So one will wonder what happens
when considering the same problem with a non continuous map f . Several concepts
of solutions exist when dealing with non continuous maps. The general study of
this issue goes far beyond the scope of our paper. Let us mention that, in this
direction, it will be worth studying the question for a differential inclusion

ẋ ∈ F (x).

3. Preliminary results

In this section, we give lemmas on the adapted Hausdorff measure (Section 3.1)
and on reachable sets (Section 3.2), which will be crucial for the proof of Theo-
rem 2.1, but that can also be read independently from its proof.

3.1. On the adapted Hausdorff measure. As noted in [CaCa06], the adapted
Hausdorff measure Hpf can be easily estimated by the usual Hausdorff measure Hp
as follows. Let Ω ⊂ Rn be such that, for some constant µ > 0,

|det f(x)| ≥ 1
µ
, ‖f(x)‖ ≤ µ ∀x ∈ Ω .

Then,

(3.1)
1

c(µ)
Hp(E) ≤ Hpf (E) ≤ c(µ)Hp(E)

for every set E ⊂ Ω and some constant c(µ) ≥ 1.
If f is constant, then Hpf is a simple rescaling of the usual Hausdorff measure as

shown by the following lemma.
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Lemma 3.1. Let A ∈ GLn(R). Then, for every set E ⊂ Rn,

HpA(E) = |detA|Hp(A−1E).

Proof of Lemma 3.1. Observe that, for any set K ⊂ Rn,

diamA,p(K) := |detA|1/p sup
x,y∈K

∣∣A−1(x− y)
∣∣ = |detA|1/pdiam(A−1K) .

Therefore, for any δ > 0 and any E ⊂ Rn

HpA,δ(E)

= |detA| inf
{α(p)

2p

∞∑
i=1

(
diam(A−1Ki)

)p ∣∣∣ E ⊂ ∞⋃
i=1

Ki , diam(A−1Ki) ≤
δ

|detA|1/p
}

= |detA| inf
{α(p)

2p

∞∑
i=1

(
diam(K ′i)

)p ∣∣∣ A−1E ⊂
∞⋃
i=1

K ′i , diam(K ′i) ≤ λδ
}

= |detA|Hpλδ(A
−1E) ,

where λ := 1/|detA|1/p. The conclusion follows as δ → 0+.

We now turn to analyze the dependance of the adapted Hausdorff measure Hpf on
the dynamic f .

Lemma 3.2. Let Ω ⊂ Rn be an open domain and let f, g : Rn → GLn(R) be
continuous maps satisfying

(3.2) ∀x ∈ Ω

{
(a) ‖f(x)‖ , ‖g(x)‖ ≤ µ
(b) |det f(x)| , |det g(x)| ≥ 1

µ

for some constant µ > 0. Then there is a constant cp(µ) > 0 such that

(3.3) |Hpf (E)−Hpg(E)| ≤ cp(µ)‖f − g‖∞min{Hpf (E),Hpg(E)}

for every set E ⊂ Ω.

Proof. Observe, first, that for all sets K ⊂ Ω

diamg,p(K) ≤ dp(f, g) diamf,p(K)(3.4)

where

dp(f, g) := sup
x∈Ω

|det g(x)|1/p‖g(x)−1f(x)‖
|det f(x)|1/p

.

Now, let E ⊂ Ω, fix positive numbers ε and δ, and let {Ki}i∈N be a family of
subsets of Ω such that diamf,p(Ki) ≤ δ , E ⊂ ∪iKi and

Hpf,δ(E) >
α(p)
2p

∞∑
i=1

(
diamf,p(Ki)

)p − ε .
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In view of (3.4), diamg,p(Ki) ≤ dp(f, g)δ =: dpδ for all i ≥ 1, and

Hpg,dpδ
(E)−Hpf,δ(E) <

α(p)
2p

∞∑
i=1

[(
diamg,p(Ki)

)p − (diamf,p(Ki)
)p]+ ε

≤
[
dp(f, g)p − 1

] α(p)
2p

∞∑
i=1

(
diamf,p(Ki)

)p + ε

<
[
dp(f, g)p − 1

] (
Hpf,δ(E) + ε

)
+ ε .

Thus, since ε is arbitrary,

Hpg,dpδ
(E)−Hpf,δ(E) ≤

[
dp(f, g)p − 1

]
Hpf,δ(E) ,

whence, as δ → 0+,

(3.5) Hpg(E)−Hpf (E) ≤
[
dp(f, g)p − 1

]
Hpf (E) .

Finally, let us bound the term dp(f, g)p − 1. We have

dp(f, g)p − 1

≤ sup
x∈Ω

|det g(x)| − | det f(x)|
|det f(x)|

‖g(x)−1f(x)‖p + sup
x∈Ω

(
‖g(x)−1f(x)‖p − 1

)
.

Since
|ap − bp| ≤ p(a+ b)p−1|b− a| ∀a, b > 0 ,

we conclude that

‖g(x)−1f(x)‖p − 1 ≤ p
(
1 + ‖g(x)−1f(x)‖

)p−1∣∣‖g(x)−1f(x)‖ − 1
∣∣

≤ cp(µ)
∣∣‖g(x)−1f(x)‖ − 1

∣∣ .
Moreover, owing to assumption (3.2),∣∣‖g(x)−1f(x)‖ − 1

∣∣ =
∣∣‖g(x)−1f(x)‖ − ‖g(x)−1g(x)‖

∣∣
≤ ‖g(x)−1‖ ‖f(x)− g(x)‖ ≤ cp(M)‖f − g‖∞ .

Furthermore, noting that det f and det g are polynomials in fij and gij , respectively,
we also have

|det g(x)| − | det f(x)| ≤ cp(µ)‖f − g‖∞ .

So,

(3.6) dp(f, g)p − 1 ≤ cp(µ)‖f − g‖∞
Then, by (3.5),

Hpg(E)−Hpf (E) ≤ cp(µ)‖f − g‖∞Hpf (E) .

Exchanging f and g, we obtain

Hpf (E)−Hpg(E) ≤ cp(µ)‖f − g‖∞Hpg(E) ,

whence
|Hpf (E)−Hpg(E)| ≤ cp(µ)‖f − g‖∞max{Hpf (E),Hpg(E)} .

The conclusion follows noting that, on account of (3.5) and (3.6),

Hpg(E) ≤ dp(f, g)pHpf (E) ≤
[
1 + cp(µ)‖f − g‖∞

]
Hpf (E) .
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We now give a result describing an additivity property of the adapted Hausdorff
measure with respect to cubic coverings. For any x0 ∈ Rn and any r > 0, we denote
by F(x0, r) the covering of Rn

F(x0, r) =

{
n∏
i=1

[
x0
i + kir, x

0
i + (ki + 1)r

] ∣∣∣ (k1, . . . , kn) ∈ Zn
}

made of cubes with sides of length r, parallel to the coordinate planes xi = 0, and
vertices in the lattice generated by x0.

Lemma 3.3. Let M ⊂ Rn be such that Hp(M) <∞. Then, for any r > 0 there is
a countable set D ∈ Rn such that, for every x0 ∈ Rn \D and r > 0,

Hpf (M) =
∑

K∈F(x0,r)

Hpf (M ∩K) =
∑

K∈F(x0,r)

Hpf (M ∩ intK) .

Proof of Lemma 3.3. Since∑
K∈F

Hpf (M ∩ intK) ≤ Hpf (M) ≤
∑
K∈F

Hpf (M ∩K) ,

it suffices to show that Hpf (M ∩ bdK) = 0 for every cube K ∈ F(x0, r). For this
purpose we note that, if

K =
n∏
i=1

[
x0
i + kir, x

0
i + (ki + 1)r

]
for some (k1, . . . , kn) ∈ Zn, then

M ∩ bdK ⊂
n⋃
i=1

((
M ∩Hi

x0
i +kir

)
∪
(
M ∩Hi

x0
i +(ki+1)r

))
where Hi

λ = { x ∈ Rn | xi = λ }. It is thus sufficient to show that there is a
countable set Di ⊂ R such that Hpf (M ∩Hi

λ) = 0 for all λ 6∈ Di, or, recalling (3.1),
such that Hp(M ∩Hi

λ) = 0 for all λ 6∈ Di. This can be done by a classical measure
theoretic argument. Indeed, let

Di := { λ ∈ R | Hp(M ∩Hi
λ) > 0 } .

Then, Dk
i := { λ ∈ R | Hp(M ∩Hi

λ) > 1/k } ↑ Di as k →∞. Moreover, Dk
i is a

finite set since Hp(M) ≥
∑
λ∈Dk

i
Hp(M ∩Hi

λ). Therefore, Di is at most countable.
This completes the proof.

3.2. On reachable sets. The following result will be of use in the proof of Theo-
rem 2.1. It can easily be generalized by only assuming ‖f − g‖∞ ≤ ε, adapting the
values in the inclusion. Note that the second inclusion amounts to an interior ball
property, see [?] in a more general setting.

Lemma 3.4. Let Ω be an open subset of Rn, let f and g be two continuous maps
from Ω to GLn(R), let ε > 0 such that

sup
(x,y)∈Ω×Ω

‖f(x)− g(y)‖ ≤ ε.

Let M be a compact subset of Ω. Then, for every t ≥ 0 small enough

Rf (M, t) ⊂ Rg(M, t) +B(0, εt) ⊂ Rg
(
M,
(
1 + ε‖g−1‖∞

)
t
)
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Proof of Lemma 3.4. We denote by X(x0, u) -respectively Y (x0, u)- the solution
set of the equation

ẋ = f(x) u, x(0) = x0 -resp., ẏ = f(y) u, y(0) = x0- u(.) ∈ B(0, 1).

We noticed, see (2.3), that all the maximal elements in X(x0, u) and Y (x0, u) -the
trajectories- are defined at least till a given time. Since the set M is compact, we
obtain a -positive- lower bound tM of the time till which the trajectories starting
in M are defined. Assume that t ≤ tM , take an element x(t;x0, u) in Rf (M, t).
Consider a maximal element y(.;x0, u) in Y (x0, u), which is thus defined till tM .
The first inclusion follows from the observation

|x(t;x0, u)− y(t;x0, u)| =
∣∣∣∣∫ t

0

ẋ(s;x0, u)− ẏ(s;x0, u)ds
∣∣∣∣

=
∣∣∣∣∫ t

0

(f(x(s;x0, u))− g(y(s;x0, u)) u(s)ds
∣∣∣∣

≤ εt.

The second inclusion is merely an interior ball property. Since the trajectories
are locally Lipschitz, Rg(M, t) ⊂ B(M,Kt) for some constant K and for t small
enough. Since M is at a positive distance from Rn \ Ω, take t small enough such
that

Rg(M, t) +B(0, εt) ⊂ Ω.

Take a point y0 = y(t;x0, u) in Rg(M, t) and an element h in B(0, εt). The segment
[y0, y0 + h] is thus contained in Ω. Let

T = max
∥∥g−1([y0, y0 + h])

∥∥ |h|
Take the control v defined, for 0 ≤ τ ≤ T , by

v(τ) = g−1
(
y0 +

τ

T
h
) h
T

Then v(τ) ∈ B(0, 1) for every τ , and the map

y(τ ; y0, v) = y0 +
τ

T
h

satisfies

ẏ(τ ; y0, v) =
h

T
= g(y(τ ; y0, v))v(τ)

Thus
y0 + h = y(τ ; y0, v) ∈ Rg(Rg(M, t), T ).

By the semigroup property of the reachable sets, we have

Rg(M, t)+B(0, εt) ⊂ Rg(Rg(M, t), T ) = Rg(M, t+T ) ⊂ Rg
(
M
(
1 + ε‖g−1‖∞

)
t
)

4. Proof of Theorem 2.1

In this section, we prove Theorem 2.1 in three steps. First, if we assume that the
dynamic f is constant (Section 4.1). Then, in the general case, we show (Section 4.2)
the inequality:

lim sup
t→0,t>0

Ln(Rf (M, t))
α(n− p) tn−p

≤ Hpf (M)
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Finally, in Section 4.3, we show the reverse inequality:

Hpf (M) ≤ lim inf
t→0,t>0

Ln(Rf (M, t))
α(n− p) tn−p

4.1. The constant case. Assume that the dynamic f is constant, i.e., f(x) = A
for every x, with A ∈ GLn(R). Notice that

RA(M, t) = M + tAB(0, 1).

then

Ln(RA(M, t)) = Ln
(
A
(
A−1M + tB(0, 1)

))
= |detA|Ln

(
A−1M + tB(0, 1)

)
Apply Kneser’s Theorem A on the Minkowski content, to the set A−1M , and
Lemma 3.1 to the set M and the linear map A

lim
t→0,t>0

Ln(RA(M, t))
α(n− p) tn−p

= |detA| Hp(A−1M)

= HpA(M)

4.2. Upper bound. Since the map f is uniformly continuous on a neighborhood
of the compact set M , for every positive integer ν, let r > 0 such that

|x− y| ≤ (1 + n1/n)r ⇒ |f(x)− f(y)| ≤ 1
ν
.

We cover the set M by a finite family F of cubes with disjoint interiors, each
one with side length r and meeting M . Assume that r is small enough to have
K +B(0, r) ⊂ Ω for every cube K ∈ F . We write

M = ∪K∈FM ∩K
and we notice that

Rf (M, t) = ∪K∈FRf (M ∩K, t).
Take an element xK in each cube K. By definition of the covering F ,

sup
x∈K+B(0,r)

‖f(x)− f(xK)‖ ≤ 1
ν
,

and from Lemma 3.4,

Rf (M ∩K, t) ⊂ Rf(xK)

(
M ∩K,

(
1 +
‖f(xK)−1‖

ν

)
t

)
Then

(4.1) Ln(Rf (M, t)) ≤
∑
K∈F

Ln
(
Rf(xK)

(
M ∩K,

(
1 +
‖f(xK)−1‖

ν

)
t

))
.

Notice that, for every cube K, in view of Section 4.1 (Theorem 2.1 in the constant
case)

lim
t→0,t>0

Ln
(
Rf(xK)

(
M ∩K,

(
1 + ‖f(xK)−1‖

ν

)
t
))

α(n− p) tn−p
=
(

1 +
‖f(xK)−1‖

ν

)n−p
Hpf(xK)(M∩K)

Divide Equation (4.1) by α(n− p) tn−p, take the upper limit when t→ 0 noticing
that the sum of the upper limits is greater than the upper limit of the sum, and
take C to be greater than the supremum of the ‖f(xK)−1‖,
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(4.2) lim sup
t→0,t>0

Ln(Rf (M, t))
α(n− p) tn−p

≤
(

1 +
C

ν

)n−p ∑
K∈F

Hpf(xK)(M ∩K)

For every cube K, supx∈K ‖f(x)− f(xK)‖ ≤ 1
ν , and from Lemma 3.2, by even-

tually changing the constant C,

Hpf(xK)(M ∩K) ≤
(

1 +
C

ν

)
Hpf (M ∩K)

From Lemma 3.3, it is possible to choose the cubic covering such that

Hpf (M) =
∑
K∈F

Hpf (M ∩K)

Equation (4.2) then implies

lim sup
t→0,t>0

Ln(Rf (M, t))
α(n− p) tn−p

≤
(

1 +
C

ν

)n−p+1

Hpf (M),

and taking the limit when ν →∞,

lim sup
t→0,t>0

Ln(Rf (M, t))
α(n− p) tn−p

≤ Hpf (M)

4.3. Lower bound. Take an integer ν and associate a covering F like in the pre-
vious section. Recall that

Rf (M, t) = ∪K∈FRf (M ∩K, t).

Take an integer µ, greater than ν. For every cube K of the covering F , let Kµ be
the smaller cube, at distance 1

µ from Rn \K:

Kµ =
{
x ∈ Rn

∣∣∣ d(x,Rn \K) ≥ 1
µ

}
.

Then, for every cube K,

Rf (M ∩Kµ, t) ⊂ Rf (M ∩K, t).

Recalling that supx∈K+B(0,r) ‖f(x)− f(xK)‖ ≤ 1
ν and by Lemma 3.4, taking C to

be the supremum2 of ‖f−1(M +B(0, r))‖, for t small enough,

Rf(xK)

(
M ∩Kµ,

(
1 +

C

ν

)−1

t

)
⊂ Rf (M ∩Kµ, t)

We thus have the inclusion⋃
K∈F

Rf(xK)

(
M ∩Kµ,

(
1 +

C

ν

)−1

t

)
⊂ Rf (M, t).

The union in the left-hand side is clearly disjoint for t small enough. Then

(4.3) Ln
( ⋃
K∈F

Rf(xK)

(
M ∩Kµ,

(
1 +

C

ν

)−1

t

))
≤ Ln(Rf (M, t)).

2since the map A 7→ A−1 is continuous in GLn(R), the map f−1 is continuous.



16 PIERMARCO CANNARSA AND MARC-OLIVIER CZARNECKI

Notice that, for every cube K, in view of Section 4.1 (Theorem 2.1 in the constant
case)

lim
t→0,t>0

Ln
(
Rf(xK)

(
M ∩Kµ,

(
1 + C

ν

)−1
t
))

α(n− p) tn−p
=
(

1 +
C

ν

)p−n
Hpf(xK)(M ∩Kµ)

Divide Equation (4.3) by α(n − p) tn−p, take the lower limit when t → 0 noticing
that the sum of the lower limits is smaller than the lower limit of the sum,

(4.4)
(

1 +
C

ν

)p−n ∑
K∈F

Hpf(xK)(M ∩Kµ) ≤ lim inf
t→0,t>0

Ln(Rf (M, t))
α(n− p) tn−p

For every cube K, supx∈K ‖f(x)−f(xK)‖ ≤ 1
ν , and from Lemma 3.2, by eventually

changing the constant C(
1 +

C

ν

)−1

Hpf (M ∩Kµ) ≤ Hpf(xK)(M ∩Kµ)

Thus (
1 +

C

ν

)p−n−1 ∑
K∈F

Hpf (M ∩Kµ) ≤ lim inf
t→0,t>0

Ln(Rf (M, t))
α(n− p) tn−p

Take the limit when µ→∞, notice that limµ→∞Hpf (M ∩Kµ) = Hpf (M ∩ intK):

(4.5)
(

1 +
C

ν

)p−n−1 ∑
K∈F

Hpf (M ∩ intK) ≤ lim inf
t→0,t>0

Ln(Rf (M, t))
α(n− p) tn−p

From Lemma 3.3, it is possible to choose the cubic covering such that

Hpf (M) =
∑
K∈F

Hpf (M ∩ intK)

Equation (4.5) then implies(
1 +

C

ν

)p−n−1

Hpf (M) ≤ lim inf
t→0,t>0

Ln(Rf (M, t))
α(n− p) tn−p

and taking the limit when ν →∞,

Hpf (M) ≤ lim inf
t→0,t>0

Ln(Rf (M, t))
α(n− p) tn−p

5. Proof of the equivalence of Theorem 2.1 and Theorem 2.3

We recall that the equivalence between Theorem 2.1 and Theorem 2.3 is a direct
consequence of the following two facts:

τf = dtf−1 f−1 ,

and
HpF(M) = Hpf (M), with F = tf−1 f−1.

They imply the equivalence between Theorem 2.2 and Theorem 2.3, hence between
Theorem 2.1 and Theorem 2.3. We now proceed to prove this two facts in the
following two subsections.
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5.1. Minimum time function and Riemannian distance.

Lemma 5.1. Le Ω be a nonempty open subset of Rn, and f : Ω → Rn be a
continuous map. Then:

τf = dtf−1 f−1 .

Proof of Lemma 5.1. Consider two elements y and z in Ω. take a positive
real number T and a control u : [0,+∞)→ B(0, 1) such that:

x(T ; y, u) = z.

Then ∫ T

0

(
tẋ(t; y, u)

(
tf−1 f−1

)
(x(t; y, u)) ẋ(t; y, u)

)1/2
dt =

∫ t

0

|u(t)|dt

≤ T.

In order to keep the normalization in the definition of the distance dtf−1 f−1 , define
γ(t) = x(Tt; y, u). Thus dtf−1 f−1(y, z) ≤ T , and by taking the infimum on T , we
obtain

dtf−1 f−1(y, z) ≤ τf (y, z).

Now, to prove the converse inequality, take a Lipschitz continuous γ : [0, 1]→ Ω,
such that γ(0) = y, γ(1) = z and let

T =
∫ 1

0

(
tγ′(t)

(
tf−1 f−1

)
(γ(t)) γ′(t)

)1/2
dt

=
∫ 1

0

∣∣f(γ(t))−1 γ′(t)
∣∣ dt.

Define ψ : [0, 1]→ R+ by

ψ(t) =
∫ t

0

∣∣f(γ(t))−1 γ′(t)
∣∣ ds.

Assume that γ′(t) 6= 0 for almost every t. Then ψ is absolutely continuous, increas-
ing, ψ(0) = 0, ψ(1) = t and

ψ′(t) =
∣∣f(γ(t))−1 γ′(t)

∣∣ .
Moreover, since ψ′(t) 6= 0 for a.e. t, the map ψ−1 is also absolutely continuous.
Define:

x(t) = γ(ψ−1(t)) for t ∈ [0, T ]

u(t) =
f(x(t))−1 γ′(ψ−1(t))
|f(x(t))−1 γ′(ψ−1(t))|

for a.e. t ∈ [0, T ].

The map u is measurable and has values in B(0, 1). Having in mind that γ ◦ ψ−1

is absolutely continuous, notice that∫ t

0

f(x(s)) u(s)ds =
∫ t

0

γ′(ψ−1(s))
|f(x(s))−1 γ′(ψ−1(s))|

ds

=
∫ t

0

γ′(ψ−1(s))
ψ′(ψ−1(s))

ds

= γ(ψ−1(t))− γ(ψ−1(0)) = x(t)− y.
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Hence ([0, T ], x) ∈ X(y, u). Moreover

x(T ) = γ(ψ−1(T )) = γ(1) = z,

hence τf (y, z) ≤ T . Taking the infimum on T

τf (y, z) ≤ dtf−1 f−1(y, z).

Now, if γ′(t) = 0 on a set of positive measure, a simple way is to define

ψ(t) =
∫ t

0

∣∣f(γ(s))−1γ′(s)
∣∣+ ε ds

and to observe that the above proof can be adapted with minor modifications,
letting ε→ 0 at the end.

5.2. Adapted Hausdorff measures.

Lemma 5.2. Le Ω be a nonempty open subset of Rn, and f : Ω → Rn be a
continuous map. Let M be a compact subset of Ω, and let F = tf−1 f−1. Then:

HpF(M) = Hpf (M).

Proof of Lemma 5.2. Since

τf = dtf−1 f−1

from Lemma 5.1, recalling the definitions of diamτf ,p (2.5) and diamF,p (2.4), we
have

diamτf ,p = diamF,p.

Thus the proof of Lemma 5.2 is finished if we prove that Hpf , the adapted Hausdorff
measure to the dynamic f of the set M , is also obtained by Carathéodory’s con-
struction with diamτf ,p (instead of diamf,p). This is achieved with a comparison
between diamf,p and diamτf ,p.

Take r > 0 such that
B(M, r) ⊂ Ω

and K > 1 such that, for every x ∈ B(M, r),

‖f(x)‖ ≤ K, ‖f(x)−1‖ ≤ K, 1
K
≤ |det f(x)|

1
p .

For ε > 0, using the uniform continuity of f and f−1 on the set B(M, r), take α > 0
such that

∀(x, y) ∈ B(M, r)2, |x− y| < α⇒
{ ∥∥f(x)−1f(y)

∥∥ < 1 + ε∥∥f(x)−1 − f(y)−1
∥∥ < ε

Take δ > 0 small enough (δ < r
K2 , δ < α

K4 ). Let (Ki)i∈N be a countable covering of
M , such that diamf,p(Ki) ≤ δ. We assume that Ki ⊂M (replace Ki by Ki ∩M).
Take a set Ki, and two points y and z in Ki. Then

|det f(y)|
1
p |f(y)−1(y − z)| ≤ diamf,p(Ki) ≤ δ,

hence
|f(y)−1(y − z)| ≤ Kδ

and
|y − z| ≤ K2δ ≤ r,

which implies that -since y (and z) belongs to M -

[y, z] ⊂ B(M, r)
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hence [y, z] ⊂ Ω. Define
γ(t) = tz + (1− t)y.

In view of Lemma 5.1 and of the definition of the Riemannian distance dtf−1 f−1 :

τf (y, z) ≤
∫ 1

0

|f(γ(t))−1γ′(t)| dt

≤
∫ 1

0

|f(tz + (1− t)y)−1(z − y)|

≤ |f(y)−1(z − y)|+ sup
t∈[0,1]

‖f(tz + (1− t)y)−1 − f(y)−1‖ |z − y|.

But |z − y| ≤ K2δ ≤ α, and

‖f(tz + (1− t)y)−1 − f(y)−1‖ ≤ ε for every t ∈ [0, 1].

Thus

τf (y, z) ≤ |f(y)−1(z − y)|+ ε|z − y|
≤ (1 +Kε)

∣∣f(y)−1(z − y)
∣∣ .

So, we obtain that

diamτf ,p(Ki) ≤ (1 +Kε) diamf,p(Ki),

and
HpF,δ(M) ≤ (1 +Kε)Hpf,δ(M).

At the limit when δ → 0,

HpF(M) ≤ (1 +Kε)Hpf (M).

and, when ε→ 0,
HpF(M) ≤ Hpf (M).

Now, to prove the other inequality, take a countable covering (Ki)i∈N be a count-
able covering of M , such that diamτf ,p(Ki) ≤ δ, and such that Ki ⊂ M (as noted
above, possibly replacing Ki by Ki ∩M). Take a set Ki, and two points y and z
in Ki. Then

|det f(y)|
1
p |τf (y, z)| ≤ diamτf ,p(Ki) ≤ δ,

hence
|τf (y, z)| ≤ Kδ.

Take t such that x(t; y, u) = z. Assume that the trajectory x(.; y, u) remains in
th set B(M, r), i.e., x(s; y, u) ∈ B(M, r) for every s ∈ [0, t]. Let x(.) = x(.; y, u).
Then, for a.e s,

|ẋ(s)| = |f(x(s))u(s)| ≤ K
and

|z − y| ≤ Kt,
hence

|z − y| ≤ Kτf (y, z) ≤ K2δ.

Now, if the trajectory does not remain in B(M, r), let

τ = inf{s | x(s) /∈ B(M, r)}.
Then x([0, τ ]) ⊂ B(M, r) and

r = d(M,x(τ)) ≤ |x(τ)− y| ≤ Kτ ≤ Kt.
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If t has been chosen close enough to τf (y, z), we obtain a contradiction with δ < r
K2 .

Thus,
|z − y| ≤ K2δ <

r

K2
.

Define
ϕ(s) = f(y)−1x(s).

Then
ϕ′(s) = f(y)−1f(x(s))u(s).

If, for every s, |x(s) − y| < α, then ‖f(y)−1f(x(s))‖ ≤ 1 + ε and ϕ′(s) ≤ 1 + ε,
hence ∣∣f(y)−1(y − z)

∣∣ = |ϕ(t)− ϕ(0)| ≤ (1 + ε)t
hence ∣∣f(y)−1(y − z)

∣∣ ≤ (1 + ε)τf (y, z).
If, for some s, |x(s)− y| ≥ α, take

τ = inf{s | |x(s)− y| ≥ α}.
Then |x(τ)− y| = α, x([0, τ ]) ⊂ B(y, α), and∣∣f(y)−1(x(τ)− y)

∣∣ ≤ (1 + ε)τ ≤ (1 + ε)t.

Also, ∣∣f(y)−1(y − z)
∣∣ ≤ K|y − z| ≤ K α

K2

≤ 1
K
|x(τ)− y| = 1

K

∣∣f(y)f(y)−1(x(τ)− y)
∣∣

≤
∣∣f(y)−1(x(τ)− y)

∣∣ ≤ (1 + ε)t.

Hence ∣∣f(y)−1(y − z)
∣∣ ≤ (1 + ε)τf (y, z).

We thus obtain
diamf,p(Ki) ≤ (1 +Kε) diamτf ,p(Ki),

and
Hpf,δ(M) ≤ (1 +Kε)HpF,δ(M).

At the limit when δ → 0,

Hpf (M) ≤ (1 +Kε)HpF(M).

and, when ε→ 0,
Hpf (M) ≤ HpF(M).
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