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Abstract. In this paper, we study the limit, as ε goes to zero, of a partic-

ular solution of the equation ε2Aüε(t) + εBu̇ε(t) + ∇xf(t, uε(t)) = 0, where

f(t, x) is a potential satisfying suitable coerciveness conditions. The limit u(t)
of uε(t) is piece-wise continuous and verifies ∇xf(t, u(t)) = 0. Moreover, cer-

tain jump conditions characterize the behaviour of u(t) at the discontinuity

times. The same limit behaviour is obtained by considering a different approx-
imation scheme based on time discretization and on the solutions of suitable

autonomous systems.

1. Introduction

The problem of finding a function t 7→ u(t) satisfying

∇xf(t, u(t)) = 0 and ∇2
xf(t, u(t)) > 0 (1.1)

appears in many areas of applied mathematics. Usually, the real-valued function
f(t, x) represents a time-dependent energy, defined for t ∈ [0, T ] and x ∈ Rn. The
symbol ∇x denotes the gradient with respect to x, while ∇2

x is the corresponding
Hessian. The inequality in (1.1) means that the matrix ∇2

xf(t, u(t)) is positive
definite. Therefore, (1.1) says that, for every t, the state u(t) is a stable equilibrium
point for the potential f(t, ·).

If we look for a continuous solution t 7→ u(t), defined only in a neighbourhood
of a prescribed time, the problem is solved by the Implicit Function Theorem. In
many applications, however, we want to obtain a piece-wise continuous solution
t 7→ u(t) on the whole interval [0, T ]. The main problem is, therefore, to extend the
solution beyond its maximal interval of continuity. A first possibility is to select,
for every t, a global minimizer u(t) of f(t, ·). This choice exhibits some drawbacks,
as we shall explain later. Different extension criteria can be proposed, motivated
by different interpretations of the problem.

Problem (1.1) can be considered, for instance, as describing the limiting case of
a system governed by an overdamped dynamics, as the relaxation time tends to
0. Indeed, one can prove that, when the relaxation time is very small, the state
u(t) of the system is always close to a stable equilibrium for the potential f(t, ·),
which, in general, is not a global minimizer of f(t, ·). The first general result in
this direction was obtained by Zanini (see [15]), who considers (1.1) as limit of the
viscous dynamics governed by the gradient flow

εu̇ε(t) +∇xf(t, uε(t)) = 0. (1.2)

She proves that the limit u(t) of the solution uε(t) of problem (1.2) is a piece-
wise continuous function satisfying (1.1), and describes the trajectories followed by
the system at the jump times. Under different and stronger hypotheses, similar
vanishing viscosity limits have been studied in finite dimension in [6], [11], [5], [13],
and [12], and even in infinite dimension in [1], [2], [14], [10], [3], and [4].
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Simple examples show that the solution u(t) found in [15] is, in general, different
from the global minimizer. We note that the global minimizer may exhibit abrupt
discontinuities at times where it must jump from a potential well to another one
with the same energy level. This jump cannot be justified if we interpret (1.1) as
limit of a dynamic problem, since the state should overcome a potential barrier
during the jump.

In this paper we consider (1.1) as the limiting case of a sequence of second order
evolution problems, describing the underlying dynamics and depending on a small
parameter ε > 0, namely

ε2Aüε(t) + εBu̇ε(t) +∇xf(t, uε(t)) = 0, (1.3)

where A and B are positive definite and symmetric matrices. This describes the
evolution of a mechanical system where both inertia and friction are taken into
account, encoded in A and B, respectively. Under suitable assumptions on f , we
prove that the solution uε of (1.3) is such that (uε, εBu̇ε) tends to (u, 0), where u is
piece-wise continuous and satisfies (1.1). Moreover, the trajectories of the system
at the jump times are described through suitable autonomous second order systems
related to A, B, and ∇xf .

Let us explain, in more details, the content of Sections 2-5. In Section 2 we
construct a suitable piece-wise continuous solution u of problem (1.1), and in Section
3 we show that the solutions uε(t) of (1.3), with the same initial conditions, converge
to u(t) at every continuity time t.

The function u is defined in the following way. We begin with a point u(0) such
that ∇xf(0, u(0)) = 0 and ∇2

xf(0, u(0)) > 0, and, by the Implicit Function Theo-
rem, we find a continuous solution u of (1.1) up to t1 ≤ T such that ∇2

xf(t1, u(t−1 ))
has only one zero eigenvalue. In a “generic” situation (see Assumption 3 and Re-
mark 2.3), what occurs at t1 is a saddle-node bifurcation of the vector field F (t, ·)
corresponding to the first order autonomous system equivalent to

Aẅ(s) +Bẇ(s) +∇xf(t, w(s)) = 0. (1.4)

For (t, x) close enough to (t1, u(t−1 )), if t is on the left of t1, F (t, ·) has two zeros, a
saddle and a node, while, for t on the right of t1, there are no zeros of this vector
field. Under these conditions, it is also possible to prove (see Lemma 2.4 and Section
5) existence and uniqueness, up to time-translations, of the non constant solution
of system (1.4) such that

lim
s→−∞

(w(s), ẇ(s)) = (u(t−1 ), 0). (1.5)

Moreover, the limit

lim
s→+∞

(w(s), ẇ(s)) = (xr1, 0)

exists, and xr1 is another zero of ∇xf(t1, ·). If t1 < T , we make the “generic”
assumption that ∇2

xf(t1, x
r
1) is positive definite (see Assumption 4), so that we

restart the procedure and, in turn, find a solution of (1.1) on [t1, t2), for a certain
t2 ≤ T , and so on. In this way, we find a piece-wise continuous solution u of (1.1),
with certain discontinuity times t1, ..., tm−1, and, for j = 1, ...,m− 1, a heteroclinic
solution wj of (1.5) with t = tj , which connects a degenerate critical point of f(tj , ·)
at s = −∞ to a non-degenerate critical point at s = +∞ (see Proposition 2.6).

In Section 3 we prove that, if (uε(0), εu̇ε(0)) → (u(0), 0), then (uε, εBu̇ε) con-
verges to (u, 0) uniformly on compact subsets of [0, T ]\{t1, ..., tm−1}, while a proper
rescaling vεj of uε is such that (vεj , v̇

ε
j ) converges uniformly to (wj , ẇj) on compact

subsets of R (see Theorem 3.1 and Remark 3.9). This shows that (1.4) governs the
fast dynamics of the system at the jump times.
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Theorem 3.2 summarizes these convergences in a more geometric statement in-
volving the Hausdorff distance.

In Section 4 we show that the solution u of (1.1) introduced in Section 2 can
be obtained as limit of a discrete time approximation, which uses only autonomous
systems. Let τki = i

kT . For every k, let uki be defined by uk0 = u(0) and, for
i = 1, ..., k, by

uki := lim
σ→+∞

vki (σ), (1.6)

where vki is the solution of the autonomous system

Av̈ki (σ) +Bv̇ki (σ) +∇xf(τki , v
k
i (σ)) = 0, (1.7)

with initial conditions (vki (0), v̇ki (0)) = (uki−1, 0). The existence of the limit in (1.6)
is a property of the autonomous system, ensured by Lemma 2.4.

We prove that uki = u(τki ), unless τki is close to the discontinuity times t1, ..., tm−1

of u. More precisely, given an arbitrary neighbourhood U of the set {t1, ..., tm−1},
we prove that uki = u(τki ) whenever k is sufficiently large and τki /∈ U (see Lemma
4.3 and Lemma 4.4). This implies that the piece-wise constant and the piece-wise
affine interpolations of the values uki ’s converge uniformly to u on compact subsets
of [0, T ] \ {t1, ..., tm−1}.

In order to obtain the convergence to the heteroclines wj ’s near the jump times,
as well as the convergence of the velocity (Proposition 4.8 and Theorem 4.1), we
introduce a suitable interpolation of uki based on the solution vki of (1.7) (see (4.8)).

Section 5 is an appendix which contains the proof of the existence and unique-
ness of the heteroclinic solution of a first order autonomous system when certain
transversality conditions at the zeros of the vector field are satisfied.

2. Setting of the problem and preliminaries

Assumption 1. f : [0, T ]× Rn → R is a C3-function satisfying, for every (t, x) ∈
[0, T ]× Rn, the properties:

(i) ∇xf(t, x)·x ≥ b|x|2 − a, for some a ≥ 0 and b > 0;
(ii) ft(t, x) ≤ d|x|2 + c, for some d, c ≥ 0.

We use the following terminology: x ∈ Rn is a critical point of f(t, ·) if ∇xf(t, x) =
0. A critical point x of f(t, ·) is degenerate if det∇2

xf(t, x) = 0. Observe that, from

Assumption 1 (i), it descends that there exist ã ≥ 0 and b̃ > 0 such that

f(t, x) ≥ b̃|x|2 − ã, for every (t, x) ∈ [0, T ]× Rn. (2.1)

Moreover, Assumption 1 implies that all critical points of f(t, ·) belong to the
closed ball B centered in zero and with radius

√
a
b . Since f(t, ·) has minimum and

maximum on B, we can state that, for every t ∈ [0, T ], f(t, ·) has at least one
critical point and it belongs to B.
Assumption 2. The set of all pairs (t, ξ) such that ξ is a degenerate critical point
of f(t, ·) is discrete and there are no degenerate critical points corresponding to
t = 0 or t = T .

Remark 2.1. Assumptions 1-2 imply that, for every t ∈ [0, T ], the set of critical
points of f(t, ·) is discrete. Indeed, by Assumption 2, the set of degenerate critical
points of f(t, ·) is discrete, while the set of nondegenerate critical points of f(t, ·)
is discrete by the Implicit Function Theorem.

Definition 2.2. We say that (τ, ξ) ∈ [0, T ] × Rn is a degenerate approximable
critical pair if ξ is a degenerate critical point of f(τ, ·) and there exist sequences {tn}
and {ξn} converging to τ from the left and to ξ, respectively, with ∇xf(tn, ξn) = 0
and ∇2

xf(tn, ξn) positive definite.
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Observe that if (τ, ξ) is a degenerate approximable critical pair, then ∇2
xf(τ, ξ)

is positive semidefinite. From now on, A and B will be two given symmetric and
positive definite matrices in Rn×n, unless differently specified. λAmin and λBmin will
denote the minimum eigenvalue of A and B, respectively.
Assumption 3. If (τ, ξ) ∈ [0, T ] × Rn is a degenerate approximable critical pair,
then there exists l ∈ Rn \ {0} such that:

(i) ker∇2
xf(τ, ξ) = span(l);

(ii) (A−TBl)·∇xft(τ, ξ) 6= 0, where ft denotes the partial derivative of f with
respect to t;

(iii) (A−TBl)·∇3
xf(τ, ξ)[l, l] 6= 0.

Remark 2.3. Set η =
[
ξ
0

]
∈ R2n and define

F

(
t,

[
x

y

])
:=

[
B−1y

−BA−1 (y +∇xf(t, x))

]
, t ∈ [0, T ], x, y ∈ Rn. (2.2)

Let Assumption 3 hold for some (τ, ξ) degenerate approximable critical pair and
observe, first, that

F (τ, η) = 0.

Since

∇ηF (τ, η) =

[
0 B−1

−BA−1∇2
xf(τ, ξ) −BA−1

]
,

where ∇η denotes ∂
∂(x,y) , by setting

ω =

[
l

0

]
, ν =

[
B2A−1l

l

]
,

it turns out, from Assumption 3 (i), that

ker∇ηF (τ, η) = span(ω), ker∇ηF (τ, η)T = span(ν). (2.3)

Moreover, simple calculations give that

Ft(τ, η) =

[
0

−BA−1∇xft(τ, ξ)

]
, ∇2

ηF (τ, η)[ω, ω] =

[
0

−BA−1∇3
xf(τ, ξ)[l, l]

]
,

so that, from Assumption 3 (ii) and (iii), we obtain that

ν·∇2
ηF (τ, η)[ω, ω] 6= 0, ν·Ft(τ, η) 6= 0. (2.4)

Observe that λ ∈ C is an eigenvalue of ∇ηF (τ, η) if and only if there exists
[
x
y

]
6= 0

such that {
y = λBx,
∇2
xf(τ, ξ)x = −λ(B + λA)x.

(2.5)

Let us show that the algebraic multiplicity of the null eigenvalue of ∇ηF (τ, η) is

ma(0) = 1. (2.6)

Recall that ma(0) corresponds to the dimension of the generalized eigenspace as-
sociated to the null eigenvalue, that is ker(∇ηF (τ, η))k, where k is the smallest
integer k such that ker(∇ηF (τ, η))k = ker(∇ηF (τ, η))k+1. Thus, in order to prove
that ma(0) = 1, it is enough to show that ker(∇ηF (τ, η))2 ⊆ ker(∇ηF (τ, η)), be-

cause the other inclusion is trivial. If
[
x
y

]
∈ ker(∇ηF (τ, η))2, then, in view of (2.3),

we have that

∇ηF (τ, η)

[
x

y

]
= α

[
l

0

]
, (2.7)
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for some α ∈ C. Therefore, if α = 0, then
[
x
y

]
∈ ker(∇ηF (τ, η)), while, if α 6= 0,

we find, from (2.7), that {
y = αBl,
∇2
xf(τ, ξ)x = y,

and, in turn, that 0 = x·
(
∇2
xf(τ, ξ)l

)
= αBl·l 6= 0, which is an absurd.

Now, we want to show that every eigenvalue λ of ∇ηF (τ, η) is such that:

if λ 6= 0, then Re(λ) < 0. (2.8)

Let
[
x
y

]
be an eigenvalue associated to the eigenvalue λ 6= 0 and write x ∈ Cn \ {0}

as x = a + ib, for some a, b ∈ Rn. In the case a, b ∈ span(l), from the second
equation of (2.5) we obtain that (B+λA)l = 0. The scalar product of this equality
with l gives

λ = −Bl·l
Al·l

≤ −λ
B
min

|A|
< 0.

In the case {a, b} * span(l), we consider the hermitian product of the second
equation of (2.5) with x, which gives

C = −λ(CAλ+ CB), (2.9)

where

C :=
(
∇2
xf(τ, ξ)a·a+∇2

xf(τ, ξ)b·b
)
∈ R,

CA := Aa·a+Ab·b, CB := Ba·a+Bb·b.
Now, by setting λ = λ1 + iλ2 for some λ1, λ2 ∈ R, from (2.9) we obtain

λ2(CB + 2CAλ1) = 0, (2.10)

and

CAλ
2
1 + CBλ1 − CAλ2

2 + C = 0. (2.11)

We want to prove that λ1 < 0. If λ2 6= 0, from (2.10) it is easy to deduce that

λ1 ≤ −
λBmin
2|A|

< 0.

In the case λ2 = 0, we can suppose b = 0. From (2.11) and from the fact that λ1

is real we obtain that C2
B − 4CCA ≥ 0 and that

λ1 ≤
−Ba·a+

√
(Ba·a)2 − 4(∇2

xf(τ, ξ)a·a)(Aa·a)

2Aa·a
.

Since a /∈ span(l) = ker∇2
xf(τ, ξ) and ∇2

xf(τ, ξ) ≥ 0, we have that ∇2
xf(τ, ξ)a·a ≥

λτ |a|2, where λτ > 0 is the smallest eigenvalue of ∇2
xf(τ, ξ) different from 0. By

using this fact, together with the hypotheses on A and B, we can easily prove, by
rationalization, that

−Ba·a+
√

(Ba·a)2 − 4(∇2
xf(τ, ξ)a·a)(Aa·a)

2Aa·a
≤ −λτλ

A
min

|A||B|
.

This concludes the proof of (2.8).
Let us collect together (2.3), (2.4), (2.6) and (2.8), which descend from Assumption
3. We obtain that F : [0, T ]×R2n → R2n, defined as is (2.2), is a C2 function such
that F (τ, η) = 0 and satisfies the following properties:

(TC1) 0 is an eigenvalue of ∇ηF (τ, η) with ma(0) = 1, Re(λ) < 0 for every
eigenvalue λ 6= 0, and there exist ω, ν ∈ Rm such that ω·ν 6= 0 and
ker∇ηF (τ, η) = span(ω), ker∇ηF (τ, η)T = span(ν);

(TC2) ν·Ft(τ, η) 6= 0;
(TC3) ν·∇2

ηF (τ, η)[ω, ω] 6= 0.
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Such transversality conditions ensure (see [7, Theorem 3.4.1]) the existence a smooth

curve of equilibria
(
t(·),

[
x
y

]
(·)
)

passing through (τ, η), tangent to the hyperplane

{τ} × R2n. If conditions (TC2) and (TC3) have the same sign, for every t < τ
close to τ there are two solutions of F (t, ·) = 0, a saddle and a node, while for
every t > τ (close to τ) there are no solutions. If conditions (TC2) and (TC3) have
opposite sign, the reverse is true. The set of vector fields satisfying (TC1)-(TC3)
is open and dense in the space of C∞ one-parameter families of vector fields with
an equilibrium at (τ, ξ) with a zero eigenvalue.

With the next lemma we introduce the heterocline which will allow us to connect,
at a specific time τ , a degenerate critical point of f(τ, ·) to another suitable critical
point of f(τ, ·).

Lemma 2.4. Let (τ, ξ) ∈ [0, T ] × Rn be a degenerate approximable critical pair.
Suppose that Assumption 1 and 2 and Assumption 3 (i) and (iii) hold. Then, there
exists a unique, up to time-translations, heteroclinic solution of Aẅ(s) +Bẇ(s) +∇xf(τ, w(s)) = 0, s ∈ (−∞, 0]

lims→−∞ w(s) = ξ,
lims→−∞ ẇ(s) = 0.

(2.12)

This means that such a solution w is defined on all R, there exists lims→+∞ w(s) :=
ζ ∈ Rn, with ζ critical point of f(τ, ·) different from ξ, and there exists
lims→+∞ ẇ(s) = 0.

By Remark 2.3, existence and uniqueness (up to time-translations) of the solution
of (2.12), different from the constant solution ξ, follow from Proposition (5.1) with[
x
y

]
in place of x and F (τ, ·) in place of F . The proof of Lemma (2.4) can be

concluded in view of the following lemma.

Lemma 2.5. Let g : Rn → R be a C2 function such that

g(x) ≥ C1|x|2 − C2, for every x ∈ Rn, (2.13)

for some constants C1 > 0 and C2 ≥ 0. Suppose that the set of critical points of g
is discrete. Let w be the (unique) solution of the Cauchy problem associated to

Aẅ +Bẇ +∇g(w) = 0, (2.14)

with initial conditions at some s0 ∈ R.
Then, (w, ẇ) is bounded and defined on [s0,+∞) and there exists the limit

lim
s→+∞

(w(s), ẇ(s)) = (ζ, 0), (2.15)

where ζ is a critical point of g. Moreover, if (w, ẇ) is bounded on its maximal
interval of existence, then (w, ẇ) is bounded and defined on all R and there exists
the limit

lim
s→−∞

(w(s), ẇ(s)) = (ξ, 0),

where ξ is a critical point of g.

Proof. Let us denote by (s−0 , s
+
0 ) the maximal interval of existence of w. Consider,

for x, y ∈ Rn, the function

V

([
x

y

])
:=

1

2
Ay·y + g(x),

and observe that, by multiplying (2.14) by ẇ, we obtain that

d

ds
V

([
w(s)

ẇ(s)

])
= −Bẇ(s)·ẇ(s) ≤ 0.
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Thus, for every s ∈ [s0, s
+
0 ), we have that

1

2
λAmin|ẇ(s)|2 + g(w(s)) ≤ 1

2
Aẇ(s)·ẇ(s) + g(w(s)) ≤ 1

2
Aẇ(s0)·ẇ(s0) + g(w(s0)).

Therefore, by using (2.13), we deduce that the positive semiorbit of (w, ẇ) is
bounded and therefore defined on [s0,+∞). This fact, together with the mono-
tonicity of V

([
w
ẇ

])
on [s0,+∞), implies that there exists the limit

lim
s→+∞

V

([
w(s)

ẇ(s)

])
:= L ∈ R. (2.16)

Let
[
x
y

]
be a point of the ω-limit set associated to (w, ẇ) (which is nonempty

because of the boundedness of the positive semiorbit of (w, ẇ)), and consider the
solution ϕ of the problem Aẅ(s) +Bẇ(s) +∇g(w(s)) = 0, s ∈ [s0,+∞)

w(s0) = x,
ẇ(s0) = y.

Since, from (2.16), V
([

x
y

])
= L, and the ω-limit sets are invariant sets, we obtain

that V (ϕ(s)) = L for every s ≥ s0. Thus, we have that

d

ds
V (ϕ(s)) = −Bϕ̇(s)·ϕ̇(s) = 0, for every s ≥ s0,

and, in turn, that y = 0 and ϕ̈(s) = 0 for every s ≥ s0. Moreover, considering also
(2.14), it turns out that ∇g(x) = 0. In this way, we have proved that the ω-limit
set is contained in the set Z := {(ζ, 0) ∈ Rn | ζ is a critical point of g}, which is,
by assumption, discrete. Therefore, the ω-limit set, that is connected, is reduced
to one point of Z, and this proves (2.15). The proof of the rest part of the lemma
can be done in a similar way, by using the boundedness of (w, ẇ) on (s−0 ,+∞) and
again the monotonicity of V

([
w
ẇ

])
. �

Assumption 4. For every degenerate approximable critical pair (τ, ξ) ∈ [0, T ]×Rn,
let w be the unique solution (up to time-translation) of (2.12). We assume that

∇2
xf(τ, w(+∞)) is positive definite.

With the following proposition and definition, we construct a suitable piece-wise
continuous solution of problem (1.1).

Proposition 2.6. Under Assumptions 1-4, let xr0 ∈ Rn be such that ∇xf(0, xr0) = 0
and ∇2

xf(0, xr0) is positive definite.
There exists a partition 0 = t0 < ... < tm = T of the interval [0, T ] and, for every

j ∈ {1, ...,m− 1}, two distinct points xrj , x
s
j ∈ Rn with the following properties:

(1) for every j ∈ {1, ...,m}, there exists a unique function uj : [tj−1, tj)→ Rn
of class C2 such that

∇xf(·, u1(·)) ≡ 0 and ∇2
xf(·, uj(·)) is positive definite on [tj−1, tj),

and

uj(tj−1) = xrj−1;

(2) for every j ∈ {1, ...,m− 1},

xsj = lim
t→t−j

uj(t),

(tj , x
s
j) is a degenerate approximable critical pair and there exists a unique

(up to time-translation) function wj : R→ Rn of class C2 such that

Aẅj(s) +Bẇj(s) +∇xf(tj , wj(s)) = 0, s ∈ R, (2.17)
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and
lim

s→−∞
wj(s) = xsj , lim

s→+∞
wj(s) = xrj .

The proof of Proposition 2.6 is similar to [15, Proposition 1]. The only difference
is the choice of the heteroclinic solutions: in [15], those are solutions of equations of
the type ẇj(s) = ∇xf(tj , wj(s)); here, equations (2.17) are taken into account. The
procedure to select a solution can be summarized in the following way: beginning
from xr0, we find a unique function u1 solution of problem (1.1) on the maximal
interval of existence [0, t1), and such that u1(0) = xr0. If t1 < T , it turns out that
there exists xs1 := limt→t−1

u1(t) (the index s stands for “singular”) and (t1, x
s
1)

is a degenerate approximable critical pair. Thus, Assumption 3 holds for (t1, x
s
1).

In particular, Lemma 2.4 tells us that Assumption 3 (i) and (iii) (together with
Assumption 1 and 2) ensures the existence and uniqueness, up to time-translations,
of the solution w1 of (2.17) with j = 1, satisfying w1(−∞) = xs1. Moreover, there
exists lims→+∞ w1(s) =: xr1 (the index r stands for “regular”) and xr1 is a critical
point of f(t1, ·). At this point, we use Assumption 4, so that ∇2

xf(t1, x
r
1) > 0, and

begin again the procedure with (t1, x
r
1) in place of (0, xr0), to find the solution u2 of

(1.1), defined on the maximal (on the right) interval of existence [t1, t2), and such
that u2(t1) = xr1, and so on. Observe that, by Assumption 2, ∇2

xf(T, um(T−)) is
positive definite. The functions u1, ..., um, on their respective intervals of existence,
give us the so selected solution u, as the next definition set.

Definition 2.7. Under Assumptions 1-4, we define u : [0, T ]→ Rn by:

u(t) := uj(t), if t ∈ [tj−1, tj) forsome j ∈ {1, ...,m},
u(T ) := lim

t→T
um(t),

where uj, for j=1,...,m, is the function obtained in Proposition 2.6.

Note that, since (tj , x
s
j) is an approximable critical pair for every j ∈ {1, ...,m−1},

Assumption 3 implies that the transversality conditions listed in Remark 2.3 hold

for F (see (2.2) for a definition) at
(
tj ,
[
xsj
0

])
for j = 1, ...,m − 1, as shown in

Remark 2.3. Moreover, conditions (TC2) and (TC3) have the same sign, otherwise
we couldn’t have found a solution of ∇xf(t, ·) = 0 on the left of tj . Thus, there are
two regular branches of solutions of F (t, ·) = 0 in a left neighbourhood of tj . This
is equivalent to say that there are two regular branches of solutions of ∇xf(t, ·) = 0
in a left neighbourhood of tj . One of these branches is the already defined uj . For
j = 1, ...,m − 1, we denote the other branch, which is the saddles’ branch, by uj ,
and it is

uj : [t∗j , tj)→ Rn, for some t∗j ∈ (tj−1, tj). (2.18)

Note that, for δ > 0 sufficiently small, it is possible to find tδj and t∗∗j such that

tj−1 < t∗j < tδj < tj < t∗∗j , (2.19)

and the following properties hold:

for every t ∈ [tδj , tj), x ∈ B
(
xsj ,

δ

4

)
and ∇xf(t, x) = 0

if and only if x ∈ {uj(t), uj(t)}, (2.20)

x ∈ B(xsj , δ) satisfies ∇xf(tj , x) = 0 if and only if x = xsj , (2.21)

|∇xf(·, ·)| > 0 on (tj , t
∗∗
j ]×B(xsj , δ). (2.22)

Throughout the following two sections, we denote by ωu1
the modulus of continuity

of u1 on a compact easily deducible from the context.
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3. Approximating by singular perturbations

We consider the equation

ε2Aüε(t) + εBu̇ε(t) +∇xf(t, uε(t)) = 0, t ∈ [0, T ]. (3.1)

In both the present approximation method and the one presented in Section 4, we
take into account the following objects. Let xr0 ∈ Rn be such that ∇xf(0, xr0) = 0
and ∇2

xf(0, xr0) is positive definite. We consider a point (x0, y0) ∈ R2n such that
v0 is the solution of the autonomous problem Av̈0(σ) +Bv̇0(σ) +∇xf(0, v0(σ)) = 0, σ ∈ [0,+∞)

v0(0) = x0,
v̇0(0) = y0,

(3.2)

and

lim
σ→+∞

v0(σ) = xr0. (3.3)

Under Assumptions 1 and 2, Lemma 2.5 ensures the existence of the solution of
problem (3.2) and of the limit in (3.3). Also, it tells us that v0(+∞) is a critical
point of f(0, ·) and that v̇0(+∞) = 0. The main results of this section are given by
the following two theorems, which describe how the function u of Definition 2.7 and
the trajectories of the heteroclines wj ’s at the jump times tj ’s are approximated by
suitable solutions uε of (3.1).

Theorem 3.1. Under Assumptions 1-4, let xr0 ∈ Rn be such that ∇xf(0, xr0) = 0
and ∇2

xf(0, xr0) is positive definite. Let u : [0, T ]→ Rn, with u(0) = xr0, be given by
Definition 2.7 and uε : [0, T ]→ Rn a solution of (3.1) such that

(uε(0), εu̇ε(0))→ (x0, y0), (3.4)

where (x0, y0) satisfies (3.2) and (3.3). Then, we have that
(1) (uε, εBu̇ε) converges uniformly to (u, 0) on compact subsets of (0, T ]\{t1, ..., tm−1};
(2) for every j ∈ {1, ...,m − 1}, there exists a sequence {aεj}, with aεj → tj, and a
heteroclinic solution wj of

Aẅj(s) +Bẇj(s) +∇xf(tj , wj(s)) = 0,
lims→−∞ wj(s) = xsj ,
lims→−∞ ẇj(s) = 0,

(3.5)

such that

(vεj , v̇
ε
j )→ (wj , ẇj) uniformly on compact subsets of R,

where

vεj (s) := uε(aεj + εs), s ∈
[
−
aεj
ε
,
T − aεj
ε

]
.

The next theorem can be viewed as a corollary of Theorem 3.1 and gives a
geometric interpretation of how (uε, εBu̇ε) approximates (u, 0) and the trajectory
of (wj , Bẇj) for j = 1, ...,m − 1. It deals with the following sets. Recall the
heteroclines given by Proposition (2.6) and the function v0 previously introduced.
We define

I0 := {(v0(s), Bv̇0(s)), s ≥ 0} and Ij := {(wj(s), Bẇj(s)), s ∈ R}, (3.6)

for j = 1, ...,m− 1, and set

Γε := {(t, uε(t), εBu̇ε(t)) : t ∈ [0, T ]}, Γ := Γreg ∪ Γsing, (3.7)

where

Γreg := {(t, u(t), 0) : t ∈ [0, T ]}, (3.8)
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and

Γsing := [{0} ×I0] ∪
m−1⋃
j=1

{tj} × [Ij ∪ {(xsj , 0)}]. (3.9)

Observe that the set Γsing does not change if we replace some wj ’s by some of their
time-translated. Here and in what follows, d(·, ·) denotes the euclidean distance
either between two points or between a point and a set. We denote by dH the
Haudorff distance. Recall that if K1 and K2 are two compact subsets of a compact
metric space, the Hausdorff distance between K1 and K2 is defined as

dH(K1,K2) := sup
x∈K1

d(x,K2) + sup
x∈K2

d(x,K1).

Theorem 3.2. Under the hypotheses of Theorem 3.1, we have that

dH(Γε,Γ)→ 0, as ε→ 0+.

In order to prove Theorem 3.1 and Theorem 3.2, we need some preliminary
results. First, we state a property of uniform boundedness of the solutions of
equation (3.1).

Lemma 3.3. Let Assumption 1 hold and let tε be a sequence converging to some
t̃ ∈ [0, T ]. Then, there exists a unique uε:[tε, T ] → Rn of class C2, solution of the
Dirichlet problem associated to (3.1) with initial condition at tε. Moreover, if uε(tε)
and εu̇ε(tε) are uniformly bounded as ε→ 0+, then uε(t) and εu̇ε(t) are uniformly
bounded with respect to t ∈ [tε, T ] and ε sufficiently small.

Proof. The standard theory of ordinary differential equations tells us that there
exists locally a unique solution uε of the Cauchy problem associated to (3.1). Mul-
tiplying equation (3.1) by u̇ε(t), it turns out the equation

ε2

2

d

dt
Au̇ε·u̇ε + εBu̇ε·u̇ε +

d

dt
f(t, uε)− ft(t, uε) = 0,

which, by integration between tε and t ∈ [tε, T ] and by the positive definiteness of
A and B, gives

ε2

2
λAmin|u̇ε(t)|2 + f(t, uε(t)) ≤ ε2

2
Au̇ε(tε)·u̇ε(tε) + f(tε, uε(tε)) +

∫ t

tε
ft(τ, u

ε(τ))dτ.

(3.10)
Then, by using Assumption 1 and (2.1), we have that

|uε(t)|2 ≤ Kε
1 +K2

∫ t

0

|uε(τ)|2dτ, for every t ∈ [0, T ],

where

Kε
1 =

1

b̃

[
ε2

2
Au̇ε(tε)·u̇ε(tε) + f(tε, uε(tε)) + c(T − tε) + ã

]
, K2 :=

d

b̃
. (3.11)

By differential inequalities (see, e. g., [8]), we obtain that

|uε(t)|2 ≤ Kε
1e
K2(T−tε), for every t ∈ [0, T ],

so that, by hypothesis and by (3.11), uε(t) is uniformly bounded with respect to
t ∈ [tε, T ] and ε sufficiently small. This fact, together with (3.10), gives that also
εu̇ε is uniformly bounded with respect to t ∈ [tε, T ] and ε small enough. This in
particular implies that uε and u̇ε are defined on [tε, T ] and completes the proof. �
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The following proposition will play a crucial role in the proof of the main results
of this section. In order to better handle equation (3.1), we use the function F :
[0, T ]× R2n → R2n defined in (2.2), so that (3.1) is equivalent to

ε

[
u̇ε

v̇ε

]
= F

(
t,

[
uε

vε

])
.

Next, we make use of Lemma 3.3 in the following way: if uε(tε) and εu̇ε(tε) are
uniformly bounded as ε → 0+, for a certain sequence tε converging to t̃ ∈ [0, T ],
then

{(suε(t) + (1− s)u(t), εsBu̇ε(t)) : (s, t) ∈ [0, 1]×[tε, T ]} (3.12)

is uniformly bounded as ε → 0+. We denote by ω the modulus of continuity of
∇ηF (t, ·) on a compact which contains the set (3.12) for every ε small enough, ω
uniform with respect to t ∈ [0, T ].

Proposition 3.4. By referring to the previous paragraph for the notation, let
f : [0, T ]×Rn → R be a C2 function, 0 ≤ t < t̂ ≤ T and u ∈ C([ t, t̂],Rn) such that
(1.1) is satisfied on [ t, t̂]. Then, there exists α > 0 such that

∇2
xf(t, u(t)) ≥ α > 0, for every t ∈ [ t, t̂]. (3.13)

Let tε ∈ [ t, t̂) be such that

tε → t̃, for some t̃ ∈ [ t, t̂),

and consider uε ∈ C2([tε, T ],Rn) a solution of (3.1) on [tε, T ] such that uε(tε) and
εu̇ε(tε) are uniformly bounded as ε→ 0+.

There exists a positive constant C = C(f, u) such that, if r ∈ (0, C) and

lim sup
ε→0+

|(uε(tε)− u(t̃), εBu̇ε(tε))| < min{r, rω(2r)}, (3.14)

then
lim sup
ε→0+

||(uε − u, εBu̇ε)||∞,[tε,t̂] ≤ r. (3.15)

The proof of Proposition 3.4 requires two lemmas.

Lemma 3.5. Let A ∈ Rn×n be such that

Re(λ) ≤ −α < 0,

for every λ eigenvalue of A, for a certain α > 0. Then, there exists a constant CA,
depending on A, such that∣∣etA∣∣ ≤ CAe−α2 t, for every t ≥ 0.

The proof of Lemma 3.5 is straightforward, once A is written in Jordan canonical
form. In the appendix, we recall more general estimates of this kind (see (5.2)-(5.3)).
By the following remark, we underline the fact that the constant CA of the previous
lemma is not universal, but generally depending on A.

Remark 3.6. For a ∈ R, consider the matrix A =

[
−1 a
0 −1

]
, whose spectrum

is {−1}. Since A is the sum of the matrices

[
−1 0
0 −1

]
and

[
0 a
0 0

]
, which

commute, it is easy to compute

etA = e−t
[

1 at
0 1

]
.

The norm of etA is e−t
√

2 + a2t2. Therefore, a constant C not depending on A and
such that

∣∣etA∣∣ ≤ Ce−
t
2 should satisfy

√
2 + a2t2 ≤ Ce

t
2 for every a ∈ R; but this

is impossible.
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Lemma 3.7. Let A ∈ Rn×n be such that∣∣etA∣∣ ≤ Ce−γt, for every t ≥ 0,

for some constants C, γ > 0. There exist two positive constants δ and b, depending
only on C and γ, such that, if B ∈ Rn×n and |B| ≤ δ, then∣∣∣et(A+B)

∣∣∣ ≤ be− γ2 t, for every t ≥ 0.

Proof. Observe that in the case in which A and B commute the proof is straight-
forward. Otherwise, for x ∈ Rn, let us consider the solution vx of the problem{

v̇(t) = (A+B)v(t), t > 0
v(0) = x.

(3.16)

Since ∣∣∣et(A+B)
∣∣∣ = sup

x∈Rn\{0}

|vx(t)|
|x|

,

the thesis follows if we prove that there exist δ, b > 0, depending only on C and γ,
such that, if |B| ≤ δ, then

|vx(t)| ≤ be−
γ
2 t|x|, for every t ≥ 0 and x ∈ Rn. (3.17)

For certain constants δ, b > 0 to be chosen later, let us fix a function z ∈
C([0,+∞),Rn) such that |z(t)| ≤ be−

γ
2 t|x| for all t ≥ 0, and consider, for |B| ≤ δ,

the problem {
v̇(t) = Av(t) +Bz(t), t > 0
z(0) = x.

(3.18)

The solution of 3.18 can be represented by the variation of constants formula, so
that we can estimate it in the following way.

|v(t)| ≤ C
{
e−γt|x|+

∫ t

0

e−γ(t−s)|B||z(s)|ds
}
≤ C|x|e−

γ
2 t

{
1 +

2bδ

γ

}
. (3.19)

In order to obtain (3.17), we want C
(

1 + 2bδ
γ

)
≤ b, therefore we choose

δ <
γ

2C
, b ≥ γC

γ − 2δC
. (3.20)

Now, we define the space

X :=

{
v ∈ C([0,+∞),Rn) : v(0) = x and sup

t∈[0,+∞)

v(t)e
γ
2 t <∞

}
,

which is a Banach space endowed with the norm ‖v‖X := supt∈[0,+∞) v(t)e
γ
2 t, and

the subset

Ω := {v ∈ X : ‖v‖X ≤ |x|b} .
From (3.19) and thanks to the choice (3.20), we have obtained that the operator

G : Ω→ Ω,

that to each z ∈ Ω associates the solution of (3.18), is well-defined. If we prove that
G is a contraction from Ω to Ω, we will prove that the solution v of (3.16) satisfies
(3.17), that is our aim. Let z1, z2 ∈ Ω and suppose |B| ≤ δ. Then, we have that

‖G(z1)−G(z2)‖X = sup
t≥0

e
γ
2 t

∣∣∣∣∫ t

0

e(t−s)AB[z1(s)− z2(s)]ds

∣∣∣∣ ≤ 2Cδ

γ
‖z1 − z2‖X .

From (3.20), it descends that 2Cδ
γ < 1, so that G is a contraction from Ω to Ω. �
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Proof of Proposition 3.4. Let uε be a solution of (3.1) and define Wε :=
[
uε

vε

]
−W ,

where W :=
[
u
0

]
, so that equation (3.1) is equivalent to

εẆε = F (t,W +Wε)− εẆ , (3.21)

with F defined as in (2.2). Observe that Wε =
[
uε−u
εBu̇ε

]
. Set

M(t) := ∇ηF (t,W (t)), t ∈ [ t, t̂],

and notice that, from the regularity assumptions on f and u, it descends that
M ∈ C([ t, t̂]). First, let us explain how we find the constant C of the statement.
Since (3.13) holds, we can prove, as done in Remark 2.3, that there exists β > 0
such that Re(λ) ≤ −β < 0 for every λ eigenvalue of M(s), for every s ∈ [ t, t̂].
Therefore, from Lemma 3.5 and Lemma 3.7, it turns out that there exists b > 0
such that ∣∣∣etM(s)

∣∣∣ ≤ be− β4 t, for every t ≥ 0 and s ∈ [ t, t̂]. (3.22)

Indeed, from Lemma 3.5, we have that, for every t ≥ 0,∣∣∣etM(s)
∣∣∣ ≤ CM(s)e

− β2 t, (3.23)

with CM(s) > 0 a constant depending on M(s) for every s ∈ [ t, t̂]. Considering

(3.23) for a certain s0 ∈ [ t, t̂], let δ0, b0 > 0, depending on CM(s0) and β
2 , be given

by Lemma 3.7. By the uniform continuity of M on [ t, t̂], there exists σ0 > 0 and a
finite number of si in [ t, t̂] such that, if s ∈ [ t, t̂], then |s− si| < σ0 for some i and
|M(s)−M(si)| ≤ δ0, so that, by Lemma 3.7,∣∣∣etM(s)

∣∣∣ =
∣∣∣et(M(si)+M(s)−M(si))

∣∣∣ ≤ b0e− β4 t, for every t ≥ 0.

Now, let C > 0 be a constant (depending on b and β and , in turn, on f and u)
such that, if 0 < r < C, then

ω(2r) ≤ 1

2b

(
1 +

10

β
max{1, 2b}

)−1

. (3.24)

The reason why the estimate (3.24) is needed will be clear at the end of the proof.
By now, let 0 < r < C and suppose that (3.14) holds true for a certain tε → t̃ ∈
[ t, t̂). Then, there exists εr > 0 such that

|(uε(tε)− u(t̃), εBu̇ε(tε))| ≤ min{r, rω(2r)}, for every ε ∈ (0, εr). (3.25)

Since tε → t̃, it is easy to check that (3.25) implies, up to a smaller εr, that

|Wε(t
ε)| ≤ 2 min{r, rω(2r)}, for every ε ∈ (0, εr). (3.26)

Therefore, it makes sense to define, for ε ∈ (0, εr),

t̂ε := inf{t ∈ [tε, t̂] : |Wε(t)| > 2r},

with the convention inf ∅ = t̂, so that ‖Wε‖∞,[tε,t̂ε] ≤ 2r for every ε ∈ (0, εr).

Claim. There exists ε̃r ∈ (0, εr] such that

‖Wε‖∞,[tε,t̂ε] ≤ r, for every ε ∈ (0, ε̃r).

Observe that the claim implies that t̂ε = t̂ and, in turn, that ‖Wε‖∞,[tε,t̂] ≤ r for

every ε ∈ (0, ε̃r), that is (3.15).
Proof of the claim. Using again the uniform continuity of M on [ t, t̂], let σ > 0 be
such that ||M(t)−M(s)|| ≤ ω(2r) if |s− t| < σ, and define

τi = τi(ε) := tε + iσ, for i = 0, ..., kε, where kε :=

⌊
t̂ε − tε

σ

⌋
.
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and

Mε(t) :=


M(tε), t ∈ [tε, τ1)
M(τ1), t ∈ [τ1τ2)
...
M(τkε), t ∈ [τkε , t̂

ε].

Observe that Mε(t) = M
(
tε +

⌊
t−tε
σ

⌋)
. With such definitions, we obtain that

||Mε −M ||∞,[tε,t̂ε] ≤ ω(2r). (3.27)

Let us write equation (3.21) on [tε, t̂ε] in the following equivalent way:

εẆε = MεWε +Hε,

where
Hε := (M −Mε)Wε + [F (t,W +Wε)−MWε]− εẆ .

Clearly, there exists ε̃r ∈ (0, εr] such that

||εẆ ||∞,[tε,t̂ε] ≤ rω(2r), for every ε ∈ (0, ε̃r). (3.28)

Noticing that F (·,W (·)) ≡ 0 on [ t, t̂], it turns out that

||F (t,W +Wε)−MWε||∞,[tε,t̂ε] ≤

2r sup
{
|∇ηF (t,W (t) + sWε(t))−M(t)| : (s, t) ∈ [0, 1]× [tε, t̂ε]

}
≤ 2rω(2r).

(3.29)

(3.27), (3.28) and (3.29) imply that

||Hε||∞,[tε,t̂ε] ≤ 5rω(2r). (3.30)

By setting Zε(t) := Wε(εt), let us consider another equation equivalent to (3.21)
on [tε, t̂ε]:

Żε = Mε(εt)Zε +Hε(εt), t ∈
[
tε

ε
,
t̂ε

ε

]
. (3.31)

If kε = 0, that is t̂ε − tε < σ, the solution of (3.31) is

Zε(t) = e(t−
tε

ε )M(tε)Zε

(
tε

ε

)
+

∫ t

tε

ε

e(t−τ)M(tε)Hε(ετ)dτ.

Then, by using (3.22) and (3.30), we have that

||Wε||∞,[tε,t̂ε] = ||Zε||∞,[ tεε , t̂εε ]
≤ b

[
|Wε(t

ε)|+ 20

β
rω(2r)

]
≤ 2b

(
1 +

10

β

)
rω(2r),

where the last inequality is due to (3.26). Then, the thesis follows from (3.24).
If kε 6= 0, we define Z0

ε as the solution of equation (3.31) in [0, τ1ε ) and, for i =

1, ..., kε, we define Ziε as the solution of equation (3.31) in
[
τi
ε ,min

{
τi+1

ε , t̂
ε

ε

})
with

Z
(i−1)
ε

(
τi
ε
−) as initial condition at τi

ε . By using the variation of constants formula,
it turns out that

|Z0
ε | ≤ R0

ε, on

[
tε

ε
,
τ1
ε

)
, (3.32)

where

R0
ε(t) := b

(
e−

β
4 (t− t

ε

ε )|Wε(t
ε)|+ 20

β
rω(2r)

)
, t ∈

[
tε

ε
,
τ1
ε

]
,

and

|Ziε| ≤ Riε, on
[τi
ε
,
τi+1

ε

)
, i = 1, ..., kε − 1, (3.33)

|Zkεε | ≤ Rkεε , on

[
τkε
ε
,
tε
ε

]
, (3.34)
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where

Riε(t) := b

[
e−

β
4 (t− τiε )Ri−1

ε

(τi
ε

)
+

4

β
ω(r)r

]
, i = 1, ..., kε, t ∈

[τi
ε
,
τi+1

ε

]
.

It is easy to check that, up to a smaller ε̃r such that b exp
(
−βσ4ε

)
≤ 1

2 for every

ε ∈ (0, ε̃r), R
i
ε

( τi+1

ε

)
≤ 2rω(2r)

(
1 + 20b

β

)
, for i = 0, ..., kε − 1 and thus that

Riε

(τi
ε

)
≤ 2brω(2r)

(
11 +

20b

β

)
,

for i = 0, ..., kε. Hence, from the choice made in (3.24), we have that Riε
(
τi
ε

)
≤ r

for i = 0, ..., kε, and therefore, since Riε is decreasing in t, from (3.32)-(3.34) we
obtain that

||Wε||∞,[tε,t̂ε] ≤ max

{
max

i∈{0,...,kε−1}
||Ziε||∞,[ τiε ,

τi+1
ε ), ||Z

kε
ε ||∞,[ τkεε , tεε ]

}
≤ max
i∈{0,...,kε}

Riε

(τi
ε

)
≤ r, for every ε ∈ (0, ε̃r).

�

Proposition 3.4 allows us to prove a first part of Theorem 3.1.

Proof of Theorem 3.1 restricted to (0, t1). We begin the proof of Theorem 3.1 by
showing that

(uε, εBu̇ε)→ (u, 0) uniformly on compact subsets of (0, t1). (3.35)

Consider [t∗, t̂] ⊆ (0, t1) and let δ > 0 be sufficiently small, in order to apply
Proposition 3.4. Observe that the function

vε0(s) := uε(εs), s ∈
[
0,
T

ε

]
, (3.36)

satisfies the problem Av̈ε0(s) +Bv̇ε0(s) +∇xf(εs, vε0(s)) = 0, s ∈
[
0, Tε

]
vε0(0) = uε(0),
v̇ε0(0) = εu̇ε(0),

so that, by (3.4),

(vε0, v̇
ε
0)→ (v0, v̇0) uniformly on compact subsets of [0,+∞), (3.37)

where v0 satisfies (3.2) and (3.3). This convergence, the limit in (3.3) and the fact
that v̇0(+∞) = 0 imply that there exists sδ0 > 0 such that

|(v0(s)− xr0, Bv̇0(s))| ≤ 1

2
min{δ, δω(2δ)}, for every s ≥ sδ0, (3.38)

and

lim sup
ε→0+

|(uε(εsδ0)− xr0, εBu̇ε(εsδ0))| < min{δ, δω(2δ)}, (3.39)

where ω is defined in Proposition 3.4. Then, by using Proposition 3.4 with t = t̃ = 0
and u1 in place of u, so that u(t̃) = xr0, and

bε0 := εsδ0 (3.40)

in place of tε, we obtain that

lim sup
ε→0+

||(uε − u, εBu̇ε)||∞,[t∗,t̂] ≤ lim sup
ε→0+

||(uε − u, εBu̇ε)||∞,[bε0,t̂] ≤ δ, (3.41)

and, in turn, (3.35). �
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Statement (3.35), together with the fact that limt→t−1
u(t) = xs1 and the definition

of tδ1 < t1 (see (2.20)), implies that

|(uε(tδ1)− xs1, εBu̇ε(tδ1))| ≤ δ

2
,

for every ε sufficiently small. Then, we consider, in dependence on δ, the first time
larger that tδ1 in which (uε(t), εBu̇ε(t)) escapes from B((xs1, 0), δ):

aε1 := max{t ∈ [tδ1, t
∗∗
1 ] : (uε(t), εBu̇ε(t)) ∈ B((xs1, 0), δ) for every t ∈ [tδ1, t]},

(3.42)
where t∗∗1 > t1 is defined in (2.22). Observe that, for every ε small enough, aε1
is well-defined, since the maximum is taken over a nonempty set. Notice that, if
aε1 < t∗∗1 , it turns out that (uε(aε1), εBu̇ε(aε1)) ∈ ∂B((xs1, 0), δ).

Lemma 3.8. For every δ > 0 small enough, we have that

aε1 → t1.

Proof. We divide the proof in two steps. Fix δ > 0 sufficiently small.
(i) Let τk ≥ tδ1 be a sequence approaching t1 from the left, as k → +∞. From (3.35)
we have that, for every k, there exists εk such that ||(uε − u, εBu̇ε)||∞,[tδ1,τk] ≤ δ

2

for all ε ∈ (0, εk). Thus, also in view of the definition of tδ1, we obtain that

(uε(t), εBu̇ε(t)) ∈ B((xs1, 0), δ), for every t ∈ [tδ1, τk] and ε ∈ (0, εk),

and, in turn, from the definition of aε1, that aε1 ≥ τk for every ε ∈ (0, εk) and every
k, so that

lim inf
ε→0

aε1 ≥ t1.

(ii) Here, we want to prove that

lim sup
ε→0

aε1 ≤ t1.

Suppose, by contradiction, that there exists a sequence {εk}, with εk → 0 as
k → +∞, and a certain t̂ > t1 such that {aεk1 } ⊆ [t̂, t∗∗1 ]. Then, up to a subsequence,
we have that

aεk1 → t̃ ∈ [t̂, t∗∗1 ]. (3.43)

Now, observe that the function vε1 := uε(aε1 + εs) satisfies the problem
Av̈ε1(s) +Bv̇ε1(s) +∇xf(aε1 + εs, vε1(s)) = 0, s ∈

[
−a

ε
1

ε ,
T−aε1
ε

]
vε1(0) = uε(aε1),
v̇ε1(0) = εu̇ε(aε1).

From the definition of aε1, we have that (vε1(0), Bv̇ε1(0)) ∈ B((xs1, 0), δ), and, in turn,
up to a further subsequence, that

(vεk1 (0), Bv̇εk1 (0))→ (z, ż) ∈ B((xs1, 0), δ). (3.44)

(3.43) and (3.44) imply that

(vεk1 , v̇εk1 )→ (w, ẇ), (3.45)

uniformly on compact subsets of a common interval of existence, where w is the
solution of the problem Aẅ(s) +Bẇ(s) +∇xf(t̃, w(s)) = 0,

w(0) = z,
Bẇ(0) = ż.

(3.46)
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It is easy to check, by using (3.45), Lemma 2.5 and the definition of aε1, that w and
ẇ are defined on all R and that (w(s), Bẇ(s)) ∈ B((xs1, 0), δ) for every s ∈ (−∞, 0].
Moreover, by Lemma 2.5, there exists the limit

lim
s→−∞

(s) := w(−∞) ∈ B(xs1, δ), (3.47)

and it satisfies

∇xf(t̃, w(−∞)) = 0. (3.48)

(3.47) and (3.48) contradict the fact that t̃ ∈ (t1, t
∗∗
1 ], since, by definition of t∗∗1

(recall that δ has to be small enough), it must be |∇xf(t̃, ·)| > 0 in B(xs1, δ). �

By Lemma 2.4, any solution of problem (3.5) differs from any other solution
by time translation, so that the trajectories Ij ’s (defined in (3.6)) are uniquely
defined. By using Morse-Sard Theorem (see, e. g., [9, Theorem 1.3 ch. 3]) applied
to the function t 7→ |(wj(t)− xsj , Bẇj(t))|2, it is easy to check that the set

Ej := {δ > 0 | Ij is tangent to ∂B((xsj , 0), δ) at a point of intersection} (3.49)

has zero measure. The reason why we introduce the sets Ej , j = 1, ...,m − 1, will
be clear in the next proof.

Proof of Theorem 3.1, complete. Let δ be sufficiently small. First, let us prove
statement (2) in the case j = 1. Consider an arbitrary sequence εk → 0 and the
function

vε1(s) := uε(aε1 + εs), s ∈
[
−a

ε
1

ε
,
T − aε1
ε

]
, (3.50)

with aε1 given by (3.42). Observe that vε1 depends on δ. By using Lemma 3.8 and
arguing similarly to its proof, we can show that, up to a subsequence,

(vεk1 (0), Bv̇εk1 (0))→ (z, ż) ∈ ∂B((xs1, 0), δ),

and that (vεk1 , v̇εk1 )→ (w1, ẇ1) uniformly on compact subsets of R, where w1 is the
solution of problem (3.46), with t1 in place of t̃, and satisfies

w1(−∞) = xs1, ẇ1(−∞) = 0. (3.51)

The first condition in (3.51) is due to the fact that w1(−∞) ∈ B(xs1, δ) must be
a critical point of f(t1, ·) and, since we are supposing δ small enough, the unique
critical point of f(t1, ·) in B(xs1, δ) is xs1 (see (2.21)). Observe that w1 depends on δ.
To conclude the proof, it remains to show that, given any other sequence εh → 0,
(vεh , v̇εh) converges (up to a subsequence) to (w, ẇ), as (vεk1 , v̇εk1 ) does. By repeating

the same arguments above, we have that, up to a subsequence, (vεh1 , v̇εh1 )→ (w̃1, ˙̃w1)

uniformly on compact subsets of R, where (w̃1, ˙̃w1) satisfies the same system that
(w1, ẇ1) satisfies, and the conditions in (3.51). Therefore, by Lemma 2.4, we have
that

w̃1(s) = w1(s+ s0), s ∈ R, (3.52)

for a certain constant s0, which we can assume to be nonnegative. Let us suppose,
by contradiction, that s0 > 0. By (3.52) and the definition of aε1, we have, on one
hand, that

(w1(s), Bẇ1(s)) ∈ B((xs1, 0), δ), for every s ≤ s0; (3.53)

on the other hand, since E1 has measure 0 (see (3.49)), it is not restrictive to
assume δ /∈ E1, so that there exists σ > 0 such that (w1(s), Bẇ1(s)) /∈ B((xs1, 0), δ)
for every s ∈ (0, σ), against (3.53). Therefore, it has to be s0 = 0 and, in turn,
w1 = w̃1. Thus, we have proved that

(vε1, v̇
ε
1)→ (w1, ẇ1) uniformly on compact subsets of R, (3.54)
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where, among the solutions of the problem{
Aẅ(s) +Bẇ(s) +∇xf(t1, w(s)) = 0,
lims→−∞ w(s) = xs1,

w1 is the one such that (w1(0), Bẇ1(0)) = (z, ż) (where (uε(aε1), εBu̇ε(aε1)) →
(z, ż) ∈ ∂B((xs1, 0), δ)). Moreover,

(w1(s), Bẇ1(s)) ∈ B((xs1, 0), δ), for every s ≤ 0. (3.55)

Now, recall that, by Proposition 2.6, the behaviour of w1 at +∞ selects a point
which allows us to find, as done for [0, t1), a solution u2 of ∇xf(t, ·) = 0 on [t1, t2).
More precisely:

lim
s→+∞

(w1(s), ẇ1(s)) = (xr1, 0), u2(t1) = xr1,

∇xf(·, u2(·)) ≡ 0 and ∇xf(·, u2(·)) is positive definite on [t1, t2).

In particular, there exists sδ1 > 0 such that

|(w1(s)− xr1, Bẇ1(s))| ≤ δ

2
for every s ≥ sδ1. (3.56)

Moreover, due to (3.54) and to the definition of vε1, there exists εδ > 0 such that

|(uε(bε1)− w1(sδ1), εBu̇ε(bε1)−Bẇ1(sδ1))| < δ

2
, for every ε ∈ (0, εδ), (3.57)

where
bε1 = bε1(δ) := aε1 + sδ1ε,

so that
|(uε(bε1)− xr1, εBu̇ε(bε1)| < δ for every ε ∈ (0, εδ). (3.58)

By using (3.58) and Proposition 3.4 with t̃ = t1, bε1 in place of tε, u2 in place of u
(since it can be bε1 < t1, note that u2 is defined in a left neighbourhood of t1, also)
and δ in place of min{r, rω(2r)}, we can prove the first statement of the theorem
restricted to (t1, t2). This fact allows us to extend the definition of aε1 and bε1 to the
cases j = 2, ...,m−1 and to repeat the same arguments used until here to complete
the proof of the theorem. �

Remark 3.9. By looking at the hypotheses of Theorem 3.1, observe that in the
case in which

(uε(0), εu̇ε(0))→ (xr0, 0),

we have that

(uε, εBu̇ε)→ (u, 0) on compact subsets of [0, T ] \ {t1, ..., tm−1}.
In order to check this on a compact [0, t̂] of (0, t1) (the rest part of the proof is the
same of Theorem 3.1), it is enough to apply Proposition 3.4 with t = t̃ = 0 and
tε = 0.

In the proof of Theorem 3.1, we have defined some special times which we collect
in the following definition.

Definition 3.10. Let δ > 0 be sufficiently small. For j = 1, ...,m− 1, we define

aεj := max{t ∈ [tδj , t
∗∗
j ] : (uε(t), εBu̇ε(t)) ∈ B((xsj , 0), δ) for every t ∈ [tδj , t]},

where tδj ∈ (tj−1, tj) is defined in (2.20) and satisfies

|(uε(tδj)− xsj , εBu̇ε(tδj))| ≤
δ

2
,

for every ε small enough. Moreover, we set

bεj = bεj(δ) := aεj + sδjε, j = 1, ...,m− 1,
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where sδj > 0 is such that

|(wj(s)− xrj , Bẇj(s))| ≤
δ

2
, for every s ≥ sδj .

We are now in position to prove the last result of this section.

Proof of Theorem 3.2. See (3.6)-(3.9) for the definitions of Γ and Γε. Chosen δ > 0
small enough and such that

δ /∈
m−1⋃
j=1

Ej ,

where Ej , for j = 1, ...,m − 1, is defined in (3.49) (recall that
⋃m−1
j=1 Ej has zero

measure), we suppose to work with the particular heteroclinic solutions depending
on δ found in the proof of Theorem 3.1 (see (3.55)). Due to the definition of the
Hausdorff distance, we divide the proof in two parts.
(a) Here, we show that there exists εδ > 0 such that

sup
Γε

d(·,Γ) ≤ 2δ, for every ε ∈ (0, εδ). (3.59)

Set

dε(t) := d((t, uε(t), εBu̇ε(t)),Γ), t ∈ [0, T ].

By referring to (2.19)-(2.20), to (3.40) and Definition 3.10 for the notation, and in
view of the fact that

bε0 → 0, aεj , b
ε
j → tj , for j = 1, ...,m− 1, (3.60)

consider, for every ε small enough, the partition

0 < bε0 < tδ1 < aε1 < bε1 < ... < bεm−1 < T.

In order to prove (3.59), it is enough to give a proper estimate of dε on [0, bε1), since
we can proceed in a similar way on the remaining part of the interval [0, T ]. By
looking at the definition of vε0 (see (3.36)), observe that

sup
t∈[0,bε0)

dε(t) ≤ sup
s∈[0,sδ0]

[εs+ d((vε0(s), Bv̇ε0(s)),I0)]

≤ bε0 + ||(vε0 − v0, Bv̇
ε
0 −Bv̇0)||∞,[0,sδ0], (3.61)

while, by using (3.41) with tδ1 in place of t̂, it turns out that

sup
t∈[bε0,t

δ
1)

dε(t) ≤ ||(uε − u, εBu̇ε)||∞,[bε0,tδ1] ≤ δ. (3.62)

Now, observe that we can suppose

t1 − tδ1 ≤
δ

2
. (3.63)

This fact, together with the definition of aε1, implies that

sup
t∈[tδ1,a

ε
1)

dε(t) ≤ sup
t∈[tδ1,a

ε
1)

{|t− t1|+ |(uε(t)− xs1, εBu̇ε(t))|} ≤ max

{
|t1 − aε1|,

δ

2

}
+δ

(3.64)
Finally, consider that

sup
t∈[aε1,b

ε
1)

dε(t) ≤ sup
t∈[aε1,b

ε
1)

{|t− t1|+ d((uε(t), εBu̇ε(t)),I1)}

≤ εsδ1 + |t1 − aε1|+ ||(vε1 − w1, Bv̇
ε
1 −Bẇ1)||∞,[0,sδ1]. (3.65)
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(3.61)-(3.62) and (3.64)-(3.65), together with (3.37), Theorem 3.1 (2), the conver-
gences in (3.60) and the convergence of εsδ1 to 0, imply that there exists εδ > 0
such that

sup
t∈[0,bε1)

dε(t) ≤ 2δ, for every ε ∈ (0, εδ),

and, in turn, imply (3.59).
(b) Here, we show that there exists ε̃δ > 0 such that

sup
Γ
d(·,Γε) ≤ 2δ, for every ε ∈ (0, ε̃δ). (3.66)

By the definition of Γ and by the fact that (xs1, 0) ∈ I 1, it is sufficient to analyze

sup
{0}×I0

d(·,Γε), sup
t∈[0,t1)

d((t, u1(t), 0),Γε), sup
{t1}×I1

d(·,Γε),

since the other cases can be treated in similar way. Let us consider separately
s ∈ [0, sδ0] and s > sδ0, and write

sup
s∈[0,sδ0]

d((0, v0(s), Bv̇0(s)),Γε) ≤ sup
s∈[0,sδ0]

[εs+ d((v0(s), Bv̇0(s)), (uε(εs), εBu̇ε(εs)))]

≤ bε0 + ||(vε0 − v0, Bv̇
ε
0 −Bv̇0)||∞,[0,sδ0], (3.67)

and, in view of (3.38),

sup
s>sδ0

d((0, v0(s), v̇0(s)),Γε) ≤ bε0 + sup
s>sδ0

d((v0(s), Bv̇0(s)), (uε(bε0), εBu̇ε(bε0)))

≤ bε0 +
δ

2
+ |(uε(bε0)− xr0, εBu̇ε(bε0))|. (3.68)

Now, to carry out a proper estimate supt∈[0,t1) d((t, u1(t), 0),Γε), we divide [0, t1)

in [0, bε0), [bε0, t
δ
1) and [tδ1, t1). It turns out that

sup
t∈[0,bε0)

d((t, u1(t), 0),Γε) ≤ bε0 + sup
t∈[0,bε0)

d((u1(t), 0), (uε(bε0), εBu̇ε(bε0)))

≤ bε0 + ωu1
(bε0) + |(uε(bε0)− xr0, εBu̇ε(bε0))|. (3.69)

Moreover, we have that

sup
t∈[bε0,t

δ
1)

d((t, u1(t), 0),Γε) ≤ ||uε − u1, εBu̇
ε||∞,[bε0,tδ1], (3.70)

and, in view of (3.63) and (2.20), that

sup
[t1δ,t1)

d((t, u1(t), 0),Γε) ≤ sup
[t1δ,t1)

d((t, u1(t), 0), (tδ1, u
ε(tδ1), εBu̇ε(tδ1)))

≤ δ

2
+ |(uε(tδ1)− u1(tδ1), εBu̇ε(tδ1))|+ sup

[tδ1,t1)

|u1(t)− u1(t1δ)|

≤ δ + |(uε(tδ1)− u1(tδ1), εBu̇ε(tδ1))|. (3.71)

Finally, consider sup{t1}×I1
d(·,Γε). Observe that

d((t1, w1(s), Bẇ1(s)),Γε) ≤ |t1 − bε1|+ |(w1(s)− w1(sδ1), Bẇ1(s)−Bẇ1(sδ1))|

+ |(uε(bε1)− w1(sδ1), εBu̇ε(bε1)−Bẇ1(sδ1))|,

so that, from (3.56)-(3.57), we obtain that

sup
s>sδ1

d((t1, w1(s), Bẇ1(s)),Γε) ≤ |t1 − bε1|+
3

2
δ. (3.72)
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Now, similarly to what is done in (3.56)-(3.58), we can define cε1 in the following
way. Since (w1(−∞), ẇ1(−∞)) = (xs1, 0), there exists sδ1 < 0 such that

|(w1(s)− xs1, Bẇ1(s))| ≤ δ

2
, for every s ≤ sδ1. (3.73)

Moreover, due to (3.50) and (3.54), there exists ε̃δ > 0 such that

|(uε(aε1 + sδ1ε)− w1(sδ1), εBu̇ε(aε1 + sδ1ε)−Bẇ1(sδ1))| ≤ δ

2
, for every ε ∈ (0, ε̃δ).

(3.74)
Let us define

cε1 = cε1(δ) := aε1 + sδ1ε < aε1,

and observe that cε1 → t1. We have that

sup
s∈[sδ1,s

δ
1]

d((t1, w1(s), Bẇ1(s)),Γε) ≤ |t1 − cε1|+ ||(vε1 − w1, Bv̇
ε
1 −Bẇ1)||∞,[sδ1,sδ1],

(3.75)
while, since

sup
s<sδ1

d((t1, w1(s), Bẇ1(s)),Γε) ≤ |t1− cε1|+ |(w1(s)−w1(sδ1), Bẇ1(s)−Bẇ1(sδ1))|

+ |(uε(cε1)− w1(sδ1), εBu̇ε(cε1)−Bẇ1(sδ1))|,

from (3.73) and (3.74) it turns out that

sup
s<sδ1

d((t1, w1(s), Bẇ1(s)),Γε) ≤ |t1 − cε1|+
3

2
δ. (3.76)

(3.67)-(3.72) and (3.75)-(3.76), together with (3.37), (3.39), (3.35) and (3.54), give
that, up to a smaller ε̃δ,

sup
{0}×I0

d(·,Γε), sup
t∈[0,t1)

d((t, u1(t), 0),Γε), sup
{t1}×I1

d(·,Γε) ≤ 2δ,

for every ε ∈ (0, ε̃δ), and, in turn, give (3.66). �

4. Approximating by time discretization

In this section, we study a discrete-time approximation of the same limit problem
constructed in Section 2 and approximated in Section 3 by singular perturbations.
The present approximation process is modelled on the following idea. We consider
a partition 0 = τk0 < τk1 < ... < τkk−1 < τkk = T of the interval [0, T ] such that

ρk := max
0≤i≤k−1

(τki+1 − τki )→ 0, as k → +∞, (4.1)

and suppose to have defined uki−1 as the approximation of the function u given by

Definition 2.7 on the interval [τki−1, τ
k
i ). Since u(τki ) is a critical point of f(τki , ·),

we find the next approximating point uki by considering the solution vki of the
autonomous problem Av̈ki (σ) +Bv̇ki (σ) +∇xf(τki , v

k
i (σ)) = 0, σ ∈ [0,+∞)

vki (0) = uki−1,
v̇ki (0) = 0,

(4.2)

and setting

uki := lim
σ→+∞

vki (σ), i = 2, ..., k. (4.3)

Consider a point xr0 ∈ Rn such that ∇xf(0, xr0) = 0 and ∇2
xf(0, xr0) is positive

definite. Clearly, the first approximating point of this process could be defined as
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the limit at +∞ of the solution of (4.2) with τk1 and xr0 = u(0) in place of τki and
uki−1, respectively. Actually, it does not cost much more effort to define

uk1 := lim
σ→+∞

vk1 (σ), (4.4)

and vk1 as the solution of Av̈k1 (σ) +Bv̇k1 (σ) +∇xf(τk1 , v
k
1 (σ)) = 0, σ ∈ [0,+∞)

vk1 (0) = xk,
v̇k1 (0) = yk.

(4.5)

Here,

(xk, yk)→ (x0, y0), as k → +∞,
and (x0, y0) lies in the basin of attraction of (xr0, 0) for the autonomous problem at
time 0, that is (x0, y0) satisfies (3.2) and (3.3). In order to uniform the notation,
we set uk0 = xk. Note that Lemma 2.5 ensures the existence of the solutions of
problems (4.2), (4.5), (3.2) and of the limits in (4.3), (4.4), (3.3). Also, Lemma 2.5
tells us that uki is a critical point of f(τki , ·) and that v̇0(+∞) = v̇ik(+∞) = 0, for
i = 1, ..., k.
Let Γ be the same set defined in (3.7)-(3.9). In order to define a suitable set Γk

approximating Γ, we choose arbitrarily some

αki ∈ (τki−1, τ
k
i ) for i = 1, ..., k,

and introduce a function uk which has, on every [τki−1, τ
k
i ], the following features.

On [τki−1, α
k
i ], it is a suitable reparametrization of vki from a certain big interval

[0, aki ] to [τki−1, α
k
i ], and, on [αki , τ

k
i ], it is a convex combination of vki (aki ) taken in

αki and uki taken in τki . More precisely, we fix a sequence δk → 0 and a constant
C > 0, and, for i = 1, ..., k, we consider a value aki > 0 with the following properties:

min
i
aki → +∞, as k → +∞, (4.6)

and, for every k,

|vki (aki )− uki |
τki − αki

≤ C, |v̇ki (aki ))| ≤ δk, uniformly with respect to i. (4.7)

It is clear that such values exist, by Lemma 2.5. Then, we define the function
uk ∈ C([0, T ],Rn) by

uk(t) :=

 vki

(
t−τki−1

αki−τki−1

aki

)
, t ∈ [τki−1, α

k
i ],

(τki −t)v
k
i (aki )+(t−αki )uki
τki −αki

, t ∈ [αki , τ
k
i ].

(4.8)

Observe that

uk(0) = vk1 (0) = xk, uk(τki−1) = vki (0) = uki−1, for i = 2, ..., k,

uk(αki ) = vki (aki ), for i = 1, ..., k,

and that

{uk(t) : t ∈ [τki−1, α
k
i ]} = {vki (σ) : σ ∈ [0, aki ]},

while, on [αki , τ
k
i ], uk(t) is an affine function connecting vki (aki ) to uki . Moreover, uk

can be not differentiable at αk1 , τ
k
1 , α

k
2 , τ

k
2 , ..., α

k
k. Therefore, with abuse of notation,

we define

u̇k(τki ) := lim
τ→(τki )+

u̇k(τ), for i = 0, ..., k − 1,

u̇k(αki ) := lim
τ→(αki )+

u̇k(τ), for i = 1, ..., k,
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and u̇k(T ) := limτ→T− u̇k(τ), so that

u̇k(t) :=


aki

αki−τki−1

v̇ki

(
t−τki−1

αki−τki−1

aki

)
, t ∈ [τki−1, α

k
i ),

uki−v
k
i (aki )

τki −αki
, t ∈ [αki , τ

k
i ),

(4.9)

and u̇k(T ) :=
ukk−v

k
k(akk)

T−αkk
. Note that, for i = 2, ..., k, u̇k(τki−1) =

aki
αki−τki−1

v̇ki (0) = 0,

while u̇k(0) =
ak1
αk1
yk. Finally, we need some coefficients which have, in the present

analysis, the same role played by ε in Section 3. To this aim, we define

hk(t) :=

k∑
i=1

αki − τki−1

aki
χ[τki−1,τ

k
i )(t), t ∈ [0, T ), (4.10)

with hk(T ) =
akk−τ

k
k−1

akk
, and, in turn,

Γk := {(t, uk(t), hk(t)Bu̇k(t)) : t ∈ [0, T ]}. (4.11)

By referring to Section 2 for the Assumptions 1-4, we are in position to state the
main result of this section.

Theorem 4.1. Under the hypotheses of Theorem 3.1, we have that

dH(Γk,Γ)→ 0, as k → +∞.

To prove Theorem 4.1, we need some preliminary results. Under Assumptions
1 and 2, fix τ ∈ [0, T ] and let x̃, ỹ ∈ Rn be such that, if v is the solution of the
problem  Av̈(σ) +Bv̇(σ) +∇xf(τ, v(σ)) = 0, σ ∈ [0,+∞)

v(0) = x̃,
v̇(0) = ỹ,

and v∞ := limσ→+∞ v(σ), then ∇2
xf(τ, v∞) is positive definite. By the Implicit

Function Theorem, there exist a connected neighbourhood U of τ in [0,T], a neigh-
bourhood V of v∞ in Rn and a C2 function u : U → Rn such that u(τ) = v∞ and,
if (t, x) ∈ U ×V , then ∇xf(t, x) = 0 if and only if x = u(t). Moreover, ∇2

xf(t, u(t))
is positive definite on U .

Consider three sequences xk → x̃, yk → ỹ and τk ∈ [0, T ] such that τk → τ , and
denote by vk the solution of the problem Av̈k(σ) +Bv̇k(σ) +∇xf(τk, vk(σ)) = 0, σ ∈ [0,+∞)

vk(0) = xk,
v̇k(0) = yk.

By continuous dependence, we have that (vk, v̇k) → (v, v̇) uniformly on compact
subsets of [0,+∞), and, by Lemma 2.5, we know that vk(+∞) is a critical point
of f(τk, ·) and v̇k(+∞) = 0. The following lemma tells us that, if k is sufficiently
large, vk(+∞) = u(τk). Moreover, this convergence is uniform with respect to k.

Lemma 4.2. Under Assumptions 1 and 2, let u and vk be as defined above. Then,
there exists k0 such that

lim
σ→+∞

(vk(σ), v̇k(σ)) = (u(τk), 0), for every k ≥ k0. (4.12)

Moreover, for every δ > 0, there exists kδ, σδ > 0 such that

(vk(σ), Bv̇k(σ)) ∈ B((u(τk), 0), δ), for every σ ≥ σδ and k ≥ kδ. (4.13)
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Proof. Let us refer to the previous paragraph for the notation. For every t ∈ U and
every x ∈ Rn, there exists α ∈ [0, 1], depending on x and u(t), such that

f(t, x) = f(t, u(t)) +∇2
xf(t, u(t) + α(x− u(t)))(x− u(t), x− u(t)). (4.14)

Let τ < τ < τ̂ be such that [τ , τ̂ ] ⊆ U . Since ∇2
xf(·, u(·)) is positive definite on

[τ , τ̂ ], there exists R > 0, depending on [τ , τ̂ ], such that, if δ ∈ (0, R), then

min
{
λ : λ is an eigenvalue of ∇2

xf(t, u(t) + z), |z| ≤ δ, t ∈ [τ , τ̂ ]
}

:= β2δ > 0.
(4.15)

Choose δ ∈ (0, R). From (4.14) and (4.15), we obtain that

min
|x−u(t)|= δ

2

f(t, x) ≥ f(t, u(t)) + βδ
δ2

4
, for every t ∈ [τ , τ̂ ], (4.16)

while the uniform continuity of f(·, u(·)) on [τ , τ̂ ] implies that

max
|x−u(t)|≤r

f(t, x) ≤ f(t, u(t)) + βδ
δ2

8
, for every t ∈ [τ , τ̂ ], (4.17)

for a certain r ∈
(
0, δ2
)
. Since (v(σ), v̇(σ)) → (v∞, 0), as σ → +∞, we can find

σδ > 0 such that

|v(σ)− v∞| ≤
r

3
, and |v̇(σ)| ≤ δ

2
min

{
1

2

√
βδ

2|A|
,

1

|B|

}
, for every σ ≥ σδ.

(4.18)
By the uniform continuity of (vk, v̇k) to (v, v̇) on compact subsets of [0,+∞), there
exists kδ such that, for every k ≥ kδ,

|vk(σδ)− v(σδ)| ≤
r

3
, |v̇k(σδ)− v̇(σδ)| ≤

δ

4

√
βδ

2|A|
. (4.19)

Also, we can suppose that

|u(τk)− v∞| ≤
r

3
, for every k ≥ kδ. (4.20)

Let σ ≥ σδ and k ≥ kδ. By arguing as in the proof of Lemma 2.5, we obtain that

f(τk, vk(σ)) ≤ 1

2
Av̇k(σδ)·v̇k(σδ) + f(τk, vk(σδ)), (4.21)

and, by using (4.18)-(4.20), we have that

|vk(σδ)− u(τk)| ≤ |vk(σδ)− v(σδ)|+ |v(σδ)− v∞|+ |v∞ − u(τk)| ≤ r. (4.22)

Then, noticing that τk ∈ [τ , τ̂ ] for every k sufficiently large, (4.17), (4.21) and (4.22)
imply that

f(τk, vk(σ)) ≤ |A|
2
|v̇k(σδ)|2 + f(τk, u(τk)) + βδ

δ2

8

≤ f(τk, u(τk)) +
3

16
βδδ

2, (4.23)

where in the last inequality we have used also the second estimate in (4.18) and
(4.19). From (4.16) and (4.23), we obtain that vk(σ) ∈ B

(
u(τk), δ2

)
for all σ ≥ σδ

and k ≥ kδ. This fact, together with the second estimate of (4.18), gives (4.13).
In particular, let us fix δ0 > 0 such that B

(
u(τk), δ02

)
⊆ V for every k ≥ k0, for a

certain k0 > 0. Then, by Lemma 2.5 and by the fact that the unique critical point
of f(τk, ·) in B

(
u(τk), δ02

)
is u(τk), (4.12) is proved. �
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For the following lemma, observe that, for j = 1, ...,m − 1, the function uj+1,
defined in Proposition 2.6, is more generally defined on [ tj , tj+1), for a certain
tj < tj sufficiently close to tj such that

∇xf(·, uj+1(·)) ≡ 0 and ∇2
xf(·, uj+1(·)) is positive definite on [ tj , tj+1). (4.24)

Since the notation is unavoidably heavy, be careful to distinguish the functions uj ’s
from the functions uk’s defined in (4.8) proceeding from the points uki ’s, defined in
(4.3) and (4.4). The next lemma tells us essentially that, for k large enough, the
points uki are indeed values approximating u1 on compact subsets of (0, t1).

Lemma 4.3. Choose t̂ ∈ (0, t1) and δ > 0. There exists k̂δ, σδ > 0 such that, for

every k ≥ k̂δ, we have that

(vk1 (σ), Bv̇k1 (σ)) ∈ B((u1(τk1 ), 0), δ), for every σ ≥ σδ, (4.25)

and, if τki ∈ [τk2 , t̂], then

(vki (σ), Bv̇ki (σ)) ∈ B((u1(τki ), 0), δ), for every σ ≥ 0. (4.26)

In particular, there exists k̂ such that

uki = u1(τki ), for every τki ∈ [τk1 , t̂] and k ≥ k̂. (4.27)

To show that (4.25) and (4.27) hold for i = 1, we can use Lemma 4.2, with τ = 0,
x̃ = x0, ỹ = y0, v0 in place of v, u1 in place of u, v∞ = xr0, and τk1 , vk1 in place of
τk, vk, respectively. The proof of the remaining part of Lemma 4.3 can be done by
induction and by using essentially the same arguments of the proof of Lemma 4.2.

While Lemma 4.3 takes into account the approximating points uki on compact
subsets of (0, t1), the following lemma, whose proof is similar to the previous one,
deals with [ tj , tj+1), which is a slight modification of [tj , tj+1) in the sense of (4.24),
for j = 1, ...,m− 1.

Lemma 4.4. For j = 1, ...,m − 1, let tj < tj be sufficiently close to tj so that

(4.24) holds . For j = 1, ...,m − 2, choose t̂j ∈ [tj , tj+1), and set t̂m−1 = T . For

every δ > 0, there exists k̂δ > 0 such that, if

τkl , τ
k
l+1 ∈ [ tj , t̂j ] and ukl = uj+1(τkl ),

for some j ∈ {1, ...,m− 1}, then

(vki (σ), Bv̇ki (σ)) ∈ B((uj+1(τki ), 0), δ), for every σ ≥ 0,

for every τki ∈ [τkl+1, t̂j ] and k ≥ k̂δ. In particular, there exists k̂ > 0 such that

uki = uj+1(τki ), for every τki ∈ [τkl+1, t̂j ] and k ≥ k̂.

In order to prove Theorem 4.1, we need to select some special indices among
i = 0, ..., k and show certain properties of those. Lemma (4.3) and (4.4) suggest

that we can expect that there exist some indices ojk which mark a transition around

tj from the approximation of uj to the approximation of uj+1, that is uki = uj(τ
k
i )

for every τk
ojk
< i ≤ τk

oj+1
k

. Unluckily, it is not really like this, since, as we will see,

it may happen that, if τki ≤ tj is “too much close” to tj , u
k
i ∈ {uj(τki ), uj(τ

k
i )}

(see (2.18) for a definition). We will show later that the indices introduced by the
following definition, which depends on a small parameter δ estimating the distance
from xsj , are those responsible for the transition.

Definition 4.5. Let δ > 0 be small enough. For every j ∈ {1, ...,m− 1}, we define

ojk = ojk(δ) := minAjk,
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where Ajk = Ajk(δ) is the set of the indices i ∈ {0, ..., k − 1} such that

τki ≤ tj , uki ∈ B
(
xsj ,

δ

2

)
,

and
(vki+1(σ), Bv̇ki+1(σ)) ∈ ∂B((xsj , 0), δ), for some σ > 0,

where xsj , for j = 1, ...,m− 1, is defined in Proposition 2.6.

Remark 4.6. Observe that, for k sufficiently large, the definition of ojk is well-

posed, since Ajk 6= ∅. Let us check this fact in the case j = 1. For j = 2, ...,m− 1,
the proof can be conducted in a similar way, by using also the next lemma. Recall
(2.20) and choose t̃ ∈ (tδ1, t1). By Lemma 4.3, for every k sufficiently large, there
exists al least one index i such that τki ∈ [tδ1, t̃] and uki = u1(τki ) ∈ B

(
xs1,

δ
4

)
. Now,

there are two possibilities:
(1) τki+1 > t1: in this case, we can suppose, up to bigger k’s, that τki+1 ≤ t∗∗1 (see

(2.19) and (2.22) for the notation). Thus, by recalling that uki+1 = vki+1(+∞) is a

critical point of f(τki+1, ·), we have that uki+1 /∈ B(xs1, δ). Then, since uki = vki+1(0) ∈
B
(
xs1,

δ
4

)
and v̇ki+1(0) = 0, it turns out that (vki+1(σ), Bv̇ki+1(σ)) ∈ ∂B((xs1, 0), δ)

for some σ > 0 and therefore i ∈ A1
k;

(2) τki+1 ≤ t1: in this case, if (vki+1(σ), Bv̇ki+1(σ)) ∈ ∂B((xs1, 0), δ) for some σ > 0,

then i ∈ A1
k; otherwise, limσ→+∞(vki+1(σ), Bv̇ki+1(σ)) = (uki+1, 0) ∈ B((xs1, 0), δ).

But uki+1 ∈ {uj(τki+1), uj(τ
k
i+1)} and tδ1 ≤ τki < τki+1 ≤ t1, therefore uki+1 ∈

B
(
xs1,

δ
4

)
. At this point, we begin again by considering τki+2 and, in turn, case

(1) or (2).
By this procedure, in a finite number of steps we find some i ∈ A1

k.

It is useful to underline two facts which emerge from Remark 4.6:

uk
ojk
∈
{
uj

(
τk
ojk

)
, uj

(
τk
ojk

)}
, (4.28)

and we cannot determine whether τk
ojk+1

> tj or τk
ojk+1

≤ tj . The following lemma

will be useful to prove the main result of this section and tells us (see point (3))

that the index ojk marks the transition from the branches uj and uj to uj+1, as it
was expected.

Lemma 4.7. For every j ∈ {1, ...,m − 1} and δ > 0 small enough, the following
properties hold:

(1) τk
ojk
→ t−j ;

(2) uk
ojk
→ xsj ;

(3) for every k large enough, uk
ojk+1

= uj+1(τk
ojk+1

), hence uk
ojk+1

→ xrj .

Proof. Let us begin with the case j = 1 and write, in order to simplify the notation,
ok = ok(δ) in place of o1

k.
(1) Observe that, from Definition 4.5, τkok ≤ t1. Let t < t1 be arbitrarily close to

t1. We want to show that there exists k such that τkok ∈ (t, t1], for every k ≥ k. We

can suppose that t ≥ tδ1 (see 2.20). Observe that, if x, y ∈ Rn vary in a compact,
by uniform continuity there exists ρ = ρ(δ) > 0 such that

|f(t, x)− f(t, y)| < δ2λAmin
32|B|2

, for every t ∈ [0, T ] and |x− y| ≤ ρ. (4.29)

Choose t̃ ∈ (t, t1) and set δ̃ := 1
2 min {ρ, δ}. Lemma 4.3 tells us that, for every k

large enough (depending on δ̃ and on [ t, t̃]), there exists an index i ≥ 1 such that

tδ1 ≤ t ≤ τki < τki+1 ≤ t̃, (4.30)
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uki = u1(τki ), (4.31)

and

vki+1(σ) ∈ B(u1(τki+1), δ̃), for every σ ≥ 0. (4.32)

Thus, from (4.32) and the definition of δ̃ and of tδ1, we obtain that

|vki+1(σ)− xs1| ≤ |vki+1(σ)− u1(τki+1)|+ |u1(τki+1)− xs1| ≤
3

4
δ. (4.33)

Also, recall that

λAmin
2
|v̇ki+1(σ)|2 + f(τki+1, v

k
i+1(σ)) ≤ 1

2
Av̇ki+1(σ)·v̇ki+1(σ) + f(τki+1, v

k
i+1(σ))

≤ f(τki+1, u
k
i ), (4.34)

for every σ ≥ 0, and observe that, by (4.1) and (4.31)-(4.32), we can suppose, up
to greater k’s, that

|uki − vki+1(σ)| = |u1(τki )− vki+1(σ)|

≤ |u1(τki )− u1(τki+1)|+ |u1(τki+1)− vki+1(σ)| ≤ ρ,

for every σ ≥ 0. Thus, from (4.29) and (4.34), it descends that

|Bv̇ki+1(σ)| ≤

√
2

λAmin
[f(τki+1, u

k
i )− f(τki+1, v

k
i+1(σ))]

1
2 <

δ

4
, for every σ ≥ 0.

(4.35)
(4.30), (4.31), (4.33) and (4.35) give that

uki ∈ B
(
xs1,

δ

2

)
and (vki+1(σ), Bv̇ki+1(σ)) ∈ B((xs1, 0), δ), for every σ ≥ 0.

(4.36)
By the same arguments just used, we can prove that, whenever l < i is such that
ukl ∈ B

(
xs1,

δ
2

)
, we have that (vl+1

k (σ), Bv̇l+1
k (σ)) ∈ B((xs1, 0), δ) for every σ ≥ 0.

This fact, together with (4.36) and the definition of ok, implies that ok > i and
therefore τkok > τki ≥ t.
(2) This limit follows from property (1) and from (4.28).
(3) To further simplify the notation, let us write vk instead of vkok+1, so that vk is
the solution of Av̈k(σ) +Bv̇k(σ) +∇xf(τkok+1, vk(σ)) = 0, σ ∈ [0,+∞)

vk(0) = ukok ,
v̇k(0) = 0.

By Definition 4.5, the following parameter is well-defined for every k sufficiently
large:

σk := min{σ > 0 : (vk(σ), Bv̇k(σ)) ∈ ∂B((xs1, 0), δ)}. (4.37)

The compactness of ∂B((xs1, 0), δ) implies that, up to a subsequence,

(vk(σk), Bv̇k(σk))→ (z, ż), (4.38)

for a certain (z, ż) ∈ ∂B((xs1, 0), δ). We claim that

σk → +∞, as k → +∞. (4.39)

Indeed, if it was (up to a subsequence) σk ∈ [0,M ] and σk → σ̂, for some M > 0
and σ̂ ∈ [0,M ], we would find the following contradiction: by points (1) and (2), it
is (vk, v̇k) uniformly convergent to (v, v̇) on [0,M ], where v is the solution of Av̈(σ) +Bv̇(σ) +∇xf(t1, v(σ)) = 0, σ ∈ [0,+∞)

v(0) = xs1,
v̇(0) = 0.
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In particular, it is (vk(σk), v̇k(σk))→ (v(σ̂), v̇(σ̂)) and, in turn, by (4.37), (v(σ̂), Bv̇(σ̂)) ∈
∂B((xs1, 0), δ). This is an absurd, because v ≡ xs1.
Now, let us define

ṽk(σ) := vk(σ + σk), σ ∈ [−σk,+∞),

which satisfies the system A¨̃vk(σ) + B ˙̃vk(σ) + ∇xf(τkok+1, ṽk(σ)) = 0, for σ ∈
[−σk,+∞) and the conditions ṽk(0) = vk(σk), ˙̃vk(0) = v̇k(σk), and let w1 be the
solution of  Aẅ(σ) +Bẇ(σ) +∇xf(t1, w(σ)) = 0, σ ∈ [0,+∞)

w(0) = z,
Bẇ(0) = ż.

By point (1), (4.38) and (4.39), we have that (ṽk, ˙̃vk) → (w1, ẇ1) uniformly on
compacts subsets of any common interval of existence. By using this fact together
with the definition of σk, it is easy to show that

{(w1(σ), Bẇ1(σ)) : σ ≤ 0} ⊆ B((xs1, 0), δ). (4.40)

Thus, by Lemma 2.4 together with (2.21) and Proposition 2.6, we have that

lim
s→−∞

(w1(s), ẇ1(s)) = (xs1, 0), lim
s→+∞

(w1(s), ẇ1(s)) = (xr1, 0), (4.41)

and that

(ṽk, ˙̃vk)→ (w1, ẇ1), uniformly on compact subsets of R. (4.42)

Observing that, by definition, ukok+1 = limσ→+∞ ṽk(σ), it is enough to apply

Lemma 4.2 with t1, z, B−1ż, xr1, u2, vk(σk), v̇k(σk), τkok+1 and ṽk in place of

τ , x̃, ỹ, v∞, u, xk, yk, τk and vk, respectively, to conclude that ukok+1 = u2(τkok+1)

for every k large enough, and, in turn, that ukok+1 → xr1.
The proof of the cases j = 2, ...,m−1 can be done in a similar way, by using, more,
the case j = 1. �

Lemma 4.3 and Lemma 4.7 allow us to state and prove a result of approximation
of u on compact subsets of (0, T ] \ {t1, ..., tm−1}. Since the jump times tj ’s are not
so far considered, the heteroclines wj ’s appear in the statement just because they
are involved in the definition of u through their limit points xsj and xrj at −∞ and
+∞, respectively (see Definition 2.7). Notice that Proposition 4.8, by including the
uniform convergence to 0 of the “modified” velocity hkBu̇

k on compact subsets of
(0, T ] \ {t1, ..., tm−1}, recovers all the information collected in Theorem 3.1 (1) by
using a different approach. We refer the reader to (4.6)-(4.10) for the notation.

Proposition 4.8. Under the hypotheses of Theorem 3.1, we have that

(uk, hkBu̇
k)→ (u, 0), uniformly on compact subsets of (0, T ] \ {t1, ..., tm−1}.

Proof. Let us consider the interval (0, t1). The proof for the other intervals can be
done in a similar way, by using, more, Lemma 4.7 (3). Choose t and t̃ such that
0 < t < t̃ < t1 and δ > 0 arbitrarily small. Observe that, for k sufficiently large,
there exits i and m such that i−m ≥ 2 and

τki−m−1 ≤ t < αki−m < ... < αki ≤ t̃ < τki ≤
t+ t̃

2
,

so that it is sufficient to analyze the following two model cases.
(i) If t ∈ [ t, αki−m), then uk(t) = vki−m(σ) and hk(t)u̇k(t) = v̇ki−m(σ) for some

σ ∈ [0, aki−m). Thus, since

|(uk(t)− u1(t), hk(t)Bu̇k(t))| ≤ |(vki−m(σ)− u1(τki−m), Bv̇ki−m(σ))|+ |u1(τki−m)− u1(t)|,
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in view of Lemma 4.3, we have that, for every k large enough,

||(uk − u1, hkBu̇
k)||∞,[ t,αki−m) ≤ δ + ωu1(ρk).

(ii) If t ∈ [αki , t̃] then uk(t) =
vki (aki )(τki −t)+(t−αki )uki

τki −αki
, so that, by using Lemma 4.3

(uki = u1(τki ) for every k large enough, since τki ≤ t̃+t1
2 ),

|(uk(t)− u1(t), hk(t)Bu̇k(t))| ≤

|vki (aki )− uki |+ |B|

∣∣∣∣∣αki − τki−1

aki

uki − vki (aki )

τki − αki

∣∣∣∣∣+ |u1(τki )− u1(t)|. (4.43)

(4.7) and (4.43) give that

||(uk − u1, hkBu̇
k)||∞,[αki ,t̃] ≤ C(τki − αki ) + |B|C

αki − τki−1

aki
+ ωu1

(ρk).

Since ρk → 0, cases (i) and (ii) tell us that ||(uk − u1, hkBu̇
k)||∞,[ t,t̃] ≤ 2δ for

every k large enough. �

From Proposition 4.8, one can easily deduce an approximation resul related to
the piece-wise constant and the piece-wise affine interpolations of the points uki ,
seen as the piece-wise constant and the piece-wise affine approximations of uk,
respectively. To be precise, let us set

ũk(t) :=


xk, t ∈ [0, τk1 )
uk1 , t ∈ [τk1 τ

k
2 )

...
ukk−1, t ∈ [τkk−1, T ],

ûk(t) :=



(τk1−t)xk+tuk1
τk1

, t ∈ [0, τk1 )

(τk2−t)u
k
1+(t−τk1 )uk2
τk2−τk1

, t ∈ [τk1 τ
k
2 )

...
(T−t)ukk−1+(t−τkk−1)ukk

T−τkk−1

, t ∈ [τkk−1, T ].

We have that

ũk, ûk → u, uniformly on compact subsets of (0, T ] \ {t1, ..., tm−1}.
This fact requires, for its proof, much less than what we have needed to prove
Proposition 4.8, since it does not take into account the velocity.

Remark 4.9. Observe that, if x0 = xr0 and y0 = 0 (recall (3.2) and (3.3)), we
obtain that v0 ≡ xr0. In this case, it turns out that

(uk, hkBu̇
k)→ (u, 0), uniformly on compact subsets of [0, T ] \ {t1, ..., tm−1}.

To see this, choose t̂ ∈ (0, t1) and δ > 0. In view of the proof of Proposition 4.8, it
is enough to consider the case t ∈ [0, αk1) ⊆ [0, t̂], so that

|(uk(t)− u1(t), hk(t)Bu̇k(t))| = |(vk1 (σ), Bv̇k1 (σ))|, for a certain σ ∈ [0, ak1).
(4.44)

Let σδ and k̂δ be given by Lemma 4.3. Then, from (4.44), we have that, if σ ≥ σδ
and k ≥ k̂δ,
|(uk(t)− u1(t), hk(t)Bu̇k(t))| ≤ |(vk1 (σ)− u1(τk1 ), Bv̇k1 (σ))|+ |u1(τk1 )− u1(t)|

≤ δ + ωu1
(ρk);

if σ ∈ [0, σδ),

|(uk(t)− u1(t), hk(t)Bu̇k(t))| ≤ |(vk1 (σ)− xr0, Bv̇k1 (σ))|+ |xr0 − u1(t)|
≤ ||(vk1 − xr0, Bv̇k1 )||∞,[0,σδ] + ωu1

(ρk),

and we can conclude by using the fact that (vk1 , v̇
k
1 )→ (xr0, 0) uniformly on compact

subsets of [0,+∞) and ρk → 0.
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What it remains to do now is an accurate study at time 0 and at the jump
times tj ’s. This is done in the proof of the main result of this section. We refer to
(3.6)-(3.9) and (4.11) for the definitions of the sets Γ and Γk.

Proof of Theorem 4.1. We follow the position already used in the proof of Lemma
4.7: we write ok and vk in place of o1

k and vkok+1, respectively. In the sequel,
whenever δ > 0 is arbitrarily chosen, it will be implicit that the following objects,
which depend on δ and have been defined in the proof of Lemma 4.7, are involved:
the sequence {σk} such that σk → +∞ and functions ṽk(σ) := vk(σ + σk) and w1

such that (4.40)-(4.42) hold and

{(ṽk(σ), B ˙̃vk(σ)) : σ ∈ [−σk, 0]} ⊆ B((xs1, 0), δ).

Choose δ > 0 arbitrarily small. In order to prove the theorem, we are going to show
that, for every k large enough,

dH(Γk,Γ) = sup
Γk

d(·,Γ) + sup
Γ
d(·,Γk) ≤ 2δ. (4.45)

Recall tδ1 from (2.20) and observe that we can suppose

t1 − tδ1 < δ. (4.46)

Moreover, by Lemma 4.3, there exists kδ such that, for every k ≥ kδ,

τkok ∈
(
tδ1 + t1

2
, t1

]
and uki = u1(τki ) for every τki ∈

[
τk1 ,

tδ1 + t1
2

]
. (4.47)

We divide the proof in two parts, in view of the definition of the Hausdorff distance.
(a) Here, consider supΓk d(·,Γ) and set

dk(t) := d((t, uk(t), hk(t)Bu̇k(t)),Γ), t ∈ [0, T ].

By considering the partition 0 < τkok < τkok+1 < ... < T , which depends on δ (see
Definition 4.5), it is clear that it is sufficient to analyze dk in the model cases
t ∈

[
0, τkok

)
and t ∈

[
τkok , τ

k
ok+1

)
, since the case j 6= 1 can be treated in a similar

way. Let us divide part (a) in two subparts.
(a1) Consider first dk(t) for t ∈ [τkok , τ

k
ok+1). From Lemma 4.2, from (4.42) and

from the fact that w1(+∞) = xr1 with ∇xf(t1, x
r
1) = 0 and ∇2

xf(t1, x
r
1) is positive

definite, it descends that there exist σ̃δ such that, up to a greater kδ,

(ṽk(σ), B ˙̃vk(σ)) ∈ B((u2(τkok+1), 0), δ), for every σ ≥ σ̃δ and k ≥ kδ. (4.48)

If t ∈ [τkok , α
k
ok+1), we have that

dk(t) = d((t, vk(σ), Bv̇k(σ)),Γ), for some σ ∈ [0, akok+1).

Recall that ṽk(σ) = vk(σ + σk), with σk → +∞. Therefore, if σ − σk ≥ σ̃δ, we use
(4.48) to obtain that

dk(t) ≤ |t− t1|+ d((ṽk(σ − σk), B ˙̃vk(σ − σk)), (xr1, 0)) + |u2(τkok+1)− xr1|
≤ (t1 − τkok) + ρk + δ + |u2(τkok+1)− xr1|, (4.49)

for every k ≥ kδ. If 0 ≤ σ − σk < σ̃δ, then

dk(t) ≤ |t− t1|+ d((ṽk(σ − σk), B ˙̃vk(σ − σk)),I1)

≤ (t1 − τkok) + ρk + ||(ṽk − w1, B ˙̃vk −Bẇ1)||∞,[0,σ̃δ]. (4.50)

In the case σ < σk, by the definition of σk we have that (vk(σ), Bv̇k(σ)) ∈
B((xs1, 0), δ). This fact, together with (4.49), (4.50), (4.42) and Lemma 4.7, gives
that

dk(t) ≤ 2δ, for every t ∈ [τkok , α
k
ok+1), (4.51)

for every k sufficiently large.
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In the remaining case t ∈ [αkok+1, τ
k
ok+1), we use (4.7) and Lemma 4.7 (c), so that

dk(t) ≤ (t1 − τkok) + ρk + C|τkok+1 − αkok+1|+ |u2(τkok+1)− xr1|+ |B|C
αkok+1 − τkok

akok+1

.

(4.52)
(4.51), (4.52) and again Lemma 4.7 give that, for k large enough,

sup[
τkok

,τkok+1

) dk ≤ 2δ. (4.53)

(a2) Now, let us take into account dk(t) for t ∈ [0, τkok). We have to distinguish the

case t ∈
[
0,

tδ1+t1
2

)
from t ∈

[
tδ1+t1

2 , τkok

)
. Suppose t ∈ [τki , τ

k
i+1) for some i ≥ 1.

The case t ∈ [0, τk1 ) can be handled similarly to the case (a1), but more easier,
since in this case we have to use the uniform convergence on compacts of (vk1 , v̇

k
1 )

to (v0, v̇0), instead of the one of (ṽk, ˙̃vk) to (w1, ẇ1).

If t ∈
[
0,

tδ1+t1
2

)
∩ [τki , α

k
i+1), we have that dk(t) = d((t, vki+1(σ), Bv̇ki+1(σ)),Γ) for

some σ ∈ [0, aki+1). Thus, by using (4.26) in Lemma 4.3, up to a bigger kδ, we
obtain that

τki+1 ≤
tδ1 + t1

2
, for every k ≥ kδ,

so that

uki+1 = u1(τki+1), (4.54)

and

dk(t) ≤ (τki+1 − t) + |(vki+1(σ)− u1(τki+1), Bv̇ki+1(σ))| ≤ ρk + δ, for every σ ≥ 0.
(4.55)

If t ∈
[
0,

tδ1+t1
2

)
∩ [αki+1, τ

k
i+1), again in view of (4.54) it turns out that

dk(t) ≤ (t− αki+1) + |vki+1(aki+1)− u1(τki+1)|+ |B|
αki+1 − τki
aki+1

|u1(τki+1)− vki+1(aki+1)|
τki+1 − αki+1

≤ ρk + C|τki+1 − αki+1|+ |B|C
αki+1 − τki
aki+1

, (4.56)

where the last inequality is due to (4.7).

In the case t ∈
[
tδ1+t1

2 , τkok

)
∩ [τki , τ

k
i+1), observe first that we can suppose, for larger

k’s, that τki ≥ tδ1. Thus, since uki ∈ {u1(τki ), u1(τki )}, we have that

uki ∈ B
((

xs1,
δ

4

))
.

This fact, together with the fact that τki < τkok and the definition of ok, gives that

(vki+1(σ), Bv̇ki+1(σ)) ∈ B((xs1, 0), δ), for every σ ≥ 0. (4.57)

Thus, if t ∈ [τki , α
k
i+1), so that dk(t) = d((t, vki+1(σ), Bv̇ki+1(σ)),Γ) for some σ ∈

[0, aki+1), from (4.46) and (4.57) it turns out that

dk(t) ≤ d((t, vki+1(σ), Bv̇ki+1(σ)), (t1, x
s
1, 0))

≤ t1 − tδ1
2

+ |(vki+1(σ)− xs1, Bv̇ki+1(σ))| ≤ 2δ. (4.58)
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Otherwise, if t ∈ [αki+1, τ
k
i+1), we have

dk(t) ≤ ρk + |vki+1(aki+1)− u1(τki+1)|+ |B|
αki+1 − τki
aki+1

|uki+1 − vki+1(aki+1)|
τki+1 − αki+1

≤ ρk + C|τki+1 − αki+1|+ |uki+1 − xs1|+ |xs1 − u1(τki+1)|+ |B|C
αki+1 − τki
aki+1

,

where, in the last inequality, we have used (4.7). Then, by using (4.1), the definition
of tδ1 and (4.57) (which gives uki+1 ∈ B(xs1, δ)), we have that, for every k large
enough,

dk(t) ≤ 2δ, for every t ∈
[
tδ1 + t1

2
, τkok

)
∩ [αki+1, τ

k
i+1). (4.59)

(4.55), (4.56), (4.58) and (4.59) imply that, for every k large enough,

sup
[0,τkok)

dk ≤ 2δ. (4.60)

(b) Here, we consider supΓ d(·,Γk). By the definition of Γ and by the fact that

(xs1, 0) ∈ I 1, it is sufficient to consider the cases

sup
t∈[0,t1)

d((t, u1(t), 0),Γk), sup
{0}×I0

d(·,Γk), sup
{t1}×I1

d(·,Γk).

Let us divide part (b) in three subparts.
(b1) If t ∈ [0, tδ1), suppose t ∈ [τki , τ

k
i+1) for a certain index i, so that, up to a bigger

kδ, τ
k
i+1 ≤ tδ1 and , in turn, uki+1 = u1(τki+1) for k ≥ kδ. Therefore, by recalling that

uk(τki+1) = uki+1 and u̇k(τki+1) = 0, we obtain that

d((t, u1(t), 0),Γk) ≤ (τki+1 − t) + |u1(t)− u1(τki+1)| ≤ ρk + ωu1(ρk), (4.61)

for every k ≥ kδ. For t ∈ [tδ1, t1), we write, in view of (4.46) and (4.47),

d((t, u1(t), 0),Γk) ≤ d((t, u1(t), 0), (τkok , u
k(τkok), hk(τkok)Bu̇k(τkok))

≤ (t1 − tδ1) + |u1(t)− xs1|+ |xs1 − ukok | < 2δ, (4.62)

for every k ≥ kδ. (4.61) and (4.62), together with (4.1), give, up to a bigger kδ,

sup
t∈[0,t1)

d((t, u1(t), 0),Γk) < 2δ, for every k ≥ kδ. (4.63)

(b2) Consider (0, v0(σ), Bv̇0(σ)) ∈ {0} ×I0 and let sδ0 > 0 be defined as in (3.38).
Since ak1 > sδ0 for every k large enough, it turns out that

d((0, v0(σ), Bv̇0(σ)),Γk) ≤ αk1 + min
s∈[0,σδ]

d((v0(σ), Bv̇0(σ)), (vk1 (s), Bv̇k1 (s))).

Then, if σ ∈ [0, sδ0], we have that

d((0, v0(σ), Bv̇0(σ)),Γk) ≤ αk1 + ||(v0 − vk1 , Bv̇0 −Bv̇k1 )||∞,[0,σδ], (4.64)

while, if σ > sδ0,

d((0, v0(σ), Bv̇0(σ)),Γk) ≤ d((v0(σ), Bv̇0(σ)), (uk(τk1 ), hk(τk1 )Bu̇k(τk1 )))

≤ d((v0(σ), Bv̇0(σ)), (xr0, 0)) + |xr0 − u1(τk1 )|.(4.65)

(4.64) and (4.65), together with (4.1) and the uniform convergence of (vk1 , v̇
k
1 ) to

(v0, v̇0) on compact subsets of [0,+∞), give

sup
{0}×I0

d(·,Γk) ≤ δ, for every k large enough. (4.66)
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(b3) Finally, let us take into account sup{t1}×I1
d(·,Γk). By recalling (4.40), we

obtain that

d((t1, w1(s), Bẇ1(s)),Γk) ≤ (t1 − τkok) + d((w1(s), Bẇ1(s)), (ukok , 0))

≤ (t1 − τkok) + δ + |xs1 − ukok |, (4.67)

for every s < 0. Similarly, if sδ1 > 0 is defined as in (3.56), for every s > sδ1 we can
write

d((t1, w1(s), Bẇ1(s)),Γk) ≤ |t1 − τkok+1|+ d((w1(s), Bẇ1(s)), (ukok+1, 0))|

≤ |t1 − τkok+1|+
δ

2
+ |xr1 − ukok+1|. (4.68)

For the rest part of the proof we need the following claim, whose proof is postponed
at the end.
Claim. For every ŝ ≥ 0 and δ > 0 sufficiently small, there exists kŝ,δ > 0 such that

akok+1 − σk > ŝ, for every k ≥ kŝ,δ.

It remains to consider s ∈ [0, sδ1]. In this case,

d((t1, w1(s), Bẇ1(s)),Γk) ≤ inf
t∈[τkok

,αkok+1)
d((t1, w1(s), Bẇ1(s)), (t, uk(t), hk(t)Bu̇k(t)))

≤ (t1 − τkok) + ρk + inf
σ∈[0,akok+1)

d((w1(s), Bẇ1(s)), (vk(σ), Bv̇k(σ)))

= (t1 − τkok) + ρk + inf
σ∈[−σk,akok+1−σk)

d((w1(s), Bẇ1(s)), (ṽk(σ), B ˙̃vk(σ))).

Thus, since σk → +∞, in view of Lemma 4.7 (1), of the claim and of (4.42) we
have that, up to a bigger kδ,

d((t1, w1(s), Bẇ1(s)),Γk) ≤ (t1 − τkok) + ρk + min
σ∈[0,sδ1]

d((w1(s), Bẇ1(s)), (ṽk(σ), B ˙̃vk(σ)))

≤ (t1 − τkok) + ρk + ||(w1 − ṽk, Bẇ1 −B ˙̃vk)||∞,[0,sδ1]

≤ δ + ρk, (4.69)

for every k ≥ kδ. (4.67), (4.68) and (4.69), together with (4.1), imply that, up to a
bigger kδ,

sup
{t1}×I1

d(·,Γk) ≤ 2δ, for every k ≥ kδ. (4.70)

By considering together the estimates in (4.53), (4.60), (4.63), (4.66) and (4.70),
which hold also for generic j’s in place of j = 1, we obtain (4.45). �

Proof of the claim. Suppose, by contradiction, that, for a certain ŝ ≥ 0, δ > 0 and
up to a subsequence, akok+1 ≤ ŝ+ σk for every k. Then, by the definition of σk (see
(4.37)),

(vk(akok+1 − ŝ), Bv̇k(akok+1 − ŝ)) ∈ B((xs1, 0), δ)

so that, up to a subsequence, (vk(akok+1 − ŝ), Bv̇k(akok+1 − ŝ)) → (p, ṗ), for some

(p, ṗ) ∈ B((xs1, 0), δ). Consider

v̂k(σ) := vk(σ + akok+1 − ŝ), for σ ≥ ŝ− akok+1.

From Lemma 4.7, from the definition of vk and from the fact that akok+1 → +∞,

it is clear that (v̂k, ˙̂vk) converges uniformly on compact subsets of R to (ŵ1, ˙̂w1),
where ŵ1 is the solution of A ¨̂w1 +B ˙̂w1 +∇xf(t1, ŵ1) = 0,

ŵ1(0) = p,

B ˙̂w1(0) = ṗ.



34 VIRGINIA AGOSTINIANI

Observe that

(vk(akok+1), Bv̇k(akok+1)) = (v̂k(ŝ), B ˙̂vk(ŝ))→ (ŵ1(ŝ), B ˙̂w1(ŝ)),

and (ŵ1(ŝ), B ˙̂w1(ŝ)) 6= (xr1, 0), otherwise it would be (ŵ1, B ˙̂w1) ≡ (xr1, 0), so that

(xr1, 0) = (ŵ1(0), B ˙̂w1(0)) = (p, ṗ) ∈ B((xs1, 0), δ), which is not true if δ is small
enough. This is a contradiction, since, by Lemma 4.7 (3) and by (4.7), we obtain
that, for every k large enough,

|(vk(akok+1)−xr1, Bv̇k(akok+1))| ≤ |(vk(akok+1)−ukok+1, Bv̇k(akok+1))|+ |ukok+1−xr1|

≤ C(τkok+1 − αkok+1) + |B|δk + |ukok+1 − xr1|,
so that

(v̂k(ŝ), B ˙̂vk(ŝ)) = (vk(akok+1), Bv̇k(akok+1))→ (xr1, 0).

�

5. Appendix: existence and uniqueness of the heteroclinic solution

For sake of completeness and since we could not find in the literature a satisfying
proof, we state and prove here a result of existence and uniqueness, up to transla-
tions, of the solution of a first order autonomous system, issuing from a zero of the
vector field where suitable transversality conditions are satisfied.

Proposition 5.1. Let F : Rm → Rm be a C2 function such that F (η) = 0. Let the
following two conditions be satisfied:

(i) 0 is an eigenvalue of ∇F (η) with ma(0) = 1 and Re(λ) < 0 for every
eigenvalue λ 6= 0. This implies that there exist ω, ν ∈ Rm such that ω·ν 6= 0
and ker∇F (η) = span(ω), ker∇F (η)T = span(ν);

(ii) ν·∇2F (η)[ω, ω] 6= 0.

Excluding the constant solution η, there are infinitely many solutions of the problem{
ẋ(t) = F (x(t)), t ∈ (−∞, 0]
limt→−∞ x(t) = η,

(5.1)

and they differ from each other by time-translations.

From assumption (i) of Proposition 5.1 it descends that Rm can be decomposed
as

Rm = X1 ⊕X2, with X1 := span(ω) and X2 := {ν}⊥.
We denote by πi the projection on Xi, i = 1, 2, so that every x ∈ Rm can be
uniquely written as x = x1 + x2, where xi = πi(x). Observe that

π1(x) = xωω, where xω :=
x·ν
ω·ν

.

For every Rm-valued function g, we use the notation

gω := (g(·))ω, gi := (g(·))i, i = 1, 2.

To further simplify the notation, we write A in place of ∇F (η) and denote by β
the spectral gap of A, that is

β := min{|Re(λ)| : λ is eigenvalue of A and Re(λ) 6= 0}.
It is well-known that for every ε ∈ (0, β), there exists Cε > 0 (also depending on
A) such that the following fundamental estimates hold:∥∥etA ◦ π1

∥∥ ≤ Cεe
ε|t|, for every t ∈ R, (5.2)∥∥etA ◦ π2

∥∥ ≤ Cεe
−(β−ε)t, for every t ≥ 0. (5.3)

Remember that both π1 and π2 commute with A and hence with etA. The proof
of Proposition 5.1 requires the following lemma.
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Lemma 5.2. Under the same assumptions of Proposition 5.1, for every a > 0
sufficiently large there exists a unique solution of the problem ẋ(t) = F (x(t)), t ∈ (−∞, 0]

xω(0) = ηω + 1
a ,

limt→−∞ x(t) = η,
(5.4)

in the space

Y a := {y : (−∞, 0]→ Rm : ‖y1‖Y a1 <∞, ‖y2‖Y a2 <∞},

where

‖y1‖Y a1 := sup
t≤0
|t− a||y1(t)|, ‖y2‖Y a2 := sup

t≤0
|t− a| 32 |y2(t)|.

Proof. First, observe that Y a is a Banach space with the norm

‖y‖Y a := ‖y1‖Y a1 + ‖y2‖Y a2 .

Note that we can suppose η = 0 and |ω|, |ν| = 1. Also, we can suppose

ν·∇2F (0)[ω, ω] = 2(ω·ν). (5.5)

If we write

F (x(t)) = ∇F (0)x(t) +
1

2
∇2F (0)[x(t)]2 + o(|x(t)|2),

observe that, by assumptions (i) and (ii) and by (5.5), Fω(x(t)) has the following
expression:

Fω(x(t)) = x2
ω(t) +

ν

ω·ν

{
∇2F (0)[x1(t), x2(t)] +

1

2
∇2F (0)[x2(t)]2 + o(|x(t)|2)

}
;

(5.6)
while, by assumption (i) and by noticing that Rank(∇F (0)) ⊆ X2, we have that

F2(x(t)) = ∇F (0)x2(t) + π2

{
1

2
∇2F (0)[x(t)]2 + o(|x(t)|2

}
. (5.7)

For y ∈ Y a, with a > 0 to be chosen, we define on (−∞, 0] the following functions:

hy1(·) := Fω(y(·))− y2
ω(·), (5.8)

hy2(·) := F2(y(·))−∇F (0)y2(·). (5.9)

Let y vary in BR := {y ∈ Y a : ‖y‖Y a ≤ R} for a certain R > 0 to be chosen
later and observe that, from the definition of ‖ · ‖Y a , easily follows that ‖y‖Y a ≥
min{a, a 3

2 }‖y‖∞,(−∞,0]. Therefore, for every ε > 0, there exists δ(ε) > 0 such that,
if

‖y‖∞,(−∞,0] ≤
R

min{a, a 3
2 }
≤ δ(ε), (5.10)

the following estimates, which descend from (5.6) and (5.8) and from (5.7) and
(5.9), respectively, hold for every t ≤ 0:

|hy1(t)| ≤ 1

|ω·ν|

[
‖∇2F (0)‖

(
|y1(t)||y2(t)|+ |y2(t)|2

2

)
+ ε|y(t)|2

]
≤ R2

(t− a)2

1

|ω·ν|

[
‖∇2F (0)‖

(
1√
a

+
1

2a

)
+ 2ε

(
1 +

1

a

)]
;

|hy2(t)| ≤ 1

2
‖∇2F (0)‖|y(t)|2 + ε|y(t)|2

≤ R2

(t− a)
3
2

(‖∇2F (0)‖+ 2ε)

(
1√
a

+
1

a
3
2

)
.
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Thus, we can briefly write, for t ≤ 0, that

|hy1(t)| ≤ R2

(t− a)2
M(a, ε), with M(a, ε)→ 0, as a→ +∞, ε→ 0+, (5.11)

and

|hy2(t)| ≤ R2

|t− a| 32
M̃(a, ε), with M̃(a, ε)→ 0, as a→ +∞. (5.12)

We consider the auxiliary problems{
ẋω(t)− x2

ω(t) = hy1(t), t ∈ (−∞, 0]
xω(0) = 1

a ,
(5.13)

and {
ẋ2(t)−∇F (0)x2(t) = hy2(t), t ∈ (−∞, 0]
limt→−∞ x2(t) = 0.

(5.14)

We are going to prove, in step 1 and 2, that problems (5.13) and (5.14) have unique
solutions and that the solution of problem (5.13) tends to 0 as t tends to −∞.
Therefore, if x = y, such problems are equivalent to (5.4).
Step 1. If y ∈ BR and (5.10) holds, (5.11) implies that there existsHy

1 ∈ L∞(−∞, 0)
such that

hy1(t) =
Hy

1

(t− a)2
, t ≤ 0,

and ‖Hy
1 ‖∞,(−∞,0) ≤ R2M(a, ε). Now, by observing that the equation in (5.13)

is a particular Riccati equation and by setting xω = u
(t−a) , we have that problem

(5.13) is equivalent to{
u̇(t) =

u2(t)+u(t)+Hy1 (t)
(t−a) , t ∈ (−∞, 0]

u(0) = −1,
(5.15)

Let w be the solution of (5.15) with −R2M(a, ε) in place of Hy
1 and v the solution

of (5.15) with R2M(a, ε) in place of Hy
1 . It is easy to check that, if

M(a, ε) <
1

4R2
, (5.16)

then
−1−
√

1+4R2M(a,ε)

2 < w ≤ −1 ≤ v < −1−
√

1−4R2M(a,ε)

2 . Therefore, by differen-
tial inequalities (see, e. g., [8]), we obtain that for every t ≤ 0

−1−
√

1 + 4R2M(a, ε)

2
< u(t)

= (t− a)xω(t) <
−1−

√
1− 4R2M(a, ε)

2
, (5.17)

and in turn, from (5.16), that

sup
t≤0
|t− a||xω(t)| <

1 +
√

1 + 4R2M(a, ε)

2
<

1 +
√

2

2
.

Step 2. By the variation of constants formula, we can write a solution of the
equation in (5.14) as

x2(t) = e(t−t0)∇F (0)x2(t0) +

∫ t

t0

e(t−τ)∇F (0)hy2(τ)dτ.

By using (5.3), we have that there exists a constant Cβ > 0, depending on the
spectral gap β > 0 of ∇F (0), such that

lim
t0→−∞

∣∣∣e(t−t0)∇F (0)x2(t0)
∣∣∣ ≤ lim

t0→−∞
Cβe

− β2 (t−t0)|x2(t0)| = 0.
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Therefore, the solution of problem (5.14) is

x2(t) =

∫ t

−∞
e(t−τ)∇F (0)hy2(τ)dτ, t ≤ 0.

Now, if y ∈ BR and (5.10) holds, it easy to check, by using (5.3) and (5.12), that

‖x2‖Y a2 ≤
2

β
CβR

2M̃(a, ε).

Observe that ‖x2‖Y a2 ≤
R
2 if

M̃(a, ε) ≤ β

4CβR
. (5.18)

From step 1 and 2 we have obtained that, if

R := 1 +
√

2,

and a is large enough and ε small enough such that (5.10), (5.16) and (5.18) are
satisfied, then the operator

Γ : BR → BR

which associates to y ∈ BR the function x = xωω+x2, with xω and x2 the solutions
of (5.13) and (5.14) respectively, is well-defined.

To conclude the proof, it remains to show that Γ is a contraction. Given y,
y∗ ∈ BR, set

Γ(y) = x = x1 + x2, Γ(y∗) = x∗ = x∗1 + x∗2.

Let us handle the first component and the second one separately, by proceeding in
two steps. The following estimates can be obtained similarly to (5.11) and (5.12).

They hold if R/min{a, a 3
2 } ≤ δ̃(ε) for some δ̃(ε) > 0 which can be supposed to be

equal to δ(ε) (see (5.10)).

|hy1(t)− hy
∗

1 (t)| ≤ R

(t− a)2
N(a, ε)‖y − y∗‖Y a , for every t ≤ 0, (5.19)

where

N(a, ε) :=
1

|ω·ν|

[
‖∇2F (0)‖

(
1√
a

+
1

a

)
+ 4ε

(
1 +

1

a

)]
,

and

|hy2(t)− hy
∗

2 (t)| ≤ R

|t− a| 32
Ñ(a, ε)‖y − y∗‖Y a , for every t ≤ 0, (5.20)

where

Ñ(a, ε) :=
1√
a

[
‖∇2F (0)‖

(
1 +

1

a
+

2

a

)
+ 4ε

(
1 +

1

a

)]
.

Step 3. As already done in step 1, let us set xω = u
(t−a) and x∗ω = u∗

(t−a) . From

(5.17) we deduce that, for a large enough and ε small enough,

α := u+ u∗, is such that 1 + α(t) < −1

2
, for every t ≤ 0. (5.21)

Observe that the function z := u− u∗ satisfies the equation

ż(t) =
1

(t− a)
{[1 + α(t)]z(t) +Hy

1 (t)−Hy∗

1 (t)}, t ≤ 0,

and the condition z(0) = 0. Therefore, by the variation of constants formula, z
satisfies the following estimate:

|z(t)| ≤ ‖Hy
1 −H

y∗

1 ‖∞,(−∞,0)

∫ 0

t

exp
(∫ t

τ
1+α(s)
s−a )ds

)
a− τ

dτ. (5.22)
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From (5.21), it turns out that

∫ 0

t

exp
(∫ t

τ
1+α(s)
s−a )ds

)
a− τ

dτ ≤
∫ 0

t

exp
(
− 1

2

∫ τ
t

1
a−s )ds

)
a− τ

dτ

= |t− a|− 1
2

∫ 0

t

(a− τ)−
1
2 dτ ≤ 2. (5.23)

Thus, since ‖Hy
1−H

y∗

1 ‖∞,(−∞,0) = supt≤0(t−a)2|hy1(t)−hy
∗

1 (t)|, from (5.22), (5.23)
and (5.19) we obtain that

‖x1 − x∗1‖Y a1 ≤ 2RN(a, ε)‖y − y∗‖Y a . (5.24)

Step 4. Since

|x2(t)− x∗2(t)| ≤ Cβ
∫ t

−∞
e−

β
2 (t−τ)|hy2(τ)− hy

∗

2 (τ)|dτ,

from (5.20) we have that

‖x2 − x∗2‖Y a2 ≤ CβRÑ(a, ε)‖y − y∗‖Y a
∫ t

−∞

e−
β
2 (t−τ)

|t− a| 32
dτ

≤ 2

β
CβRÑ(a, ε)‖y − y∗‖Y a . (5.25)

Finally, if we choose a > 0 sufficiently large and ε > 0 sufficiently small such that,
for R = 1 +

√
2, (5.10), (5.16), (5.18) and (5.21) hold together with

N(a, ε) ≤ 1

8R
, Ñ(a, ε) ≤ β

8CβR
,

from (5.24) and (5.25) we obtain that

‖Γ(y)− Γ(y∗)‖Y a = ‖x1 − x∗1‖Y a1 + ‖x2 − x∗2‖Y a2 ≤
1

2
‖y − y∗‖Y a ,

that is Γ is a contraction from BR to BR. �

Proof of Proposition 5.1. The existence of a solution of problem (5.1), different
from the constant η, is proved by Lemma 5.2. It remains to show the uniqueness
of such a solution, up to time-translations. Clearly, we can suppose η = 0 in (5.1).
The idea is to show that for every solution x of (5.1), different from the constant
solution, there exists a sequence tn → −∞ such that xω(tn) > 0 (and xω(tn)→ 0).
In this way, it is possible to prove that the projections of the trajectories on X1

intersect, and conclude by using Lemma 5.2.
Let x be a solution of (5.1). As shown in Lemma 5.2, the system ẋ(t) = F (x(t))

is equivalent to

ẋω(t) = x2
ω(t)

+
ν

ω·ν

{
∇2F (0)[x1(t), x2(t)] +

1

2
∇2F (0)[x2(t)]2 + o(|x(t)|2)

}
, (5.26)

and

ẋ2(t) = ∇F (0)x2(t) + hx2(t), (5.27)

where hx2(t) := π2

{
1
2∇

2F (0)[x(t)]2 + o(|x(t)|2
}

, t ≤ 0. Observe that for every
δ > 0 small enough, if ‖x‖∞,(−∞,0] ≤ δ, then

|hx2(t)| ≤ 1

2
(‖∇2F (0)‖+ 1)|x(t)|2, for every t ≤ 0. (5.28)
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Since x(t) → 0 as t → −∞, there exists t0 = t0(δ) such that |x(t)| ≤ δ for every
t ≤ t0. Therefore, up to change x with y(t) := x(t+ t0), we can suppose t0 = 0 and
then ‖x‖∞,(−∞,0] ≤ δ. This assumption, together with (5.28), gives that

|hx2(t)| ≤ (‖∇2F (0)‖+ 1)(|xω(t)|2 + δ|x2(t)|), t ≤ 0. (5.29)

From equation (5.27) and estimates (5.3) and (5.29), we obtain the following in-
equalities for every t ≤ t̂ ≤ 0:

|x2(t)| =

∣∣∣∣∫ t

−∞
e(t−τ)∇F (0)hx2(τ)dτ

∣∣∣∣
≤ Cβ

∫ t

−∞
e−

β
2 (t−τ)|hx2(τ)|dτ

≤ 2

β
Cβ(‖∇2F (0)‖+ 1)(sup

τ≤t̂
|xω(t)|2 + δ sup

τ≤t̂
|x2(t)|).

Finally, if we choose δ such that δ 2
βCβ(‖∇2F (0)‖+ 1) < 1, we can state that there

exists K > 0 such that

sup
τ≤t̂
|x2(τ)| ≤ K sup

τ≤t̂
x2
ω(τ), for every t̂ ≤ 0. (5.30)

Now, notice that it is possible to construct a sequence {tn} such that tn → −∞ as
n→∞ and

|xω(tn)| = max
t≤tn
|xω(t)|. (5.31)

Thus, from (5.30), we have that

|x2(tn)| ≤ Kx2
ω(tn), for every n.

From the last inequality and from (5.26), up to a smaller δ depending on some
ε > 0 such that 2ε

|ω·ν| < 1, it descends that

ẋω(tn) ≥

x2
ω(tn)− 1

|ω·ν|

[
‖∇2F (0)‖

(
|xω(tn)||x2(tn)|+ |x2(tn)|2

2

)
+ ε|x(tn)|2

]
≥
(

1− 2ε

|ω·ν|

)
x2
ω(tn)−K |xω(tn)|3

|ω·ν|

[
‖∇2F (0)‖

(
1 +

K

2
|xω(tn)|

)
+ 2εK|xω(tn)|

]
.

(5.32)

Now, if xω(tn) = 0 for some n, then x ≡ 0, in view of (5.31) and (5.30). Otherwise,
from (5.32) we have that ẋω(tn) > 0 for every n, and this implies, from the definition
of tn, that

xω(tn) > 0, for every n. (5.33)

Let x and x∗ be solutions of (5.1) (with η = 0). The above arguments allow us to
affirm that (5.33) hold for xω and x∗ω on some sequences {tn} and {t∗n}, respectively.
We conclude by considering two cases:

(i) if there exist n and m such that xω(tn) = x∗ω(t∗m), we define y(t) := x(t+tn)
and y∗(t) := x∗(t + t∗m). y and y∗ satisfy problem (5.4) (with η = 0) with
a = 1

xω(tn) sufficiently large. Therefore, y and y∗ coincide and, in turn, x

and x∗ coincide up to time-translations.
(ii) if xω(tn) 6= x∗ω(t∗m) for every n and m, there exist n and k > m such

that xω(tk) < x∗ω(t∗n) < xω(tm). Thus, there exists t ∈ (tk, tm) such that
xω(t) = x∗ω(t∗n). By defining y(t) := x(t + t) and y∗(t) := x∗(t + t∗n), we
conclude as in (i).

�
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