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1 Introduction, notation, basic concepts

This paper aims to study crack propagation in two-dimensional plates and to rigorously derive two models as

a limit from the three-dimensional theory of brittle delamination and adhesive contact. We confine ourselves

to small strains and a-priori prescribed surface where delamination may occur. Furthermore, we restrict our

attention to quasistatic unidirectional (i.e. healing is impossible) rate-independent delamination. We consider a

Signorini contact, which is important to prevent (unphysical) delamination by mere compression. We further

confine ourselves to Griffith-type delamination on such a prescribed surface which is positioned in a normal

direction to the mid-plane of the plate. In particular, we do not distinguish various modes of delamination

(like pulling vs. shearing) and count that always the same prescribed energy is needed for the delamination.

The variational dimension reduction process leads to a Kirchhoff-Love model for the plate. A similar model

has been obtained also in [13] as a limit of a dimension reduction problem involving a Barenblatt-like cohesive

crack surface energy. For a static delamination on a generally-positioned delamination surface in Kirchhoff-Love

plates, we refer to [15, 16].
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Fig. 1. Illustration of the geometry and of the notation:

Left: a 3D thin plate-like body undergoing delamination on a prescribed surface

Γε

C.

Right: a 2D plate obtained for ε → 0 undergoing crack on the curve γC.

For notational simplicity, we confine ourselves to only one delamination surface, dividing a 3-dimensional

elastic body into two parts occupying respectively the domains Ωε
1 and Ωε

2 connected mutually by a contact

boundary Γε
C
, cf. Figure 1(left). To simplify mathematical consideration without restricting substantially the
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possible applications, we assume both parts Ωε
1 and Ωε

2 to be fixed by Dirichlet boundary conditions on some

parts of the side boundary not directly connected with Γε
C
.

We consider a rather special “cylindrical” case, i.e., in particular the boundaries Γε
C
and Γε

Dir
are positioned

vertically. More precisely, we consider a bounded open Lipschitz subset ω of R2 and its decomposition ω =

ω1∪γC∪ω2, where ω1 and ω2 are two disjoint open Lipschitz connected subsets with a non-void simply connected

common boundary γC. For i = 1, 2, assume that hard-device loads (i.e. Dirichlet boundary conditions) will act

on a nonvanishing part γi
Dir

of ∂ωi far from the delamination surface, i.e.

H
1(γi

Dir
) > 0, γC ∩ γi

Dir
= ∅,

where H
1 denotes the 1-dimensional Hausdorff measure. Set γDir := γ1

Dir
∪ γ2

Dir
, and define

Ωε
i := ωi×

(
−
εh

2
,
εh

2

)
, Γε

C
:= γC×

(
−
εh

2
,
εh

2

)
, Γε

Dir
:= γDir×

(
−
εh

2
,
εh

2

)
. (1.1)

Hence the decomposition Ωε = Ωε
1 ∪ Γε

C
∪ Ωε

2 holds. The constant parameter h is kept to clarify the role played

by the thickness of the body in the limit problem.

This will allow for the dimensional reduction by letting the aspect ratio ε go to 0. The geometry of the

resulted plate is then depicted in Figure 1(right).

Thoroughout the whole article, we will use a rather special general framework, namely that the driving force

has a potential, denoted by E(t, ·, ·), and that the dissipation rate, denoted by R, is independent of the state

itself. Then the quasistatic evolution will be determined by the stored energy E : [0, T ]× U × Z → R ∪ {+∞}

and the potential of dissipative force R : Z → [0,+∞]. The quasistatic evolution we have in mind is governed

by the following system of doubly nonlinear degenerate parabolic/elliptic variational inclusions :

∂uE(t, u, z) ∋ 0 and ∂R
(
.

z
)
+ ∂zE(t, u, z) ∋ 0, (1.2)

where “∂” refers to a (partial) subdifferential, relying on that R(·), E(t, ·, z), and E(t, u, ·) are convex functionals,

which will be indeed always satisfied here. An important assumption is thatR is degree-1 positively homogeneous,

which implies that (and even is equivalent to) the dissipation rate is just the potential of a dissipative force.

Also this implies that, if E(t, ·, ·) is convex, the conventional weak solutions are basically equivalent (under

mild additional temporal regularity assumptions) to so-called energetic solutions of the rate-independent system

(U×Z, E ,R) with the initial conditions

u(0) = u0 and z(0) = z0. (1.3)

Definition 1.1 (Energetic solution.) The process q = (u, z) : [0, T ] → Q := U × Z is called an energetic

solution of the initial-value problem given by (U×Z, E ,R, u0, z0) if, beside (1.3), t 7→ ∂tE(t, q(t)) ∈ L1((0, T )),

if for all t ∈ [0, T ] we have E(t, q(t)) < +∞ and if the global stability inequality (1.4a) and the global energy

balance (1.4b) are satisfied for all t ∈ [0, T ]:

∀q̌ = (ǔ, ž) ∈ Q : E(t, q(t)) ≤ E(t, q̌) +R(ž−z(t)), (1.4a)

E(t, q(t)) + DissR(z, [0, t]) = E(0, q(0)) +

∫ t

0

∂sE(s, q(s)) ds (1.4b)

with DissR(z, [0, t]) := sup
∑N

j=1 R(z(tj)−z(tj−1)), where the supremum is taken over all partitions of [0, t].

If E(t, ·, ·) is separately convex but nonconvex, as in this work, then (1.2) and (1.4) are no longer equivalent.

The energetic formulation (1.4) then represents a proper generalized formulation based on a minimum-energy

principle competing with the maximum-dissipation principle or rather with Levitas’ realizability principle [24],

cf. [26, 31, 32]. Another justification is by a minimum dissipation-potential principle, saying that, at any time

t, the rate
.

z minimizes

ż 7→ L (t, u, z, ż) :=
d

dt
E +R = E ′

t(t, u, z) +
〈
E ′
z(t, u, z), ż

〉
+R(ż), (1.5)
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where the equality relies on the fact that u minimizes E(t, ·, z), as stated in [10]. The main advantages of the

energetic-solution concept are that it is derivative-free, i.e. there is no ∂uE , nor ∂zE , neither
.

z in Definition 1.1,

and that it can be handled by Calculus of Variations techniques (in particular variational convergence, as shown

in [30] and as exploited also here) as well as strictly linked with direct numerical methods, as shown in [28].

For its application to delamination, namely to the problem denoted below by (U×Z,Eε,κ,R, q
0
κ), with numerical

implementation and computational simulations we refer to [20, 34]. Roughly speaking, energetic solutions tempt

to evolve as soon as it is energetically convenient. This may, however, not be exactly always in full agreement

with the response of real systems involving some other rate-dependent phenomena. Therefore, in spite of these

theoretical and computational arguments supporting the energetic-solution concept, there are also some other

concepts of solutions that are sometimes applicable and succesfully competing with energetic solutions, cf. also

[27] for a comparison with other notions in general and e.g. [4, 17, 18, 19, 21, 33] in the context of crack

propagation.

Besides the mentioned Griffith-type model, we shall be concerned with adhesive-type (or sometimes also

called elastic/brittle) models and how they approximate the Griffith-type model. As a consequence, we will use

several stored energies. In particular, Eε,κ and Eε will denote the energies in the adhesive contact and in the

brittle delamination models, respectively, while E0,κ and E0 will denote the limit 2D models described in Section

4 and rewritten in terms of Kirchhoff-Love displacements in the concluding Section 6. For simplicity, the rigidity

of the adhesive will be described by a scalar parameter κ, although more realistic delamination models often

involve an anisotropic behaviour. Our results can simply be summarized in the following diagram where the

arrows have the meaning of convergence of the energetic solutions in the sense precised by the theorems aside

the arrows

(U×Z,Eε,κ,R, q
0
κ)

ε→0+

−−−−−−−→
Theorem 5.5

(U×Z,E0,κ,R, q
0
κ)

yκ→+∞

Proposition 5.7

yκ→+∞

Proposition 5.7

(U×Z,Eε,R, q
0)

ε→0+

−−−−−−−→
Theorem 5.6

(U×Z,E0,R, q
0)

(1.6)

We will use the standard notation as far as the function spaces concerns: Ck for functions with k-th derivatives

continuous, Lp for Lebesgue spaces andW k,p for Sobolev spaces. With a little abuse of notation, and since this is

a common practice and does not give rise to any mistake, we use to call “sequences” even those families indicized

by a continuous parameter ε ∈ (0, 1).

2 The brittle delamination or the adhesive unilateral contact in 3D

bodies

In this section we present two models for delamination in 3D bodies. The first is brittle delamination based

essentially on the Griffith concept [9], cf. also Remark 2.2 below. There the two parts of the body can be

delaminated just by a phenomenologically prescribed energy density aε (in physical units J/m2). For later

purposes, we indicate the dependence on the thickness parameter ε, even if it will be considered fixed thoroughout

this whole Section 2. To admit an arbitrary topology of the 2D delaminated area, we use a delamination

parameter z : ΓC → [0, 1] representing the fraction of fixed adhesive: z(x) = 0 means complete delamination,

z(x) = 1 means perfect integrity and, for instance, z(x) = 1
2
means that 50% of the adhesive is debonded at

x ∈ ΓC. In fact, this idea is essentially “borrowed” from the usual concept of adhesive contact, e.g. [14, 20, 36].

This model, see [35], is determined by the stored and the dissipation energies

Ẽε(t, u, z) =





1

2

∫

Ωε
1∪Ωε

2

Ce(u):e(u)− 2f ε(t)·u dx if (u, z) ∈ Aε(ψ
ε(t)),

+∞ else,

(2.1)
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Rε

(
.

z) :=





∫

Γε
C

aε|
.

z| dH
2 if

.

z ≤ 0 on Γε
C
,

+∞ else,

(2.2)

where e(u)ij = 1
2
(∂xi

uj + ∂xj
ui) is the symmetric part of the gradient of u, [[·]]Γε

C
denotes the jump across the

surface Γε
C
, ν is the normal to Γε

C
and

Aε(ψ) =
{
(u, z) ∈W 1,2(Ωε

1∪Ωε
2;R

3)× L∞(Γε
C
) : u = ψ on Γε

Dir
,

0 ≤ z ≤ 1,
[[
u·ν
]]
Γε
C

≥ 0, and z[[u]]Γε
C
= 0 on Γε

C

}
.

The load by body forces f ε ∈ C1([0, T ];L2(Ωε;R3)) and the boundary displacement ψε ∈ C1([0, T ];H1/2(Γε
Dir

;R3))

will be precised better in the next section.

We assume that C is a fourth-order positive-definite tensor, i.e.

Ce:e ≥ c|e|2 (2.3)

for every symmetric matrix e ∈ R3×3
sym and with some c > 0 and that

aε(x) ≥ aε,min

for a suitable constant aε,min > 0 (depending on ε, but not on x) and H 2-a.e. x ∈ Γε
C
. Moreover, we assume the

following usual symmetry properties

Cijkl = Cijlk = Cklij , i, j, k, l = 1, 2, 3, (2.4)

and that the material has monoclinic symmetry with respect to the (x1, x2)-plane, which implies

Cαβγ3 = Cα333 = 0, α, β, γ = 1, 2. (2.5)

We restrict to monoclinic symmetry for simplicity. In the absence of delamination, under this assumption,

the limit problem decouples into two separate problems: one consisting in the in-plane equilibrium equations

and the other for the out-of-plane equations.

The other model, called adhesive contact or sometimes in the engineering literature elastic-brittle contact,

relies on the idea that the two parts of the body are glued together with an elastic adhesive which can be

delaminated. Delamination is phenomenologically described by an energy density as used and analysed in [20].

We consider, rather for simplicity, the elastic response in the adhesive described by a function κQε, where κ is

a scalar which measures the rigidity of the adhesive, and

Qε
([[
u
]]
Γε
C

)
:=
∣∣[[u1

]]
Γε
C

∣∣2 +
∣∣[[u2

]]
Γε
C

∣∣2 + ε2
∣∣[[u3

]]
Γε
C

∣∣2

is a quadratic form which modulates differently the components of the jump of u. The different scalings of

the terms in Qε take into account the different rigidity in the in-plane and in the out-of-plane directions of the

cylinder of height εh. In fact, any other choice invalidates the commutativity of the diagram (1.6) since, in

such a case, in the expression (3.4) the jump of some component of u would be multiplied by some power of ε.

Therefore, letting ε go to zero, either the jump of such components disappears in the problem (U×Z,E0,κ,R, q
0
κ)

or the product of the jumps by z would be constrained to be zero and we would end up with a mixed problem

with a brittle delamination in some direction and an adhesive contact in the remaining.

The stored energy then writes as

Ẽε,κ(t, u, z) =





1

2

∫

Ωε
1∪Ωε

2

Ce(u):e(u)− 2f ε(t)·u dx+ κ

∫

Γε
C

zQε
([[
u
]]
Γε
C

)
dH

2 if (u, z) ∈ Aad
ε (ψε(t)),

+∞ else,

(2.6)
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where

Aad
ε (ψ) =

{
(u, z) ∈W 1,2(Ωε

1∪Ωε
2;R

3)× L∞(Γε
C
) : u = ψ on Γε

Dir
,

0 ≤ z ≤ 1,
[[
u·ν
]]
Γε
C

≥ 0 on Γε
C

}
.

It should be noted that Definition 1.1 does not apply directly to the problems involving Ẽε and Ẽε,κ if the

Dirichlet loading ψε varies in time because the time derivative in (1.4b) is not well defined. To handle it,

one must transform the problem to a time-independent Dirichlet loading problem. In this way, we consider a

prolongation wε(t) of ψε(t) to the whole Ω and then, instead of (2.1) and (2.6), we consider respectively

Eε(t, u, z) =





1

2

∫

Ωε
1∪Ωε

2

Ce(u+wε(t)):e(u+wε(t))− 2f ε(t)·(u+wε(t)) dx if (u, z) ∈ Aε,

+∞ else,

(2.7)

where Aε := Aε(0), and

Eε,κ(t, u, z) =





1

2

∫

Ωε
1∪Ωε

2

Ce(u+wε(t)):e(u+wε(t))− 2f ε(t)·(u+wε(t)) dx

+κ

∫

Γε
C

zQε
([[
u
]]
Γε
C

)
dH

2 if (u, z) ∈ Aad
ε ,

+∞ else,

(2.8)

where Aad
ε := Aad

ε (0). Then both models use the spaces U and Z in Definition 1.1 as

Uε =
{
u ∈ W 1,2(Ωε

1∪Ωε
2;R

3) : u = 0 on Γε
Dir

}
,

Zε =
{
z ∈ L∞(Γε

C
) : 0 ≤ z ≤ 1 on Γε

C

}
;

here both Uε and Zε are even subsets of Banach spaces and we will consider them equipped with standard norm,

weak, and weak* topologies. Having an energetic solution (uε, zε) to the problem (Uε×Zε, Eε,Rε, q
0) in accord

to Definition 1.1, the shifted solution (uε+w
ε, zε) will serve as an energetic solution to the original problem

involving Ẽε. Similar consideration concerns Eε,κ vs. Ẽε,κ. We will thus deal only with the transformed problems.

The following assertion has been proven in [35, Theorem 3.3].

Proposition 2.1 Let ε > 0 be fixed, and let q0κ = (u0κ, z
0
κ) be a sequence of initial conditions, with q0κ stable for

all κ at time t = 0, that is

Eε,κ(0, q0κ) < +∞,

Eε,κ(0, q0κ) ≤ Eε,κ(0, q̌) +R(ž−z0κ) for all q̌ = (ǔ, ž) ∈ Q.
(2.9)

Assume moreover that u0κ ⇀ u0 in W 1,2(Ωε
1 ∪ Ωε

2;R
3), z0κ

∗
⇀ z0 in L∞(Γε

C
) and Eε,κ(0, q0κ) → Eε(0, q0), as

κ→ +∞. Then:

(i) the energetic solution (uε,κ, zε,κ) to the problem (Uε×Zε, Eε,κ,Rε, q
0
κ) does exist;

(ii) also the energetic solution (uε, zε) to the problem (Uε×Zε, Eε,Rε, q
0) does exist;

(iii) having a sequence of energetic solutions {(uε,κ, zε,κ)}κ>0 from (i), there exist a subsequence (not relabeled)
and some (uε, zε) such that

uε,κ(t)⇀ uε(t) in W 1,2(Ωε
1 ∪Ωε

2;R
3) for all t ∈ [0, T ], (2.10a)

zε,κ(t)
∗
⇀ zε(t) in L∞(Γε

C
) for all t ∈ [0, T ], (2.10b)

∂tEε,κ(·, uε,κ(·), zε,κ(·))⇀ ∂tEε(·, uε(·), zε(·)) in L1(0, T ). (2.10c)

Moreover, each (uε, zε) obtained as a limit of such a selected subsequence is an energetic solution to the
problem (Uε×Zε, Eε,Rε, q

0).
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Remark 2.2 (Griffith concept.) A more conventional approach to cracks and brittle delamination is rather

“geometrical”, dealing with some delaminated area Γ(t) of Γε
C
and a specific energy (in Joules per area) needed for

increasing the delamination area. The dissipated energy (understood also as the so-called dissipation distance)

is then

Dε(Γ1,Γ2) :=





∫

Γ2\Γ1

aε(x)dH
2 if Γ1 ⊂ Γ2 ⊂ Γε

C
,

+∞ else,

(2.11)

where aε ∈ L∞(Γε
C
) is from (2.2). Such a geometrical setting was used for large strains in [19] for polyconvex

materials and in [8] for quasiconvex materials, and in the small-strain setting also in e.g. [17, 33, 37, 38]. The

philosophy of quasistatic evolution is related with the Griffith criterion [9] saying that the crack grows as soon as

the energy release is bigger than the fracture toughness, here determined by aε in (2.11). The relation between

the “geometrical” concept used in (2.11) and the previous “functional” concept is that, if z takes values only 0

or 1, i.e. always z = χΓ for some Γ ⊂ Γε
C
, then

Dε(Γ1,Γ2) = Rε(z2−z1) with zi = χΓi
, i = 1, 2. (2.12)

It has been proven in [29] that any energetic solution (uε, zε) to the brittle delamination problem (Uε×Zε, Eε,Rε, q
0)

is indeed of Griffith’s type in the sense that zε takes only the values 0 and 1. Let us remark that the crack path

is here assumed to be a-priori prescribed; as in the above mentioned references. Terms like “delamination” or

“debonding” are often used to highlight that the path is given, so to distinguish these models from those with a

free crack path whose mathematical formulation is completely different, cf. [6, 7, 11, 22].

3 The rescaled problems

To perform the dimension reduction it is convenient to make a change of variables in order to work on domains

independent of ε. Let Ω := Ω1, Ω1 := Ω1
1, Ω2 := Ω1

2, ΓC := Γ1
C
, and ΓDir := Γ1

Dir
.

For any ε > 0, let pε : Ω1 ∪ Ω2 → Ωε
1 ∪Ωε

2 be defined by

pε(x1, x2, x3) := (x1, x2, εx3).

The variables on the fixed domain, Ω1∪Ω2, will be denoted by using the Sans font. Thus for u ∈ W 1,2(Ωε
1∪Ω

ε
2;R

3)

we let u ∈ W 1,2(Ω1∪Ω2;R
3) be defined by uα := 1

εuα ◦ pε, α = 1, 2, and u3 := u3 ◦ pε, while for z ∈ L∞(Γε
C
) we

set z := z ◦ pε ∈ L∞(ΓC). With this notation we have

1

ε
e(u) ◦ pε =

(
e(u)αβ

1
εe(u)α3

1
εe(u)3β

1
ε2 e(u)33

)
=: eε(u). (3.1)

In order to keep the displacements bounded we need to rescale the forces and the boundary conditions with

ε. We assume that there exists an f ∈ C1([0, T ];L2(Ω;R3)) such that

εfα(t) = f ε
α(t) ◦ pε and ε2f3(t) = f ε

3 (t) ◦ pε.

Concerning the boundary conditions we need to require that eε(wε)(t) is bounded in L2(Ω1∪Ω2;R
3×3), where

we have set wε
α := 1

εw
ε
α ◦ pε and wε

3 := wε
3 ◦ pε. The simplest way to fulfill this requirement is to pose wε = w,

with w satisfying the following Kirchhoff-Love assumption which is fundamental in plate theory, cf. [5]:

wα(t, x1, x2, x3) := ηα(t, x1, x2)− x3
∂ζ
∂xα

(t, x1, x2),

w3(t, x1, x2, x3) := ζ(t, x1, x2),
(3.2)

where ζ ∈ C1([0, T ];W 2,2(Ω;R3)) and ηα ∈ C1([0, T ];W 1,2(Ω;R3)).
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Let us remark that with this choice we have

eε(wε)i3 = 0, i = 1, 2, 3, (3.3)

hence, in particular, eε(wε) = eε(w) = e(w) for any ε.

For (u, z) ∈ Aad
ε we have

Eε,κ(t, u, z) =
1

2

∫

Ωε
1∪Ωε

2

Ce(u+wε(t)):e(u+wε(t))− 2f ε(t)·(u+wε(t)) dx + κ

∫

Γε
C

zQε
([[
u
]]
Γε
C

)
dH

2

=
ε3

2

∫

Ω1∪Ω2

Ceε(u+w(t)):eε(u+w(t)) − 2f(t)·(u+w(t)) dx + κε3
∫

ΓC

z
∣∣[[u
]]
ΓC

∣∣2 dH
2 =: ε3Eε,κ(t, u, z).

We have therefore

Eε,κ(t, u, z) =





1

2

∫

Ω1∪Ω2

Ceε(u+w(t)):eε(u+w(t))− 2f(t)·(u+w(t)) dx+ κ

∫

ΓC

z
∣∣[[u
]]
ΓC

∣∣2 dH
2 if (u, z) ∈ A

ad,

+∞ else,
(3.4)

where

A
ad =

{
(u, z) ∈ W 1,2(Ω1∪Ω2;R

3)× L∞(ΓC) : u = 0 on ΓDir, 0 ≤ z ≤ 1,
[[
u·ν
]]
ΓC

≥ 0 on ΓC

}
.

If, instead, (u, z) ∈ Aε then we have

Eε(t, u, z) = ε3Eε(t, u, z) (3.5)

where

Eε(t, u, z) :=





1

2

∫

Ω1∪Ω2

Ceε(u+w(t)):eε(u+w(t))− 2f(t)·(u+w(t)) dx if (u, z) ∈ A,

+∞ else,
(3.6)

and

A =
{
(u, z) ∈W 1,2(Ω1∪Ω2;R

3)× L∞(ΓC) : u = 0 on ΓDir, 0 ≤ z ≤ 1,
[[
u·ν
]]
ΓC

≥ 0, z
[[
u
]]
ΓC

= 0 on ΓC

}
.

Similarly we rescale the dissipation energy; we assume that there exists a measurable function a ∈ L1(ΓC) such

that

aε ◦ pε
ε2

= a (3.7)

for any ε, so that

Rε(
.

z) = ε3R(
.

z) (3.8)

where

R
(
.

z) :=





∫

ΓC

a|
.

z| dH
2 if

.

z ≤ 0 on ΓC,

+∞ else.
(3.9)

In fact, there is an infinite number of rescalings of the dissipation energy. We have chosen the one, namely (3.7),

that yields the same scaling of the stored energy, i.e. ε3, cf. (3.5) and (3.8) and thus we obtain a non-trivial

dissipation in the limit problem. We also assume that aε,min = ε2amin for a suitable constant amin > 0 so that

a(x) ≥ amin for H
2-a.e. x ∈ ΓC.
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4 Some semicontinuity properties

In this section we state and prove a couple of lemmas concerning upper and lower bounds for the limit of the

energies as ε goes to 0 which shall be useful in identifying the limit problem.

To state our results it is useful to introduce the following tensor components

C
0
αβγδ := Cαβγδ −

Cαβ33Cγδ33

C3333

, α, β, γ, δ = 1, 2, (4.1)

and remark that, setting

g(e) :=
1

2
Ce:e for every e ∈ R

3×3
sym

under assumptions (2.4) and (2.5) we have (see also [1])

1

2
C

0ẽ:ẽ = min
η̃∈R2,η3∈R

g

(
ẽ η̃
η̃⊤ η3

)
for every ẽ ∈ R

2×2
sym, (4.2)

where the minimum is achieved for η̃ = 0 and

η3 = −
2∑

α,β=1

C33αβ ẽαβ
C3333

.

Moreover, let us denote by ẽ(u) the 2×2-matrix with components

ẽ(u)αβ := e(u)αβ .

Finally, let us introduce the following space of Kirchhoff-Love displacements

W 1,2
KL

(Ω1∪Ω2;R
3) :=

{
u ∈W 1,2(Ω1∪Ω2;R

3) : e(u)i3 = 0 for i = 1, 2, 3
}

(4.3)

which contains, in fact, the effective domain of the following limiting energy functionals

E0(t, u, z) :=





1

2

∫

Ω1∪Ω2

C
0ẽ(u+w(t)):ẽ(u+w(t))− 2f(t)·(u+w(t)) dx if (u, z) ∈ AKL,

+∞ else,

(4.4)

where

AKL =
{
(u, z) ∈ A : u ∈W 1,2

KL
(Ω1∪Ω2;R

3)
}
,

and

E0,κ(t, u, z) =





1

2

∫

Ω1∪Ω2

C
0ẽ(u+w(t)):ẽ(u+w(t))− 2f(t)·(u+w(t)) dx +

∫

ΓC

zκ
∣∣[[u
]]
ΓC

∣∣2dH
2 if (u, z) ∈ A

ad
KL
,

+∞ else,

(4.5)

where

A
ad
KL

=
{
(u, z) ∈ A

ad : u ∈W 1,2
KL

(Ω1∪Ω2;R
3)
}
.

The evolution problems will be considered on the spaces

U =
{
u ∈W 1,2(Ω1∪Ω2;R

3) : u = 0 on ΓDir

}
,

Z =
{
z ∈ L∞(ΓC) : 0 ≤ z ≤ 1 a.e.

}
.

The next lemma states that the sets A and A
ad are closed with respect to the weak convergence, and that the

work done by loads and the interfacial energy are continuous with respect to the convergence in time and the

weak convergences in (u, z).
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Lemma 4.1 The spaces U and Z are closed with respect to the weak and weak* convergence, respectively.

Moreover, if tε → t, zε
∗
⇀ z in L∞(ΓC), 0 ≤ zε ≤ 1 a.e., and uε ⇀ u in W 1,2(Ω1∪Ω2;R

3) as ε→ 0+, then

[[
uε·ν

]]
ΓC

≥ 0 on ΓC =⇒
[[
u·ν
]]
ΓC

≥ 0 on ΓC, (4.6a)

zε
[[
uε
]]
ΓC

= 0 on ΓC =⇒ z
[[
u
]]
ΓC

= 0 on ΓC, (4.6b)
∫

ΓC

zεκ
∣∣[[uε

]]
ΓC

∣∣2 dH
2 →

∫

ΓC

zκ
∣∣[[u
]]
ΓC

∣∣2 dH
2, (4.6c)

∫

Ω1∪Ω2

f(tε)·(uε+w(tε)) dx→

∫

Ω1∪Ω2

f(t)·(u+w(t)) dx. (4.6d)

Proof: The first assertion follows from the continuity of the trace and the basic properties of the weak*

convergence in L∞(ΓC).

The convergence assumption on the sequence (uε) implies that the traces of uε on ΓC converge strongly in

L2 and this implies (4.6a-c), while (4.6d) follows by the continuity of f and w with respect to t which implies

f(tε) → f(t) and w(tε) → w(t) in L2(Ω;R3).

In the next lemma we prove a lower bound for the limit energies. A similar result was also proven in [3].

Lemma 4.2 (Lower semicontinuity.) If tε → t, zε
∗
⇀ z in L∞(ΓC), 0 ≤ zε ≤ 1 a.e., and uε ⇀ u in

W 1,2(Ω1∪Ω2;R
3) as ε→ 0+, then

lim inf
ε→0+

Eε(tε, uε, zε) ≥ E0(t, u, z) (4.7)

and, for any κ > 0,

lim inf
ε→0+

Eε,κ(tε, uε, zε) ≥ E0,κ(t, u, z). (4.8)

Proof: Under the assumption that the liminf on the left-hand sides be finite, by the positive definiteness of

C (see (2.3)) and the continuity of w with respect to t, it follows that

sup
ε

∥∥eε(uε)
∥∥
L2 < +∞

and hence ∥∥e(uε)i3
∥∥
L2 ≤ Cε, i = 1, 2, 3.

Thus, passing to the limit, we obtain

e(u)i3 = 0, i = 1, 2, 3.

which implies u ∈W 1,2
KL (Ω1∪Ω2;R

3). By Lemma 4.1 we have that also the right hand side in (4.7) and (4.8) are

finite and that it suffices to prove that

lim inf
ε→0+

∫

Ω1∪Ω2

Ceε(uε+w(tε)):e
ε(uε+w(tε)) dx ≥

∫

Ω1∪Ω2

C
0ẽ(u+w(t)):ẽ(u+w(t)) dx.

In fact, noticing that, for α, β = 1, 2,

eε(uε)αβ = e(uε)αβ ⇀ e(u)αβ in L2(Ω1∪Ω2),

using property (4.2) and the continuity of w with respect to t we find

lim inf
ε→0+

∫

Ω1∪Ω2

Ceε(uε+w(tε)):e
ε(uε+w(tε)) dx ≥ lim inf

ε→0+

∫

Ω1∪Ω2

C
0ẽ(uε+w(tε)):ẽ(uε+w(tε)) dx

≥

∫

Ω1∪Ω2

C
0ẽ(u+w(t)):ẽ(u+w(t)) dx, (4.9)

which concludes the proof.

The next lemma is fundamental to apply the Γ-convergence scheme developed in [30].
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Lemma 4.3 (Mutual recovery sequence.) Let (εn) be a sequence such that 0 < εn → 0. Let t ∈ [0, T ],

z ∈ L∞(ΓC) and 0 ≤ z ≤ 1 a.e.. For every (tn, zn) → (t, z), zn ∈ L∞(ΓC), 0 ≤ zn ≤ 1 a.e., every ž ∈ L∞(ΓC) and

every ǔ ∈ W 1,2(Ω1∪Ω2;R
3), there exist žn ∈ Z and ǔn ∈ U such that ǔn ⇀ ǔ in W 1,2(Ω1∪Ω2;R

3), žn
∗
⇀ ž in

L∞(ΓC) and

lim sup
n→+∞

[
Eεn(tn, ǔn, žn) + R(žn−zn)

]
≤ E0(t, ǔ, ž) + R(ž−z) (4.10)

and, for any κ > 0,

lim sup
n→+∞

[
Eεn,κ(tn, ǔn, žn) + R(žn−zn)

]
≤ E0,κ(t, ǔ, ž) + R(ž−z). (4.11)

Let us remark that the mutual recovery sequence condition stated in [30] is

lim sup
n→+∞

[
Eεn,κ(tn, ǔn, žn) + R(žn−zn)− Eεn,κ(tn, un, zn)

]
≤ E0,κ(t, ǔ, ž) + R(ž−z)− E0,κ(t, u, z)

where (un, zn) is a stable sequence converging to (u, z), and which is slightly weaker than (4.11), as proven in

[30, Prop.2.2]. An analogous remark applies to (4.10) combined with (4.7). In spite of this, it is simpler for us

to prove the stronger conditions (4.10) and (4.11) since we can provide convergence of the dissipation term.

Proof: [P r o o f of Lemma 4.3] First of all we notice that inequalities (4.10) and (4.11) are nontrivial only

when the right-hand sides are finite. In particular this implies that ǔ ∈ U , ž ∈ Z and z ≥ ž ≥ 0 on ΓC.

Inspired by [35], let us define

žn :=

{
znž/z if z > 0,
0 if z = 0.

(4.12)

Then we have 0 ≤ žn ≤ 1 a.e. and žn
∗
⇀ ž in L∞(ΓC). Moreover, since žn − zn ≤ 0, then

lim
n→+∞

R(žn − zn) = lim
n→+∞

∫

ΓC

a(zn − žn) dH
2 =

∫

ΓC

a(z− ž) dH
2 = R(ž− z).

Thus, to prove the claim it suffices to deal with the convergence of the energies, that is, to prove that

lim sup
n→+∞

Eεn(tn, ǔn, žn) ≤ E0(t, ǔ, ž), lim sup
n→+∞

Eεn,κ(tn, ǔn, žn) ≤ E0,κ(t, ǔ, ž). (4.13)

Inspired by [3], for fixed t we let

ψ := −
2∑

α,β=1

C33αβ ẽ(ǔ+w(t))αβ
C3333

,

and choose ψn ∈ C∞
0 (Ω) such that ψn → ψ and εn∂ψn(t, ·)/∂xα → 0 in L2(Ω). Set

ηn(x1, x2, x3) :=

∫ x3

0

ψn(x1, x2, s) ds

and

(ǔn)α := ǔα, α = 1, 2,
(ǔn)3 := ǔ3 + ε2nηn.

}
(4.14)

In this way we have ǔn ∈W 1,2(Ω1∪Ω2;R
3) and ǔn ⇀ ǔ in W 1,2(Ω1∪Ω2;R

3) (actually this convergence is strong).

If E0(t, ǔ, ž) < +∞ or E0,κ(t, ǔ, ž) < +∞ then zn ∈ L∞(ΓC), 0 ≤ zn ≤ 1 a.e., and

[[ǔn·ν]]ΓC = [[ǔ·ν]]ΓC ≥ 0,

ǔn = ǔ = 0 on ΓDir.
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If E0(t, ǔ, ž) < +∞ then moreover

zn
[[
ǔn
]]
ΓC

= z
[[
ǔ
]]
ΓC

= 0 on ΓC.

Thus, if E0(t, ǔ, ž) < +∞ or E0,κ(t, ǔ, ž) < +∞, respectively, then

Eεn(tn, ǔn, žn) =
1

2

∫

Ω1∪Ω2

Ceεn(ǔn+w(tn)):e
εn(ǔn+w(tn))− 2f(tn)·(ǔn+w(tn)) dx,

while

Eεn,κ(tn, ǔn, žn) =
1

2

∫

Ω1∪Ω2

Ceεn(ǔn+w(tn)):e
εn(ǔn+w(tn)) − 2f(tn)·(ǔn+w(tn)) dx+ κ

∫

ΓC

zn
∣∣[[ǔn

]]
ΓC

∣∣2 dH
2.

By (3.1) and since ǔ and w are in W 1,2
KL (Ω1∪Ω2;R

3), we have

eεn(ǔn+w(tn)) =

(
e(ǔ+w(tn))αβ

εn
2

∂ηn
∂xα

sym ψn

)
.

Taking the limit as n→ +∞ we have

lim
n→+∞

∥∥∥∥∥e
εn
(
ǔn+w(tn)

)
−

(
ẽ(ǔ+w(t)) 0

0 −
∑2

α,β=1C33αβ ẽ(ǔ+w(t))αβ/C3333

)∥∥∥∥∥
L2

= 0,

and therefore, concerning the bulk part, we have

lim
n→+∞

∫

Ω1∪Ω2

Ceεn(ǔn+w(tn)):e
εn(ǔn+w(tn)) dx =

∫

Ω1∪Ω2

C
0ẽ(ǔ+w(t)):ẽ(ǔ+w(t)) dx.

The inequalities (4.13) follow then by applying Lemma 4.1, and the proof is concluded.

5 Convergence of solutions

The aim of this section is to show, assuming q0κ ⇀ q0 in Q, the convergences depicted in the diagramme (1.6).

The notation in use is that of [30]. According to what we have done above, we denote by Q the topological

product of the spaces U and Z endowed, respectively, with the weak and the weak* topology. Since U is reflexive

here, its weak topology is also weak*, and thus the convergence in Q will be denoted simply by
∗
⇀. We set

q = (u, z), and we shall write, for instance, (t, q) in place of (t, u, z). The sets of stable states Sε(t) and Sε,κ(t),

for t ∈ [0, T ] and ε ≥ 0, are defined as

Sε(t) :=
{
q∈Q; ∀q̌∈Q : Eε(t, q) < +∞, Eε(t, q) ≤ Eε(t, q̌) + R(ž−z)

}
, (5.1)

Sε,κ(t) :=
{
q∈Q; ∀q̌∈Q : Eε,κ(t, q) < +∞, Eε,κ(t, q) ≤ Eε,κ(t, q̌) + R(ž−z)

}
. (5.2)

We start by discussing the case in which the parameter κ > 0 is chosen and fixed. Our results will be achieved

by applying general abstract theorems proven in [12, 25, 30]. In what follows we write and check the assumptions

needed to apply those theorems.

Let (εn) be a sequence such that 0 < εn → 0.

We shall say that a sequence (tn, qn)n∈N is a stable sequence with respect to (Eεn) and (Sεn) if

qn ∈ Sεn(tn) and sup
n∈N

Eεn(tn, qn) < +∞. (5.3)

Similarly, we say that (tn, qn)n∈N is a stable sequence with respect to (Eεn,κ) and (Sεn,κ) if

qn ∈ Sεn,κ(tn) and sup
n∈N

Eεn,κ(tn, qn) < +∞. (5.4)
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Hence the notion of stable sequence depends on which sequence of functionals it is referred; in the sequel we

omit to explicitly state this reference when it can be easily deduced from the context.

The dissipation distanceD(z1, z2) = R(z2−z1) satisfies the following properties, corresponding to [30, Formulas

(2.2)–(2.4)].

Pseudo distance:

D(z1, z1) = 0 and D(z1, z3) ≤ D(z1, z2) +D(z2, z3) for any z1, z2, z3 ∈ Z. (5.5)

Lower semi-continuity of D:

D : Z × Z → [0,+∞] is w∗-lower semi-continuous. (5.6)

Positivity of D:
if a sequence (zn) in Z and z ∈ Z are such that
min{D(zn, z),D(z, zn)} → 0, then zn → z weakly* in Z.

(5.7)

From (5.6) it follows (2.5) of [30], that is

Lower Γ-limit for D:

for any pair of stable sequences (tn, qn), (ťn, q̌n
) such that

(tn, qn
)

∗
⇀ (t, q), (ťn, q̌n)

∗
⇀ (ť, q̌) in [0, T ]×Q, we have

D(z, ž) ≤ lim infn→+∞ D(zn, žn).

(5.8)

This last property, involving stable sequences, depends, of course, on the sequence of problems under considera-

tion.

For simplicity, from now on we continue by checking properties of the sequence Eε,κ only, that is with the

proof of the second “horizontal” convergence in (1.6); in fact, the proof of the first “horizontal” convergence in

(1.6) can be done by following exactly the same steps and arguments.

From Korn’s inequality, (2.3), (3.2) and (3.3), we find

Eε,κ(t, u, z) ≥
1

2

∫

Ω1∪Ω2

Ceε(u+w(t)):eε(u+w(t)) − 2f(t) · (u+w(t)) dx ≥

≥ c‖e(u+w(t))‖2L2 −
1

2α
‖f(t)‖2L2 −

α

2
‖u+w(t)‖2L2 ≥ K‖u‖2W 1,2 − C. (5.9)

This last inequality, together with a similar computation for E0,κ, shows that the set
⋃

n∈N
{q ∈ Q : Eεn,κ(t, q) ≤

E} is weakly relatively compact. Moreover, for any ε ≥ 0 the functionals Eε,κ(t, ·) are weakly lower semicontinu-

ous in Q due to the convexity of the bulk part of the energy and Lemma 4.1. Thus the sublevels are also closed

and the following property (corresponding to (2.6) of [30]) holds

Compactness of energy sublevels:

for all t ∈ [0, T ] and all E ∈ R we have
(i) {q ∈ Q : Eεn,κ(t, q) ≤ E} is compact for any n ∈ N ∪ {+∞};
(ii)

⋃
n∈N∪{+∞}{q ∈ Q : Eεn,κ(t, q) ≤ E} is relatively compact.

(5.10)

Above and hereafter, to shorten the notation we shall set

ε+∞ := 0.

Since f and w are continuously differentiable with respect to t (see Section 3), then Eε,κ(·, q) ∈ C1([0, T ]) for

all ε ≥ 0 and all q ∈ Q for which Eε,κ(·, q) < +∞.
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If Eε,κ(s, u, z) < +∞ for s ∈ [0, T ], then we have

∂tEε,κ(t, u, z) =

∫

Ω1∪Ω2

Ceε(
.

w(t)):eε(u+w(t))−
.

f (t)·(u+w(t))− f(t)·
.

w(t) dx (5.11)

and, since (e(
.

w))i3 = 0 (see (3.3)), by inequality (5.9) we have

|∂tEε,κ(t, u, z)| ≤ c
(
‖e(
.

w)(t)‖2L2 + ‖eε(u+w(t))‖2L2 + ‖
.

f(t)‖2L2 + ‖u‖2L2 + ‖w(t)‖2L2 + ‖f(t)‖2L2 + ‖
.

w(t)‖2L2

)

≤ c
(
‖e(
.

w)(t)‖2L2 + ‖
.

f (t)‖2L2 + ‖w(t)‖2L2 + ‖f(t)‖2L2 + ‖
.

w(t)‖2L2 + Eε,κ(t, u, z) + C
)
,

which, together with a similar computation for E0,κ, leads to (see (2.7) of [30])

Uniform control of the power ∂tEε,κ:

there exist cE0 ∈ R and cE1 > 0 such that
for any n ∈ N ∪ {+∞}, t ∈ [0, T ] and q ∈ Q,
if Eεn,κ(t, q) < +∞ then Eεn,κ(·, q) ∈ C1([0, T ]) and
|∂tEεn,κ(s, q)| ≤ cE1 (c

E
0 + Eεn,κ(s, q)) for all s ∈ [0, T ].

(5.12)

From the definition of E0,κ (given in (4.5)) it follows that if E0,κ(0, u, z) is finite then u ∈ W 1,2
KL (Ω1∪Ω2;R

3)

and thus E0,κ(t, u, z) is finite for every t ∈ [0, T ]. Since f and w are C1 with respect to t, condition (2.8) of [30]

is satisfied, namely

Uniform time-continuity of the power ∂tE0,κ:

for every η > 0 and E ∈ R there exists δ > 0 such that
E0,κ(0, q) ≤ E, |t1 − t2| < δ ⇒ |∂tE0,κ(t1, q)− ∂tE0,κ(t2, q)| < η.

(5.13)

By Lemma 4.2 we get the following property (2.10) of [30]

Lower Γ-limit for Eε,κ:

for any sequence 0 < εn → 0
and any stable sequence (tn, qn) w.r. to (Eεn,κ) such that

(tn, qεn)
∗
⇀ (t, q) in [0, T ]×Q, we have

E0,κ(t, q) ≤ lim infn→+∞ Eεn,κ(tn, qεn).

(5.14)

Remark 5.1 It is easy to check that the properties (5.10) – (5.14) hold also for the sequence Eε with just natural

and appropriate changes in the statements.

The following lemma essentially corresponds to property (2.9) of [30]; the only difference is that we establish

the convergence in the open interval (0, T ) instead of its closure. This fact will not affect the arguments used

in the sequel. The result was obtained in [12] for a single functional, while here we deal with a sequence of

functionals.

Lemma 5.2 (Conditioned continuous convergence of the power.) Let 0 < εn → 0. Let (t, q) ∈ (0, T )×

Q and let (tn, qn) be a stable sequence with respect to (Eεn,κ) and (Sεn,κ). If (tn, qn)
∗
⇀ (t, q) in [0, T ]×Q, then

∂tEεn,κ(tn, qn) → ∂tE0,κ(t, q).

Proof: We combine the argument of the proof of [12, Proposition 3.3], where a single energy functional is

considered, with the upper and lower bound Lemma 4.2 and Lemma 4.3.

Let q = (u, z). We start by showing that, for any κ > 0,

Eεn,κ(tn, un, zn) → E0,κ(t, u, z) as n→ +∞. (5.15)
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Indeed, from the stability of the sequence (tn, un, zn) and by Lemma 4.3, there exist žn ∈ L∞(ΓC) with 0 ≤ žn ≤ 1

a.e. on ΓC and ǔn ∈W 1,2(Ω1∪Ω2;R
3) such that ǔn ⇀ u in W 1,2(ω1∪ω2;R

3), žn
∗
⇀ z in L∞(ΓC), such that

lim sup
n→+∞

Eεn,κ(tn, un, zn) ≤ lim sup
n→+∞

[
Eεn,κ(tn, ǔn, žn) + R(žn−zn)

]
≤ E0,κ(t, u, z).

Hence (5.15) follows from the inequality above and Lemma 4.2.

Let now δ > 0 be such that t ± 2δ ∈ [0, T ]. Then for any n large enough tn ∈ (t − δ, t + δ) and hence

tn±δ ∈ [0, T ], and let K0 > 0 be such that Eεn,κ(tn, qn),E0,κ(t, q) ≤ K0. By Korn’s inequality we have

∣∣∣Eεn,κ(tn±δ, un, zn)−Eεn,κ(tn, un, zn)

δ
∓ ∂tEεn,κ(tn, un, zn)

∣∣∣ =

=
∣∣∂tEεn,κ(t̄n, un, zn)−∂tEεn,κ(tn, un, zn)

∣∣

=
∣∣∣
∫

Ω1∪Ω2

Ceεn
(
.

w(t̄n)
)
:eεn

(
w(t̄n)−w(tn)

)
+ Ceεn

(
.

w(t̄n)−
.

w(tn)
)
:eεn

(
un+w(tn)

)

+
(.
f(tn)−

.

f (t̄n)
)
·un +

.

f (tn)·w(tn)−
.

f (t̄n) · w(t̄n) + f(t̄n)·
.

w(t̄n)− f(tn)·
.

w(tn) dx
∣∣∣

≤ C
(
‖e
(
.

w(t̄n)
∥∥
L2‖e

(
w(t̄n)−w(tn)

)
‖L2 + ‖e

(
.

w(t̄n)−
.

w(tn)
)
‖L2‖eεn

(
un+w(tn)

)
‖L2

+ ‖
.

f (t̄n)−
.

f (tn)‖L2‖un‖L2 + ‖
.

f (tn)·w(tn)−
.

f (t̄n)·w(t̄n)‖L2 + ‖f(t̄n)·
.

w(t̄n)− f(tn)·
.

w(tn)‖L2

)

≤ C
(
‖e
(
.

w(t̄n)
∥∥
L2‖e

(
w(t̄n)−w(tn)

)
‖L2 + ‖e

(
.

w(t̄n)−
.

w(tn)
)
‖L2 + ‖

.

f (t̄n)−
.

f (tn)‖L2

+ ‖
.

f (tn)·w(tn)−
.

f(t̄n)·w(t̄n)‖L2 + ‖f(t̄n)·
.

w(t̄n)− f(tn)·
.

w(tn)‖L2

)
K0 =: ωK0

(δ) (5.16)

where t̄n is between tn and tn ± δ, and where ωK0
is independent of n because of the continuity at time t of w,

.

w, f and
.

f stated in the assumptions at the beginning of Section 3.

By applying Lemma 4.2 and (5.15) we have

lim inf
n→+∞

Eεn,κ(tn±δ, un, zn)− Eεn,κ(tn, un, zn)

δ
≥

E0,κ(t±δ, u, z)− E0,κ(t, u, z)

δ
. (5.17)

By using (5.16), then the inequality above and finally (5.13), we find

lim sup
n→+∞

∂tEεn,κ(tn, un, zn) ≤ lim sup
n→+∞

Eεn,κ(tn, un, zn)− Eεn,κ(tn−δ, un, zn)

δ
+ ωK0

(δ)

= ωK0
(δ)− lim inf

n→+∞

Eεn,κ(tn−δ, un, zn)− Eεn,κ(tn, un, zn)

δ

≤ ωK0
(δ)−

E0,κ(t−δ, u, z)− E0,κ(t, u, z)

δ
≤ ∂tE0,κ(t, u, z) + 2ωK0

(δ).

In the same way, but appropriately choosing the signs in (5.16) and (5.17), we get

lim inf
n→+∞

∂tEεn,κ(tn, un, zn) ≥ ∂tE0,κ(t, u, z)− 2ωK0
(δ),

and the conclusion follows by letting δ go to zero.

With the same proof we can prove also the following analogous result concerning the sequence Eε.

Lemma 5.3 (Conditioned continuous convergence of the power.) Let 0 < εn → 0. Let (t, q) ∈ (0, T )×

Q and let (tn, qn) be a stable sequence with respect to (Eεn) and (Sεn). If (tn, qn)
∗
⇀ (t, q) in [0, T ]×Q, then

∂tEεn(tn, qn) → ∂tE0(t, q).

By [30, Proposition 2.2] we get that Lemma 4.3 implies property (2.11) of [30], namely
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Conditioned upper-semicontinuity of stable sets:

- for any stable sequence (tn, qn) w. r. to (Eεn,κ) and (Sεn,κ) such that

(tn, qn)
∗
⇀ (t, q) in [0, T ]×Q we have that q ∈ S0,κ(t),

- for any stable sequence (tn, qn) w. r. to (Eεn) and (Sεn) such that

(tn, qn)
∗
⇀ (t, q) in [0, T ]×Q we have that q ∈ S0(t).

(5.18)

The existence of energetic solutions associated with the functionals Eε, Eε,κ and R, for fixed ε > 0, has been

proven in [20]. In order to make the paper self-contained we give here a further proof based on a general existence

theorem of Mielke [26], see also [12, 25, 30].

Theorem 5.4 (Existence of solution for ε fixed.)

(i) Let q0κ = (u0κ, z
0
κ)∈Sε,κ(0). There exists an energetic solution (uκ, zκ):[0, T ] → Q to the problem

(U×Z,Eε,κ,R, q
0
κ).

(ii) Let q0 = (u0, z0) ∈ Sε(0). There exists an energetic solution (u, z) : [0, T ] → Q to the problem
(U×Z,Eε,R, q

0).

Proof: The proof follows by applying [26, Theorem 5.2]. Since we already know that the assumptions

on the energy functional (5.10), (5.12), (5.13) with E0,κ replaced by Eε,κ, and the conditions on the dissipation

distance (5.5), (5.6), (5.7) hold true, to apply [26, Theorem 5.2], we only need to check the following compatibility

conditions:

if (tn, qn) is a sequence such that qn ∈ Sε(tn) and supn∈N Eε(tn, qn) < +∞

(that is a so-called stable sequence)

and such that (tn, qn)
∗
⇀ (t, q) in [0, T ]×Q, then

∂tEε,κ(tn, qn) → ∂tEε,κ(t, q) and q ∈ Sε,κ(t).

The convergence of the powers follows from (5.11), using the time continuity of w,
.

w, f and
.

f . Passing to the

stability condition q ∈ Sε,κ(t), setting q = (u, z), we have to prove that

Eε,κ(t, u, z) ≤ Eε,κ(t, ǔ, ž) + R(ž−z) for every (ǔ, ž) ∈ Q.

Let (ǔ, ž) ∈ Q. Without loss of generality we may assume (ǔ, ž) ∈ A and ž ≤ z a.e. on ΓC. Let qn = (un, zn) ∈

Sε,κ(tn) and choose the mutual recovery sequence q̌n = (ǔn, žn) as ǔn = ǔ and žn as in (4.12). Then we have

q̌n
∗
⇀ q̌. Since, moreover, žn − zn ≤ 0 then

Eε,κ(tn, un, zn) ≤ Eε,κ(tn, ǔn, žn) + R(žn−zn),

and using the lower semicontinuity of Eε,κ(t, ·) in Q together with the time regularity of w and f we deduce

Eε,κ(t, u, z) ≤ lim inf
k→+∞

Eε,κ(tn, un, zn) ≤ lim inf
k→+∞

Eε,κ(tn, ǔn, žn) + R(žn−zn) ≤ Eε,κ(t, ǔ, ž) + R(ž−z),

which concludes the proof of the first part of the statement, while the second can be proven simply substituting

Eε and Sε in place of Eε,κ and Sε,κ.

We are now in a position to state our main dimension reduction results. Indeed, the next theorems give a

precise sense to the “horizontal” convergences in (1.6).

Theorem 5.5 (Convergence for ε → 0, κ < +∞ fixed.) Let q0 = (u0, z0) ∈ Q and, for any ε > 0, q0,ε =

(u0,ε, z0,ε) ∈ Sε,κ(0) with q0,ε
∗
⇀ q0 and Eε,κ(0, q0,ε) → E0,κ(0, q0) as ε→ 0, let further qε = (uε, zε) : [0, T ] → Q be

15



an energetic solution to the problem (U×Z,Eε,κ,R, q0,ε). Then, there exist a sequence (εn) such that 0 < εn → 0

and q = (u, z) : [0, T ] → Q such that

Eεn,κ(t, qεn(t)) → E0,κ(t, q(t)) for every t ∈ [0, T ], (5.19a)

R(zεn(t)−zεn(0)) → R(z(t)−z(0)) for every t ∈ [0, T ], (5.19b)

∂tEεn,κ(·, qεn(·)) → ∂tE0,κ(·, q(·)) in L1(0, T ), (5.19c)

zεn(t)
∗
⇀ z(t) in L∞(ΓC) for every t ∈ [0, T ], (5.19d)

uεn(t)⇀ u(t) in W 1,2(Ω1∪Ω2;R
3) for every t∈[0, T ]. (5.19e)

Moreover, any q obtained by this way is an energetic solution to the problem (U×Z,E0,κ,R, q0).

Proof: By applying a Helly’s type theorem (namely [30, Theorem A.1]) to the sequence (zε), we have that

there exists a sequence (εn) and z ∈ L∞(ΓC) such that

zεn(t)
∗
⇀ z(t) in L∞(ΓC) for every t ∈ [0, T ]. (5.20)

We have thus proved (5.19d).

Since t 7→ (uεn(t), zεn(t)) is an energetic solution and the power is controlled uniformly in εn, cf. (5.12), by a

Gronwall-inequality argument, it can be shown (see [12, 25, 30]) that Eεn,κ(t, uεn(t), zεn(t)) is bounded uniformly

in n. Hence, from the uniform coercivity of Eεn,κ(t, ·, ·), by Korn’s inequality (see (5.9)), uεn(t) is uniformly

bounded in W 1,2(Ω1∪Ω2;R
3) for every t ∈ [0, T ]. Thus, for every t ∈ [0, T ] there exists a subsequence (εnt) such

that

uεnt (t)⇀ u(t) in W 1,2(Ω1∪Ω2;R
3), (5.21)

and

θ(t) := lim sup
n→+∞

∂tEεn,κ(t, qεn(t)) = lim
nt→+∞

∂tEεnt ,κ(t, qεnt
(t)). (5.22)

From (5.20), (5.21), (5.22) and Lemma 5.2 it follows that

θ(t) = ∂tE0,κ(t, u(t), z(t)), (5.23)

from which (5.19c) follows. By [30, Theorem 3.1] and its proof we deduce that q(t) := (u(t), z(t)) is an energetic

solution to the problem (U×Z,E0,κ,R, q(0)). By the stability inequality for the limit problem and the strict

convexity of the map u 7→ E0,κ(t, u(t), z(t)), the function u is uniquely determined by z. Hence the convergence

in (5.21) holds for the whole sequence εn, that is (5.19e).

Let us prove (5.19a). First of all we note that, by Lemma 4.2, we have

lim inf
n→+∞

Eεn,κ(t, uεn(t), zεn(t)) ≥ E0,κ(t, u(t), z(t)). (5.24)

By Lemma 4.3 there exist q̌εn := (ǔεn , žεn) ∈ Q such that

q̌εn
∗
⇀ q(t) in Q

and

lim sup
n→+∞

[
Eεn,κ(t, ǔεn , žεn) + R(žεn−zεn(t))

]
≤ E0,κ(t, u(t), z(t)).

This inequality together with the stability condition imply

lim sup
n→+∞

Eεn,κ(t, uεn(t), zεn(t)) ≤ E0,κ(t, u(t), z(t)), (5.25)

which, together with (5.24), implies (5.19a).
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Since (uεn , zεn) is an energetic solution, from the energy balance follows that DissR(z, [0, t]) < +∞. Hence,

by definition, for any partition {tj : j = 1, . . . , N} of [0, t] we have

N∑

j=1

R(zεn(tj)−zεn(tj−1)) < +∞

which implies that the map t 7→ zεn(t) is non-increasing for the partial ordering “≤ a.e.”, hence zεn(t)−zεn(0) ≤ 0

a.e. on ΓC. Then, by (5.20) we have

R(zεn(t)− zεn(0)) = −

∫

ΓC

a(zεn(t)− zεn(0)) dH
2 → R(z(t)− z(0))

that is (5.19b).

Theorem 5.6 (Convergence for ε → 0, κ = +∞.) Let q0 = (u0, z0) ∈ Q and, for any ε > 0, q0,ε =

(u0,ε, z0,ε) ∈ Sε(0) with q0,ε
∗
⇀ q0 and Eε(0, q0,ε) → E0(0, q0) as ε → 0, let further qε = (uε, zε) : [0, T ] → Q be

an energetic solution to the problem (U×Z,Eε,R, q0,ε). Then, there exist a sequence (εn) such that 0 < εn → 0

and q = (u, z) : [0, T ] → Q such that

Eεn(t, qεn(t)) → E0(t, q(t)) for every t ∈ [0, T ], (5.26a)

R(zεn(t)−zεn(0)) → R(z(t)−z(0)) for every t ∈ [0, T ], (5.26b)

∂tEεn(·, qεn(·)) → ∂tE0(·, q(·)) in L1(0, T ), (5.26c)

zεn(t)
∗
⇀ z(t) in L∞(ΓC) for every t ∈ [0, T ], (5.26d)

uεn(t)⇀ u(t) in W 1,2(Ω1∪Ω2;R
3) for every t∈[0, T ]. (5.26e)

Moreover, any q obtained by this way is an energetic solution to (U×Z,E0,R, q0).

Proof: The proof is a simple adaptation of the same arguments used in the proof of Theorem 5.5.

The next proposition, which we state for completeness, justifies the vertical arrows in the diagram (1.6); this

differs from Proposition 2.1 in the rescaling and in the statement for ε = 0.

Proposition 5.7 (Limit to brittle model, i.e. κ→ +∞) Let ε ≥ 0 be fixed, and let q0κ = (u0κ, z
0
κ) be a se-

quence of initial conditions, i.e. q0κ ∈ Sε,κ(0) and, in particular, 0 ≤ z0κ ≤ 1. Assume moreover that, as κ goes to

+∞, u0κ ⇀ u0 in W 1,2(Ω1∪Ω2;R
3), z0κ

∗
⇀ z0 in L∞(ΓC), and Eε,κ(0, q

0
κ) → Eε(0, q

0). Then

(U×Z,Eε,κ,R, q
0
κ)

κ→+∞
−−−−−→ (U×Z,Eε,R, q

0)

in the following sense: having a sequence of energetic solutions {(uε,κ, zε,κ)}κ>0 to the problem (U×Z,Eε,κ,R, q
0
κ),

there exists a subsequence and some (uε, zε) such that

uε,κ(t)⇀ uε(t) in W 1,2(Ω1∪Ω2;R
3) for all t ∈ [0, T ], (5.27a)

zε,κ(t)
∗
⇀ zε(t) in L∞(ΓC) for all t ∈ [0, T ], (5.27b)

∂tEε,κ(·, uε,κ(·), zε,κ(·))⇀ ∂tEε(·, uε(·), zε(·)) in L1(0, T ). (5.27c)

Moreover, each sequence (uε, zε) obtained as a limit of such a selected subsequence is an energetic solution to the

problem (U×Z,Eε,R, q
0).

For ε > 0 the proposition has been proven for the unscaled problem in [35]. The case ε = 0 can be treated

similarly.
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6 Cracking Kirchhoff-Love plate reformulated

The aim of this section is to provide a two-dimensional formulation of the limit problems.

Let us recall that u ∈ W 1,2
KL (Ω1∪Ω2;R

3) if and only if there exist ρ = (ρ1, ρ2) ∈ W 1,2(ω1∪ω2;R
2) and

ξ ∈W 2,2(ω1∪ω2) such that

uα(x1, x2, x3) = ρα(x1, x2)− x3
∂ξ
∂xα

(x1, x2) for α = 1, 2, and

u3(x1, x2) = ξ(x1, x2)

for (x1, x2) ∈ ω1 ∪ ω2 and x3 ∈ (−h
2
, h
2
); see Le Dret [23, Lemma 4.2]. Since the effective domains of the limit

energies E0 and E0,κ are contained in the set of Kirchhoff-Love displacements W 1,2
KL (Ω1∪Ω2;R

3) from (4.3), it is

thus possible to rewrite the limit energy functionals in terms of the Kirchhoff-Love generalized displacements ρ

and ξ.

Recalling the expression (3.2) of w, we first observe that

ẽ(u) = ẽ(ρ)− x3∇
2ξ, ẽ(w) = ẽ(η)− x3∇

2ζ

for some η and ζ given. In terms of these new variables, we have

1

2

∫

Ω1∪Ω2

C
0ẽ(u+w):ẽ(u+w) dx =

1

2

∫

ω1∪ω2

hC0ẽ(ρ+η):ẽ(ρ+η) +
h3

12
C

0∇2(ξ+ζ):∇2(ξ+ζ) dH
2

while
∫

Ω1∪Ω2

f·(u+w) dx =

∫

ω1∪ω2

ϕ0
3(ξ+ζ) +

∑

α=1,2

ϕ0
α(ρα+ηα)− ϕ1

α
∂

∂xα
(ξ+ζ) dH

2

with ϕi
α(x1, x2) :=

∫ h/2

−h/2

xi3fα(x1, x2, x3) dx3, (x1, x2) ∈ ω1 ∪ ω2, (6.1)

where, for simplicity, we have not stressed the dependence on t of w, f, η, ζ, and ϕi
α. Since

∣∣[[u
]]
ΓC

∣∣2 =
∣∣[[(ρ1−x3 ∂ξ

∂x1
, ρ2−x3

∂ξ
∂x2

, ξ)
]]
ΓC

∣∣2

=
∣∣[[ρ
]]
γC

∣∣2 + x23
∣∣[[∇ξ

]]
γC

∣∣2 − 2x3
[[
ρ
]]
γC
·
[[
∇ξ
]]
γC

+
[[
ξ
]]
γC

2 (6.2)

we have that

∫

ΓC

zκ
∣∣[[u
]]
ΓC

∣∣2 dH
2 = κ

∫

γC

∫ h/2

−h/2

z
∣∣[[u
]]
ΓC

∣∣2 dx3 dH
1

= κ

∫

γC

m0(z)
(∣∣[[ρ

]]
γC

∣∣2+
[[
ξ
]]
γC

2
)
− 2m1(z)

[[
ρ
]]
γC
·
[[
∇ξ
]]
γC

+m2(z)
∣∣[[∇ξ

]]
γC

∣∣2 dH
1 (6.3)

where we have introduced the algebraic momenta mi(z) defined by

mi(z)(x1, x2) :=

∫ h/2

−h/2

xi3z(x1, x2, x3) dx3, (x1, x2) ∈ γC, i ∈ N. (6.4)

Assuming from now on that a is independent of x3, also the dissipation R(z̃ − z) can be expressed in terms of

these momenta, namely

R(z− z̃) =

∫

γC

∫ h/2

−h/2

a(z̃−z) dx3dH
1 =

∫

γC

a
(
m0(z̃)−m0(z)

)
dH

1 (6.5)
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provided z− z̃ ≤ 0 a.e. on ΓC, otherwise R(z − z̃) = +∞. Concerning the adhesive model we have

ÂKL

ad :=
{
(ρ, ξ, z) ∈W 1,2(ω1∪ω2;R

2)×W 2,2(ω1∪ω2)× L∞(ΓC) :

0 ≤ z ≤ 1 a.e. on ΓC,
[[
(ρ−x3∇ξ)·ν

]]
γC

≥ 0 for x3 = ±h/2 a.e. on γC, (6.6)

ρ|γDir
= ξ|γDir

= ∇ξ · ν|γDir
= 0 a.e. on γDir

}
,

and the stored energy is

Ê0,κ(t, ρ, ξ, z) :=





1

2

∫

ω1∪ω2

hC0ẽ(ρ+η):ẽ(ρ+η) +
h3

12
C

0∇2(ξ+ζ):∇2(ξ+ζ)

−ϕ0
3(ξ+ζ) −

∑
α=1,2 ϕ

0
α(ρα+ηα) + ϕ1

α
∂

∂xα
(ξ+ζ) dH 2

+κ

∫

γC

m0

(∣∣[[ρ
]]
γC

∣∣2+
[[
ξ
]]
γC

2
)
− 2m1

[[
ρ
]]
γC
·
[[
∇ξ
]]
γC

+m2

∣∣[[∇ξ
]]
γC

∣∣2 dH
1 if (ρ, ξ, z) ∈ ÂKL

ad

+∞ else.

As to the brittle model we observe that z[[u]]ΓC = 0 a.e. on ΓC if and only if z
∣∣[[u]]ΓC

∣∣2 = 0, and recalling the

expression (6.2) we have

z
([[
ξ
]]
γC

2 +
∣∣[[ρ
]]
γC

− x3
[[
∇ξ
]]
γC

∣∣2) = 0 a.e. on ΓC.

Therefore, since the polynomial x3 7→
∣∣[[ρ]]γC

−x3[[∇ξ]]γC

∣∣2 identically vanishes if and only if its coefficients vanish

a.e. on ΓC, we have

ÂKL :=
{
(ρ, ξ, z) ∈ ÂKL

ad : z ≡ 0 or
[[
ρ
]]
γC

=
[[
∇ξ
]]
γC

=
[[
ξ
]]
γC

= 0 a.e. on ΓC

}

where ÂKL
ad has been defined in (6.6). This clearly shows that in the regions where z > 0 the displacements have

no jumps at all. Setting

E0(t, ρ, ξ) :=
1

2

∫

ω1∪ω2

hC0ẽ(ρ+η):ẽ(ρ+η) +
h3

12
C

0∇2(ξ+ζ):∇2(ξ+ζ)

− ϕ0
3(ξ+ζ)−

∑

α=1,2

ϕ0
α(ρα+ηα) + ϕ1

α

∂

∂xα
(ξ+ζ) dH

2, (6.7)

the stored energy writes as

Ê0(t, ρ, ξ, z) :=

{
E0(t, ρ, ξ) if (ρ, ξ, z) ∈ ÂKL

+∞ else.

The evolution problem associated with Ê0 and R admits an alternative formulation governed by the following

stored and dissipation energy functionals

Ê0
2D
(t, ρ, ξ, ϑ) :=

{
E0(t, ρ, ξ) if (ρ, ξ, ϑ) ∈ ÂKL

2D,

+∞ else,

R
2D(
.

ϑ) :=





h

∫

γC

a|
.

ϑ| dH
2 if

.

ϑ ≤ 0 on γC,

+∞ else,

where

ÂKL
2D :=

{
(ρ, ξ, ϑ) ∈ W 1,2(ω1∪ω2;R

2)×W 2,2(ω1∪ω2)× L∞(γC) : 0 ≤ ϑ ≤ 1 a.e. on γC,
[[
(ρ−x3∇ξ)·ν

]]
γC

≥ 0 for x3 = ±h/2 a.e. on γC,

ρ|γDir
= ξ|γDir

= ∇ · ν|γDir
= 0 a.e. on γDir,

ϑ = 0 or
[[
ρ
]]
γC

=
[[
∇ξ
]]
γC

=
[[
ξ
]]
γC

= 0 a.e. on γC

}
.
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Indeed, it is easy to see that, if t 7→
(
ρ(t), ξ(t), z(t)

)
is an energetic solution associated with Ê0 and R then,

letting

ϑ(t, x1, x2) :=
m0

(
z(t, x1, x2, ·)

)

h
, (6.8)

the map t 7→
(
ρ(t), ξ(t), ϑ(t)

)
is an energetic solution associated with Ê0

2D
and R

2D. We observe that, in the case

of brittle delamination, the limit problem thus admits a purely 2D formulation based on Ê0
2D and R

2D. Moreover,

having an energetic solution t 7→
(
ρ(t), ξ(t), ϑ(t)), we can reconstruct an energetic solution (ρ, ξ, z) associated

with Ê0 and R. The simplest way is by choosing z(t, x1, x2, ·) constant, i.e.

z(t, x1, x2, x3) := ϑ(t, x1, x2). (6.9)

Remark 6.1 (Conceptual numerical strategy.) After a time discretisation one obtains an incremental prob-

lem which might be used, on one hand, as a theoretical tool to prove existence and, on the other hand, to find

a numerical solution (after further spatial discretisation and implementing a suitable global minimization strat-

egy), see e.g. [28, 34]. Namely, considering a time step τ > 0, the approximate solution obtained by the implicit

time discretisation gives rise to the incremental minimisation problem for E0,κ(kτ, u, z) + R(z−zk−1
τ ) subject to

(u, z) ∈ U×Z whose solution is denoted by (ukτ , z
k
τ ) and used in the recursive scheme with k = 1, ..., T/τ . Setting,

for any m = (m0,m1,m2) ∈ L∞(γC;R
3),

E0,κ(t, ρ, ξ,m) :=
1

2

∫

ω1∪ω2

hC0ẽ(ρ+η):ẽ(ρ+η) +
h3

12
C

0∇2(ξ+ζ):∇2(ξ+ζ)

− ϕ0
3(ξ+ζ)−

∑

α=1,2

ϕ0
α(ρα+ηα) + ϕ1

α

∂

∂xα
(ξ+ζ) dH

2

+ κ

∫

γC

m0

(∣∣[[ρ
]]
γC

∣∣2 +
[[
ξ
]]
γC

2
)
− 2m1

[[
ρ
]]
γC
·
[[
∇ξ
]]
γC

+m2

∣∣[[∇ξ
]]
γC

∣∣2 dH
1,

the mentioned incremental problem reads as

Minimise E0,κ(kτ, ρ, ξ,m(z)) +

∫

γC

a
(
m0(z)−m0(z

k−1
τ )

)
dH

1,

subject to z ≤ zk−1
τ , (ρ, ξ, z) ∈ ÂKL

ad,



 (6.10)

for a given 0 ≤ z0τ ≤ 1 and for m(z) from (6.4). In the adhesive case, it does not seem straightforward to translate

the constraint z ≤ z̃ on ΓC in terms of the momenta defined on γC and therefore the incremental problem (and

the corresponding numerical strategy) should rather deal with the 2D generalised displacements and the original

2D profile z rather than its 1D momenta.

Remark 6.2 (The brittle case.) In the brittle delamination case, the situation is better and we can work in

terms of the 1D profile ϑ rather than z. Using the functionals Ê0
2D and R

2D, the incremental brittle delamination

limit problem reads as

Minimise E0(kτ, ρ, ξ) + h

∫

γC

a(ϑ−ϑk−1
τ ) dH

1,

subject to 0 ≤ ϑ ≤ ϑk−1
τ and [[(ρ−x3∇ξ)·ν]]γC

≥ 0 for x3 = ±h/2 a.e. on γC,

ρ|γDir
= ξ|γDir

= ∇ξ · ν|γDir
= 0 a.e. on γDir,

ϑ = 0 or [[ρ]]γC
= [[∇ξ]]γC

= [[ξ]]γC
= 0 a.e. on γC,

(ρ, ξ, ϑ) ∈W 1,2(ω1∪ω2;R
2)×W 2,2(ω1∪ω2)× L∞(γC),





(6.11)

for a given 0 ≤ ϑ0τ ≤ 1. Although the dimensionality of (6.11) is lower than (6.10), the direct numerical

implementation of the “or” structure appearing in the constraint in (6.11) is expected to be difficult. To
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circumvent this difficulty, one may implement a sequence of problems (6.10) with κ gradually increasing and rely

on the analysis presented above, namely Proposition 5.7 for ε = 0. An interesting question is whether one can

augment (6.10) with the additional constraint (6.9) without destroying the limit for κ → ∞ and then, in terms

of ϑ, implement efficiently such a lower-dimensional approximate variant of (6.10).
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[37] M. Thomas, A.-M. Sändig: Energy-release rate for interface-crack in compounds for p-Laplacian type-Griffith formula
and J-integral. Bericht 2006/13, SFB 4040, Univ. Stuttgart., 2006.

[38] R. Toader, C. Zanini: An artificial viscosity approach to quasistatic crack growth. Boll. Unione Mat. Ital. 2 (2009),
1–35.

22


