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Abstract

We approximate, in the sense of Γ-convergence, the Mumford-Shah

functional by means of a sequence of non-local integral functionals de-

pending on the average of the absolute value of the gradient.
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1 Introduction

In the variational approach to many problems in computer vision (image seg-
mentation, signal processing and so on) an important rôle has been played
by the Mumford-Shah functional, which is the most famous example of a free
discontinuity functional (terminology introduced by DeGiorgi in [11]). The
Mumford-Shah functional is given by

MS(u) =

∫

Ω

|∇u|2 dx+ cHn−1(Su)

where u ∈ SBV (Ω), the space of special functions of bounded variation; Su

is the approximate discontinuity set of u and Hn−1 is the (n− 1)-dimensional
Hausdorff measure. Several approximation methods are known for the Mumford-
Shah functional and, more in general, for free discontinuity functionals: the
Ambrosio & Tortorelli approximation (see [1] and [3]) via elliptic functionals,
the Gobbino’s approximation by finite difference methods (see [12]) and many
others (see [6], [7], [9], [10]).

In [5] Braides & Dal Maso approximate the Mumford-Shah functional by
means of a sequence of non-local integral functionals given by

Fε(u) =
1

ε

∫

Ω

f

(

ε

∫

Bε(x)∩Ω

|∇u|2 dy
)

dx (1)
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with u ∈ H1(Ω) and, for instance, f(t) = t ∧ 1/2. A variant of this method is
investigated in [14], [15] and [13] where the problem of the convergence of

Fε(u) =
1

ε

∫

Ω

fε

(

ε

∫

Bε(x)∩Ω

|∇u| dy
)

dx (2)

is considered; here fε is a convex-concave function with fε(εt)/ε → φ(t), as
(ε, t) → (0, 0), where φ has linear growth at infinity and plays the rôle of the
bulk energy density in the limit of Fε. Then, under the assumption on fε in
[13], the Mumford-Shah functional cannot be recovered by the Γ-convergence
of Fε, since the bulk term in MS is given by

∫

Ω

|∇u|2 dx

and it has superlinear growth at infinity. A question arise: is it possibile to
recover the Mumford-Shah functional from (2) instead of (1)? The aim of this
paper is to prove an approximation results for the Mumford-Shah functional,
obtained adapting the results contained in [14], [15] and [13], by means of a
sequence of functionals of type (2). The core of the proof is Theorem 4.1 where
the lower bound for the Γ-limit is optimized by a sup of measures argument,
while the upper bound descends from standard density results and general
properties of Minkowsky content.

2 Preliminary Notes

Functions of bounded variation. For a thorough treatment of BV functions
we refer to [2]. Let Ω be an open subset of R

n; the space BV (Ω) of real
functions of bounded variation is the space of the functions u ∈ L1(Ω) whose
distributional derivative is representable by a measure R

n-valued measure Du
on Ω. We denote by Su the approximate discontinuity set of u and by Ju the
set of approximate jump points of u.

For a function u ∈ BV (Ω) let Du = Dau+Dsu be the (Lebesgue) decom-
position of Du into absolutely continuous and singular part. We denote by ∇u
the density of Dau; the measures Dju := Dsu Ju, D

cu := Dsu (Ω \ Su)
are called the jump part and the Cantor part of the derivative, respectively.

We say that a function u ∈ BV (Ω) is a special function of bounded variation
(u ∈ SBV (Ω)) if |Dcu|(Ω) = 0; moreover we say that a function u ∈ L1(Ω)
is a generalized special function of bounded variation (u ∈ GSBV (Ω)) if
uT := (−T ) ∨ u ∧ T belongs to SBV (Ω) for every T ≥ 0. If u ∈ GSBV (Ω),
the function ∇u given by ∇u = ∇uT for Ln-a.e. on {|u| ≤ T} turns out to
be well-defined. Moreover, the set function T 7→ SuT is monotone increasing;
therefore, we set Su =

⋃

T>0 SuT .
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Supremum of measures. We recall the following useful result from measure
theory, which can be found in [4].

Lemma 2.1 (supremum of measures) Let Ω be an open subset of R
n

and denote by A(Ω) the family of its open subsets. Let λ be a positive Borel
measure on Ω, and µ : A(Ω) → [0,+∞) a set function which is superadditive
on open sets with disjoint compact closures (i.e. if A,B ⊂⊂ Ω and A∩B = ∅,
then µ(A ∪ B) ≥ µ(A) + µ(B)). Let (ψi)i∈I be a family of positive Borel
functions. Suppose that

µ(A) ≥
∫

A

ψi dλ for every A ∈ A(Ω) and i ∈ I;

then

µ(A) ≥
∫

A

sup
i

ψi dλ for every A ∈ A(Ω).

3 Main Results

Let Ω ⊆ R
n be a bounded open set with Lipschitz boundary, and consider the

family (Fε)ε>0 of non-local functionals L1(Ω) → [0,+∞] given by

Fε(u) =















1

ε

∫

Ω

fε

(

ε

∫

Bε(x)∩Ω

|∇u| dy
)

dx if u ∈W 1,1(Ω)

+∞ otherwise,

(3)

where fε : [0,+∞) → [0,+∞) is requested to satisfy the following conditions:

(A1) for every ε > 0, fε is a non-decreasing continuous function with fε(0) = 0;
moreover, there exists aε > 0 such that aε → 0 as ε→ 0 and fε is concave
in (aε,+∞).

(A2) lim
(ε,t)→(0,0)

εfε(t)

t2
= 1 .

(A3) fε ր f uniformly on the compact subsets of (0,+∞), where f(t) = f∞ >
0 is a constant function.

A possibile choice for fε is fε(t) = (t2/ε) ∧ f∞.

Remark 3.1 Let δ ∈ (0, 1); by (A2) there exists tδ > 0 and εδ > 0 such
that fε(t) ≤ (1 + δ)t2/ε for any 0 ≤ t ≤ tδ and 0 ≤ ε ≤ εδ. Since φ(t) = t2 is
convex and fε is concave in (aε,+∞), with aε → 0, we get fε(t) ≤ (1 + δ)t2/ε
for any t ≥ 0 and ε sufficiently small. Then fε(εt)/ε ≤ (1+ δ)t2 for any t ≥ 0.



4 Luca Lussardi

The main result is the following convergence result.

Theorem 3.2 Let (Fε)ε>0 be as in (3), with fε satisfying conditions (A1)-
(A2)-(A3). Then (Fε) Γ-converges, w.r.t. the strong L1-topology, as ε → 0,
to F : L1(Ω) → [0,+∞] given by

F(u) =















∫

Ω

|∇u|2 dx+ 2f∞Hn−1(Su) if u ∈ GSBV (Ω)

+∞ otherwise.

Moreover we have a compactness property:

Theorem 3.3 (compactness) Let (εj) be a positive infinitesimal sequence
and let (uj) be a sequence in L1(Ω) such that ||uj||∞ ≤ M , and Fεj

(uj) ≤ M
for a suitable constant M independent of j; then there exists a subsequence
(ujk

) converging in L1(Ω) to a function u ∈ SBV (Ω).

For the sequel we will need a “localization” of Fε: for every open subset A of
Ω, we set

Fε(u,A) =















1

ε

∫

A

fε

(

ε

∫

Bε(x)∩Ω

|∇u| dy
)

dx if u ∈W 1,1(Ω)

+∞ otherwise.

Clearly, Fε

(

·,Ω
)

coincides with the functional Fε defined in (3). The lower and
upper Γ-limits of

(

Fε(·, A)
)

will be denoted by F ′(·, A) and F ′′(·, A), respec-
tively.

4 Lower bound and compactness

Theorem 4.1 For any u ∈ GSBV (Ω) and for any open subset A of Ω

F ′(u,A) ≥
∫

A

|∇u|2 dx+ 2f∞Hn−1(Su ∩ A).

Proof. Step 1. First we show that

F ′(u,A) ≥
∫

Ω

|∇u|2 dx+ 2f∞Hn−1(Su ∩ A), ∀u ∈ SBV (Ω).

Fix δ ∈ (0, 1), T > 0 and η > 0 small; consider the family (gε)ε>0 given by

gε(t) = (1 − δ)εφT

(

t

ε

)
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if 0 ≤ t <
√
ε and

gε(t) =

{

(1 − δ)

[

εφT

(√
ε

ε

)

+ (φT )′
(√

ε

ε

)

(t−
√
ε)

]}

∧ (f∞ − η)

if t ≥ √
ε, with φT (t) = t2 if 0 ≤ t < T and φT (t) = 2Tt − T 2 if t ≥ T . The

function gε depends on ε, δ, T and η, but, for simplicity, we drop the dependence
by δ, T and η. By (A2) there exists tδ > 0 such that, for ε sufficiently small,
fε(t) ≥ (1 − δ)εφT (t/ε) whenever 0 ≤ t ≤ tδ; from convexity of φT and from
uniform convergence of fε on compact subsets of (0,+∞) we get fε ≥ gε, for
ε sufficiently small. Thus:

(1) for every ε > 0, gε is a non-decreasing continuous function with gε(0) = 0;
moreover, there exists aε > 0 (aε =

√
ε) such that aε → 0 as ε → 0 and

gε is concave in (aε,+∞).

(2) lim
(ε,t)→(0,0)

gε(t)

(1 − δ)εφT (t/ε)
= 1 .

Moreover it turns out that, denoting by g(t) = 2(1 − δ)Tt ∧ (f∞ − η),

(3) gε → g uniformly on the compact subsets of [0,+∞).

(4) There exists L > 0 such that

|gε(s) − gε(t)| ≤ L|s− t|, ∀s, t > 0.

Then, since

Fε(u,A) ≥ 1

ε

∫

A

gε

(

ε

∫

Bε(x)∩Ω

|∇u| dy
)

dx, u ∈W 1,1(Ω), (4)

we get, by Theorem 3.1 in [13],

F ′(u,A) ≥ (1 − δ)

∫

A

φT (|∇u|) dx+ 2

∫

Su∩A

∫ 1

0

ϑ(x, t) dt dHn−1(x)

+ 2(1 − δ)T |Dcu|(Ω)

for all u ∈ BV (Ω), where

ϑ(x, t) = g

(

ωn−1

ωn

|u+(x) − u−(x)|(
√

1 − t2)n−1

)

.

By arbitrariness of δ ∈ (0, 1) we have

F ′(u,A) ≥
∫

A

φT (|∇u|) dx+ 2

∫

(Su∩A)×[0,1]

ϑ(x, t) dt dHn−1(x)

+ 2T |Dcu|(Ω).

(5)
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As sup
T

φT (t) = t2 and sup
T,η

[Tt(f∞ − η)] = f∞, for t > 0, by Lemma 2.1 we

obtain

F ′(u,A) ≥
∫

A

|∇u|2 dx+ 2

∫

(Su∩A)×[0,1]

f∞ dt dHn−1(x)

=

∫

A

|∇u|2 dx+ 2f∞Hn−1(Su ∩ A).

Step 2. Let u ∈ GSBV (Ω), and T > 0. By definition, uT ∈ SBV (Ω) and
|∇u| ≥ |∇uT |. Thus for every sequence uj → u in L1(Ω) we get F ′(u,A) ≥
lim infj→+∞ Fεj

(uT
j ). By Step 1, as uT

j → uT in L1(Ω), we obtain

F ′(u,A) ≥
∫

A

|∇uT |2 dx+ 2f∞Hn−1(SuT ∩A).

By taking the limit as T → +∞ and recalling the definition of ∇u and Su we
conclude.

Proof of Theorem 3.3. Let (εj) be a positive infinitesimal sequence and
let (uj) be a sequence in L1(Ω) such that ||uj||∞ ≤ M , and Fεj

(uj) ≤ M
for a suitable constant M independent of j. Then by (4) and by compactness
Theorem 3.2 in [13], there exists a subsequence (ujk

) converging to u ∈ BV (Ω).
Suppose |Dcu|(Ω) 6= 0; then, by taking the limit as T → +∞ in (5), F ′(u)
would be +∞, which contradicts Fεj

(uj) ≤ M . Thus |Dcu|(Ω) = 0 and then
u ∈ SBV (Ω).

5 Upper bound

In this last section we conclude the proof of Theorem 3.2. As usual, first we
will take into account a suitable dense subset of SBV (Ω): let W(Ω) be the
space of all functions w ∈ SBV (Ω) satisfying the following properties:

i) Hn−1(Sw \ Sw) = 0;

ii) Sw is the intersection of Ω with the union of a finite member of (n− 1)-
dimensional simplexes;

iii) w ∈W k,∞(Ω \ Sw) for every k ∈ N

where SBV 2(Ω) = {u ∈ SBV (Ω) : |∇u| ∈ L2(Ω), Hn−1(Su) < +∞}. In [8]
the density property of W(Ω) in SBV (Ω) is proved. More precisely:

Theorem 5.1 Assume that ∂Ω is Lipschitz. Let u ∈ SBV 2(Ω) ∩ L∞(Ω).
Then there exists a sequence (wj) in W(Ω) such that wj → u strongly in L1(Ω),
∇wj → ∇u strongly in L2(Ω,Rn), lim suph ‖wj‖∞ ≤ ‖u‖∞ and

lim sup
j→+∞

∫

Swj

φ(w+
j , w

−
j , νwj

) dHn−1 ≤
∫

Su

φ(u+, u−, νu) dHn−1
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for every upper semicontinuous function φ such that φ(a, b, ν) = φ(b, a,−ν)
whenever a, b ∈ R and ν ∈ Sn−1.

Theorem 5.2 Let u ∈ GSBV (Ω); then

F ′′(u) ≤
∫

Ω

|∇u|2 dx+ 2f∞Hn−1(Su).

Proof. Since the upper Γ-limit of Fε coincides with the upper Γ-limit of the
relaxed functional F ε, we get F ′′(u) ≤ lim supε→0 F ε(u). It can be easily seen
(see [15], Proposition 3.6) that, for ε > 0 fixed, we have

F ε(u) =
1

ε

∫

Ω

fε

(

ε

|Bε(x) ∩ Ω| |Du|(Bε(x) ∩ Ω)

)

dx. (6)

Step 1. First we consider the case u ∈ W(Ω). Let Sε = {x ∈ Ω : d(x, Su) < ε};
then we can split F ε as follows:

F ε(u) =
1

ε

∫

Ω\Sε

fε

(

ε

|Bε(x) ∩ Ω| |Du|(Bε(x) ∩ Ω)

)

dx

+
1

ε

∫

Sε

fε

(

ε

|Bε(x) ∩ Ω| |Du|(Bε(x) ∩ Ω)

)

dx.

Since u ∈W 1,1(Ω \ Sε), the first integral becomes

1

ε

∫

Ω\Sε

fε

(

ε

∫

Bε(x)∩Ω

|∇u|dy
)

dx ≤ 1

ε

∫

Ω

fε

(

ε

∫

Bε(x)∩Ω

|∇u|dy
)

dx.

Moreover since
∫

Bε(x)∩Ω

|∇u|dy → |∇u(x)|

a.e. x ∈ Ω, by (A2) and from the dominated convergence Theorem (see Re-
mark 3.1) we get

1

ε

∫

Ω

fε

(

ε

∫

Bε(x)∩Ω

|∇u| dy
)

dx→
∫

Ω

|∇u|2 dx.

We estimate now the second integral

1

ε

∫

Sε

fε

(

ε

|Bε(x) ∩ Ω| |Du|(Bε(x) ∩ Ω)

)

dx.

Let η > 0 small; by uniform convergence of fε on compact subsets of (0,+∞)
and by monotonicity property of fε, for ε sufficiently small ti holds fε(t) ≤
f∞ + η, for any t ≥ 0. Thus

1

ε

∫

Sε

fε

(

ε

|Bε(x) ∩ Ω| |Du|(Bε(x) ∩ Ω)

)

dx ≤ |Sε|
ε

(f∞ + η).
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Since Su is the union of (n− 1)-dimensional simplexes, by standard results on
Minkowsky content we have |Sε|/2ε→ Hn−1(Su), and then

|Sε|
ε

(f∞ + η) → 2(f∞ + η)Hn−1(Su).

We conclude by arbitrariness of η.

Step 2. In the case u ∈ SBV 2(Ω) ∩ L∞(Ω) the thesis descends from The-
orem 5.1 and from lower semicontinuity of F ′′. Finally it is easy to conclude
by truncation arguments and again by lower semicontinuity of F ′′.
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