An approximation for the Mumford-Shah functional

Luca Lussardi

Dipartimento di Matematica Facoltà di Ingegneria, Università degli Studi di Brescia via Valotti 9, 25133 Brescia, Italy email: luca.lussardi@ing.unibs.it

Abstract

We approximate, in the sense of Γ -convergence, the Mumford-Shah functional by means of a sequence of non-local integral functionals depending on the average of the absolute value of the gradient.

Mathematics Subject Classification: 49Q20

Keywords: Γ-convergence, Mumford-Shah functional

1 Introduction

In the variational approach to many problems in computer vision (image segmentation, signal processing and so on) an important rôle has been played by the Mumford-Shah functional, which is the most famous example of a free discontinuity functional (terminology introduced by DeGiorgi in [11]). The Mumford-Shah functional is given by

$$MS(u) = \int_{\Omega} |\nabla u|^2 \, dx + c \mathcal{H}^{n-1}(S_u)$$

where $u \in SBV(\Omega)$, the space of special functions of bounded variation; S_u is the approximate discontinuity set of u and \mathcal{H}^{n-1} is the (n-1)-dimensional Hausdorff measure. Several approximation methods are known for the Mumford-Shah functional and, more in general, for free discontinuity functionals: the Ambrosio & Tortorelli approximation (see [1] and [3]) via elliptic functionals, the Gobbino's approximation by finite difference methods (see [12]) and many others (see [6], [7], [9], [10]).

In [5] Braides & Dal Maso approximate the Mumford-Shah functional by means of a sequence of non-local integral functionals given by

$$F_{\varepsilon}(u) = \frac{1}{\varepsilon} \int_{\Omega} f\left(\varepsilon \int_{B_{\varepsilon}(x) \cap \Omega} |\nabla u|^2 \, dy\right) \, dx \tag{1}$$

with $u \in H^1(\Omega)$ and, for instance, $f(t) = t \wedge 1/2$. A variant of this method is investigated in [14], [15] and [13] where the problem of the convergence of

$$F_{\varepsilon}(u) = \frac{1}{\varepsilon} \int_{\Omega} f_{\varepsilon} \left(\varepsilon \int_{B_{\varepsilon}(x) \cap \Omega} |\nabla u| \, dy \right) \, dx \tag{2}$$

is considered; here f_{ε} is a convex-concave function with $f_{\varepsilon}(\varepsilon t)/\varepsilon \to \phi(t)$, as $(\varepsilon, t) \to (0, 0)$, where ϕ has linear growth at infinity and plays the rôle of the bulk energy density in the limit of F_{ε} . Then, under the assumption on f_{ε} in [13], the Mumford-Shah functional cannot be recovered by the Γ -convergence of F_{ε} , since the bulk term in MS is given by

$$\int_{\Omega} |\nabla u|^2 \, dx$$

and it has superlinear growth at infinity. A question arise: is it possibile to recover the Mumford-Shah functional from (2) instead of (1)? The aim of this paper is to prove an approximation results for the Mumford-Shah functional, obtained adapting the results contained in [14], [15] and [13], by means of a sequence of functionals of type (2). The core of the proof is Theorem 4.1 where the lower bound for the Γ -limit is optimized by a sup of measures argument, while the upper bound descends from standard density results and general properties of Minkowsky content.

2 Preliminary Notes

Functions of bounded variation. For a thorough treatment of BV functions we refer to [2]. Let Ω be an open subset of \mathbb{R}^n ; the space $BV(\Omega)$ of real functions of bounded variation is the space of the functions $u \in L^1(\Omega)$ whose distributional derivative is representable by a measure \mathbb{R}^n -valued measure Duon Ω . We denote by S_u the approximate discontinuity set of u and by J_u the set of approximate jump points of u.

For a function $u \in BV(\Omega)$ let $Du = D^a u + D^s u$ be the (Lebesgue) decomposition of Du into absolutely continuous and singular part. We denote by ∇u the density of $D^a u$; the measures $D^j u := D^s u \sqcup J_u$, $D^c u := D^s u \sqcup (\Omega \setminus S_u)$ are called the *jump part* and the *Cantor part* of the derivative, respectively.

We say that a function $u \in BV(\Omega)$ is a special function of bounded variation $(u \in SBV(\Omega))$ if $|D^c u|(\Omega) = 0$; moreover we say that a function $u \in L^1(\Omega)$ is a generalized special function of bounded variation $(u \in GSBV(\Omega))$ if $u^T := (-T) \lor u \land T$ belongs to $SBV(\Omega)$ for every $T \ge 0$. If $u \in GSBV(\Omega)$, the function ∇u given by $\nabla u = \nabla u^T$ for \mathcal{L}^n -a.e. on $\{|u| \le T\}$ turns out to be well-defined. Moreover, the set function $T \mapsto S_{u^T}$ is monotone increasing; therefore, we set $S_u = \bigcup_{T>0} S_{u^T}$.

Supremum of measures. We recall the following useful result from measure theory, which can be found in [4].

Lemma 2.1 (supremum of measures) Let Ω be an open subset of \mathbb{R}^n and denote by $\mathcal{A}(\Omega)$ the family of its open subsets. Let λ be a positive Borel measure on Ω , and $\mu: \mathcal{A}(\Omega) \to [0, +\infty)$ a set function which is superadditive on open sets with disjoint compact closures (i.e. if $A, B \subset \subset \Omega$ and $\overline{A} \cap \overline{B} = \emptyset$, then $\mu(A \cup B) \geq \mu(A) + \mu(B)$). Let $(\psi_i)_{i \in I}$ be a family of positive Borel functions. Suppose that

$$\mu(A) \ge \int_A \psi_i \, d\lambda \quad \text{for every } A \in \mathcal{A}(\Omega) \text{ and } i \in I;$$

then

$$\mu(A) \ge \int_A \sup_i \psi_i \, d\lambda \quad \text{for every } A \in \mathcal{A}(\Omega).$$

3 Main Results

Let $\Omega \subseteq \mathbb{R}^n$ be a bounded open set with Lipschitz boundary, and consider the family $(F_{\varepsilon})_{\varepsilon>0}$ of non-local functionals $L^1(\Omega) \to [0, +\infty]$ given by

$$F_{\varepsilon}(u) = \begin{cases} \frac{1}{\varepsilon} \int_{\Omega} f_{\varepsilon} \left(\varepsilon \int_{B_{\varepsilon}(x) \cap \Omega} |\nabla u| \, dy \right) \, dx & \text{if } u \in W^{1,1}(\Omega) \\ +\infty & \text{otherwise,} \end{cases}$$
(3)

where $f_{\varepsilon}: [0, +\infty) \to [0, +\infty)$ is requested to satisfy the following conditions:

(A1) for every $\varepsilon > 0$, f_{ε} is a non-decreasing continuous function with $f_{\varepsilon}(0) = 0$; moreover, there exists $a_{\varepsilon} > 0$ such that $a_{\varepsilon} \to 0$ as $\varepsilon \to 0$ and f_{ε} is concave in $(a_{\varepsilon}, +\infty)$.

(A2)
$$\lim_{(\varepsilon,t)\to(0,0)}\frac{\varepsilon f_{\varepsilon}(t)}{t^2}=1.$$

(A3) $f_{\varepsilon} \nearrow f$ uniformly on the compact subsets of $(0, +\infty)$, where $f(t) = f_{\infty} > 0$ is a constant function.

A possibile choice for f_{ε} is $f_{\varepsilon}(t) = (t^2/\varepsilon) \wedge f_{\infty}$.

Remark 3.1 Let $\delta \in (0, 1)$; by (A2) there exists $t_{\delta} > 0$ and $\varepsilon_{\delta} > 0$ such that $f_{\varepsilon}(t) \leq (1+\delta)t^2/\varepsilon$ for any $0 \leq t \leq t_{\delta}$ and $0 \leq \varepsilon \leq \varepsilon_{\delta}$. Since $\phi(t) = t^2$ is convex and f_{ε} is concave in $(a_{\varepsilon}, +\infty)$, with $a_{\varepsilon} \to 0$, we get $f_{\varepsilon}(t) \leq (1+\delta)t^2/\varepsilon$ for any $t \geq 0$ and ε sufficiently small. Then $f_{\varepsilon}(\varepsilon t)/\varepsilon \leq (1+\delta)t^2$ for any $t \geq 0$.

The main result is the following convergence result.

Theorem 3.2 Let $(F_{\varepsilon})_{\varepsilon>0}$ be as in (3), with f_{ε} satisfying conditions (A1)-(A2)-(A3). Then (F_{ε}) Γ -converges, w.r.t. the strong L^1 -topology, as $\varepsilon \to 0$, to $\mathcal{F}: L^1(\Omega) \to [0, +\infty]$ given by

$$\mathcal{F}(u) = \begin{cases} \int_{\Omega} |\nabla u|^2 dx + 2f_{\infty} \mathcal{H}^{n-1}(S_u) & \text{if } u \in GSBV(\Omega) \\ +\infty & \text{otherwise.} \end{cases}$$

Moreover we have a compactness property:

Theorem 3.3 (compactness) Let (ε_j) be a positive infinitesimal sequence and let (u_j) be a sequence in $L^1(\Omega)$ such that $||u_j||_{\infty} \leq M$, and $F_{\varepsilon_j}(u_j) \leq M$ for a suitable constant M independent of j; then there exists a subsequence (u_{j_k}) converging in $L^1(\Omega)$ to a function $u \in SBV(\Omega)$.

For the sequel we will need a "localization" of F_{ε} : for every open subset A of Ω , we set

$$F_{\varepsilon}(u,A) = \begin{cases} \frac{1}{\varepsilon} \int_{A} f_{\varepsilon} \left(\varepsilon \int_{B_{\varepsilon}(x) \cap \Omega} |\nabla u| \, dy \right) \, dx & \text{if } u \in W^{1,1}(\Omega) \\ +\infty & \text{otherwise.} \end{cases}$$

Clearly, $F_{\varepsilon}(\cdot, \Omega)$ coincides with the functional F_{ε} defined in (3). The lower and upper Γ -limits of $(F_{\varepsilon}(\cdot, A))$ will be denoted by $F'(\cdot, A)$ and $F''(\cdot, A)$, respectively.

4 Lower bound and compactness

Theorem 4.1 For any $u \in GSBV(\Omega)$ and for any open subset A of Ω

$$F'(u,A) \ge \int_A |\nabla u|^2 \, dx + 2f_\infty \mathcal{H}^{n-1}(S_u \cap A).$$

Proof. Step 1. First we show that

$$F'(u,A) \ge \int_{\Omega} |\nabla u|^2 dx + 2f_{\infty} \mathcal{H}^{n-1}(S_u \cap A), \quad \forall u \in SBV(\Omega).$$

Fix $\delta \in (0, 1)$, T > 0 and $\eta > 0$ small; consider the family $(g_{\varepsilon})_{\varepsilon > 0}$ given by

$$g_{\varepsilon}(t) = (1-\delta)\varepsilon\phi^T\left(\frac{t}{\varepsilon}\right)$$

if $0 \le t < \sqrt{\varepsilon}$ and $g_{\varepsilon}(t) = \left\{ (1 - \delta) \left[\varepsilon \phi^T \left(\frac{\sqrt{\varepsilon}}{\varepsilon} \right) + (\phi^T)' \left(\frac{\sqrt{\varepsilon}}{\varepsilon} \right) (t - \sqrt{\varepsilon}) \right] \right\} \wedge (f_{\infty} - \eta)$

if $t \ge \sqrt{\varepsilon}$, with $\phi^T(t) = t^2$ if $0 \le t < T$ and $\phi^T(t) = 2Tt - T^2$ if $t \ge T$. The function g_{ε} depends on ε, δ, T and η , but, for simplicity, we drop the dependence by δ, T and η . By **(A2)** there exists $t_{\delta} > 0$ such that, for ε sufficiently small, $f_{\varepsilon}(t) \ge (1 - \delta)\varepsilon\phi^T(t/\varepsilon)$ whenever $0 \le t \le t_{\delta}$; from convexity of ϕ^T and from uniform convergence of f_{ε} on compact subsets of $(0, +\infty)$ we get $f_{\varepsilon} \ge g_{\varepsilon}$, for ε sufficiently small. Thus:

(1) for every $\varepsilon > 0$, g_{ε} is a non-decreasing continuous function with $g_{\varepsilon}(0) = 0$; moreover, there exists $a_{\varepsilon} > 0$ $(a_{\varepsilon} = \sqrt{\varepsilon})$ such that $a_{\varepsilon} \to 0$ as $\varepsilon \to 0$ and g_{ε} is concave in $(a_{\varepsilon}, +\infty)$.

(2)
$$\lim_{(\varepsilon,t)\to(0,0)} \frac{g_{\varepsilon}(t)}{(1-\delta)\varepsilon\phi^T(t/\varepsilon)} = 1$$

Moreover it turns out that, denoting by $g(t) = 2(1 - \delta)Tt \wedge (f_{\infty} - \eta)$,

- (3) $g_{\varepsilon} \to g$ uniformly on the compact subsets of $[0, +\infty)$.
- (4) There exists L > 0 such that

$$|g_{\varepsilon}(s) - g_{\varepsilon}(t)| \le L|s - t|, \quad \forall s, t > 0.$$

Then, since

$$F_{\varepsilon}(u,A) \ge \frac{1}{\varepsilon} \int_{A} g_{\varepsilon} \left(\varepsilon \int_{B_{\varepsilon}(x) \cap \Omega} |\nabla u| \, dy \right) \, dx, \qquad u \in W^{1,1}(\Omega), \tag{4}$$

we get, by Theorem 3.1 in [13],

$$F'(u,A) \ge (1-\delta) \int_A \phi^T(|\nabla u|) \, dx + 2 \int_{S_u \cap A} \int_0^1 \vartheta(x,t) \, dt \, d\mathcal{H}^{n-1}(x) + 2(1-\delta)T|D^c u|(\Omega)$$

for all $u \in BV(\Omega)$, where

$$\vartheta(x,t) = g\left(\frac{\omega_{n-1}}{\omega_n} |u^+(x) - u^-(x)| (\sqrt{1-t^2})^{n-1}\right).$$

By arbitrariness of $\delta \in (0, 1)$ we have

$$F'(u,A) \ge \int_{A} \phi^{T}(|\nabla u|) \, dx + 2 \int_{(S_{u} \cap A) \times [0,1]} \vartheta(x,t) \, dt \, d\mathcal{H}^{n-1}(x)$$
$$+ 2T|D^{c}u|(\Omega).$$
(5)

As $\sup_{T} \phi^{T}(t) = t^{2}$ and $\sup_{T,\eta} [Tt(f_{\infty} - \eta)] = f_{\infty}$, for t > 0, by Lemma 2.1 we obtain

$$F'(u,A) \ge \int_A |\nabla u|^2 dx + 2 \int_{(S_u \cap A) \times [0,1]} f_\infty dt \, d\mathcal{H}^{n-1}(x)$$
$$= \int_A |\nabla u|^2 dx + 2f_\infty \mathcal{H}^{n-1}(S_u \cap A).$$

Step 2. Let $u \in GSBV(\Omega)$, and T > 0. By definition, $u^T \in SBV(\Omega)$ and $|\nabla u| \geq |\nabla u^T|$. Thus for every sequence $u_j \to u$ in $L^1(\Omega)$ we get $F'(u, A) \geq \liminf_{j \to +\infty} F_{\varepsilon_j}(u_j^T)$. By Step 1, as $u_j^T \to u^T$ in $L^1(\Omega)$, we obtain

$$F'(u,A) \ge \int_{A} |\nabla u^{T}|^{2} dx + 2f_{\infty} \mathcal{H}^{n-1}(S_{u^{T}} \cap A).$$

By taking the limit as $T \to +\infty$ and recalling the definition of ∇u and S_u we conclude.

Proof of Theorem 3.3. Let (ε_j) be a positive infinitesimal sequence and let (u_j) be a sequence in $L^1(\Omega)$ such that $||u_j||_{\infty} \leq M$, and $F_{\varepsilon_j}(u_j) \leq M$ for a suitable constant M independent of j. Then by (4) and by compactness Theorem 3.2 in [13], there exists a subsequence (u_{j_k}) converging to $u \in BV(\Omega)$. Suppose $|D^c u|(\Omega) \neq 0$; then, by taking the limit as $T \to +\infty$ in (5), F'(u)would be $+\infty$, which contradicts $F_{\varepsilon_j}(u_j) \leq M$. Thus $|D^c u|(\Omega) = 0$ and then $u \in SBV(\Omega)$.

5 Upper bound

In this last section we conclude the proof of Theorem 3.2. As usual, first we will take into account a suitable dense subset of $SBV(\Omega)$: let $\mathcal{W}(\Omega)$ be the space of all functions $w \in SBV(\Omega)$ satisfying the following properties:

- i) $\mathcal{H}^{n-1}(\overline{S}_w \setminus S_w) = 0;$
- ii) \overline{S}_w is the intersection of Ω with the union of a finite member of (n-1)-dimensional simplexes;
- iii) $w \in W^{k,\infty}(\Omega \setminus \overline{S}_w)$ for every $k \in \mathbb{N}$

where $SBV^2(\Omega) = \{ u \in SBV(\Omega) : |\nabla u| \in L^2(\Omega), \mathcal{H}^{n-1}(S_u) < +\infty \}$. In [8] the density property of $\mathcal{W}(\Omega)$ in $SBV(\Omega)$ is proved. More precisely:

Theorem 5.1 Assume that $\partial\Omega$ is Lipschitz. Let $u \in SBV^2(\Omega) \cap L^{\infty}(\Omega)$. Then there exists a sequence (w_j) in $\mathcal{W}(\Omega)$ such that $w_j \to u$ strongly in $L^1(\Omega)$, $\nabla w_j \to \nabla u$ strongly in $L^2(\Omega, \mathbb{R}^n)$, $\limsup_h \|w_j\|_{\infty} \leq \|u\|_{\infty}$ and

$$\limsup_{j \to +\infty} \int_{S_{w_j}} \phi(w_j^+, w_j^-, \nu_{w_j}) \, d\mathcal{H}^{n-1} \le \int_{S_u} \phi(u^+, u^-, \nu_u) \, d\mathcal{H}^{n-1}$$

Appr. for the Mumford-Shah funct.

for every upper semicontinuous function ϕ such that $\phi(a, b, \nu) = \phi(b, a, -\nu)$ whenever $a, b \in \mathbb{R}$ and $\nu \in S^{n-1}$.

Theorem 5.2 Let $u \in GSBV(\Omega)$; then

$$F''(u) \le \int_{\Omega} |\nabla u|^2 \, dx + 2f_{\infty} \mathcal{H}^{n-1}(S_u).$$

Proof. Since the upper Γ-limit of F_{ε} coincides with the upper Γ-limit of the relaxed functional $\overline{F}_{\varepsilon}$, we get $F''(u) \leq \limsup_{\varepsilon \to 0} \overline{F}_{\varepsilon}(u)$. It can be easily seen (see [15], Proposition 3.6) that, for $\varepsilon > 0$ fixed, we have

$$\overline{F}_{\varepsilon}(u) = \frac{1}{\varepsilon} \int_{\Omega} f_{\varepsilon} \left(\frac{\varepsilon}{|B_{\varepsilon}(x) \cap \Omega|} |Du| (B_{\varepsilon}(x) \cap \Omega) \right) dx.$$
(6)

Step 1. First we consider the case $u \in \mathcal{W}(\Omega)$. Let $S_{\varepsilon} = \{x \in \Omega : d(x, S_u) < \varepsilon\}$; then we can split $\overline{F}_{\varepsilon}$ as follows:

$$\overline{F}_{\varepsilon}(u) = \frac{1}{\varepsilon} \int_{\Omega \setminus S_{\varepsilon}} f_{\varepsilon} \left(\frac{\varepsilon}{|B_{\varepsilon}(x) \cap \Omega|} |Du| (B_{\varepsilon}(x) \cap \Omega) \right) dx + \frac{1}{\varepsilon} \int_{S_{\varepsilon}} f_{\varepsilon} \left(\frac{\varepsilon}{|B_{\varepsilon}(x) \cap \Omega|} |Du| (B_{\varepsilon}(x) \cap \Omega) \right) dx.$$

Since $u \in W^{1,1}(\Omega \setminus S_{\varepsilon})$, the first integral becomes

$$\frac{1}{\varepsilon} \int_{\Omega \setminus S_{\varepsilon}} f_{\varepsilon} \left(\varepsilon \ \int_{B_{\varepsilon}(x) \cap \Omega} |\nabla u| dy \right) \, dx \leq \frac{1}{\varepsilon} \int_{\Omega} f_{\varepsilon} \left(\varepsilon \ \int_{B_{\varepsilon}(x) \cap \Omega} |\nabla u| dy \right) \, dx.$$

Moreover since

$$\int_{B_{\varepsilon}(x)\cap\Omega} |\nabla u| dy \to |\nabla u(x)|$$

a.e. $x \in \Omega$, by (A2) and from the dominated convergence Theorem (see Remark 3.1) we get

$$\frac{1}{\varepsilon} \int_{\Omega} f_{\varepsilon} \left(\varepsilon \, \oint_{B_{\varepsilon}(x) \cap \Omega} |\nabla u| \, dy \right) \, dx \to \int_{\Omega} |\nabla u|^2 \, dx.$$

We estimate now the second integral

$$\frac{1}{\varepsilon} \int_{S_{\varepsilon}} f_{\varepsilon} \left(\frac{\varepsilon}{|B_{\varepsilon}(x) \cap \Omega|} |Du| (B_{\varepsilon}(x) \cap \Omega) \right) dx$$

Let $\eta > 0$ small; by uniform convergence of f_{ε} on compact subsets of $(0, +\infty)$ and by monotonicity property of f_{ε} , for ε sufficiently small the holds $f_{\varepsilon}(t) \leq f_{\infty} + \eta$, for any $t \geq 0$. Thus

$$\frac{1}{\varepsilon} \int_{S_{\varepsilon}} f_{\varepsilon} \left(\frac{\varepsilon}{|B_{\varepsilon}(x) \cap \Omega|} |Du| (B_{\varepsilon}(x) \cap \Omega) \right) \, dx \leq \frac{|S_{\varepsilon}|}{\varepsilon} (f_{\infty} + \eta).$$

Since S_u is the union of (n-1)-dimensional simplexes, by standard results on Minkowsky content we have $|S_{\varepsilon}|/2\varepsilon \to \mathcal{H}^{n-1}(S_u)$, and then

$$\frac{|S_{\varepsilon}|}{\varepsilon}(f_{\infty}+\eta) \to 2(f_{\infty}+\eta)\mathcal{H}^{n-1}(S_u).$$

We conclude by arbitrariness of η .

Step 2. In the case $u \in SBV^2(\Omega) \cap L^{\infty}(\Omega)$ the thesis descends from Theorem 5.1 and from lower semicontinuity of F''. Finally it is easy to conclude by truncation arguments and again by lower semicontinuity of F''.

References

- L. Ambrosio and V.M. Tortorelli, Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence, Comm. Pure Appl. Math., XLIII (1990), 999–1036.
- [2] L. Ambrosio, N. Fusco, and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford University Press, 2000.
- [3] L. Ambrosio and V.M. Tortorelli, On the approximation of free discontinuity problems, Boll. Un. Mat. Ital. B (7), VI(1) (1992), 105–123.
- [4] A. Braides, Approximation of free-discontinuity problems, volume 1694 of *Lecture Notes in Mathematics*, Springer Verlag, Berlin, 1998.
- [5] A. Braides and G. Dal Maso, Non-local approximation of the Mumford-Shah functional, *Calc. Var.*, 5(1) (1997), 293–322.
- [6] A. Braides and A. Garroni, On the non-local approximation of freediscontinuity problems, Comm. Partial Differential Equations, 23(5-6) (1998), 817–829.
- [7] G. Cortesani, Sequence of non-local functionals which approximate freediscontinuity problems, Arch. Rational Mech. Anal, 144 (1998), 357–402.
- [8] G. Cortesani and R. Toader, A density result in SBV with respect to non-isotropic energies, *Nonlinear Anal.*, 38(5) (1999), 585–604.
- [9] G. Cortesani and R. Toader, Finite element approximation of nonisotropic free-discontinuity problems, Numer. Funct. Anal. Optim., 18(9-10) (1997), 921–940.

- [10] G. Cortesani and R. Toader, Nonlocal approximation of nonisotropic freediscontinuity problems, SIAM J. Appl. Math., 59(4) (1999), 1507–1519.
- [11] E. De Giorgi, Free discontinuity problems in calculus of variations, Frontiers in pure and applied mathematics. A collection of papers dedicated to Jacques-Louis Lions on the occasion of his sixtieth birthday, 55 - 62, North-Holland Publishing Co, Amsterdam, 1991.
- [12] M. Gobbino, Finite difference approximation of the Mumford-Shah functional, Comm. Pure Appl. Math., 51 (1998), 197–228.
- [13] L. Lussardi, On the variational approximation of free-discontinuity functionals, *submitted paper*, (2007), 1–11.
- [14] L. Lussardi and E. Vitali, Non-local approximation of free-discontinuity functionals with linear growth: the one-dimensional case, Ann. Mat. Pura e Appl., 186(4) (2007), 722–744.
- [15] L. Lussardi and E. Vitali, Non-local approximation of free-discontinuity problems with linear growth, ESAIM: Control. Optim. and Calc. of Var., 13(1) (2007), 135–162.