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Abstract

We approximate, in the sense of I'-convergence, the Mumford-Shah
functional by means of a sequence of non-local integral functionals de-
pending on the average of the absolute value of the gradient.
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1 Introduction

In the variational approach to many problems in computer vision (image seg-
mentation, signal processing and so on) an important role has been played
by the Mumford-Shah functional, which is the most famous example of a free
discontinuity functional (terminology introduced by DeGiorgi in [11]). The
Mumford-Shah functional is given by

MS(u):/|Vu|2dx+cH"_l(Su)
Q

where u € SBV(Q), the space of special functions of bounded variation; S,
is the approximate discontinuity set of v and H"~! is the (n — 1)-dimensional
Hausdorff measure. Several approximation methods are known for the Mumford-
Shah functional and, more in general, for free discontinuity functionals: the
Ambrosio & Tortorelli approximation (see [1] and [3]) via elliptic functionals,
the Gobbino’s approximation by finite difference methods (see [12]) and many
others (see [6], [7], [9], [10]).

In [5] Braides & Dal Maso approximate the Mumford-Shah functional by
means of a sequence of non-local integral functionals given by

F.(u) = %/Qf <5 ]{Bs(m)m |Vu|2dy> dx (1)
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with u € H*(Q) and, for instance, f(t) =t A 1/2. A variant of this method is
investigated in [14], [15] and [13] where the problem of the convergence of

=2 [ 1 ( f v dy) d @)

is considered; here f. is a convex-concave function with f.(et)/e — ¢(t), as
(e,t) — (0,0), where ¢ has linear growth at infinity and plays the role of the
bulk energy density in the limit of F.. Then, under the assumption on f. in
[13], the Mumford-Shah functional cannot be recovered by the I'-convergence
of F_, since the bulk term in M S is given by

/ |Vul? dz
Q

and it has superlinear growth at infinity. A question arise: is it possibile to
recover the Mumford-Shah functional from (2) instead of (1)? The aim of this
paper is to prove an approximation results for the Mumford-Shah functional,
obtained adapting the results contained in [14], [15] and [13], by means of a
sequence of functionals of type (2). The core of the proof is Theorem 4.1 where
the lower bound for the I'-limit is optimized by a sup of measures argument,
while the upper bound descends from standard density results and general
properties of Minkowsky content.

2 Preliminary Notes

Functions of bounded variation. For a thorough treatment of BV functions
we refer to [2]. Let Q be an open subset of R™; the space BV (Q2) of real
functions of bounded variation is the space of the functions v € L'(€) whose
distributional derivative is representable by a measure R"-valued measure Du
on 2. We denote by S, the approzimate discontinuity set of u and by J, the
set of approximate jump points of w.

For a function u € BV (Q) let Du = D% + D%u be the (Lebesgue) decom-
position of Du into absolutely continuous and singular part. We denote by Vu
the density of D%u; the measures D’u := D%u L J,, Du := D’u L (Q\ S,)
are called the jump part and the Cantor part of the derivative, respectively.

We say that a function u € BV (Q) is a special function of bounded variation
(u € SBV(Q)) if |Du|(Q) = 0; moreover we say that a function v € L*(Q)
is a generalized special function of bounded variation (v € GSBV(Q)) if
ul := (=T) Vu AT belongs to SBV (Q) for every T > 0. If u € GSBV (),
the function Vu given by Vu = Vu® for £L"-a.e. on {|u] < T} turns out to
be well-defined. Moreover, the set function 7" +— S, r is monotone increasing;
therefore, we set S, = Uy Sur-
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Supremum of measures. We recall the following useful result from measure
theory, which can be found in [4].

Lemma 2.1 (supremum of measures) Let Q) be an open subset of R"
and denote by A(QQ) the family of its open subsets. Let A be a positive Borel
measure on ), and p: A(Q2) — [0,+00) a set function which is superadditive
on open sets with disjoint compact closures (i.e. if A, B CC Q and ANB =0,
then (AU B) > u(A) + u(B)). Let (¥i)ier be a family of positive Borel
functions. Suppose that

u(A) > / P d\  for every A € A(Q) and i € I;
A

then
u(A) > / sup¥; dA  for every A € A(S).
A

i

3 Main Results

Let 2 C R”™ be a bounded open set with Lipschitz boundary, and consider the
family (F.).-o of non-local functionals L'(2) — [0, +o0] given by

1/ I (5 ][ |Vul dy) dr  if ue WH(Q)
F.(u) = € Ja Be(z)NQ (3)

400 otherwise,

where f.: [0, +00) — [0,400) is requested to satisfy the following conditions:

(A1) foreverye > 0, f. is a non-decreasing continuous function with f.(0) = 0;
moreover, there exists a. > 0 such that a, — 0 as e — 0 and f. is concave
in (ae, +00).

. efe(t)
A2 1 =1.
(A2) (e,wEr(lo,o) t2

(A3) f. /' f uniformly on the compact subsets of (0, +00), where f(t) = fo >
0 is a constant function.

A possibile choice for f. is f.(t) = (t*/€) A fwo.

Remark 3.1 Let § € (0,1); by (A2) there exists ts > 0 and g5 > 0 such
that f.(t) < (14 0)t?/e for any 0 <t < ts and 0 < e < g5. Since ¢(t) = t? is
convez and f. is concave in (a.,+00), with a. — 0, we get fo(t) < (1+0)t?/e
for any t > 0 and e sufficiently small. Then f.(ct)/e < (1+8)t* for anyt > 0.
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The main result is the following convergence result.

Theorem 3.2 Let (F.).~o be as in (3), with f. satisfying conditions (A1)-
(A2)-(A3). Then (F.) T-converges, w.r.t. the strong L'-topology, as € — 0,
to F: L*(Q) — [0, +00] given by

/ |Vul?dz + 2f H"'(S,)  if ue GSBV(Q)
Flu) = @

+00 otherwise.
Moreover we have a compactness property:

Theorem 3.3 (compactness) Let (¢;) be a positive infinitesimal sequence
and let (uj) be a sequence in L'(Q) such that ||u;]|o < M, and F.,(u;) < M
for a suitable constant M independent of j; then there exists a subsequence
(uj,) converging in L'(Q) to a function u € SBV (Q).

For the sequel we will need a “localization” of F.: for every open subset A of
Q, we set

1/ I (z—: ][ |Vu|dy) de  ifue WhH(Q)
Fg(U,A) _ €JA B (z)NQ

400 otherwise.

Clearly, F; (-, Q) coincides with the functional F. defined in (3). The lower and
upper I'-limits of (Fa(-, A)) will be denoted by F'(-, A) and F”(-, A), respec-
tively.

4 Lower bound and compactness
Theorem 4.1 For any u € GSBV (QQ) and for any open subset A of §)
F'(u, A) > /A (Vul? do + 2f . H" (S, N A).
Proof. Step 1. First we show that
F'(u, A) > /Q |Vul?dz + 2f H" (S, N A), Vue SBV(Q).
Fix § € (0,1), T > 0 and n > 0 small; consider the family (g.).~o given by

go(t) = (1 - D)eg” (2)
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if0<t<Fand
at) = {a-o [eo" (L) + @y (L) - val brge-n

3

if t > /2, with ¢T(t) =2 if 0 <t < T and ¢*(t) = 2Tt —T? if t > T. The
function g. depends on €, 9, T and 7, but, for simplicity, we drop the dependence
by 6, T and 1. By (A2) there exists 5 > 0 such that, for ¢ sufficiently small,
f-(t) > (1 = 8)egp?(t/e) whenever 0 < t < ts; from convexity of ¢* and from
uniform convergence of f. on compact subsets of (0, +o00) we get f. > g., for
¢ sufficiently small. Thus:

(1) for every € > 0, g. is a non-decreasing continuous function with g.(0) = 0;
moreover, there exists a. > 0 (a. = /¢) such that a. — 0 as ¢ — 0 and
ge 1s concave in (a., 400).

: 9:(t) _
(2) (a,t%gl(lo,o) (1—0)egT(t)e)

Moreover it turns out that, denoting by ¢(t) = 2(1 — )Tt A (foo — 1),

(3) g- — g uniformly on the compact subsets of [0, +00).
(4) There exists L > 0 such that
lg-(s) — g-(t)] < L|s —t|, Vs,t>0.

Then, since

1
F.(u,A) > - / e (5 ][ |Vul dy) dz, u € WH(Q), (4)
€Ja - (2)NQ

we get, by Theorem 3.1 in [13],

Flu, A) > (1—0 /gb |Vu|d:):+2/ / (2,1) dt dH" ()
wWNA
+2(1 = 6)T| D% ()

for all w € BV (2), where

) =g (220 (@) = 0 IV 2 )

Wn

By arbitrariness of § € (0,1) we have

Flu A > [ ¢7(Vul)d 9, 1) dt dH™!
(u >>/A¢ (IVul) x+2f(w)xm 0w

+ 27| D) ().
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As sup ¢’ (t) = t* and sup[Tt(fs — 1)] = foo, for t > 0, by Lemma 2.1 we
T T

obtain

F'(u, A) > / |Vu|2d:)3+2/ foo dt dH" ()
A (SuNA)x[0,1]

= / (Vul?do + 2f . H" 1S, N A).
A

Step 2. Let u € GSBV (), and T > 0. By definition, v’ € SBV(Q) and
|Vu| > |[Vu®|. Thus for every sequence u; — u in L'(Q) we get F’(u, A) >
liminf; . o F%,(u] ). By Step 1, as u] — u” in L'(Q), we obtain

Fl(u, A) > / VT2 da + 2o H (S, 0 A).
A

By taking the limit as T" — 400 and recalling the definition of Vu and S, we
conclude. m

Proof of Theorem 3.3. Let (¢;) be a positive infinitesimal sequence and
let (u;) be a sequence in L'(Q) such that |ju;||.e < M, and F. (u;) < M
for a suitable constant M independent of j. Then by (4) and by compactness
Theorem 3.2 in [13], there exists a subsequence (u;, ) converging to u € BV (2).
Suppose |Du|(£2) # 0; then, by taking the limit as T — 400 in (5), F'(u)
would be +o00, which contradicts F; (u;) < M. Thus |D|(2) = 0 and then
u€e SBV(Q). m

5 Upper bound

In this last section we conclude the proof of Theorem 3.2. As usual, first we
will take into account a suitable dense subset of SBV(€2): let W(2) be the
space of all functions w € SBV () satisfying the following properties:

) H" (S, \ Su) = 0;

ii) S, is the intersection of Q with the union of a finite member of (n — 1)-
dimensional simplexes;

iii) w e Wke(Q\ S,) for every k € N
where SBV?(Q) = {u € SBV(Q) : |Vu| € L*(Q2), H"'(S,) < +oc}. In [§]
the density property of W(2) in SBV () is proved. More precisely:

Theorem 5.1 Assume that 02 is Lipschitz. Let u € SBV?*(Q) N L*>(Q).
Then there exists a sequence (w;) in W(Q) such that w; — wu strongly in L'(2),
Vw; — Vu strongly in L*(Q,R™), lim sup, ||w;|le < ||u]le and

lim sup pwl wy,vy,)dH < [ plut um,v,) dH
Jj—+oo Sw,; Su
J
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for every upper semicontinuous function ¢ such that ¢(a,b,v) = ¢(b,a, —v)
whenever a,b € R and v € S" 1.

Theorem 5.2 Let u € GSBV(Q); then
F'(u) < / \Vul? de + 2f- o H" 1 (S,).
Q

Proof.  Since the upper I'-limit of F. coincides with the upper I'-limit of the
relaxed functional F., we get F”(u) < limsup,_,, F(u). It can be easily seen
(see [15], Proposition 3.6) that, for £ > 0 fixed, we have

Faw =1 [ 1 (g g el n9)) o )

Step 1. First we consider the case u € W(Q). Let S. = {z € Q : d(x, S,) < e};
then we can split F. as follows:

=1 [ s (e DB D)) do
+§/S £ (m|Du|(BE(x)ﬂQ)) dz.

Since u € WHH(Q\ S.), the first integral becomes

1 1
—/ fe (5][ |Vu|dy) dx < —/f6 (5][ |Vu|dy) dzx.
€ Ja\s. Be(z)NQ € Ja B (2)NQ

Moreover since

f Vuldy — [Vu(z)
B:(z)NQ

a.e. © € Q, by (A2) and from the dominated convergence Theorem (see Re-
mark 3.1) we get

1
—/f6 (6][ \Vu|dy) d:c—>/ |Vul? dx.
€ Ja B.(z)NQ Q

We estimate now the second integral

o (el D) do

Let n > 0 small; by uniform convergence of f. on compact subsets of (0, +00)
and by monotonicity property of f., for e sufficiently small ti holds f.(¢) <
foo +m, for any ¢ > 0. Thus

1 € |SE|
: | (oma e n) as < B s
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Since S, is the union of (n — 1)-dimensional simplexes, by standard results on
Minkowsky content we have |S.|/2e — H""1(S,), and then

|5

—(foo +1) = 2(foe + nH" 1 (Su)-

We conclude by arbitrariness of 7.

Step 2. In the case u € SBV?(Q) N L>(Q) the thesis descends from The-
orem 5.1 and from lower semicontinuity of F”. Finally it is easy to conclude
by truncation arguments and again by lower semicontinuity of F”. m
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