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Abstract. We present three simple regular one-dimensional variational prob-

lems that present the Lavrentiev gap phenomenon, i.e.

inf

Z b

a
L(t, x, ẋ) : x ∈ W1,1

0 (a, b)

ff
< inf

Z b

a
L(t, x, ẋ) : x ∈ W1,∞

0 (a, b)

ff
,

(where W1,p
0 (a, b) denote the usual Sobolev spaces with zero boundary condi-

tions) in which, in the first example, the two infima are actually minima, in the

second example the infimum in W1,∞
0 (a, b) is attained meanwhile the infimum

in W1,1
0 (a, b) is not, and in the third example both infimum are not attained.

We discuss also how to construct energies with gap between any space and

energies with multi-gaps.

1. Introduction. In 1926 M. Lavrentiev [7] published an example of a functional
of the kind ∫ b

a

L(t, x, ẋ)dt,

whose infimum taken over the space of absolutely continuous functions is strictly
lower than the infimum taken over the space of Lipschitzian functions with imposed
boundary conditions. This energy gap is known as the Lavrentiev phenomenon since
then. It is a manifestation of the high sensibility of the variational formulation upon
the set of admissible minima (considering that W1,∞(a, b) is dense in W1,1(a, b)).
The main drawback of this phenomenon is the impossibility of computing the min-
imum by a standard finite-element scheme.

One simple example exhibiting an energy gap is given by the Manià action [9]:

I(x) :=
∫ 1

0

(x3 − t)2ẋ6dt,

with boundary conditions x(0) = 0, x(1) = 1, is such that

0 = inf
{
I : W1,1

∗ (0, 1)
}

= min
{
I : W1,1

∗ (0, 1)
}

< inf
{
I : W1,∞

∗ (0, 1)
}

,

and the infimum on W1,∞
∗ (0, 1) is not attained. Further examples verifying this

phenomenon have been given by several authors: see [4], [10] and references therein.
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In this manuscript, we are mainly interested in provide explicitly for a new simple
and regular variational problem in which, in presence of an energy gap, the infimum
on the Lipschitz function and the infimum on the absolutely continuous functions are
both attained. The motivation behind that is a better knowledge of the Lavrentiev
phenomenon itself and the investigation of its potentialities in modelling any kind
of singular phenomena. We also furnish variational problems where the infima are
attained or not in all the possible combinations.

In section 2, we present our main result. We will prove also the occurrence
of the repulsion property, i.e. the fact that the energy diverges to infinity as we
approximate the absolutely continuous minimum by a Lipschitz function.

In sections 3 and 4, we modify the variational problem we have introduced to
obtain an example where the Lipschitz infima is attained meanwhile the absolutely
continuous one is not and viceversa (as it happens for the Manià’s action [1]), and
an example where both infima are not attained.

In the last section 5, we discuss how to construct energies with gap between
any space and energies with multi-gaps by presenting in detail the case of 2-gaps
Lavrentiev phenomenon.

2. Attained regular and irregular infimum. In Theorem 1, we present a vari-
ational problem where the infimum on the Lipschitz function and the infimum on
the absolutely continuous functions are both attained in presence of the Lavrentiev
phenomenon. In Corollary 1, we prove the same result for a regular Lagrangian. In
Proposition 1, we discuss the repulsion property.

Theorem 1. Let c be any constant in (0, 1/ 3
√

2), let p be any number greater or
equal than 15/2 and set

Ec,p :=
1
cp

(
p− 1
p− 5

)p−1 28

32 · 5 · 7
,

P (t, z) :=
[
1
4
z2 +

(2− c3)(1− t2)
3

z +
(1− c3)(1− t2)2

2

]
z2, (t, z) in [−1, 1]× R.

The action functional I defined by∫ 1

−1

P (t, x3 − (1− t2)) (Ec,p|ẋ|p + 1) dt, (1)

with boundary conditions x(−1) = 0, x(1) = 0, presents the Lavrentiev phenomenon,
i.e.

0 = inf{I(x) : x ∈ W1,1
0 (−1, 1)}

< inf{I(x) : x ∈ W1,∞
0 (−1, 1)} =

2(1− c3)− 1
12

28

32 · 5 · 7
.

Furthermore, defining x̃(t) := 3
√

1− t2 ∈ W1,1
0 (−1, 1) and x̄(t) := 0 ∈ W1,∞

0 (−1, 1),
we have

inf{I(x) : x ∈ W1,1
0 (−1, 1)} = min{I(x) : x ∈ W1,1

0 (−1, 1)} = I(x̃),
inf{I(x) : x ∈ W1,∞

0 (−1, 1)} = min{I(x) : x ∈ W1,∞
0 (−1, 1)} = I(x̄),

and x̃, x̄ are unique.

Proof. Let L be the Lagrange function associated to (1), i.e.

L(t, x, ξ) = P (t, x3 − (1− t2)) (Ec,p|ξ|p + 1) .

The function P (t, z) defined for (t, z) ∈ [−1, 1] × R has exactly the following
extremal points:
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P(t,z)

z0!(1!c  )(1!t  )!(1!t  )2 3 2

Figure 1. The graph of the function P (t, ·).

I. 0 is the global minimum for P (t, ·) and P (t, 0) = 0 (hence, P is non-negative);
II. −(1− t2) is a local minimum for P (t, ·) and

P (t,−(1− t2)) =
2(1− c3)− 1

12
(1− t2)4;

III. −(1− c3)(1− t2) is a local maximum for P (t, ·).
In fact, the derivative of P with respect to z is

Pz(t, z) = z[z + (1− c3)(1− t2)][z + (1− t2)]

and therefore I, II and III follows directly from the assumption c < 1/ 3
√

2 (figure
1).

Part 1. We claim that x̃(t) = 3
√

1− t2 is the only minimum of I in W1,1
0 (−1, 1).

The derivative of x̃ is equal to−(2/3)t/ 3
√

(1− t2)2; since x̃(−1) = 0 and x̃(1) = 0,
we have that x̃ belongs to W1,1

0 (−1, 1) (but x̃ 6∈ W1,∞
0 (−1, 1)). From I, we have

L(t, x, ξ) ≥ 0 and
L(t, x̃, ˙̃x) = P (t, 0)

(
Ec,p| ˙̃x|p + 1

)
= 0.

Therefore, I ≥ 0 and I(x̃) = 0, that implies that x̃ is a minimum.
We conclude that x̃ is the only minimum since, if x̃1 were another minimum, we

would have I(x̃1) = 0 and, by the positivity of the Lagrangian, L(t, x̃1, ˙̃x1) = 0. It
would follow that P (t, x̃3

1−(1−t2)) = 0 that is possible if and only if x̃3
1−(1−t2) = 0,

and, hence, x̃1 = x̃.
Part 2. We claim that x̄(t) = 0 is the only minimum of I in W1,∞

0 (−1, 1).
First of all, observe that

I(x̄) =
∫ 1

−1

P (t,−(1− t2))dt =
2(1− c3)− 1

12
28

32 · 5 · 7
, (2)

since ∫ 1

−1

(1− t2)4dt =
28

32 · 5 · 7
.

The coefficient [2(1− c3)− 1]/12, that we denote by εc, is strictly positive since,
by assumption, c < 1/ 3

√
2.

Let x be any function in W1,∞
0 (−1, 1)\{x̄}. We want to prove that I(x) > I(x̄).

Since x has bounded derivative, x(t) is smaller than the function c 3
√

1− t2 in a
right neighbourhood of −1 and in a left neighbourhood of 1.
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Figure 2. The graph of x(t) intersecting c 3
√

1− t2 and 3
√

1− t2.

Whenever x(t) < c 3
√

1− t2 for any t ∈ (−1, 1), it follows that x(t)3 − (1− t2) <
−(1− c3)(1− t2). By II and III we have

L(t, x, ẋ) > εc(1− t2)4 (Ec,p|ẋ|p + 1) > εc(1− t2)4

and, hence, I(x) > I(x̄).
Otherwise, suppose there exists a ∈ (−1, 0) such that (figure 2){

x(t) < c
3
√

1− t2, t ∈ [−1, a),
x(a) = c

3
√

1− a2;

Observe that, by the symmetries of the Lagrangian, if x(a) = c 3
√

1− a2 with a
in [0, 1), we can refraise the problem in the setting above by the change of variable
t → −t in the integral (1).

By II and III, for any t ∈ (−1, a), we have the estimate

L(t, x, ẋ) > εc(1− t2)4 (Ec,p|ẋ|p + 1) > εc(1− t2)4Ec,p|ẋ|p. (3)

By the Hölder’s inequality, we obtain

c
3
√

1− a2 =
∫ a

−1

ẋdt =
∫ a

−1

ẋ(1− t2)4/p(1− t2)−4/pdt

≤
[∫ a

−1

|ẋ|p(1− t2)4dt

]1/p [∫ a

−1

(1− t2)−4/(p−1)dt

](p−1)/p

≤
[∫ a

−1

|ẋ|p(1− t2)4dt

]1/p [∫ a

−1

(1 + t)−4/(p−1)dt

](p−1)/p

=
[∫ a

−1

|ẋ|p(1− t2)4dt

]1/p [
(1 + a)(p−5)/p

] [
p− 1
p− 5

](p−1)/p

.

It implies, recalling that p ≥ 15/2,∫ a

−1

|ẋ|p(1− t2)4dt ≥ cp(1− a2)p/3(1 + a)−p+5

[
p− 5
p− 1

]p−1

≥ cp

[
p− 5
p− 1

]p−1

(1 + a)−2p/3+5

≥ cp

[
p− 5
p− 1

]p−1

.

(4)

We conclude that

I(x) >

∫ a

−1

L(t, x, ẋ)dt ≥ εc
28

32 · 5 · 7
.
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Since the inequality we have obtained is strict, we infer also the uniqueness of the
minimum.

The occurrence of the Lavrentiev phenomenon follows from

I(x̄) = εc
28

32 · 5 · 7
> 0 = I(x̃).

By the fact that x̄ is actually in C∞0 (−1, 1), we have proved that

I(x̃) = min{I(x) : x ∈ W1,1
0 (−1, 1)} < min{I(x) : x ∈ C∞0 (−1, 1)} = I(x̄).

We wish to point out that, whenever p is an integer number, the Lagrangian
that has been presented is a polynomial of degree 8 in t, 9 in x and p in ξ, with
a minimum degree equal to p = 8 > 15/2. Furthermore, it is convex in ξ, for any
(t, x). Therefore, L(t, x, ξ) is a very regular function, for instance C∞.

By using a general result by P. Lowen [8] (that we state below in Theroem 2
for reader convenience), we can even provide for a coercive polynomial Lagrangian,
strictly convex in ξ, for any (t, x) but (−1, 0) and (1, 0), that verifies the same
statement of Theorem 1.

Corollary 1. Let c, p, Ec,p and P (t, z) as in Theorem 1.
The action functional J defined by∫ 1

−1

P (t, x3 − (1− t2)) (Ec,p|ẋ|p + 1) + [27(1− t2)2ẋ3 + 8t3]2x2dt, (5)

with boundary conditions x(−1) = 0, x(1) = 0, verifies the same statement of
Theorem 1.

Theorem 2 ([8]). Let I be a functional that exhibits the Lavrentiev phenomenon.
Suppose that I ≥ 0 and that there exists a minimizer x̃ with I(x̃) = 0.

Then, for any action P with P ≥ 0 and P(x̃) finite, there exists δ̃ ∈ (0,∞] such
that, for any δ in [0, δ̃), the functional I + δP exhibits the Lavrentiev phenomenon.

Proof of Theorem 2. Let i be the infimum of I on the set of Lipschitz functions.
Setting δ̃ = i/[2P(x̃)], we have, for any δ in [0, δ̃),

I(x̃) + δP(x̃) ≤ i/2,
I(x) + δP(x) ≥ i,

for any Lipschitz function x. Hence, I+δP exhibits the Lavrentiev phenomenon.

Proof of Corollary 1. Let P be the functional given by

P(x) =
∫ 1

−1

[27(1− t2)2ẋ3 + 8t3]2x2dt.

It is non-negative and, recalling that x̃(t) = 3
√

1− t2 and ˙̃x(t) = −(2/3)t/ 3
√

(1− t2)2,
P(x̃) = 0. By Theorem 2, J presents the Lavrentiev phenomenon.

Since J (x̃) = I(x̃) and J (x̄) = I(x̄), the result follows from the fact that

J (x) ≥ I(x),

for any function x.

In the Proposition 1 below, we prove the occurrence of the repulsion property
for the energy I.
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Proposition 1. Let p > 15/2 and {xn}n ⊂ W1,∞
0 (−1, 1) be a sequence such that

xn converges to x̃ almost everywhere in (−1, 1) and I as in Theorem 1.
Then,

I(xn) →∞,

as n tends to ∞.

Proof. Let an ∈ (−1, 0) be defined as in Theorem 1, i.e.{
xn(t) < c

3
√

1− t2, t ∈ [−1, an),
xn(an) = c 3

√
1− a2

n;

By assumption, since xn converges to x̃ almost everywhere in (−1, 1), an converges
to −1.

Recalling the inequalities (3) and (4) in the proof of Theorem 1,

L(t, xn, ẋn) > εc(1− t2)4 (Ec,p|ẋn|p + 1) > εc(1− t2)4Ec,p|ẋn|p

and ∫ a

−1

|ẋn|p(1− t2)4dt ≥ cp(1− a2)p/3(1 + a)−p+5

[
p− 5
p− 1

]p−1

≥ cp

[
p− 5
p− 1

]p−1

(1 + an)−2p/3+5,

we conclude that

I(xn) >

∫ a

−1

L(t, xn, ẋn)dt ≥ εc
28

32 · 5 · 7
1

(1 + an)2p/3−5
→∞,

as n tends to ∞.

3. Attained regular infimum but not attained irregular infimum. We pro-
vide for a coercive Lagrangian, for any (t, x), x 6= 3

√
1− t2, that presents the Lavren-

tiev phenomenon and attains its infimum between the Lipschitz functions but does
not attain its infimum between the absolutely continuous one. More precisely:

Corollary 2. Let c, p, Ec,p and P (t, z) be as in Theorem 1.
The action functional J defined by∫ 1

−1

P (t, x3 − (1− t2)) (Ec,p|ẋ|p + 1) + δ[27(1− t2)2ẋ3 + 16t3]2ẋ2(1− t2)dt, (6)

with boundary conditions x(−1) = 0, x(1) = 0, presents the Lavrentiev phenomenon,
i.e.

0 = inf{J (x) : x ∈ W1,1
0 (−1, 1)}

< inf{J (x) : x ∈ W1,∞
0 (−1, 1)} =

2(1− c3)− 1
12

28

32 · 5 · 7
,

for any non-negative δ such that

δ <
I(x̄)
2P(x̃)

,

where P(x) :=
∫ 1

−1
[27(1− t2)2ẋ3 + 16t3]2ẋ2(1− t2)dt.

Furthermore, x̄(t) = 0 ∈ W1,∞
0 (−1, 1) is such that

inf{J (x) : x ∈ W1,∞
0 (−1, 1)} = min{J (x) : x ∈ W1,∞

0 (−1, 1)} = J (x̄),

x̄ is unique, but J does not admit minimum in W1,1
0 (−1, 1).
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Proof. The functional P is non-negative and, recalling that x̃(t) = 3
√

1− t2 and
˙̃x(t) = −(2/3)t/ 3

√
(1− t2)2,

P(x̃) =
∫ 1

−1

28t8

3
√

1− t2
dt < ∞.

By Theorem 2, J presents the Lavrentiev phenomenon.
Since J (x̄) = I(x̄) and J (x) ≥ I(x), for any function x, we obtain that x̄ is a

minimum for J in W1,∞
0 (−1, 1).

If we prove that the infimum value of J in W1,1
0 (−1, 1) is 0, then J cannot admit

minima in W1,1
0 (−1, 1). In fact, in that case if x̃1 were a minimum, it would follow

that 0 = J (x̃1) ≥ I(x̃1) ≥ 0 and, by the uniqueness of the minimum for I, x̃1 = x̃.
But P(x̃) > 0, that contradicts J (x̃) = 0.

Let us prove that the infimum value of J in W1,1
0 (−1, 1) is 0.

Set ε > 0 and let n be an integer number and −1 + ε = t0 < t1 < · · · < tn = 0
be the partition of the interval [−1 + ε, 0] given by

tk :=

√
1−

[
k

n
+

(
1− k

n

)
3
√

1− (1− ε)2
]3

.

Define xn,ε in W1,1
0 (−1, 1) by

xn,ε(t) :=



3
√

1− t2 , t ∈ [−1,−1 + ε),

max
{

3

√
1− t2k,

2 3
√

1− t2 − k

n
−

(
1− k

n

)
3
√

1− (1− ε)2
}

, t ∈ [tk, tk+1), k = 0, · · · , n,
xn,ε(−t) , t ∈ (0, 1].

One verifies that ‖xn,ε − x̃‖∞ converges to 0, as n converges to ∞.
Since

P(xn,ε) = 2
∫ −1+ε

−1

28t8

3
√

1− t2
dt =: jε,

|ẋn| is uniformly bounded with respect to n in [−1 + ε, 1− ε] and P is continuous,
we have that J (xn,ε) converges to jε, as n converges to ∞.

Observing that jε converges to 0, by a diagonal argument, we can find nε such
that

J (xnε,ε) → 0,

as ε tends to 0.

4. Not attained neither regular nor irregular infimum. We start showing,
in Corollary 3, an example of a coercive Lagrangian for any (t, x), x 6= 3

√
1− t2, that

presents the Lavrentiev phenomenon that admits an absolutely continuous minimum
but does not attain its Lipschitz infimum. We therefore propose, in Corollary 4, an
example of a coercive Lagrangian for any (t, x) but (−1, 0) and (1, 0), that presents
the Lavrentiev phenomenon that does not admit absolutely continuous nor Lipschitz
minima.

Corollary 3. Let c and P (t, z) be as in Theorem 1, p ≥ 15 and

Ec,p :=
2p

c2p

(
p− 1
p− 5

)p−1 28

32 · 5 · 7
.
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The action functional I1 defined by∫ 1

−1

P (t, x3 − (1− t2))
(

Ec,p

∣∣∣∣ẋ2 − c2

2

∣∣∣∣p + 1
)

dt, (7)

with boundary conditions x(−1) = 0, x(1) = 0, presents the Lavrentiev phenomenon,
i.e.

0 = inf{I1(x) : x ∈ W1,1
0 (−1, 1)}

< inf{I1(x) : x ∈ W1,∞
0 (−1, 1)} =

2(1− c3)− 1
12

28

32 · 5 · 7
,

Furthermore, x̃(t) = 3
√

1− t2 ∈ W1,1
0 (−1, 1) is such that

inf{I1(x) : x ∈ W1,1
0 (−1, 1)} = min{I1(x) : x ∈ W1,1

0 (−1, 1)} = I1(x̃),

x̃ is unique, but I1 does not admit minimum in W1,∞
0 (−1, 1).

Proof. The proof proceeds in the same way as in the proof of Theorem 1. We outline
just the main differences.

From Part 1 of Theorem 1, it follows that x̃(t) = 3
√

1− t2 is the only minimum
of I1 in W1,1

0 (−1, 1), I1(x̃) = 0.
Let us prove that the infimum value of I1 in W1,∞

0 (−1, 1) is greater than I(x̄).
Let x be any function in W1,∞

0 (−1, 1) and a be defined as in Part 2 of Theorem
1. We have

c2 3
√

(1 + a)2
(

1− 1
2

3
√

1 + a

)
≤ c2 3

√
(1− a2)2 − c2

2
(1 + a)

=
(∫ a

−1

ẋdt

)2

− c2

2
(1 + a) ≤

∫ a

−1

∣∣∣∣ẋ2 − c2

2

∣∣∣∣ dt.

Then, by proceeding as in (4) Theorem 1, we obtain∫ a

−1

∣∣∣∣ẋ2 − c2

2

∣∣∣∣p (1− t2)4dt ≥ c2p

2p

[
p− 5
p− 1

]p−1

(1 + a)−p/3+5 ≥ c2p

2p

[
p− 5
p− 1

]p−1

.

Using an analogous estimate as (3) Theorem 1, we conclude that

I1(x) >

∫ a

−1

L(t, x, ẋ)dt ≥ εc
28

32 · 5 · 7
= I(x̄).

Let use prove that the infimum value of I1 in W1,∞
0 (−1, 1) is exactly I(x̄).

To this purpose, let n be an integer number and −1 = t0 < t1 < · · · < tn = 1 be
the partition of the interval [−1, 1] given by

tk := −1 + 2
k

n
.

Define x2n in W1,∞
0 (−1, 1) by

x2n(t) :=


c√
2
(t− tk) , t ∈ [tk, tk+1), k even,

− c√
2
(t− tk+1) , t ∈ [tk, tk+1), k odd.

One verifies that ‖x2n − x̄‖∞ converges to 0.
Since ẋ2

2n = c2/2, we conclude that

I1(x2n) =
∫ 1

−1

P (t, x3
2n − (1− t2))dt → I(x̄),

as n tends to ∞.
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We claim that I1 does not admit minima in W1,∞
0 (−1, 1).

In fact, If there exists a minima x̄1 for I1, we would have that I1(x̄1) = I(x̄).
Furthermore, x̄1(t) < c 3

√
1− t2 for any t in (−1, 1), since otherwise I1(x̄1) > I(x̄),

as we have shown above. Hence,∫ 1

−1

P (t,−(1− t2))
∣∣∣∣ ˙̄x2

1 −
c2

2

∣∣∣∣p dt

≤
∫ 1

−1

P (t, x̄3
1 − (1− t2))

(
Ec,p

∣∣∣∣ ˙̄x2
1 −

c2

2

∣∣∣∣p + 1
)
− P (t,−(1− t2))dt

= I1(x̄1)− I(x̄) = 0.

It implies | ˙̄x1| = c/
√

2 and, hence, it would follow I1(x̄1) > I(x̄), in contradiction
with I1(x̄1) = I(x̄).

In the next Corollary, we propose an example of a coercive Lagrangian for any
(t, x) but (−1, 0) and (1, 0), that presents the Lavrentiev phenomenon that does not
admit absolutely continuous nor Lipschitz minima.

Corollary 4. Let c, p, Ec,p and P (t, z) be as in Corollary 3.
The action functional J defined by∫ 1

−1

{
P (t, x3 − (1− t2))

(
Ec,p

∣∣∣∣ẋ2 − c2

2

∣∣∣∣p + 1
)

+δ[27(1− t2)2ẋ3 + 16t3]2
(

ẋ2 − c2

2

)2

(1− t2)2
}

dt,

(8)

with boundary conditions x(−1) = 0, x(1) = 0, presents the Lavrentiev phenomenon,
i.e.

0 = inf{J (x) : x ∈ W1,1
0 (−1, 1)}

< inf{J (x) : x ∈ W1,∞
0 (−1, 1)} =

2(1− c3)− 1
12

28

32 · 5 · 7
,

for any non-negative δ such that

δ <
I(x̄)
2P(x̃)

,

where P(x) :=
∫ 1

−1
[27(1− t2)2ẋ3 + 16t3]2(ẋ2 − c2/2)2(1− t2)2dt.

Furthermore, J does not admit minimum in W1,1
0 (−1, 1) nor in W1,∞

0 (−1, 1).

Proof. The proof is analogous to the one of Corollary 2.
The functional P is non-negative and, recalling that x̃(t) = 3

√
1− t2 and ˙̃x(t) =

−(2/3)t/ 3
√

(1− t2)2,

P(x̃) =
∫ 1

−1

28t6[2/3 + (c2/2) 3
√

(1− t2)4]2

32 3
√

(1− t2)2
dt < ∞.

By Theorem 2, J presents the Lavrentiev phenomenon.
By definition, J (x) ≥ I(x), for any function x.
If we prove that the infimum value of J in W1,∞

0 (−1, 1) is I(x̄), then J cannot
admit minima in W1,∞

0 (−1, 1). In fact, in that case if x̄1 were a minimum for J ,
it would be a minimum also for I1 that contradicts Corollary 3.

Let us prove that the infimum value of J in W1,∞
0 (−1, 1) is I(x̄).
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Let n be an integer number and −1 = t0 < t1 < · · · < tn = 1 be the partition of
the interval [−1, 1] given by

tk := −1 + 2
k

n
.

Define x2n in W1,∞
0 (−1, 1) by

x2n(t) :=


c√
2
(t− tk) , t ∈ [tk, tk+1), k even,

− c√
2
(t− tk+1) , t ∈ [tk, tk+1), k odd.

One verifies that ‖x2n − x̄‖∞ converges to 0.
Since ẋ2

2n = c2/2, we conclude that

I1(x2n) =
∫ 1

−1

P (t, x3
2n − (1− t2))dt → I(x̄),

as n tends to ∞.
If we prove that the infimum value of J in W1,1

0 (−1, 1) is 0, then J cannot admit
minima in W1,1

0 (−1, 1). In fact, in that case if x̃1 were a minimum, it would follow
that 0 = J (x̃1) ≥ I(x̃1) ≥ 0 and, by the uniqueness of the minimum for I, x̃1 = x̃.
But P(x̃) > 0, that contradicts J (x̃) = 0.

Let us prove that the infimum value of J in W1,1
0 (−1, 1) is 0.

Set ε > 0 and let n be an integer number and −1 + ε = t0 < t1 < · · · < tn = 0
be the partition of the interval [−1 + ε, 0] given by

tk :=

√
1−

[
k

n
+

(
1− k

n

)
3
√

1− (1− ε)2
]3

.

Define xn,ε in W1,1
0 (−1, 1) by

xn,ε(t) :=



3
√

1− t2 , t ∈ [−1,−1 + ε),

max
{

c√
2
(t− tk) + 3

√
1− t2k,

2 3
√

1− t2 − k

n
−

(
1− k

n

)
3
√

1− (1− ε)2
}

, t ∈ [tk, tk+1), k = 0, · · · , n,
xn,ε(−t) , t ∈ (0, 1].

One verifies that ‖xn,ε − x̃‖∞ converges to 0, as n converges to ∞.
Since

P(xn,ε) = 2
∫ −1+ε

−1

28t6[2/3 + (c2/2) 3
√

(1− t2)4]2

32 3
√

(1− t2)2
dt =: jε,

|ẋn,ε| is uniformly bounded with respect to n in [−1 + ε, 1− ε] and P is continuous,
we have that J (xn,ε) converges to jε, as n converges to ∞.

Observing that jε converges to 0, by a diagonal argument, we can find nε such
that

J (xnε,ε) → 0,

as ε tends to 0.
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5. Energy gap between any space and multi-gaps. In this last section we
would like to point out briefly how the method we proposed in this manuscript can
be extended to provide energies with gap between any couple of spaces, let us say
W1,h

0 (−1, 1) and W1,k
0 (−1, 1), 1 < h < k < ∞, and how to provide for energies

with multi-gaps, for instance with two gaps, i.e.

min{I(x) : x ∈ W1,h
0 (−1, 1)}

< min{I(x) : x ∈ W1,k
0 (−1, 1)}

< min{I(x) : x ∈ W1,l
0 (−1, 1)},

with 1 < h < k < l < ∞.
In Theorem 3, we state without proof a family of variational problems with gap

in any space. In Theorem 4, we state and prove the 2-gaps Lavrentiev phenomenon
for a family of variational problems.

Theorem 3. Set s := k(h − 1) + h(k − 1) and r := 2(h − 1)(k − 1). Let c be any
constant in (0, 1/ s

√
2), let p be any number greater or equal than (4r + 1)s/(s − r)

and set

Ec,p :=
1
cp

(
p− 1

p− 4r − 1

)p−1 ∫ 1

−1

(1− t2)4r,

P (t, z) :=
[
1
4
z2 +

(2− cs)(1− t2)r

3
z +

(1− cs)(1− t2)2r

2

]
z2, (t, z) in [−1, 1]× R.

The action functional I defined by∫ 1

−1

P (t, xs − (1− t2)r) (Ec,p|ẋ|p + 1) dt, (9)

with boundary conditions x(−1) = 0, x(1) = 0, presents the Lavrentiev phenomenon,
i.e.

0 = inf{I(x) : x ∈ W1,h
0 (−1, 1)}

< inf{I(x) : x ∈ W1,k
0 (−1, 1)} =

2(1− cs)− 1
12

∫ 1

−1

(1− t2)4r.

Furthermore, defining xh(t) := (1 − t2)r/s ∈ W1,h
0 (−1, 1) and xk(t) := 0 ∈

W1,k
0 (−1, 1), we have

inf{I(x) : x ∈ W1,h
0 (−1, 1)} = min{I(x) : x ∈ W1,h

0 (−1, 1)} = I(xh),
inf{I(x) : x ∈ W1,k

0 (−1, 1)} = min{I(x) : x ∈ W1,k
0 (−1, 1)} = I(xk),

and xh, xk are unique.

Theorem 4. Set

r := 4kl(h− 1)(k − 1)
< w := kl[2(h− 1)(k − 1) + k(h− 1) + h(k − 1)]
< s := 2kl[k(h− 1) + h(k − 1)].

Let c be any constant in (0, 1/ s
√

2),

z1(t) := −2s(1− t2)r + (1 + c)s(1− t2)r , z2(t) := −2s(1− t2)r + (1− t2)w,
z3(t) := −2s(1− t2)r + cs(1− t2)w , z4(t) := −2s(1− t2)r,
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and

Q(t, z) :=
z6

6
− z1 + z2 + z3 + z4

5
z5 +

z1z2 + (z1 + z2)(z3 + z4) + z3z4

4
z4+

−z1z2(z3 + z4) + z3z4(z1 + z2)
3

z3 +
z1z2z3z4

2
z2.

Let p be any number greater or equal than (6r + 2w + 1)s/(s− w) and set

Ec,p := max
{

2
c2

,
1

(1− c)2

}
2p

cp

(
p− 1

p− 6r − 2w − 1

)p−1 1
q2

∫ 1

−1

Q(t, z4(t)),

where q2 := min Q(t, z2)/(1− t2)6r > 0.
The action functional I defined by∫ 1

−1

Q(t, xs − 2s(1− t2)r)
[
Ec,p|ẋ|p(xs − (1− t2)w)2 + 1

]
dt, (10)

with boundary conditions x(−1) = 0, x(1) = 0, presents the 2-gaps Lavrentiev
phenomenon, i.e.

inf{I(x) : x ∈ W1,h
0 (−1, 1)}

< inf{I(x) : x ∈ W1,k
0 (−1, 1)}

< inf{I(x) : x ∈ W1,l
0 (−1, 1)}.

Furthermore, defining xh(t) := 2(1− t2)r/s ∈ W1,h
0 (−1, 1), xk(t) := (1− t2)w/s ∈

W1,k
0 (−1, 1) and xl(t) := 0 ∈ W1,l

0 (−1, 1), we have

inf{I(x) : x ∈ W1,h
0 (−1, 1)} = min{I(x) : x ∈ W1,h

0 (−1, 1)} = I(xh),
inf{I(x) : x ∈ W1,k

0 (−1, 1)} = min{I(x) : x ∈ W1,k
0 (−1, 1)} = I(xk),

inf{I(x) : x ∈ W1,l
0 (−1, 1)} = min{I(x) : x ∈ W1,l

0 (−1, 1)} = I(xl),

and xh, xk, xl are unique.

Proof. Let L be the Lagrange function associated to (10), i.e.

L(t, x, ξ) = Q(t, xs − 2s(1− t2)r)
[
Ec,p|ξ|p(xs − (1− t2)w)2 + 1

]
.

The function Q(t, z) defined for (t, z) ∈ [−1, 1] × R has exactly the following
extremal points:

I. 0 is the global minimum for Q(t, ·) and Q(t, 0) = 0 (hence, Q is non-negative);
II. z2, z4 are local minima for Q(t, ·);

III. z1, z3 are local maxima for Q(t, ·).
In fact, the derivative of Q with respect to z is

Qz(t, z) = z(z − z1)(z − z2)(z − z3)(z − z4)

and therefore I, II and III follows directly from the assumption c < 1/ s
√

2 (figure 3).
Part 1. We claim that xh is the only minimum of I in W1,h

0 (−1, 1).
The derivative of xh is equal to −4(r/s)t/(1−t2)(s−r)/s. We have that xh belongs

to W1,h
0 (−1, 1) but xh does not belong to W1,k

0 (−1, 1), by the choice of r and s.
From I, we have

L(t, x, ξ) ≥ 0, Q(t, xs
h − 2s(1− t2)r) = Q(t, 0) = 0.

Therefore, I ≥ 0 and I(xh) = 0, that implies that xh is a minimum.
We conclude that xh is the only minimum since, if yh were another minimum,

we would have I(yh) = 0 and, by the positivity of the Lagrangian, L(t, yh, ẏh) =
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zzz z 1234 z0

Q(t,z)

Figure 3. The graph of the function Q(t, ·).

0. It would follow that Q(t, ys
h − 2s(1 − t2)r) = 0 that is possible if and only if

ys
h − 2s(1− t2)r = 0, and, hence, yh = xh.
Part 2. We claim that xk is the only minimum of I in W1,k

0 (−1, 1).
First of all, observe that

I(xk) =
∫ 1

1

Q(t, (1− t2)w − 2s(1− t2)r)dt =: ik. (11)

The constant ik is strictly positive since, by assumption, c < 1/ s
√

2.
Let x be any function in W1,k

0 (−1, 1)\{xk}. We want to prove that I(x) > I(xk).
By the regularity of x, x(t) is smaller than the function (1 + c)(1 − t2)r/s in a

right neighbourhood of −1 and in a left neighbourhood of 1.
Whenever x(t) < (1 + c)(1 − t2)r/s for any t ∈ (−1, 1), it follows that x(t)s −

2s(1− t2)r < z1(t) = (1 + c)s(1− t2)r − 2s(1− t2)r. By II and III we have

L(t, x, ẋ) > Q(t, (1− t2)w − 2s(1− t2)r)

and, hence, I(x) > I(xk).
Otherwise, suppose there exists a ∈ (−1, 0) such that{

x(t) < (1 + c)(1− t2)r/s, t ∈ [−1, a),
x(a) = (1 + c)(1− a2)r/s;

Let a0 ∈ [−1, a) be such that{
x(t) > (1 + c/2)(1− t2)w/s, t ∈ (a0, a),
x(a0) = (1 + c/2)(1− a2

0)
w/s;

Observe that, by the symmetries of the Lagrangian, if x(a) = (1 + c)(1− a2)r/s

with a in [0, 1), we can refraise the problem in the setting above by the change of
variable t → −t in the integral (10).

By II and III, for any t ∈ (a0, a), we have the estimate

L(t, x, ẋ) > Q(t, (1− t2)w − 2s(1− t2)r)Ec,p|ẋ|p(xs − (1− t2)w)2

> q2
c2

2
Ec,p(1− t2)6r+2w|ẋ|p.
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By the Hölder’s inequality, we obtain
c

2
(1− a2)r/s ≤

∫ a

a0

ẋdt =
∫ a

a0

ẋ(1− t2)(6r+2w)/p(1− t2)−(6r+2w)/pdt

≤
[∫ a

a0

|ẋ|p(1− t2)6r+2wdt

]1/p [∫ a

a0

(1− t2)−(6r+2w)/(p−1)dt

](p−1)/p

≤
[∫ a

a0

|ẋ|p(1− t2)6r+2wdt

]1/p [∫ a

a0

(1 + t)−(6r+2w)/(p−1)dt

](p−1)/p

≤
[∫ a

a0

|ẋ|p(1− t2)6r+2wdt

]1/p [
(1 + a)(p−6r−2w−1)/p

]
×

[
p− 1

p− 6r − 2w − 1

](p−1)/p

.

It implies, recalling that p ≥ (6r + 2w + 1)(1− w/s) > (6r + 2w + 1)(1− r/s),∫ a

a0

|ẋ|p(1− t2)6r+2wdt ≥ cp

2p
(1− a2)pr/s(1 + a)−p+6r+2w+1

[
p− 6r − 2w − 1

p− 1

]p−1

≥ cp

2p

[
p− 6r − 2w − 1

p− 1

]p−1

(1 + a)−p(1−r/s)+6r+2w+1

≥ cp

2p

[
p− 6r − 2w − 1

p− 1

]p−1

.

(12)
We conclude that, by the properties of Q,

I(x) >

∫ a

a0

L(t, x, ẋ)dt ≥
∫ 1

−1

Q(t, z4(t)) > ik.

Since the inequality we have obtained is strict, we infer also the uniqueness of the
minimum.

Part 3. We claim that xl is the only minimum of I in W1,l
0 (−1, 1).

First of all, observe that

I(xl) =
∫ 1

1

Q(t,−2s(1− t2)r)dt =: il. (13)

The constant il is strictly positive since, by assumption, c < 1/ s
√

2, and il > ik by
definition of Q.

Let x be any function in W1,l
0 (−1, 1)\{xl}. We want to prove that I(x) > I(xl).

By the regularity of x, x(t) is smaller than the function c(1 − t2)w/s in a right
neighbourhood of −1 and in a left neighbourhood of 1.

Whenever x(t) < c(1 − t2)w/s for any t ∈ (−1, 1), it follows that x(t)s − 2s(1 −
t2)r < z1(t) = cs(1− t2)w − 2s(1− t2)r. By II and III we have

L(t, x, ẋ) > Q(t,−2s(1− t2)r)

and, hence, I(x) > I(xl).
Otherwise, suppose there exists a ∈ (−1, 0) such that{

x(t) < c(1− t2)w/s, t ∈ [−1, a),
x(a) = c(1− a2)w/s;

Let a0 ∈ [−1, a) be such that{
x(t) > 0, t ∈ (a0, a),
x(a0) = 0;
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Observe that, by the symmetries of the Lagrangian, if x(a) = c(1−a2)w/s with a
in [0, 1), we can refraise the problem in the setting above by the change of variable
t → −t in the integral (10).

By II and III, for any t ∈ (a0, a), we have the estimate

L(t, x, ẋ) > Q(t,−2s(1− t2)r)Ec,p|ẋ|p(xs − (1− t2)w)2

> q4(1− c)2Ec,p(1− t2)6r+2w|ẋ|p,

where q4 := min Q(t, z4)/(1− t2)6r > 0.
By the Hölder’s inequality, we obtain

c(1− a2)w/s =
∫ a

a0

ẋdt =
∫ a

a0

ẋ(1− t2)(6r+2w)/p(1− t2)−(6r+2w)/pdt

≤
[∫ a

a0

|ẋ|p(1− t2)6r+2wdt

]1/p [∫ a

a0

(1− t2)−(6r+2w)/(p−1)dt

](p−1)/p

≤
[∫ a

a0

|ẋ|p(1− t2)6r+2wdt

]1/p [∫ a

a0

(1 + t)−(6r+2w)/(p−1)dt

](p−1)/p

≤
[∫ a

a0

|ẋ|p(1− t2)6r+2wdt

]1/p [
(1 + a)(p−6r−2w−1)/p

]
×

[
p− 1

p− 6r − 2w − 1

](p−1)/p

.

It implies, recalling that p ≥ (6r + 2w + 1)(1− w/s),∫ a

a0

|ẋ|p(1− t2)6r+2wdt ≥ cp(1− a2)pw/s(1 + a)−p+6r+2w+1

[
p− 6r − 2w − 1

p− 1

]p−1

≥ cp

[
p− 6r − 2w − 1

p− 1

]p−1

(1 + a)−p(1−w/s)+6r+2w+1

≥ cp

[
p− 6r − 2w − 1

p− 1

]p−1

.

(14)
We conclude that

I(x) >

∫ a

a0

L(t, x, ẋ)dt ≥ il.

Since the inequality we have obtained is strict, we infer also the uniqueness of the
minimum.

The occurrence of the 2-gaps Lavrentiev phenomenon between W1,h
0 (−1, 1),

W1,k
0 (−1, 1) and W1,l

0 (−1, 1) follows from

I(xl) = il > I(xk) = ik > I(xh) = 0.

We would like to point out that Theorem 4 can be generalized to provide examples
with three or more energy gaps by replacing Q(t, z) by an analogous polynomial
with as many wells as gaps (see figures 1 and 3). In that way, we will need a
polynomial of degree 2× {# of gaps + 1}.

As last remark, we notice that it is possible to perturb the action in Theorem
4, as in Corollary 2, 3 and 4, to obtain variational problems where the infima are
attained or not in all the possible combinations.
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