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INTRODUCTION

Geometric evolution problems for surfaces are a fascinating topic arising from
the study of models in physics and material sciences, usually used in descrip-
tions of phase changes or flows of fluids.

In this work, following [1], we study one of the most recent of such geometric
motions, namely, the modified Mullins—Sekerka flow. Precisely, we say that a flow
of open sets with smooth boundary FE}, contained in an open set {2 C R and
with d(E;,02) > 0 for every ¢ in a time interval [0,7'), is a solution of the
modified Mullins—Sekerka flow with parameter v > 0, if there exists a pair
of continuous functions v, w : [0,7) x Q@ — R such that the following “mixed”
system is satisfied (distributionally),

Vi = [0y, wy] on 0F,,

Awtzo an\8Et, ( )
1

Wt = Ht + 4’)/Ut on 8Et,

—Avy = ug, — foup, dv inQ,

where w; = w(t,-) and v; = v(t,-), the functions v, Hy, V; are respectively,
the “outer” normal, the mean curvature and the outer normal velocity of the
moving boundary 0F;. We set ug, = 2x g, — 1 and [9,,w;] is a notation for the
“jump” of the normal derivative of w; on dF;, that is 8, w;" — 9,,w; , with w;
and w; denoting the restrictions of w; to Q \ E; and FE}, respectively.

We mention that the adjective “modified” comes from the introduction of the
parameter v > 0 in the system (1), while choosing v = 0, we have the original
flow proposed by Mullins and Sekerka in [30].

It follows that defining M; = 0E;, which is a family of smooth hypersurfaces
embedded in (2, we can always describe the evolution, locally in space and time
(and globally if the sets E; have compact closure, see [26]), via some embedding
maps ¢ : M — Q such that ¢, (M) = M,, satisfying the evolution equation

0

asﬁt =Viyy = [&/twt]Vta

where M is a fixed smooth (n — 1)-dimensional differentiable manifold.

As it is, system (1) is clearly undetermined, as the behavior of the functions
wy and vy is not prescribed on the boundary of 2 (and this latter is possibly
not bounded). One possibility to get a well-posed problem (leading to a
satisfactory short time existence and uniqueness result for the flow starting
with any smooth initial set, see [12]) which is actually a parabolic system of
PDEs, with the above parametrization of the evolving surfaces, is to ask that
2 is bounded and that all the functions w; and v; are subject to homogeneous
(zero) Neumann boundary conditions on 9€2. Another possibility, which is the
one we are going to discuss in our thesis, is to assume that Q@ = R™ (hence
0f) = @) and that all the functions and sets involved are periodic with respect
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to the standard lattice Z" of IR". In this case the analysis is clearly equivalent
to “ambient” the problem in the n—-dimensional “flat” torus T" = R"/Z" (that
is, 2 = T"™ in system (1)), making it well-posed.

We will focus on this setting, that we call the “periodic” case and only in
dimension three. Anyway, all the results that we will present can be proved
also in the “Neumann” three—dimensional case (see Section 4.1). Moreover,
it can be shown that in the two—dimensional case the same conclusions hold
analogously, while on the opposite, when the ambient dimension is higher
than three, several questions are still open, up to our knowledge. By sake
of completeness, in the final chapter, we will briefly discuss the “Neumann”
setting and we will state the analogues of the main results in the periodic case.

The Mullins-Sekerka model has been largely studied over the last years
for its importance in the analysis of pattern—forming processes such as the
solidification in pure liquids. In particular, it arises in [25] as a limit of a non-
local version of the Cahn-Hilliard equation, a fourth order partial differential
equation proposed to describe phase separation in diblock copolymer melts
(see [33])-

It is easy to see that the solutions of problem (1) evolve in such a way that
the volume of the sets £, is preserved (while it has been shown in [10] that
convexity is not necessarily maintained, in contrast with the more famous mean
curvature flow, see [26], for instance). This property is not unexpected as the
modified Mullins-Sekerka flow is the H~1/ 2—gradient flow (with a suitable
norm on H~'/2(9F)) of the following “nonlocal Area functional”

J(E) = Agn (9F) + / | G u@us() dedy,

under the constraint that the volume Vol(E) = £"(FE) is fixed, where

A (OF) = / dp
oE

is the Area functional on the boundary hypersurface of the subsets of T" (p is the
“canonical” measure associated to the Riemannian metric on 0F, induced by the
scalar product of R”, which coincides with the (n — 1)-dimensional Hausdorff
measure H" 1) and G is the Green function of T" (see [25], for details). This
means that the velocity V; is minus the gradient of the functional J, hence the
quantity J(E;) can be regarded as a natural “energy”, decresing in time during
the evolution.

We remark that Escher and Nishiura established in [12] a short time existence
and uniqueness result for every smooth initial set £y C T", consequently, the
flow E; exists in some time interval [0, 7). The purpose of this work is to show,
following Acerbi, Fusco, Julin and Morini in [1], that in dimension two and
three, for initial data sufficiently close to a smooth “strictly stable critical” set
E for J (under a volume-constraint), the flow exists for all positive times and
asymptotically “converges” exponentially fast to a “translate” of E. This result
is clearly suggested by the above property of the motion of being a gradient
flow.
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The suitable notions of criticality and stability mentioned above can be
defined in terms of the first and second variation of .J. Precisely, we say that a
smooth subset E C T? is critical for J if for any smooth one—parameter family
of diffeomorphisms ®,, such that Vol(®,(F)) = Vol(E) and Py = Id, we have

< j(@())

=0.
dt

t=0

We will see that this condition is equivalent to the existence of constant A € R
such that
H+4vvg = A on OF,

where H is the mean curvature of 0F and vg is the potential defined as

ve(r) = | Gly)usly)dy,

with G the Green function of the torus T" and ug = x,, — Xyn\ g+

The central notion of stability can be stated for the functional J by studying
its second variation that we will compute in great detail in a more geometric
“spirit” than in the papers in literature. Our first goal, at the end of Chapter 1
will be to describe its connection (which is quite involved) with the behavior
of the nonlocal Area functional (under a volume—constraint) close to a smooth
critical set. In particular, we will see that at a critical set E, it only depends
on the normal component ¢ on JF of the infinitesimal generator of the family
of diffeomorphisms ®; : T — T3, deforming E keeping its volume constant.
This volume constraint on the “admissible” deformations of E implies that
the functions ¢ must have zero integral on JF, hence it is natural to define a
quadratic form I1g on such space of functions which is related to the second
variation of J by the following equality

d2

Mp(p) = —5J(00:(E))

a2 @)

t=0

where @, : T" — T" is a one—parameter family of diffeomorphisms satisfying
Vol(®,(E)) = Vol(E),

0P,

Dy =1 ot
0 d and 5

= vy on JF,
t=0

with vg the outer unit normal vector of 0F.

Because of the translation invariance of the functional J, it is easy to see (by
means of the formula (2)) that the form ITg vanishes on the finite dimensional
vector space given by the functions ¢ = (1, vg), for every vector n € R". Indeed
every ¢ = (1, vg) is the normal component on JF of the infinitesimal generator
of the family of diffeomorphisms of T" which simply translate any point by
the vector 7. We then say that a smooth critical set £ C T" is strictly stable if

HE(QO) >0

for all non—zero functions ¢ : 9E — R, with zero integral and L?-orthogonal
to every function ¢ = (1, vg).
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We underline that the presence of such “natural” degenerate space of the
quadratic form Ilg (or, equivalently, the translation invariance of J) is the main
reason of several technical difficulties in the thesis.

In order to connect this notion to the local behavior of J around a smooth set
F C T", we will say that the set E is “W?2P—close” to F, if for a 6 > 0 “small
enough” we have Vol(EAF) < §, its boundary JF is contained in a suitable
tubular neighborhood of OF and it can be described as

OFE ={y+v¢(y)vr(y) : y € OF}

for some smooth function ¢ : 9F — R with [[¢[[y259r) < 6. That is, the
boundary of E is represented as the “normal graph” on 0F of the function
1, which is clearly a very useful way to transform the problem on sets into a
problem on functions. As we said above, in the last section of Chapter 1, we
will show the result in [2] that any smooth strictly stable critical set £ C T" is
a local minimizer of J under volume constraint (“isolated” up to translation),
among all smooth W?P—close sets F' C T", if p > max{2,n — 1}.

The main purpose of this work is to show that a strictly stable critical set
is “asymptotically stable”. Heuristically, one can think of a system with a
“potential well”, in which the strictly stable set plays the role of the stable
equilibrium configuration (local minimum of the potential energy). Then,
starting close to the stable set, the solutions move back to the equilibrium
(asymptotically). Precisely, we will show the following main result, proved
in [1]. A challenging open problem is generalizing it to arbitrary dimension,
together with establishing a classification of the “periodic” strictly stable smooth
critical sets.

Theorem. Let E C T" be a smooth strictly stable critical set with N, a suitable
tubular neighborhood of E. For every o € (0,1/2) there exists M > 0 such that, if
Ey is a smooth set satisfying

e Vol(Ep) = Vol(E),
e Vol(E)AE) < M,
e the boundary of Ey is contained in N, and can be represented as

Oy = {y + v, (y)ve(y) : y € OE},
for some function g, : OF — R such that |, ||cr.e@r) < M,
. / Vw2 dz < M
']I‘3
where wy = wg, is the function relative to Ey, as in system (1),

then, there exists a unique smooth solution E; of the modified Mullins—Sekerka flow
(with parameter v > 0) starting from Ey, which is defined for all t > 0. Moreover,
E; — E + n exponentially fast in W5/22 as t — +oo, for some n € R®, with the
meaning that the functions 1, ; : OF +n — R representing OF; as “normal graphs”
on OF + 1, that is,

OE, = {y + ¥ye(y)ve+n(y) : y € OF +n},
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satisfy

for every t € [0, +00), for some positive constants C' and .

We remark that the line of proof in [1] that we are going to present, based on
suitable energy identities and compactness arguments to establish this global
existence and exponential stability result, is a new approach to manage the
translation invariance of the functional J, in literature usually dealt with by
means of semigroup techniques.

For the case v = 0, a classification of the stable critical sets has been estab-
lished in [39], they are lamellae, balls, 2—tori or gyroids, hence this theorem can
be applied to all of them. In particular, all the lamellae, balls and 2-tori are
actually strictly stable. On the contrary, for the case v > 0, the “lamellar sets”
are strictly stable if the number of interfaces is larger than some minimum
value k(v) (see [2, 6]), however, a complete classification in this case is still
missing.

Our work is organized in the following way: in Chapter 1 we study the
nonlocal Area functional J and we compute its first and second variation,
then we prove a sufficient condition for the local minimality with respect to
W?2P—perturbations. In Chapter 2 we introduce the modified Mullins-Sekerka
flow and we show its basic properties, leading to the main theorem presented
in Chapter 3. Finally, in the fourth and last chapter, we describe the “Neumann”
case and discuss the classification of the (strictly) stable smooth critical sets,
concluding with the connection of the nonlocal Area functional J with the
so—called Ohta—Kawasaki functional and with a brief overview of some possible
future work.
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and on my future path has been invaluable.

I also wish to thank Professor Nicola Fusco for his precious help with several
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THE NONLOCAL AREA FUNCTIONAL

In this chapter we describe the nonlocal Area functional and its basic properties.
In particular, our main purpose will be to show a sufficient condition for the
W?2P-]ocal minimality.

1.1 NOTATIONS AND PRELIMINARIES

In the following we denote by T" the n—dimensional flat torus of unit volume
which is defined as the quotient of IR with respect to the equivalence relation
x e~y <= v —y € Z" with Z" the standard integer lattice of R". Then, the
functional space W*?(T"), with k € N and p > 1, can be identified with the
subspace of W/Z’Cp(]R”) of functions that are one—periodic with respect to all
coordinate directions. Similarly, C¥<(T"), with a € (0,1), denotes the space
of one-periodic functions in C*%(IR™). Finally, a set £ C T" is of class C* (or
smooth) if its “one-periodic extension” to IR™ is of class C* (or smooth,) which
means that its boundary is locally a graph of a function of class C* around
every point. We will denote with Vol(E) = .¥"(E) the volume of a set £ C T™.
Given a smooth set £ C T", we consider the associated potential

vp(r) = - G(z,y)up(y)dy, (1.1)

where G is the Green function (of the Laplacian) of the torus T" and ug =
Xp — Xqn\ - Precisely, G is the (distributional) solution of

—A,G(z,y) =0,—1 inT", with G(z,y)dx =0, (1.2)
T

for every y € T", where J, denotes the Dirac delta measure at y € T" (the
n—torus T" has unit volume).
By the properties of the Green function, vg is the unique solution of

—Avg =ug—m in T"

/nvE(m)dx:O

where m = Vol(E) — Vol(T" \ E) = 2Vol(E) — 1.

(1.3)

Remark 1.1. By standard elliptic regularity arguments (see [13], for instance),
vp € W2P(T") for all p € [1,+00). More precisely, there exists a constant
C = C(n,p) such that |[vg|w2pn) < C, for all E C T" such that Vol(E) —
Vol(T™\ E) = m.

We can now define the nonlocal Area functional (see [24, 31, 43], for instance).
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Definition 1.2 (Nonlocal Area functional). Given « > 0, the nonlocal Area
functional J is defined as

J(E) = Ara(9E) +~ /T V()P dr, (1.4)

for every smooth set E C T", where the function vg : T" — R is defined by
formulas (1.1)—(1.3) and

A (OF) = / i
oF

is the Area functional (11 is the “canonical” measure associated to the Riemannian
metric on OF, induced by the scalar product of R", which coincides with the
Hausdorff (n — 1)-dimensional measure on 0F).

By the properties of the potential function vr defined by relations (1.3) and
integrating by parts, we obtain the following equalities

| Vus@Pdr= = [ os()ds(e) da
— | vpla) (upe)  m) do
= /n vp(z)up(z) dx
_ / | G y)up(e)un(y) dedy, (1.5)

hence, the functional J can be also written in the following way,

J(E) = A (OF) + ’y/n - G(z,y)up(z)ug(y) dzdy.

1.2 FIRST AND SECOND VARIATION OF THE NONLOCAL AREA FUNC-
TIONAL

We want to compute the first variation of the functional J with respect to
volume-preserving variations.

Definition 1.3. Let £ C T" be a smooth set. We say that a vector field X €
C>°(T";R") is admissible for E if the associated smooth flow ® : (—¢,e) x T" —
T", defined by the system

%%(t,l‘) = X(CI)(t,$)),
O(0,z) ==z

for every z € T" and ¢ € (—¢,¢), for some € > 0, satisfies
Vol(E;) = Vol(E) forallt € (—¢,¢),

where we set E; = (¢, E).
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We immediately see some properties of admissible fields X that we will need
in the following.
Since Vol(E;) = Vol(®(t,E)) = Vol(E) for all ¢ € (—¢,¢), denoting with
J®(t,-) the Jacobian of ®(t, ), by changing variables, we have

d d d
0= gVol(Et) pn / de = i/, JO(t,2z)dz = / —JP(t,2)dz.  (1.6)
As J®(t,z) = det[dD(t, z)], by means of the formula
% det A(t) = det A(t) tr [A71(t) 0 A'(2)], (1.7)
holding for any n x n squared matrix A(¢) dependent on ¢, we obtain

%Jd)(t, 2) = JO(t,2) tr [dD(t,2) " 0 dX (D(t, 2)) 0 dD(t, 2)],

since, by definition of ®, we have

gt D (L, 2)] = d(gt (t.2)) = d[X(@(t.2))] = dX ((1.2)) o db(. 2).

Being the trace of a matrix invariant by conjugation, we conclude

%J@(t 2) = JP(t,2)) tr [dX (P(t,2))] = JP(t,2)) divX(D(t, 2)), (1.8)
hence, by equality (1.6) and the divergence theorem, it follows

0= %Vol(Et) /E divX (D(t, 2))JD(t, =) d= /E A X(z) dr

- / (X|vm,) s, (1.9)
OF:

where vg, is the outer unit normal vector and p; the canonical Riemannian
measure of the smooth hypersurface 0F;.

Hence, if X € C*°(T™;R") is admissible for F, letting ¢t = 0, we have that the
normal component ¢ = (X|vg) of X has zero integral on OE. Conversely, we
have the following lemma whose proof is postponed after Lemma 1.22, since
the arguments are very similar.

Lemma 1.4. Let ¢ : OE — R a C™ function with zero integral. Then, there exists an
admissible vector field X € C*°(T™; R"™) such that ¢ = (X |vg).

We now also compute the expression of the second derivative of the volume
of F;. By means of the previous computations, we have

d2
0=—
dt?

:% /E divX (D(t, 2))JD(t, ) d=
_ /E [(V divX(@(t,2)| X (@(t, 2))) + (divX (@(t, 2))2] J@(1, 2) dz

_ / (Y divX|X) + (divX)?| do
Ey

d
Vol(E;) = pn /E divX dzx
t
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- / div|(divX)X] dz
Ey

= / (X|vg,) divl"X dyy . (1.10)
OF:

By letting ¢ = 0, it follows that for every vector field X € C*°(T";R"™) admissi-
ble for E, there holds

/8E<X|1/E) divl"X dp = 0, (1.11)

where we denoted with div! " the (standard) divergence operator in T" (which
is locally IR™), in order to distinguish it by the (Riemannian) divergence operator
div on the hypersurface 0F (see Appendix A).

Given any vector field X € C*°(T™;R"™) (admissible or not) with associated
flow ® as in Definition 1.3, the first variation of J at E with respect to ® is then
given by

d

*J(Et)‘

dt t=0

We are going to compute the first variation of the nonlocal Area functional
for a “general” (non necessarily volume-preserving) flow ® and we will see
that it depends only on the values of its infinitesimal generator X on 0F, then
we will restrict ourselves only to admissible vector fields X.

Since we will compute the first and the second variation of the Area functional
using “geometric” notations and techniques, we refer to Appendix A for basic
facts about the (Riemannian) geometry of hypersurfaces in R".

In the whole thesis, we will adopt the convention of summing over the repeated
indices. Moreover, when it is clear by the contest, we will write V and div for both
the (Riemannian) gradient/divergence operators on a hypersurface and the standard
gradient/divergence in T", but these latter will be instead denoted with V" and
div!" when they will be computed at a point of a hypersurface, in order to avoid any
possibility of misunderstanding. Finally, in all the estimates of the thesis, the constants
C may vary from a line to another.

Given any smooth immersion of the smooth hypersurface 0F, boundary of a
smooth set F,
Y :0E — R"

we can write the Area functional in the following way, using local charts
(abusing a little the notation)

A ((0F)) = /8Edu = /8E \/det gi;(z) dzx

/9oy
g”_<3$i 3%>

is the pull-back metric on OF via the map .

where
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Theorem 1.5 (First variation of J). Let E C T" a smooth set and ® : (—¢,¢) X
T™ — T"™ a smooth flow generated by a vector field X € C*°(T™;R™). Then,

d d
L JE :—JCDt,E‘ — [ (H+4y0p)(X|vg)d
G| = GI@wE)|_ = [ (4400 (Xlue) d
where v, is the outer unit normal vector and H denotes the mean curvature of
the boundary OF (i.e. the sum of the principal curvatures of OF), while the function

vg : T™ — R is the potential associated to E, defined by formulas (1.1)—(1.3).

Proof. We start by computing the derivative of the Area functional term of J
(see [26], for instance). We let 1, : 0F — T" given by

¢t(‘r) = qD(t’I) ’

forx € OF and t € (—¢,¢), then ¢ (OF) = OF; and 0yt
of OF.

Denoting with g;; = g¢;;(t) the induced metrics (via 1, as above) on the smooth
hypersurfaces 0F; and setting 1)y = ¢» = Id, we have

‘ o= X at every point

0. | _ 9 [0] o

o9, T ot \ow; | 0x; /|,_,
(X | duN | 0X | o
- 8:& 61']' 8.lej 8.%,

L0 |\, D [ | 0%
=g (X |51+ 3y (5 32) 2 O o)

9 v\ | 9 AN £
o (% | g ) + e (x| ) —ont (x| )

aCCj axj
+2hij(X |vE),

where we used the Gauss—Weingarten relations (A.2) in the last step and we
denoted with X; = X — (X|vg)vg the “tangential part” of the vector field X
along the hypersurface OF.
Letting w be the 1-form defined by w(Y) = ¢(X;,Y), this formula can be
rewritten as

0 - &uj &ui

&giﬁ =0 Ox; + Oz,

+ 2F§jwk + 2h;; (Xvg) = Viw; + Vjw; + 2h;; (X|ve),

being ¢ : 0E — T" the inclusion (identity) map of OF.
Hence, by formula (1.7), we get

 Vdet(gij) 995965,
o 2

 det(gij) 97 (Viw; + Vjwi + 2hi(X |vi))
2

= /det(g;;) (divX, + H(X |vg)) . (1.12)

0
& det(gij)

t=0

10
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and we can conclude

0 0
g (e0E)| =5 [ ]
0
g /aEw/det(gij)da: .
0
= /. aw/det(gz’j) . dx

(divX; + H(X |vg))y/det(gij) dw

Il
@\%\@\:

=

(divX; + H(X |vg)) du

= [ HX|ve)dn (1.13)
oF

where in the last step we applied the divergence theorem (see equation (A.1))
In order to compute the derivative of the nonlocal term, in the notations and
definitions of Section 1.1, we set

o(t,z) = vg,(x) = | Gla.y)ug (@) dy= | Glz,y)dy - / Gl(z,y) dy,
T o B¢

where Ef = T" \ E;. Then,

Ci(/qrn [V, (@) dm) ‘t:ﬂ - ccli(/qrn [Vu(t, @) dx) ’t:O

0
=2 - V’UE(J})&VU(L :c)‘t:() dx

0
= 2/n(uE(:c) - m)av(t,x)‘tzo dx,
where in the last equality we used the fact that —Avg = ug —m and we
integrated by parts. Now we note that
0 0 0

and, by a change of variable,

;([Et Gle.y)dy)| = ;([E Gl (1)) (1) dz)|

where J®(t,-) is Jacobian of ®(¢,-). Thus, by definition of ® and formula (1.8),
we obtain

0
([ cwna)|_= [ [v6@onx @)

ot Ey t=0

+ Gz, D(t, 2)) divX (D(t, z))} JO(t,2) dz L:o

= [ (VG| X (0)) + Glay) divX () dy
:/Edivy(G(a:,y)X(y)) dy

=/ Gz, y)(X(y)lve(y)) du(y),

11
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By an analogous computation we get

([ cend) = [ canXuemiae, )

Ef

then, using equalities (1.1) and (1.2), we conclude

% - \Vog, (z) | dz t_0:4/n(UE($) —m) (/aE G(z,y)(X (y)|ve(y)) dﬂ(y)> dz
=1 [ ([, 6w ue(@) - m)de) (X )lvi)) dity)
4 [ op0) (X)) i) (1.16
oF
Combining formulas (1.13) and (1.16), we finally obtain the conclusion. O

By Lemma 1.4, it follows that if a smooth set E satisfies

/ (H+ 4yvp){(X|vE) dp = 0, (1.17)
OF

for all admissible vector field X € C°°(T";R"), then

/ (H+ 4yvp)edp =0
OF

for all ¢ € C*(JE) such that [;, ¢du = 0, which is equivalent to say that
there exists a constant A € R such that

H+4yvg = A on OF.

Remark 1.6. The above property, for instance, is clearly satisfied by a smooth
set £ which is a “minimum” of J under a volume constraint. Then, the
parameter A may be interpreted as a Lagrange multiplier associated with such
constraint. Notice that when v = 0, we recover the classical constant mean
curvature condition for hypersurfaces in R™.

Definition 1.7. We say that a smooth set E C T" is a (volume—constrained)
critical set of J if H 4 4~yvg is constant on OF.

We now compute the second variation of the functional J. Given a smooth
set £ C T" and an admissible vector field X, the second variation of J at E with
respect to the associated flow @ is

d2

@J(Et) o

In the following proposition we calculate the second variation of the Area
functional. Then, we do the same for the nonlocal term and we conclude with
the second variation of the functional J.
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Proposition 1.8 (Second variation of Ay»). Let E C T", X and ® as in Theo-
rem 1.5. Then,

A o8| = [ (9K - (X5

t=0

+/ H(H(X\Z/E>2—|—<Z|Z/E)—2<XT\V<X|VE>>+B(XT,XT)> du
OF

where X; = X — (X|vg)vg is the tangential part of X on OF, B is the second
fundamental form of OF and

0? 0
Z = @QJ(O,) 8tX(d>( 1) = dX(X).
Proof. We let ¢, = ®(t,-)|sr as in Theorem 1.5 where we showed that
d
o Vdet gij do = / H(X|vg,) du,
dt Jom, O,
where H is the mean curvature of J0F;. Consequently, we have
d? d
—5A(OE}) = — H(X|vg,)+/det g;j dx
dt =0 4t Jom, t=0

In order to simplify the notation we put v = vg, and ¢ = (X|vg,), moreover
we drop the subscript ¢ in 9, that is, we write simply . To conclude we need
to calculate the following derivatives

OH
5t i (1.18)
Ip
e » (1.19)
0
En det 9i |, (1.20)

We start calculating the derivative (1.20). Note that (arguing as in Theorem 1.5),

= [divX; + Hyp|/det g;; .

hence, the contribution of the term (1.20) to the second variation is given by

det g”

0
ot
/ (pHdivX, + ¢*H?) du

OF

ov
+(x[3)
=G| (=5

_o Is tangent to OE, we obtain

ov - oY |ov
875>t:o_X <8xp 8t>

Now we can calculate

9
ot

_ o Xy)
—o ot

t=0

and using the fact that 2

S

a |1

_ < X,
t=0

)

=0

13
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where in the last inequality we use the notation X, = X7 g—;/;. Note that,

<3 |v) =0foreverype{l,...,n—1} and t € (—¢,¢), hence,
2B ()
Ot \Ozp Oxp | Ot
0 v
- - (s| 2+ (23]
Oy v
_aixp < 6xp> < pa>

=0

_ %o _ 9

Oz (%sq 3:Jcp Oz o

_ 9% xa W v

- oz T 6acp ot o
_ 9% x4 |
= o, w9 gq’+<axp 8t> o

and we can conclude that

oY |Ov Op
= XZh
<8:Up 0t> 0 Oz, + P
So we obtain the following identity
dp 0X oY | Ov
— X
ot |,_, <8t >t_0+ T<a 8t> B

d¢
= (2lv) - 5 X0+ XEXhy,
= (Z|v) — (X-|V(X|v)) + B(X;, X7)
and the contribution of the term (1.19) is

[ ((z) - (9 X)) + B X)) dn
oF

Now we conclude calculating the term (1.18). To this aim, note that

H:—< 0%y 1/>gij

8:@81']'
hence, we need to calculate the following terms

g
ot
0%
8x,~8xj
2 P
875 aLL‘ZafL' yi

(1.21)
t=0

)
')

(1.22)

t=0

(1.23)

t=0

14
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We start with the term (1.21).

8%
ot

= Viw; + Vjw; + 2h;; (X’V>
t=0

where w = X?. Using the fact that g;;¢g’* = 0, we obtain

89“ g]k " 8gjkt
0= 87;] tzo + gij ot - = gj (viwj + vjwi + 2hij<X‘V>>+gZ] ot o
then,
dgP* i ik k k k
T =g (Vs + Vi + 2hi5 (X ) ) = ~VPXE = VX2 — 207k,
=0

We proceed with the calculation of the term (1.22)

82¢ @ aw ov
8.%‘8.73]' ot oxy ot

Oxy,
and we conclude by calculating the term (1.23),

<8 9 > < 02X > <82(gou) > < 0?X,
14 = 1 = v + -
8.7}1'(9.%']' =0 83:,8% 8.%',81‘3

aaxza%
2 2 2
8(@1/)V:8<p+ auyw
8.1‘10563 83018:5] 827@6.%]
— 8280 9 lp 877[)
= dwoz; <8x (hag™ 5, ) |
2 2
0 + hjlglp< o

- 8$18$] 856,8‘%] v
2

0
= 7 + (Phjlglphip

8$iaxj

N\ 0X,| ov
o 0X,
< xw )5
0?1 /90X,
axz 8%83::,, Ox;j
0X,| ov

— _ =2 (xPpp N_ [ 2T
8:% (XThpj) <8x3 (9£CZ>

0 o
_ vy N_ | L (xrZY
Z; (X2h35) < Oz, (XT 8a:p)

J
B 5%

e — Xp . _XP
] Thp]) T<axjaxp

o
ox

Oy

— 1 (-
t=0

+ XZhgr)

t=0

Then,

Ve

ov
8:131'

ov
89@-

ov
ov oxX? / oy
3$i> O <3~’Ep

oxt jow
856, Oxj \Oxp

ov
ov
ox; >

= —— (XPhy;)—XPr* <

15
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0 i ! o0XP !
= o (XPhys) = XPT3 hirg T grg — e, hig' gpq
o) k oxk
Hence,
OH o 0% O
— | = —2hy;VIXI —2XW)|B|? - g7 —— + gUTE =
ot —0 v T < |V>| | g 8$261‘J g i 8$k

g 0
+BIX ) = gV Tihig X7 + g7 5
2

(XPhy) + hijV' X]

— — [BIXIY) — iy Vixd = Mg + g [ o7 (X2hyy) ~Th (X210 )]

= — ¢|B]* = Ap — hij VXL + gVV,;(XPhy,)

= —¢|B = Dp — hij V' X + div(XPhy,)

— B~ Ap+ (X,|divB)

— — ¢|B]? — Ap + (X,|VH).

(1.24)

where in the last equality we used the Codazzi equations (A.3). We conclude
that the contribution of the term (1.18) is then

o= elBE - 8p + (X, VED) dp

OF

Putting all these computations together, we can finally get the second variation
of the Area functional,

d2
A (OF)

= / [*@Aso — @*|B]* + o(X-|VH) + pHdivX, + ¢*H?
t=0 OE
+H((Zly) = (X: V) + B(Xr, X,)) | du
Integrating by parts we obtain

| oAV =~ [ [BOCIV) + Hpdivy,] du
OF OF

and we can conclude

d2
A @E)| = [ (196 - Bl + 1
t=0 oF
+H((Z]y) = 2X V) + B(Xr, X,)) | dp
which is the formula we wanted to get. O

Proposition 1.9 (Second variation of the nonlocal term of J). Let E C T", X
and @ as in Theorem 1.5. Then, defining

N@:/Jwﬂuwm.

16
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where vg, : T" — R is the function defined by formulas (1.1)—(1.3), the following
identity holds

N"(0) =8 /a |G (X)Xt d(z) duto)
+4 /BE div! (vp X ) (X |v) du,

which gives the second variation of the nonlocal term of J.

Proof. We start noticing that, recalling the notations and definitions of Sec-
tion 1.1, the function N (¢) can be written as

N(t) = /nv(t,x)u(t,x) dx

with v(t, 2) = v, (z) and u(t,r) = ug, (r) = x,, — X Hence,

:(/Et—/tc)v(t,x)d:c:</E—/c)v(t,@(t,z))JCD(t,z) dz

where we used (here and in the rest of the proof) the symbol ( Ji— Ac) fdx to
denote the difference of the integrals of a common function f : T" — R on a
set A C T™ and on its complement A° = T" \ A.

The first derivative of N, by definition of ® and formula (1.8), is given by

N'(1) :(/E—/) [(To(t, (1. 2)) X (@(1,2))) (. 2)

o ®(12) (1 2) + 0(t, D(1,2) © JD(1,2)] dz

ot
—( /E _ / [ (Tolt.@(t,2) X (0(22))) + vt (2, 2))

ot d(t, 2)) divX (D(t, z))} JO(t,2) dz

:(/Et —/c> [(Vv(t,x)\X(m)) + v (t, ) + v(t, ) divX(x)} dx

we have

2 2
where v; = 2 5¢+ Then, lettmgvl—ax,viza‘?TZiandvij—axx ,

N (¢ / / v (1, D (8, 2)) X (D(t, 2)) X7 (DL, 2)) + v, D, 2))
+ 20(t, D, z))X’(CID(t 2)

2 (@(t,2) X (@1, 2))

+ v; (t, P(t, 2) o
J

)
+ 20 (t, D(t, 2)) divX (P(t, 2))
+o(t, ®(t, 2))[divX (D(t, 2))]
+20; (8, D(t, 2)) X (D(t, 2)) divX (P(t, 2))
(

+ 0t (t, 2))(V divX (D(t, 2))| X (D(t, 2))) | J(1, 2) d=

17
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hence,

N0 =( [ = [ ) [650.0)X @)X (@) + 0u(0.2) + 204(0.) X (2)

+v;(0, z) (?;: (2) X7 (2) + 204(0, ) divX ()

+0(0, z) [divX ()]

+20;(0, 2) X" (x) divX (z) + v(0,2)(V diVX(I)|X(JJ)>] dx
(1.25)

Now, by equations (1.14)—(1.15), there holds

v (0, ) =2 - G(z,y) (X (y)lve(y)) du(y). (1.26)

By means of this equality, the third and fifth term of equation (1.25) become
2(/ - / 043(0,2) X () + (0, z) divX(x)} dz
E c

_2/ /cdlvvtOx X(2)) da

=4[ (0.2)(X(@)lvs(a)) du(a)
=5 [ [ 6lay)(X@)vp@) (X@ls) datz)du(y)
oE JOE
where we applied the divergence theorem.
We then notice that

oX?

div[(Vv(O,x)\X(x))X(m)] :vij(O,az)Xi(:r)Xj(x) +v;(0, ) 5 (z) X7 (x)

+0;(0,2) X" (z) divX (z)

hence, the sum of the first, fourth and half of the seventh term of equation (1.25)
is given by

2 / (VT () | X (2)) (X ()| () da(),
oF

by the divergence theorem.
From the equality

div[v(0,z) (divX (z)) X (z)] =v;(0,2) X" (x) divX (z) + v(0,2)(V divX (z)| X (z))
+0(0,2) [divX (z))?,

we see that the sixth, the other half of the seventh and the last term of equa-
tion (1.25) add up to

2 [ () div"X () (X (@) () i)
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by the divergence theorem again.
Putting all these terms together, we can write

N"(0) =8 /8 | G (X @l @) (X @)l () dita)auts)
+2 /8 V() X () (X (@) () (o)
49 /8 up(a) A" X () (X (@)l (0)) i)

+</E—/Ec)vtt(0,x)dx

so, it remains to deal with the term ([, — [.)vi(2,0) dz. To this aim, by
equation (1.14), it follows

// [(V,G (. (1.2))| X (@(1.2)))

+ Gz, ®(t, 2)) divX (D(t, ))}J':D(t,z)dz,

changing variables as before. Then, writing simply ® for ®(¢, z) in the next
formulas,

Using the divergence theorem and interchanging the order of integration, we

get
(o J )
([E_/ )/aEdiij/n[G(x )X ()IX (Y)lve(y)) dpy)de
:2/8E< y)|ve(y le / G
(v

=2/8< () v (y)) div" [up(y) X >Jdu<>,

l\)

19
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by the symmetry of the Green function.
Hence, we conclude

N =8 [ [ Gl (X (@) e @)X W)l w) du@)da(y)
oOF JOFE
+2 /8 (VT () X (2)) (X () () (o)
+2 /8 op(a) VX (@) (X (0)lv(2) d(z)
+2 /8 A up (@) X () (X @)lvs(2) d(z)
s /8 |G (X @le@) (X 1) () dila) )
+4 /8 A" [up (@) X () (X @)lv(2)) d(e)

and we are done. O

Putting together Propositions 1.8 and 1.9, we then obtain the second variation
of the nonlocal Area functional J.

Theorem 1.10 (Second variation of J). Let £ C T", X, X., ® and vg as in
Theorem 1.5 and Propositions 1.8, 1.9. Then,

d2
@J(Et)

2

d
=—J(P(t, F
dtQ ( (7 )

_ /aE(|V<X|yE>|2— (XIve)?|BI) dy

t=0 t

+87/8E /aE G(z,y) (X |ve(2))(X|ve(y)) du(z) du(y)

+ 47/ dypve(X|vp)?du+ R,
oE
where the “remainder term” R is defined as

R = / (H + 4yvg)(X|ve) divl "X dyu — / (H+ 4vyvg) div((X|vg) X7 ) dp.
OF oF
(1.27)
Moreover, if E is a smooth volume—constrained critical set for J, then the remainder

term R is zero and the second variation of J at E only depends on the normal component
of X on OF, that is, on (X |vg).
Proof. In Propositions 1.8 and 1.9 we showed that

d2

@Aﬂ% (8Et)

~ [ (IVXlo)l? - (Xlvw)? BE) du
t=0 OB (1.28)
# [ (HOX + (Zloe) 20X 9 (X D) + B, X)) d

OF

and
G venPan| =5 [ ] Gla) (Xlvs(@)) (Xl () dita) )

+4 divl " (vp X ) (X|vE) du. (1.29)
oF

20
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We now claim that

H(X|vp)? + (Z|ve) — 2(X;|V{X|vg)) + B(X:, X;)
= (X|vg)divl" X — div((X|ve)X,). (1.30)

We notice that, being every derivative of vg a tangent vector field,

(XA V(X|ve) = (veldX (X-)) + (X(X-|Vvg))
= (vpldX (X7)) + (X [(X7[VvE))
= (vpldX(X;)) + B(X;, X;).

Therefore, recalling that Z = dX (X), we have

H(X|vp)® + (Z|ve) — 2(X:|V{X|vg)) + B(X;|X7)

H(X|vg)® + (vBldX (X)) — (X:|V(X|vE)) — (vEldX (X-))
H(X|vp)® + (vpldX ((X|ve)ve)) — (X-|V(X|vE)
H

(X|ve)2+ (X|ve)veldX (ve)) + (X|vg) divX, — div((X|vg) X, ).

Now we notice that, choosing an orthonormal basis ey, ..., e,—1,€e, = vg of R"
at a point x € OF and letting X = X ie;, we have

(ei| VXY = (e VX! — (VX' |vp)vg) = divl" X — (vp|dX (vg))

where the symbol " denotes the projection on the tangent space to 9 E. Moreover,
if we choose a local parametrizazion of JF such that g—i(x) = ¢;, for i €

{1,...,n—1}, at x € OE we have ¢’ :‘%Z:gij:&j and

(el VIXT) = (| VIX7) + (el VI (X [ve)vp))
= (] [VX7) + (X|vp)(e] [VVp)

A oYl 00
T 7 s

- <el |VX’T> + <X|Z/E> 8:(}1 h]lg axs
=V, X!+ (X|vg)hi

=divX; + (X|vg)H
where we used the Gauss—Weingarten relations (A.2) and the fact that the
covariant derivative of a vector field along a hypersurface of R" can be obtained
by differentiating in Euclidean coordinates (a local extension of) the vector field

and projecting the result on the tangent space to the hypersurface (see [16], for
instance). Hence, we get

(wpldX (ve)) = divl" X — (e;| V'X?) = divl" X — divX, — (X|vp)H
and it follows

H(X|vp)® + (Z|vp) — 2(X-|V(X|vE)) + B(Xr, X;)
= (X|vg)divl" X — div((X|ve)X;)

21
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which is equation (1.30).
We then see that

/ dian(vEX)<X]1/E>dM:/ (V0| X)) (X|vE) d,u—l—/ vp divl X (X |vg) du

OF OF OF

= / Oypve(X|vE)? du + / (Vop| X (X |vg) du + / vp divl X /(X |vg) du
oF oF oF

- / Dvpve(X|vE)? du — / vp div((X|ve)X;) du + / v divl" X (X |vg) du
OE OE OE
where in the last equality we integrated by parts. Thus, the formula in the state-
ment of the theorem follows from this computation and equations (1.28), (1.29)
and (1.30).
Now we prove that the remainder R in formula (1.27) is zero when the

smooth set E is a volume—constrained critical set for J.
By the criticality condition (1.17), the remainder R is equal to

R = )\/ (X|vg) divl"X dy — )\/ div((X|vg)X;) dp.
OF OF
for some constant A € R. Then, the first integral is zero by equation (1.11), as
the vector field X is admissible for E' and the second one is also zero by the
divergence theorem (A.1). O

Remark 1.11. We note that if we have a critical set £ for the unconstrained
functional J, hence H + 4yvg = 0 on OF, the remainder term is clearly zero
and the second variation of J has the same form as in the constrained case.

By Theorem 1.10, the second variation of J at a critical smooth set E is a
quadratic form depending only on the normal component of X € C*(T";R")
on JF, that is, on ¢ = (X|vg). This and the fact that the admissible vector
fields X € C°°(T™;R™) are in a way “characterized” by having zero integral of
such normal component (see the discussion at the beginning of this section and
Lemma 1.4), motivate the following definition.

Definition 1.12. Given any smooth open set E C T" we define the space of
(Sobolev) functions (see [5])

Itll(é?E):{ap:aE%lR:goeHl(aE) and god,uzO},

oF

and the quadratic form ITg : H'(9E) — R as
Ip(p) = / (Vo2 = &*BP) du
OF
+ 87/ / Gz, y)p(x)e(y) du(z) du(y)
oE JoE

+47/ Oypvpe” dit. (1.31)
oF

22
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Remark 1.13. Letting for o € H'(9E),

ve(z) = | G(z,9)e(y) duly),
oF

it follows (from the properties of the Green’s function) that v,, satisfies distribu-
tionally —Av, = pu in T, indeed,

/ (Vo (z)|Vip(z)) do = —/ v () A (x) da
" ™"
= o ], G @ vew)dv(z) duly)de
= [ o) [ Gwpai@) dzduy)
oF "
:—/)ﬂw/ZW@WWWMMMW
OF "
= | o)~ [ v de]auty
— [ o) duty).
OF
for all ¢y € C*°(T"), as [, »(y) duu(y) = 0. Therefore, taking 1) = v,,, we have
L vee@Rae= | o), duty).
hence, the following identity holds

/ Gz, y)p(x)py) du(z)dp(y) = / () v (y) duly) = / Vo (2)[2dz,
OF JOFE oF T

and we can write

Hﬂ@z/(ww—ﬁﬂﬂw+w/IWﬁﬂ%M/é%wﬁw,
oF T oF

N (1.32)
for every p € H'(OE).

Remark 1.14. If E is a smooth critical set and X is an admissible vector field
for E with associate flow @, then

d

4 rmy) :/ (X|vp) dp = 0
dt o Jom
and
d2
@J(Et) = p((X[ve)).
t=0

We observe that, by the translation invariance of the functional .J, the constant
vector field X = n € R" is clearly admissible, as the associated flow is given by
®(t,x) = x +tn, then J(E;) = J(E) and

d2

OZW

J(Ey)

t=0
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that is, the form Il is zero on the vector subspace
T(OE) = {(njvg) : n € R"} C H'(IE).
of dimension less or equal than n. We can then split
HY(OE) =T(0E) ® T+(dE) , (1.33)

where TH(OE) C H'(JE) is the vector subspace L?-orthogonal to T(E) (with
respect to the measure ;1 on OF), that is,

Ti(ﬁE):{apeffl(aE) : /8EcpuEd,u:0}
:{¢€H1(8E):/ pdp =0 and/ gpuEd,u:O}
oF oF

and define the following “stability” conditions.

Definition 1.15 (Stability). We say that a critical set £ C T" is stable if

Ip(e) >0  forall p € H(JE)

and strictly stable if

Ig(e) >0  forall p € TH(OE)\ {0}.

Remark 1.16. We observe that there exists an orthonormal frame {ey,...,¢e,}
of R" such that

| weleawslesydn =0, (139
OF

for all i # j, indeed, considering the symmetric n x n-matrix A = (a;;) with
components a;; = [, vy, du, where vy, = (vple;) for some basis {e1,...,e,}
of R", we have

| (0vg)i(0ve);du = (0407,
oF

for every O € SO(n). Choosing O such that OAO~! is diagonal and setting
e; = O~ l¢g;, relations (1.34) are clearly satisfied.

Hence, the functions (vg|e;) which are not identically zero are an orthogonal
basis of T'(OF). We set

Ip ={ie{l,...,n} : (vgle;) is not identically zero}

and
Op = Span{e; : i € Ig}, (1.35)

then, given any ¢ € H'(9E), its projection on T (9E) is

vple)d
Z Jop $lvEle:) P luples) . (1.36)

i€ly || VE|61 HLQ (9E)
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1.3 STABILITY AND W?P—LOCAL MINIMALITY

From now on we will make a large use of Sobolev spaces on smooth hypersurfaces. Most
of their properties hold as in IR™, standard references are [3] in the Euclidean space and
the book [5] when the ambient is a manifold.

Given a smooth set £ C T", for ¢ > 0 small enough, we let (d is the
“Euclidean” distance on T")

N.={ze€T": d(z,0FE) < ¢} (1.37)

to be a tubular neighborhood of OF such that the orthogonal projection map g :
N, — OF giving the (unique) closest point on OF and the signed distance function
dg : N: — R from 0F

i) = {d(x,aE) ifx ¢ E (1.39)

—d(z,0F) ifz € FE

are well defined and smooth in V.. Moreover, for every x € N., the projection
map is given explicitly by

7p(z) =z — Vda(x)/2 = . — dp(2)Vdr(z) (1.39)

and the unit vector Vdg(z) is orthogonal to OF at the point 7g(x) € JF, indeed
actually Vdg(z) = Vdg(rg(z)) = vg(rg(z)), which means that the integral
curves of the vector field Vdg are straight segments orthogonal to OF.

This clearly implies that the map

OF x (_575) 2 (yvt) = L(yat) = y+tVdE(y) =Y +tVE(y) € N: (1-40)
is a smooth diffeomorphism with inverse
N.>z— L7 z) = (np(x),dp(x)) € OF x (—¢,¢),

moreover, denoting with JL its (partial and relative to the hypersurface 0F)
Jacobian, there holds
0<Cy <JL(y,t) <Cy

on JF x (—¢,¢), for a couple of constants C, Cs, depending on E and ¢ (for a
proof of the existence of such tubular neighborhood and of these properties,
see [27] for instance).

By means of such tubular neighborhood of a smooth set £ C T" and the
map L, we can speak of “W*P—closedness” (or “C*®-closedness”) to E of
another smooth set /' C T", asking that for some § > 0 “small enough”, we
have Vol(EAF) < § and that OF is contained in a tubular neighbourhood N
of E, as above, described by

OF ={y+4¥(y)ve(y) : y € 0L},

for a smooth function ¢ : 0E — R with [[¢[|yrr9g) < 6 (resp. [[¥]lcreaam) < 9).

That is, we are asking that the two sets E' and F' differ by a set of small measure
and that their boundaries are “close” in W*P (or C*).
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1.3 STABILITY AND W2P—-LOCAL MINIMALITY

Notice that clearly
W(y) =m0 LY OEN{y+ \vp(y) : A€ R}),

where 7 : OF x (—¢,¢) — R is the projection on the second factor.

Moreover, given a sequence of smooth sets F; C T", we will write F; — E in
Whkp (resp. Ck) if for every ¢ > 0, there hold Vol(F,AE) < §, the smooth
boundary OF; is contained in N, and it is described by

OF; = {y +vi(y)ve(y) : y € OF},

for a smooth function ¢; : 9E — R with [|[¢;|yr.rag) < 0 (resp. |[¥illcra@ar) <
9), for every i € IN large enough.

From now on, in all the rest of the thesis, we will refer to the volume—constrained
nonlocal Area functional J, sometimes without underlining the presence of such
constraint, by simplicity. Morever, with N, we will always denote a suitable tubular
neighbourhood of a smooth set, with the above properties.

Definition 1.17. We say that a smooth set £ C T" is a local minimizer for the
functional J if there exists 6 > 0 such that

J(F) = J(E)

for all smooth sets F' C T™ with Vol(E) = Vol(F') and Vol(EAF) < 4.
We say that a smooth set £ C T" is a W2P—Jocal minimizer if there exists § > 0
such that

J(F) > J(E)

for all F C T™ with Vol(E) = Vol(F), Vol(EAF) < §, moreover OF is con-
tained in a tubular neighbourhood N. of E, as above and it is described by

oF ={y+v¢(y)ve(y) : y € OE},
for a smooth function ¢ : 9E — R with [|[¢)[[yy25(55) < 6.

We immediately see a necessary condition for local minimizers. Notice that a
local minimizer is clearly also a W2P-local minimizer.

Proposition 1.18. Let the smooth set E C T"™ be a local minimizer of J, then E is a
critical set and
IIg(e) >0 forall p € H'(OF),

in particular E is stable.

Proof. If E is a local minimizer of J, for any admissible vector field X €
C*°(T";R"™) with associated flow ®, we have Vol(E;) = Vol(®(¢, E)) = Vol(E)
and for every § > 0, there clearly exists € > 0 such that for t € (—&,&) we have

Vol(EAE,) < 6.

and
OF; = {y +¢(y)ve(y) : y € OE} C N.
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1.3 STABILITY AND W2P—-LOCAL MINIMALITY

for a smooth function ¢ : 0 — R with [|¢)||yy2.0(9g) < 6. Hence, the W2P—]ocal
minimality of £ implies
J(E) < J(Er),

for every ¢ € (—¢,€). Thus,

d
0=—"J(E
dt(t)

— [ aup) X di,
t=0 OF

by Theorem 1.5, which implies that E is a critical set, by the subsequent

discussion and )

d
0< @J (E})
by Theorem 1.10 and Remark 1.14.
Since by Lemma 1.4, for every smooth function ¢ : 0FE — R with zero integral
there exists an admissible vector field X € C°°(T™;R") such that ¢ = (X|vg),
we conclude that ITg () > 0 for every ¢ € C®(9E) N H*(JE), then the thesis
follows by the density of this space in H'(DE) (see [5]). O

=p((X|vEe)),
t=0

The rest of this section will be devoted to show that the strict stability (see
Definition 1.15) is a sufficient condition for the W2 —-local minimality. Precisely,
we will prove the following main theorem of this chapter.

Theorem 1.19 (W?P-local minimality). Let p > max{2,n — 1} and E C T" a
smooth strictly stable critical set for the nonlocal Area functional J (under a vol-
ume constraint), as in Definition 1.15, with N, a tubular neighbourhood of E as in
formula (1.37). Then there exist constants 6, C > 0 such that

J(F) > J(E) + Cla(B, F)]?,

for all smooth sets F C T™ such that Vol(F) = Vol(E), Vol(FAE) < §, 0F C N,
and

OF ={y+v¢(y)ve(y) : y € OF},
for a smooth 1) with |||y oE) < 0, where the “distance” o(E, F') is defined as

a(E,F) = min Vol(EA(F +1)).
nER™
As a consequence, E is a W*P-local minimizer of J. Moreover, if F is W?P—close
enough to E and J(F) = J(E), then F is a translate of E, that is E is locally the
unique W*P-local minimizer, up to translations.

Remark 1.20. We could have introduced the definitions of strict local minimizer
or strict W*P-local minimizer for the nonlocal Area functional, by asking that
the inequalities J(F') < J(E) in Definition 1.17 are equalities if and only if F is
a translate of E. With such notion, the conclusion of this theorem is that E is
actually a strict W?P-local minimizer.

Remark 1.21. With some extra effort, it can be proved that in the same hypothe-
ses of Theorem 1.19, the set I is actually a local minimizer (see [2]). Since in
the analysis of the modified Mullins—Sekerka flow in the next chapter we do
not need such stronger result, we omitted its proof.
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1.3 STABILITY AND W2P—-LOCAL MINIMALITY

We postpone the proof of this result after showing some technical lemmas. We
underline that most of the difficulties are due to the presence of the degeneracy
subspace T(0F) of the form Ilg (that is, where it is zero), related to the
translation invariance of the nonlocal Area functional (recall the discussion
after Definition 1.12).

In the next key lemma we are going to show how to construct admissible
smooth vector fields for a smooth set E, “related” to smooth sets which are W ?2P—
close to it. By the same technique we then also prove Lemma 1.4 immediately
after, whose proof was postponed from Section 1.2.

Lemma 1.22. Let E C T" be a smooth set and N, a tubular neighborhood of OF as
above, in formula (1.37). For all p > n — 1, there exist constants §,C' > 0 such that if
Y € C°(OF) and ||¢|lw2r(am) < 0, then there exists a vector field X € C>°(T";R"™)
with divX = 0 in N, and the associated flow P satisfies

O(L,y) =y +¢yvely),  forallycJE. (1.41)

Moreover, for every t € [0, 1]

(¢, ) = Idllw2rar) < Clbllwerom) - (1.42)

Finally, if Vol(E,) = Vol(E), then Vol(E;) = Vol(E) for all t € [—1,1], that is, the
vector field X is admissible.

Proof. We start considering the vector field X € C*(N,;R") defined as

X(z) = &(x)Vdp(x) (1.43)

for every z € N, where dg : N. — R is the signed distance and £ : N. — R is
the function defined as follows: for all y € F, we let f, : (—¢,¢) — R to be the
unique solution of the ODE

{ ;(t) + fy(t)Adp(y +tve(y)) =0
fy(o) =1

and we set

£w) = €ly +vp(0) = (1) = exp(~ [ Adoly+ svp(o) ds).

recalling that the map (y,t) — = = y + trvg(y) is a smooth diffeomorphism
between OF x (—¢,¢) and N.. Notice that the function f is always positive,
thus the same holds for ¢ and £ = 1, Vdg = vg, hence X = vg on OF.

Our aim is then to prove that the smooth vector field X defined by

b(rp()) ds _
X = [ ey 1@ (1:44)

for every z € N, and extended smoothly to all T", satisfies all the properties of
the statement of the lemma.
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Step 1. We saw that X ‘ op = VE, NOW wWe show that divX = 0 and analogously
divX = 0in N..
Given any = = y + tvg(y) € N., with y € OE, we have

divX (z) = div[¢(z)Vdg(2)]
= (V¢(2)|Vdp(z)) + {(x)AdE(2)

— gt[f(y +tvp(y)] + £(y + tve(y)) Adp(y + tve(y))

= 1y () + (1) Adp(y + tve(y))
=0,

where we used the fact that f; (t) = (V&(y + tve(y))|ve(y)) and that we have

Vdg(y+tvg(y)) = ve(y).
Since the function

bire (@) s
o [ et )~

is constant along the segments t — z + tVdg(z), for every = € N, it follows
that

0= £ [0+ V()] | = (VO@)IVap(),

hence, _
divX = (VO|Vdg){ +0divX = 0.

Step 2. Recalling that ¢ € C*°(9F) and p > n — 1, we have

1%l Lo oE) < [¥llerom) < CellYWw2r0E),

by Sobolev embeddings (see [5]). Then, we can choose § < €/CF such that for
all z € OF we have that = + ¢ (z)vg(z) € N..
To check that equation (1.41) holds, we observe that the integral

P(re(z)) ds 4
/0 E(rp(2) + svp(rp())) (2)

represents the time needed to go from 7p(z) to 7g(z) + ¢(7e(2))ve(Te())
along the trajectory of the vector field X, which is the segment connecting
np(z) and mg(z) + ¥ (mg(2))ve(rE(2z)), of length ¢ (7 (z)), parametrized as

S > 7TE($) + Sw(ﬂE(x))VE(ﬂE(x)L

for s € [0,1] and which is traveled with velocity {(7g(z) + svp(Te(z))) =
frp(2)(8). Therefore, by the above definition of X = X and the fact that the
function 6 is constant along such segments, we conclude that

@(1,y) —®(0,y) = ¥(y)ve(y)

and, equivalently,
@(Ly) =y +¢(y)ve(y)
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for all y € OF.
Step 3. To establish inequality (1.42), we first show that
X lw2rv.) < CllYllwerom (1.45)

for a constant C' > 0 depending only on E and e. This estimate will follow
from the definition of X in equation (1.44) and the definition of W??-norm,
that is,

X w2 vy = 1X e vy + IVX o) + HVQXHLP(NE) .

As |Vdg| = 1 everywhere and the positive function &, by its definition at the
beginning of the proof, satisfies 0 < C; < ¢ < (3 in N, for a pair of constants
C4 and C5, we have

Y(re(z)) ds P
o= [ ey (Ve do
el ¥(re () ds 3
e | T | s

> Cp/ W ’/TE ‘pdx

G [ [ et e L0 it
o [ 1wl [ 5.t danty)
<[ [wlau)

= CHd}HLp OE)

where L : OE x (—¢,e) — N the smooth diffeomorphism defined in for-
mula (1.40) and JL its Jacobian. Notice that the constant C' depends only on E
and e.

Now we estimate the LP—norm of V.X. We compute

( ( )+1/J<TFE( ) VE(TFE<x))> §($)VdE(x)

VX =
[ @) V¢ (rg(2) + svp(re(z)))
-

emele) L ) a1 s 6(0) il ()

) Ve(rp(z) + svp(mp(z)))
§(mp(z) + svp(Tp()))

ds )
- /0 f(ﬂ'E(x) + svp(r(z))) (V&(z)Vdp(z) + &(2)Vidp(x))

and we deal with the integrals in the three terms as before, changing variable
by means of the function L. That is, since all the functions drg, dvg, Vg, €,

drp(z)sdve(te(z)) ds] £(2)Vdg(z)
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1/€, V& are bounded by some constants depending only on E and ¢, we easily
get (the constant C' could vary from line to line)

IV X[, <C [ IVolmpla)Pde+C [ et do

= _Evz/}<7TE(y+tl/E<y)))|PJL(y7t)dtd”(y)
o _’3|¢(7TE(y+tI/E(y)))|pJL(%t) dedy(y)

¢ [ (Wl +196)P) [ IL.0) diduty)

< Clllsom) + CIVEILaom)

< ClY o om)

A very analogous estimate works for ||[VZX H’zp( N and we obtain also

IV2X 10y < ClYIR 20 (0m)

hence, inequality (1.45) follows with C' = C(FE,¢).
Applying now Lagrange theorem to every component of ®(-,y) for any
y € OE and t € [0, 1], we have

DQ;(t,y) —yi = Di(t,y) — D;(0,y) = tX(D(s,y)),

for every i € {1,...,n}, where s = s(y, t) is a suitable value in (0,1). Then, it
clearly follows

1D(t,) = ld| L (om) < Cll X Lo vy < CllX w2,y < Cllidllwerop) (1.46)

by estimate (1.45), with C' = C(F, ¢) (notice that we used Sobolev embeddings,
being p > n — 1, the dimension of OF).

Differentiating the equations in system (1.3), we have (recall that we use the
convention of summing over the repeated indices)

{gtviq)j (t,y) = V*XI(@(t,y)) V' @k (t,y) (1.47)

Vi@;(0,y) = &y
for every i,j € {1,...,n}. It follows,
0 7 7 z
52|V ®i(ty) = 85 <2/ (V'; (1,y) 5z‘j)V'“XJ(®(t,y)) Dy (t, y)‘

2
2| VXl poo (i) |

+ 2||VX|| oo ()

VD, (t,y) — i
VD, ( y) — bij]

hence, for almost every ¢ € [0, 1] where the following derivative exists,

o . .
SV (t,y) — 85 < CUVX oy (| 9705 (1) — G| +1)

31
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Integrating this differential inequality, we get
(Vi@ (t,y) — i< IVl 1 < X Iw2rivg 1,

as t € [0, 1] and where we used Sobolev embeddings again. Then, by inequal-
ity (1.45), we estimate

DIVt ) = Gijll o om) < C(e“Mlwerar — 1) < Cllyllwanor), (1.48)
1<i,j<n
as [[Yllwer(op) <9, forany t € [0,1] and y € OF, with C' = C(E,¢,9).
Differentiating equations (1.47), we obtain

2VIVID;(t,y) = VEVEXT(D(t, 1)) Vidy(t, y) ViD(t,y)
+ VEXI(®@(t,y)) VIViDL(L,y)
ViViD(0,y) =0

(where we sum over s and k), for every t € [0,1], y € 0F and 7,5,¢ € {1,...,n}.
This is a linear non-homogeneous system of ODEs such that, if we control
Cll¥|lw2roE), the smooth coefficients in the right side multiplying the solutions
VKV“D (+,y) are uniformly bounded (as in estimate (1.48), Sobolev embeddings
imply that VX is bounded in L> by C||¢|yy2»(5g)). Then, arguing as before,
for almost every ¢ € [0, 1] where the following derivative exists, there holds

0
V20 (1, ) | < CIVX e ) [ V20 (2, ) [+CIT2X (D(1, )|
< 03|92 (1, )|+ CI VX (@(t, )],

by inequality (1.45) (notice that inequality (1.48) gives an L*°~bound on V®,
not only in LP, which is crucial). Thus, by means of Gronwall’s lemma (see [35],
for instance), we obtain the estimate

t t
[V2®(t,y)|< C / IV2X (@(s,y))|e?) ds < C / IV2X (D(s,9))|ds,
0 0

hence,
V00 o <C [ ([ VX @(ss)15)” )

SC/O AE|V2X(¢(S,y))Ipdu(y)d8

=C [ |V?X(2)PJL ™ (z)dx
Ne

<CIVEXIF,

<CHXH1/V21> N¢)

<C||T/1||sz oE) (1.49)

by estimate (1.45), for every ¢ € [0, 1], with C = C(E, ¢, ).
Clearly, putting together inequalities (1.46), (1.48) and (1.49), we get the esti-
mate (1.42) in the statement of the lemma.
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Step 4. Finally, we remind that, by equation (1.10), we have

d? n
—Vol(E;) = / (X|vg,) divl"X du,
dt> OE,

hence, since by Step 1 we know that div.X = 0, we conclude %Vol(Et) = 0 for
all t € [-1, 1], that is, the function ¢ — Vol(E}) is linear. If Vol(E;) = Vol(E) =
Vol(Ey), it follows that Vol(E;) = Vol(E), for all t € [-1,1]. O

With an argument similar to the one of Step 4 in this proof, we can now
prove Lemma 1.4.

Proof of Lemma 1.4. Let ¢ : 0E — R a C*° function with zero integral, then we
define the following smooth vector field in N,

X(z) = p(rp(x)) X (),

where X is the smooth vector field defined by formula (1.43) and we extend
it to a smooth vector field X € C>°(T";R") on the whole T". Clearly, by the
properties of X seen above,

(XW)lve) = W)X @) |vey)) = ¢(y)

for every y € OF.

As the function x — ¢(7mg(z)) is constant along the segments ¢t — x + tVdg(z),
for every = € NN,, it follows, as in Step 1 of the previous proof, that divX = 0 in
N¢. Then, arguing as in Step 4, the function ¢ — Vol(E}) is linear, for ¢ in some
interval (-4, d). Since, by equation (1.9), there holds

d
—Vol(E;) ‘ = / (X|vg)du = / odu =0,
dt t=0 OF OF

such function ¢ — Vol(E;) must actually be constant.
Hence, Vol(E;) = Vol(E), for all t € (—4,6) and X is admissible. O

The next lemma gives a technical estimate needed in the proof of Theo-
rem 1.19.

Lemma 1.23. Lef p > max{2,n — 1} and E C T" a strictly stable critical set for the
(volume—constrained) functional J. Then, in the hypoteses and notation of Lemma 1.22
there exist constants §, C > 0 such that if |[1)[|yw2r0p) < 6 then |X| < C[(X|vg,)]
on OF; and

IVX 208 < CIXIvE) 51 (08 (1.50)
(here V is the covariant derivative along E), for all t € [0, 1], where X € C*°(T";R")
is the smooth vector field defined in formula (1.44).

Proof. Fixed € > 0, from inequality (1.42) it follows that there exist § > 0 such
that if ||¢[[yy2»(95) < 6 there holds

e (P(ty)) —ve(y)l <e
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for every y € OF, hence, as Vdg = vg on OF, we have
Vdp(@™(t,2)) —vE,(2)] = vp(®7 (t,2)) — v, (2) < €
for every x € OE;. Then, if ||¢)||yy2.(9p) is small enough, @~ (¢, ) is close to the
identity, thus
\Vdp(®~(t,z)) — Vdg(z)| < ¢
on 0F; and we conclude

IVdg —vE,||p~(oE,) < 2.

We estimate X, = X — (X|vg,)vpg, (recall that X = (X|Vdg)VdEg),
[ X5 | = [X = (X|vg,)vE,|
= |(X|Vdg)Vdr — (X|vE,)vE,|
= |(X|Vdg)Vdg — (X|vg,)Vdg + (X|vE,)Vde — (X|vE,)vE,|
< [(X[|(Vdg —vg,))Vde| + (X|vg,)(Vde — vg,)|
<2|X||Vdg —vg,|
< 4e| X,
then
[ X7 | < 4elXr, +(X|vp,)ve,| < 4| Xr |+ [(X|ve,)],
hence,
X, < ClUXvR) . (1.51)
We now estimate its covariant derivative V along E, that is,
VX | =IVX = V((X|vg,)ve,)|
=|V((X|Vdg)Vdg) = V({(X|vg,)ve,)|
=|V({(X|Vdg)Vdg) — V((X|vg,)VdEg)
+ V({(X|vg,)Vde) = V((X|vE,)vE,)|
< |V{(X|(Vdg —vE,))Vde)| + V(X |vE,) (Vdg — vEg,))]
< C[|VX|+ V(X )] + CIX|[IV (Vdg)| + Vv,
<Ce[IV((X|vg,)ve, + X7)| + [V(X|vg,)|]
+O((Xve)| + | Xx ) [[V2de| + Vi, |]
hence, using inequality (1.51) and arguing as above, there holds

IVXr| < CIV(X|vg,)| + ClUX |vp)|[[V2de| + [Vvg,]]

Then, we get
HVXTt H%Q(@Ez) < C||V<X|VE1>||%2(8E,5)

+c (X e, [[IV2de| + |Vvg,|]” du
Ey

<CIXve) i o8,

2 2 2
+ CH<X\VEt>”L%(8Et)H|V dp|+ |V1/Et|HLp(aEt)

<C X ve)llin om,)
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where in the last inequality we used as usual Sobolev embeddings, as p >
max{2,n —1}.

Considering the covariant derivative of X = X, + (X|vg,)vg,, by means of this
estimate, the trivial one

IV{X|ve) 208 < KX vE) 1108,
and inequality (1.51), we obtain estimate (1.50). O

We now show that any smooth set E sufficiently W?P—close to another
smooth set F, can be “translated” by a vector n € R" such that 0F —n =
{y+v(y)vr(y) : y € OF}, for a function ¢ € C*°(JF) having a suitable small
“projection” on T'(OF) (see the definitions and the discussion at the end of the
previous section).

Lemma 1.24. Let p > n— 1 and F CT"™ a smooth set with a tubular neighbourhood
N, as above, in formula (1.37). For any T > 0 there exist constants §, C' > 0 such that
if another smooth set E C T" satisfies Vol(EAF) < § and OE = {y + ¢ (y)vr(y) :
y € OF} C N, for a function ¢ € C*(R) with ||y |ly2r@r) < 0, then there exist
n € R™ and p € C*°(0F) with the following properties:

OE —n={y+ey)vr(y) : y € OF},

Inl < CllYllw2rar), lellwzear) < Cllvllwzeor
and
‘/ ovp dﬂ‘ < 7llellr2or) -
OF

Proof. We let dr to be the signed distance function from JF. We underline
that, throughout all the proof, the various constants will be all independent of
Y 0F — R

We recall that in Remark 1.16 we saw that there exists an orthonormal basis
{e1,...,en} of R" such that the functions (vp,e;) are orthogonal in L?(9F),
that is,

/ (vr,ei)(vr,ej) du =0, (1.52)
oF

for all i # j and we let Ir to be the set of the indices i € {1,...,n} such
that |[(vr,ei)|l2(op) > 0. Given a smooth function ¢ : F — R, we set
1= _i_y niei, where

1 .
— Y(z){vp(x),e;) du ifielp,
n; = { Nvredliaen, Jop v(@)r (@) (1.53)
n; =0 otherwise.
Note that, from Holder inequality, it follows
Inl < Cill¥ll 2 or) - (1.54)

Step 1. Let T}, : OF — OF be the map

Ty(y) = mr(y +(y)vr(y) —n) -
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It is easily checked that there exists 9 > 0 such that if

[llwzror) +Inl <eo <1, (1.55)
then T}, is a smooth diffeomorphism, moreover,
[JTy — | oo ar) < CllYllcr o) (1.56)
and
1Ty = 1dllw2ror) + 1T, = 1dlw2ror) < CUYIw2o@r) + ). (1.57)
Therefore, setting E=E-— 1, we have
OE = {z+ o(2)vp(z) : z € OF}

for some function ¢, which is linked to ¢ by the following relation: for all
y € OF we let z = z(y) € OF such that

y+o)vr(y) —n=z+e(2)vr(z),

then
Ty(y) = mr(y + Y (Y)vr(y) —n) = 7r(z + (2)vr(2)) = 2,

that is, y = TJl(z) and

o(2) = o(Ty(y))

Thus, using inequality (1.57), we have

HSOHW?vP(aF) < C2(||¢||W27P(8F) + |77’), (1.58)

for some constant Cy > 1. We now estimate
/BF p(2)vr(2) du(z) = /aF (T (y))vr(Ty(y)) I Ty (y) duly)

(1.59)
_ /8 T (0)vr(Ty(w) dinly) + Ra.

where

Bl =| [ @) BT - 1)

< Gsl[¥llcrom el 2 or) »

36



1.3 STABILITY AND W2P—-LOCAL MINIMALITY

by inequality (1.56).
On the other hand,

AF¢<T¢<y>>uF<T¢<y>>du<y>
=/ ly + v (y)ve(y) —n—Ty(y)] duly)
oF
- / [y + 6 (@)vp@y) — 1 —1p(y+ @)ve@y) — )] duly) (1.61)
/ (6(y)vr(y) -+ [rr(y) — 7 (y + o(@)vey) — )]} duly)
/ () (y) — 1) du(y) + Ra,
OF

where

R, = / (e (y) — me(y + v (y)ve(y) — )] du(y)
OF
== duty / Vre(y + () (y) — ) (wely) —n)dt (162)
/ Ve (y) () vr(y) — ) duly) + Rs

In turn, recalling inequality (1.54), we get

| R3] S/aqu(y)/o IV7rr(y + (W) ve(y) —n) — Var)| ¥ (y)ve(y) —nldt

< Cull¥l122(or) -

(1.63)
Since in N, by equation (1.39), we have 7 (z) = z — dp(z)Vdpr(z), it follows

aﬂ'F s 6dp 8dF anF

thus, for all y € OF

87r% e Odp odr
890]- (y)— ij T@(y)ﬁix](y)

From this identity and equalities (1.59), (1.61) and (1.62), we conclude

| e@weau) = [ [o@re() - ol ve()we(@)] du(e) + Ra+ Ro.
oF oF

As the integral at the right-hand side vanishes by relations (1.52) and (1.53),
estimates (1.60) and (1.63) imply

’/BFSO(?J)VF(?J) d/i(y)‘ < Csll¥llerom el L2 or) + C4H¢||%2(8F)

< CllYllerar (||80HL2 or) T 1Yl z20r )

< Osl¥ Iy 2p(om 191172 o) (12 L2(0m) + 191l 20r) ) -
(1.64)
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where in the last passage we used a well-known interpolation inequality, with
¥ € (0,1) depending only on p > n — 1 (see [5, Theorem 3.70]).

Step 2. The previous estimate does not allow to conclude directly, but we have
to rely on the following iteration procedure. Fix any number K > 1 and assume
that § € (0,1) is such that (possibly considering a smaller 7)

T4+6<eo/2,  C6(1+207) <7, 205K <34. (1.65)

Given v, we set ¢y = 1 and we denote by 1! the vector defined as in (1.53).
We set E; = E —n' and denote by ¢ the function such that 0F; = {z +
e1(z)vp(x) @ © € OF}. As before, ¢ satsfies

y+eo(y)vr(y) —n' =2+ o1(2)vr(2).

Since ||¥[lw2ror) < 6 and |n| < Cil[¢|lp2or), by inequalities (1.54), (1.58)
and (1.65) we have

lp1llwer@ory < C20(1+Ch) < 7. (1.66)

Using again that [|¢)|yy2.0(9r) < § < 1, by estimate (1.64) we obtain

‘/BF e1(y)vr(y) du(y))‘ < Csllvoll 72 om) (21l L20m) + llvoll 2 (o))

where we have ||¢ol|z2(pr) < 6.
We now distinguish two cases.
If |oollL2(ar) < Kll91ll22(aF), from the previous inequality and (1.65), we get

| ertwetu) dus)] < 058" (leallsor) + leollgor)
< 2C56"K|| o1 |l 12(or)
<lerllzzor) »

thus, the conclusion follows with = n!.
In the other case,

llvollL2(ar o
o1l r2(ar) < 71{( ) < e

IN

d. (1.67)

We then repeat the whole procedure: we denote by 7 the vector defined as in
formula (1.53) with ¢ replaced by 1, we set By = E; —n? = E —n! —n? and
we consider the corresponding 2 which satisfies

w+ pa(w)vp(w) = 24 @1 (2)vr(z) = n° = y+ @o(y)vrly) —n' —n°.
Since

lollwze@r + 0"+ 07| <6+ Ci10+ Cilleill2or)
1
<o+Co(1+ ) < i1 4201) <7,
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the map T, (y) = mr(y + o(y)vr(y) — (n' +n?)) is a diffeomorphism thanks
to formula (1.55) (having chosen 7 and § small enough).

Thus, by applying inequalities (1.58) (with n = n! +7?), (1.54), (1.65) and (1.67),
we get

C
pallw2ror) < Callwollwarory +In' + 7)) < Cgé(l +Cy + f) <,

as K > 1, analogously to conclusion (1.66). On the other hand, by esti-
mates (1.54), (1.66) and (1.67),

5
1 llwzeor) +1° < Cab6(1+C1) + Cioz < C20(1+201) <7,

hence, also the map Ty, (z) = 7p(z + ¢1(z)vp(z) —n?) is a diffeomorphism
satisfying inequalities (1.55) and (1.56). Therefore, arguing as before, we obtain

| e dn(w)] < Collorliaqor (leallsaor + leallzom) -

Since |l¢1lz29r) < 9 by inequality (1.67), if [[1ll20p) < Kllwallr2or) the
conclusion follows with = n! + n?. Otherwise, we iterate the procedure
observing that

o1l z2(ar leollz2(ar o
Iall 2 om) < = < =500 <

This construction leads to three (possibly finite) sequences 7", E,, and ¢,, such
that

Ey=E-n'——q"  |p"| <&

lenllwzr@or) < Callleollwaror) + In' +---+1") < Cad(1+42C1)

lenllzzar) < %
OE, = {z + ¢n(z)vp(z) : x € OF}

If for some n € IN we have ||on—1|r2(9r) < K||¢nll12(sF), the construction stops,
since, arguing as before,

[ enwyor@ antw)| < ez

and conclusion follows with n = n! +--- + 7" and ¢ = ¢,,. Otherwise, the
iteration continues indefinitely and we reach the conclusion with

o0
n=>Yn" =0,
n=1

(notice that the series is converging) which actually means that £ = n + F,
hence the thesis is obvious. O

We are now ready to prove the main theorem of this chapter.
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Proof of Theorem 1.19.
Step 1. We first want to show that

mo = inf {HE@) L 0 € THOE), ||oll g1 o) = 1} > 0. (1.68)

To this aim, we consider a minimizing sequence ¢; for the above infimum and
we assume that ¢; — o weakly in H'(OF), then ¢y € T+(0F) (since it is a
closed subspace of H!(9F)) and if g # 0, there holds

mo = lim HE(SOz) > HE(QO()) >0
1—+00
due to the strict stability of £ and the lower semicontinuity of Ilg (recall
formula (1.31) and the fact that the weak convergence in H'(0E) implies strong
convergence in L?(0F) by Sobolev embeddings). On the other hand, if instead
¢o = 0, again by the strong convergence of y; — o in L?(9F), by looking at
formula (1.31), we have

1— 00 1— 00

mo = lim I1g(p;) = lim IVil* d = lim ||90iH§{1(8E) =1
aE 1— 00

since ”QDZ'HLQ(QE) — 0.

Step 2. Now we show that there exists a constant §; > 0 such that if E is like
in the statement and OF = {y +¢(y)ve(y) : y € OF}, with [[¢)||y2rsE) < 01,
and Vol(F') = Vol(E), then

in {Hmo) o€ H'OF), [olimom = 1.

| evedn sal} >0 (1.69)
OF 2

We argue by contradiction assuming that there exists a sequence of sets F;
with 0F; = {y + ¢i(y)ve(y) : y € OE} with |[¢i]lw2ror) — 0 and Vol(F;) =
Vol(E), and a sequence of functions o; € H'(9F;) with il i1 (ar,) = 1 and
Jor, pivE; dpi — 0, such that

m
HFi(SOi) < 70

We then define the following sequence of smooth functions

@i(y) = wily + vi(y)ve(y)) — ][BE ei(y +vi(y)ve(y)) du(y) (1.70)

which clearly belong to H'(9E). Setting 0i(y) = y + ¢s(y)ve(y), as p >
max{2,n — 1}, by the Sobolev embeddings, §; — Id in CY* and vp, 0 6; — vp
in C%%(JF), hence, the sequence @; is bounded in H'(9F) and if {e;} is the
special orthonormal basis found in Remark 1.16, we have (vg, 0 0;ler) — (vE, er)
uniformly for all £ € {1,...,n}. Thus,

/ (EZ<VE|5Z> d,u—) 0,
OF

as ¢ — oo, indeed,

/ Gilvplen) du - / Gilvp, o bilex) du — 0
oF oF
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and
/ ©i(vE, 0 O;lex) dp = / wi(vEler) JO;  du; — 0,
OF OF;

as the Jacobians (notice that J§; are Jacobians “relative” to the hypersurface
OF) JO, LR | uniformly and we assumed faFi wivE, dp; — 0.
Hence, using expression (1.36), for the projection map m on T (9E), it follows
|7 (%i) — Gill g1 (om) — 0
as ¢ — oo and
lim |7 (2i) | a1 (om) = Hm |Bill g1 om) = lim [|@ill g1 o) = 1, (1.71)
1—00 1—00 1—00

since ||¢il[w2r0E) — 0, thus [[@illc1.e(9p) — 0, by looking at the definition of
the functions ¢; in formula (1.70).

Note now that the W%P— convergence of F; to E (computing similarly to
Remark (A.2) in Appendix A, the second fundamental form By, of JF; is
“morally” the Hessian of ;) implies

Boyp, 00; — Bpg  in LP(9E),

as i — 0o, then, by Sobolev embeddings again (in particular H(0E) < L(OE)
for any ¢ € [1,2*), with 2* = 2(n — 1) /(n — 3) which is larger than 2) and the
WQ’p—convergence of F; to E, we get

/ !BaFilzw?dui—/ |Bog|232dp — 0.
OF; OE

Standard elliptic estimates for the problem (1.3) (see [13], for instance) imply
the convergence of the potentials

vp, — vgp in CYP(T™) for all B € (0,1),
for i« — oo, hence arguing as before,
aVFi VF; 9012 dp; — / aVE ’UEQZzQ dp — 0.
OF; OF
Setting, as in Remark 1.13,

Vg (7) = - G(z,y)pi(y) du(y)

= | G, y)ei0i(y) du(y) —mi | Glz,y) du(y),
OF oFE

where m; = f,. 0i(y +vi(y)ve(y)) du(y) — 0, as i — oo, and

@) = |Gl 2)ei(z)du(z) = | Gl 0i(y)eilbi(y))J0:(y) duly)

it is easy to check (see [2, pages 537-538], for details) that

/ |VUF¢,¢¢|2d$—/ \Vvgz|*de — 0.
T T
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Finally, recalling expression (1.32), we conclude
HFz(SOI) —Ip(%:) =0,
since we have
leill 2(ar,) — 1€ill 20m) — O,
which easily follows again by looking at the definition of the functions ¢; in
formula (1.70) and taking into account that [|¢;[|c1.e(9z) — 0, hence limits (1.71)
imply
IVeillL20m) — IV@illL2(om) — 0
By the previous conclusion ||7(%;) — @il 1 (95 — 0 and Sobolev embeddings,
it this then straightforward, arguing as above, to get also

e (pi) —e(r(2:) — 0,
hence,
g, (pi) — p(n(@:)) — 0.

Since we assumed that ITg, (¢;) < mg/2, we conclude that for i € IN, large

enough there holds
mo

(7)) < 0
which is a contraddiction to Step 1, as 7(;) € T+(9F).
Step 3. Let us fix F' such that Vol(F') = Vol(E), Vol(FAE) < § and

OF ={y+¢(y)ve(y) : y € OE} C N,

with [[4[ly2p9p) < 0 where 6 > 0 is smaller than §; given by Step 2.

Taking a possibly smaller 6 > 0, we consider the field X and the associated flow
® found in Lemma 1.22. Hence, div X = 0in N, and ®(1,y) =y + ¢ (y)ve(y),
for all y € OF, thatis, ®(1,0F) = OF C N, which implies E; = ®(1,E) = F.
Then X is an admissible smooth vector field, as Vol(E;) = Vol(E) = Vol(F),
by the last part of such lemma.

By Lemma 1.24, choosing an even smaller 4 > 0 if necessary, possibly replacing
F with a translate ' — o for some 7 € R” if needed, we can assume that

< my,

)
[ wvsau] < F1lisan) (172
oF

Letting F; = ®,(F), we now claim that

/a (Xl v, du‘ <Ol (Xlp)lmes Ve (173)
t
To this aim, we write

/ (X|vg,)ve, du = / (X o ®4lvg, o D) (v, o Py) JDdu
OF; OF

Il
S~

<X o q)t|VE>I/E dup+ Ry
OF

Il
S—

(X (z)|vE)vE di+ R1 + R
oE

Yvgdp+ Ry + Ry + R3
OF
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with Ry, R and R3 appropriate.

By the definition of X in formula (1.44) (in the proof of Lemma 1.22), the bounds
0<Cp <¢<Crand [|J(mgo®y) ! opr) < Cs (by inequality (1.42) and
Sobolev embeddings, as p > max{2,n — 1}, we have ||®(t,-) — Id||c1.a(9p) <
CllYllw2rar) < C9), the following inequality holds

| (@) dn =
oF

L[| @) (@, ) Vdp(®(t, 2)
‘@A @t ) + slmp(@(to))) |
< c/aE (i (@(t, )] du
=:/QE|¢(Z)LJ(WE<>¢%)‘1(Z)du(2)

< ClYl 2 (om)- (1.74)

for every ¢ € [0, 1].
We want now to prove that for every € > 0, choosing a suitably small § > 0 we
have the estimate

|Ra| + |Ro| + |Rs| < ell¥ll 22 om)- (1.75)
First,

Ry = / (X 0o ®|vg, o D)vp, 0 Dy [JP, — 1] dp
OF
+/ (XoCDt|l/Eto<Dt>uEto<I>tdu—/ (X oDy, vp)rvpdu
oFE OF
= /8 (X o ®¢|lvg, o Py)vg, o Py [JO — 1] dp
E
—|—/ (X o ®y|vg, oDy —vE)rpdu
OF
—i—/a (X o ®ilvg, o ®y)(vE, o Py — vE) du
E
< [ X0 @]9~ Vo) d

+/ X 0@yl [[vs — v, 0 Dil| e (o) i
OF

then, since by equality (1.41), it follow that for every ¢ € [0, 1] the two terms
lve —vE, o ®(t,z)|1opr  and  [[JPr — 1| ~(om)

can be made (uniformly in ¢ € [0, 1]) small as we want, if 6 > 0 is small enough,
by using inequality (1.74), we obtain

|Ba| < ElYlr20m) /3.
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Then we estimate, by means of inequality (1.41) and where s = s(¢,y) € [¢,1],
| Ra| < /8E [ X(®(t, 7)) = X((1,2))| + [X(P(1, ) — X ()] du
< [ IX(@(t.2) = X(@(1,2)) |+ VX 200y [ 205
_ / (1—1)|VX (D, ()| ‘
OE

< /a VX (@(s.2)[@(t,7) = (L) + VX |z 2o

< OIVX| oo (v CllY N L208) + IV X N 2(v0) 19l 2208

' @) + 19X 2w 9]0,

where in the last inequality we use equation (1.74). Hence, using equality (1.45)
and Sobolev embeddings, as p > max{2,n — 1}, we get

|Ro| < CllYbllwerom) 1¥l220E)

then, since |[¢|ly2.0(9p) < J, we obtain
|Ro| <[l L20m) /3,

if §9 is small enough.

Arguing similarly, recalling the definition of X given by formula (1.44), we also
obtain |R3| < &||¢[|2(sk), hence estimate (1.75) follows. We can then conclude
that, for 4 > 0 small enough, we have

< '/ Yvg dﬂ‘ +2l1Yl 22 o)
1
<(3

for any ¢ € [0, 1], where in the last inequality we used the assumption (1.72),
thus choosing € = 6; /4 we get

| et ve, du
0L}

+8) 1Yl r2(0m)

301
< 7H¢HL2 OE)-

| et ve, du
OB
Along the same line, it is then easy to prove that

KX vE) I r20m) 2 (1=)l¥ll20m), (1.76)

for any ¢ € [0, 1], hence claim (1.73) follows.

As a consequence, since (X|vg,) € HY(0E,), being X admissible for E; (re-
calling computation 1.9) and JF; can be described as a graph over OF with a
function with small norm in W2?(9E) (by estimate (1.42) of Lemma 1.22 and
arguing as in Remark (A.2) in Appendix A), we can apply Step 2 with ' = F;
to the function (X|vg,)/|(X|vE,) | g1 (9E,), concluding

m,
X e g om)- (1.77)

HEt(<X|VEt>) > 9

44



1.3 STABILITY AND W2P—-LOCAL MINIMALITY

By means of Lemma 1.23, for § > 0 small enough, we now show the fol-
lowing inequality on OFE; (here div is the divergence operator and X, =
X — (X|vg,)vE, is a tangent vector field on JE;), for any ¢ € [0, 1],

[ div (X7, (X |vi,)) | = lldiv Xo (Xv, ) + (Xr VX, ve) |

_p_ _p_
Lp—1 (BEt Lpr—1 (8Et)

SCIV Xzl 2 op) (X VE,)

| 2p
LP*? (BEt)

FONXA, VX 230

<C|X X
<Xz o8, HL%(aEt)

<OlX 3 0m,)

<CIXIve) i o5,

(1.78)
where we used the Sobolev embedding H'(9E;) — L2 (OFE:),asp > max{2,n—
1}.

Then, we compute (here H; is the mean curvature of 0F; and vg, is the potential
relative to E;, defined by formula (1.1))

J(F) = J(E) = J(E) - J(E)
1 d2
= 1—t)—=J(E;)dt
| a5z
1
— [ (= T (X s de
0
1
_ / (1) / (dyvp, +H,) divop, (Xo (X|vg,)) du) .
0 OE,
by Theorem 1.10, the definition of Il g, in formula (1.31) and taking into account

that div X = 0 in V..

Hence, by estimate (1.77), we have (recall that 4yvg + H = 4yvg, +Hy = A
constant, as F is a critical set)

1
m,
IE)=38) = 5 [ (= DXl o
1
_/ (1—t)/ (H; + dyvg,) div(Xs, (X|vs,)) dy dt
0 OE4
m 1
== [ (A =0)I(X|ve) i om,
2 Jo
1
_/ (1—t)/ (L + dyvp, — \) div(Xe, (X|vi,)) dpus dt
0 OFE;

mo (! 2
>0 [ = O ) o
0

1
~ [ = 0B+ 408, = Mo 9V (XD
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mo ! 2
>0 [ = OX ) o
0

1
e / (1= Ol + 2708, — Moo | X 75 2 o, -

by estimate (1.78). If § > 0 is sufficiently small, as F; is W?P—close to E (recall

again Remark (A.2) in Appendix A and the definition of vg, in formula (1.1)),

we have [[H; + 4vvg, — Al 1e(aE,) < mo/4C, hence

m 1
IE)=3(8) = B2 [ 1= 01X s o,

Then, we can conclude the proof of the theorem with the following series of
inequalities, holding for a suitably small § > 0 as in the statement,

J(F) = J(E

v

1

IE)+ 52 [ (= OIX e o,
J(E) + C||<X|VE>||L2 OE)

J(E) + C||¢||L2 OE)
J(E)

J(E) +

Y

v

E) + C[Vol(EAF)]?
E

AVANLYS

Cla(B, F))%,

where the first inequality is due to the W?P—closedness of E; to E, the second
one by the very expression (1.44) of the vector field X on 0F,

syl =| [ ¢ ey | < Ol

the third follows by a straighfoward computation (involving the map L defined
by formula (1.40) and its Jacobian), as OF is a “normal graph” over 0F with
1 as “height function”, finally the last one simply by the definition of the
“distance” «, recalling that we possibly translated the “original” set F' by a
vector 1 € R", at the beginning of this step. O

We conclude this chapter by proving two propositions that will be used later.
The first one says that when a set is sufficiently W2P—close to a strictly stable
critical set of the functional J, then the quadratic form (1.31) remains uniformly
positive definite (on the orthogonal complement of its degeneracy subspace,
see the discussion at the end of the previous section).

Proposition 1.25. Let p > max{2,n — 1} and E C T" be a smooth strictly stable
critical set with N, a tubular neighbourhood of E, as in formula (1.37). Then, for every
6 € (0, 1] there exist 09,8 > 0 such that if a smooth set F C T™ is W*P—close to E,
that is, Vol(FAE) < § and OF C N, with

OF ={y+v(y)ve(y) : y € OE}

for a smooth 1 with ||Y|ly209m) < 6, there holds

r () > agllelFor), (1.79)
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for all ¢ € H'(OF) satisfying

Join [l = (nlve)llzzor 2 Ollelizzor),

where OF; is defined by formula (1.35).

Proof.
Step 1. We first claim that the strict stability of £ implies

Ig(p) >0  forall ¢ € H(OE)\ T(OE). (1.80)

To this aim we observe that from formula (1.1) and the properties of the Green
function, we get

Vug(z) = - V.G(z,y)up(z)dy

z/VxG(fﬂ,y) dy— | V.G(z,y)dy
E Ec
= —/EVyG(ﬂf,y) dy + ; V,G(z,y) dy

=2 Gx,y)ve(y)du(y), (1.81)
OF

where in the last passage we applied the divergence theorem.
By means of formula (A.4)

Avgp = VH — |B|*vg,
since F (being critical) satisfies H + 4yvg = A for some constant A € R, we have

—Avg — |B|*vg = V(4yvg — \)
= VT (4yvg — ) = 9y, (4yvg — \)

= —4y(8, ) vE — 87 /BE Gz, y)ve(y) duly)

on OF, by formula (1.81).
This equation can be written as L(v;) = 0, for every i € {1,...,n}, where L is
the self-adjoint, linear operator defined as

Lip) = =B~ 1B+ 10,pump+81 | Glan)oly) dulw).
then, if we “decompose” a smooth function ¢ € H(OE)\ T(OE) as ¢ =

Y + (n|vg), for some n € R and v € T+ (OE) \ {0}, we have (recalling for-
mula (1.31))

Mp(e) = /8 L) d

- / (L)) dyi+ 2 / (L({nlve)), ¥) dp + / (L ({nlve)) [ (nlve)) di
oF oFE oFE
=TIg(¢).
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By approximation with smooth functions, we conclude that this equality holds
for every function in H(OE) \ T(dE), hence I1g(p) = Ig(y) > 0 for every
¢ € H(OE) \ T(DE), by the strict stability assumption on E.

We now show that for every 6 € (0, 1] there holds

mg = inf{ Tp(p) : ¢ € B OB), o] (om) = 1
i - 2 > 2 . .
and min [l¢ — (nlvi)llzzom) > Ollelion) } > 0. (182

Indeed, let ¢; be a minimizing sequence for this infimum and assume that
@i — ¢o € HY(OE) weakly in H'(9E).

If po # 0, as the weak convergence in H!(0F) implies strong convergence in
L*(OF) by Sobolev embeddings, for every € O we have

lleo = lve)l2om) = i llei = Mlve)llz2om) 2 im bllill2om = 0llvollL2om),

hence,
nlél(i)f; o — (nlve)L20m) 2 OlleollL2(aE) > 0,

thus, we conclude ¢y € H(OE) \ T(9E) and
mg = lim g (pi) > Ee(pe) >0,

where the last inequality follows from estimate (1.80).
If o9 = 0, then again by the strong convergence of ¢; — ¢y in L*(9E), by
looking at formula (1.31), we have

mg = lim I1p(p;) Z.lggo/aE!Wzl dp = lin {35 o) = 1

since [|¢; || z29m) — O
Step 2. In order to finish the proof it is enough to show the existence of some
§ > 0 such that if Vol(FAE) < é and OF = {y + ¢(y)ve(y) : y € OE} with
[ llw2rom) <0, then

inf{ [Mp(p) : pe ffl(aF) el mror) =1

. 1
and Jnin le — lvr)ll20r) = 0||90HL2(8F)} 2 09 = 5 min{mg/y, 1},
(1.83)
where my /5 is defined by formula (1.82), with #/2 in place of 6.
Assume by contradiction that there exist a sequence of smooth sets F; C T",
with 0F; = {y +¢i(y)ve(y) : y € OE} and [[¥illw2rip) — 0, and a se-
quence g; € H'(0F;), with il zr1(or,) = 1 and mingeo,, lei — (nlve) 22 or) =
HH@Z'HL%BFZ-)I such that
g, (pi) < oo <mgs2/2. (1.84)

Let us suppose first that lim;, [|¢il 12(9r,) = 0 and observe that by Sobolev
embeddings [|¢i||za(9r,) — 0 for some ¢ > 2, thus, since the functions ¢; are
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1.3 STABILITY AND W2P—-LOCAL MINIMALITY 49

uniformly bounded in W2?(9FE) for p > max{2,n — 1}, recalling formula (1.31),
it is easy to see that

i—00

lim Iz, (1) = zlggo OF |V%‘2d'ui - zliglo H%Hzl(aﬂ) =1,

which is a contradiction with assumption (1.84).
Hence, we may assume that

lim {lgill 22om) > 0. (1.85)

The idea now is to write every ¢; as a function on JE. We define the functions
©i(0F) — R, given by

Fil0) = euly +)ve () — £ ey +)vee)) duls)
for every y € OF.
As 1, — 0 in W2P(JE), we have in particular that

143l L2 (0E)

pic H'(OE),  |@ilmer —1  and :
H‘leL?(aFi)

—1,
moreover, note also that vg, (- + ¥;(-)ve(-)) — vg in WH?(9E) and thus in
C%*(9E) for a suitable « € (0, 1), depending on p, by Sobolev embeddings. Us-
ing this fact and taking into account the third limit above and inequality (1.85),
one can easily show that

lim inf mingeoy [|¢i — <77|VE>HL2(6E) > lim inf minyeo, [|¢i — <77‘VF1'>HL2(6F1-)

' i } > 0.
1500 143l L2 (o) (=500 il L2 oE:)

Hence, for i € IN large enough, we have

~ . 0. -
@il 7o) = 3/4  and Jnin 19 = lve)l20m) 2 511%ill20m) -

then, in turn, by Step 1, we infer

~ 9
HE((,O%) Z TGmQ/Q . (186)

Arguing now exactly like in the final part of Step 2 in the proof of Theo-
rem 1.19, we have that all the terms of I, (¢;) are asymptotically close to the
corresponding terms of I1g(g;), thus

HFz(Sol) - HE((Zl) — 0,

which is a contradiction, by inequalities (1.84) and (1.86). This establishes
inequality (1.83) and concludes the proof. ]

The following final result of this chapter states the fact that close to a strictly
stable critical set there are no other critical sets (up to translations).
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Proposition 1.26. Let pand E C T" be as in Proposition 1.25. Then, there exists § >
0 such that if E' C T™ is a smooth critical set with Vol(E") = Vol(E), Vol(EAE'") <
6, OF" C N, and

OE" = {y+¢(y)ve(y) : y € OE}

for a smooth i) with |||y oE) < 0, then E' is a translate of E.

Proof. In Step 3 of the proof of Theorem 1.19, it is shown that under these
hypotheses on E and E’, if § > 0 is small enough, we may find a small vector
n € R™ and an admissible smooth vector field X such that the associated flow
d satisfies ®(0,F) = E, ®(1,E) = E' —nand

d2
727 (2(t,E)) = CVol(EA(E —n))]?,
for all ¢ € [0, 1], where C' is a positive constant independent of E'.
Assume that E’ is a smooth critical set as in the statement, which is not a
translate of E, then &£.J(®(t, E))| +—o= 0, but from the above formula it follows
LJ(D(t,E))| .—,> 0, which implies that £’ — 7 cannot be critical, hence neither
E’, which is a contradiction. Indeed, —X is an admissible vector field for
E’ — n with an associate flow ¥ satisfying ¥ (s, E' —n) = ®(1 — s, E), for every
s € [0,1], hence

d d d
—J(¥ (s, B — = —J(P(1-s,F =——J(P(t, FE 0
G TGE )| =@ —sB)| = LU@E) <o,

showing that E' — 7 is not critical. O
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THE MODIFIED MULLINS-SEKERKA FLOW

In this chapter we introduce the modified Mullins—Sekerka flow and we describe its
properties, leading to a long time existence result stating that the flow starting
from a smooth subset of T? “close enough” to a strictly stable set, exists smooth
for all times.

We will make use several times of fractional Sobolev spaces, about which we refer
to Appendix B, for the basic facts. As for the “standard” Sobolev spaces (with integer
order) they can be defined on smooth hypersurfaces (by standard localization/partition
of unity technique), keeping most of their properties, in particular all the propositions
of Appendix B hold for them.

2.1 DEFINITION AND BASIC PROPERTIES

We start with the notion of smooth flow.

Definition 2.1 (Smooth flows of sets). Let E; C T" for ¢t € [0,7) be a one-
parameter family of sets, we say that it is a smooth flow if there exists a smooth
reference set ' C T" and a map ¥ € C°(T" x (0,7"); T") such that ¥, = ¥ (-, t)
is a smooth diffeomorphism from T" to T" and E; = ¥,(F) for all t € [0,T).

The velocity of the motion of any point = ¥;(y) of the set E;, with y € F, is

then given by
oY
Xi(e) = S 1),

hence, 5
T
5 W) = Xe(Ye(y)),

for every y € F. Notice that, in general, the smooth vector field X; is not

independent of ¢, so it is not the infinitesimal generator of the flow ¥, but

we will see, in the computations in the sequel, that it will behave similarly to

the (time-independent) vector fields X used to compute the first and second

variation in the previous chapter.

When z € 0F}, we define the outer normal velocity of the flow of the boundaries,

which are smooth hypersurfaces of T", as

V;f(x) = <Xt(x)‘l/Et (x)>7

for every ¢t € [0,T), where vg, is the outer normal vector to Ej.

Before giving the definition of the modified Mullins-Sekerka flow we need
some notations. Given a smooth set £ C T™ and v > 0, we denote by wg the
unique solution in H!(T") of the following problem

{AwE =0 in T\ OF 21)

wg = H+4+4yvg on OF,
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2.1 DEFINITION AND BASIC PROPERTIES

where vg is the potential introduced in (1.3) and H is the mean curvature of
OE. Moreover, we denote by wg and wy, the restrictions wg|ge and wgl|g,
respectively. Finally, denoting as usual by vg the outer unit normal to F, we set

[Ovpwi] = 8VEwE —Oypwp = _(aVECwE + Ovpwp) -
that is the jump of the normal derivative of wg on JF.

Definition 2.2 (Modified Mullins—-Sekerka flow). Let £ C T" be a smooth set.
We say that a smooth flow E; such that Ey = FE, is a modified Mullins—Sekerka
flow with parameter v > 0, on the time interval [0, 7)) and with initial datum E,
if the outer normal velocity V; of the moving boundaries 0F; is given by

V; = [0,,wy] on dE; forallt € [0,7T), (2.2)

where w; = wg, (with the above definitions) and we used the simplified
notation d,,w; in place of &,Et wEg, -

Remark 2.3. The adjective “modified” comes from the introduction of the
parameter v > 0 in the problem, while considering v = 0, we have the original
flow proposed by Mullins and Sekerka in [30].

Parametrizing the smooth hypersurfaces M; = 0E; of T" by some smooth
embeddings ¢; : M — T" such that ¢,(M) = JE; (here M is a fixed smooth
differentiable (n — 1)-dimensional manifold and the map (¢,p) — ¢(t,p) =
¢ (p) is smooth), the geometric evolution law (2.2) can be expressed equivalently

as 5

(%) = [Buw], (23)
where we denoted with v; the outer unit normal to M; = O0F;.
Moreover, as the moving hypersurfaces M; = J0E; are compact, it is always
possible to smoothly reparametrize them with maps (that we still call) ¢; such

that

Iy

ot
describing such flow. This follows by the invariance by tangential perturbations of
the velocity, shared by the flow due to its geometric nature and can be proved
following the line in Section 1.3 of [26], where the analogous property is shown
in full detail for the (more famous) mean curvature flow. Roughly speaking, the
tangential component of the velocity of the points of the moving hypersurfaces,
does not affect the global “shape” during the motion.

Like the nonlocal Area functional .J (see Definition 1.2), the flow is obviously
invariant by rotations and translations, or more generally under any isometry
of T" (or R™). Moreover, if ¢ : [0,T) x M — T" is a modified Mullins—Sekerka
flow of hypersurfaces, in the sense of equation (2.3) and @ : [0,T) x M — M
is a time-dependent family of smooth diffeomorphisms of M, then it is easy
to check that the reparametrization e [0,T) x M — T" defined as J(t, p) =
»(t, ®P(t,p)) is still a modified Mullins-Sekerka flow (again in the sense of
equation (2.3)). This property can be reread as “the flow is invariant under

=[Oy we]w (2.4)
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2.1 DEFINITION AND BASIC PROPERTIES

reparametrization”, suggesting that the really relevant objects are actually the
subsets M; = (M) of T™.

We show now that the volume of the sets E; is preserved during the evolution.
We remark that instead, other geometric properties shared for instance by the
mean curvature flow (see [26, Chapter 2]), like convexity are not necessarily
maintained (see [10]), neither there holds the so—called “comparison property”
asserting that if two initial sets are one contained in the other, they stay so
during the two respective flows.

This volume—-preserving property can be easily proved, arguing as in com-
putation (1.9), indeed, if F; = ¥;(F) is a modified Mullins-Sekerka flow,
described by ¥ € C*°([0,7T") x T"; T™), with an associated smooth vector field
X satisfying

Wt () = X (%),

we have

:jtVOl(Et):/F;J‘Pt(y)dy:/FdivXt(‘I’(t,y))H(tay) dy

:/ div Xy (z) dz :/ (X|wv) dpy :/ Vi dpy

Et 8Ef BE,

= / [0y, wi] dpy = / (Opwy — By, wy ) dpe = 0
BEt 8Et

where y; is in the canonical measure induced on JF; by the flat metric of T"
and the last equality follows from the divergence theorem A.1 and the fact that
wy is harmonic in T" \ OF;.

Another important property of the modified Mullins-Sekerka flow is that
it can be regarded as the H~!/2—gradient flow of the functional J under the
constraint that the volume is fixed, that is, the outer normal velocity V; is
minus such H~!/2-gradient of the functional J (see [25]). For a smooth set
E C T, we let the space H~/2(0E) C L2(9E) to be the dual of H/2(JE) (the
functions in H'/2(9E) with zero integral, see Appendix B) with the Gagliardo
H'/?—seminorm

2 |u(z y)I?
HquIl/z(aE) Hl/2 OF) /8E /BE |:L‘— |n+1 d (x)dy(y)

(it is a norm for H'/2(9E) since the functions in it have zero integral) and the
pairing between H'/2(QE) and H~'/2(QE) simply being the integral of the
product of the functions on OF.

We define the linear operator Agr on the smooth functions v with zero integral
on OF as follows: we consider the unique smooth solution w of the problem

Aw=0 inT"\OFE
w=1u on OF

and we denote by wh and w™ the restrictions w|ge and w|g, respectively, then
we set
Aopu = O,w™ —d,w™ = [D,w],
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2.1 DEFINITION AND BASIC PROPERTIES

which is another smooth function on OF with zero integral. Then, we have

/ |Vw|? dz = / div(wVw) dz = _/8 ubppudp
n EUE® E

and such quantity turns out to be a norm equivalent to the one given by the
Gagliardo seminorm on H'/2(9E) above (this is related to the theory of trace
spaces, mentioned at the end of Appendix B, for which we refer to [3, 14]),
see [25]. Hence, it induces the dual norm

2 _ —1
191, oo = [ o(=a) o

for every smooth function v € H2(9E). By polarization, we have the
H~Y2(9E)-scalar product between a pair of smooth functions u,v : 9E — R
with zero integral,

(Wlo) -y = [ w(~B0) v,
OF

This scalar product, extended to the whole space H~Y2(9E), make it a Hilbert
space (see [17]), hence, by Riesz representation theorem, there exists a function
VE'°T € HV/2(OE) such that, for every smooth function v € H/2(JE),
there holds

/8 U(H + 4’7UE) dﬁ‘ = 5J6E(U) - <U7 |vg)§1/2‘]>ﬁ[—1/2(6E)
E
~1gH-?
- / o(~Bor) VI dp,
OE

by Theorem 1.5, where v is the potential introduced in (1.3) and H is the mean
curvature of OF.
Then, by the fundamental lemma of calculus of variations, we conclude

(—Rop)'VE, T = H+ dyvp + ¢,

for a constant ¢ € IR, that is, recalling the definition of wg in problem (2.1) and
Of Aa E, .
—1/2
ng = —AaE(H —|—4’va) = —[8VEZUE] .

It clearly follows that the outer normal velocity of the moving boundaries
of a surface diffusion flow V; = [9,,w| is minus the H -1 2—gradient of the
volume—constrained functional J.

Remark 2.4. In the case v = 0, the functional J is simply the Area functional on
the boundary of the sets. It is then interesting to note that the (classical, unmodi-
fied) Mullins-Sekerka flow is its H~'/ 2_gradient flow (under the constraint that
the volume is fixed), while it is easy to see that the mean curvature flow, where
Vi = —Hy, is its L?>-gradient flow (without constraints). Moreover, considering
its H '-gradient flow under a volume constraint, we get the so—called surface
diffusion flow (see [11], for instance), where V; = A;Hy, see [17].

54



2.2 TECHNICAL LEMMAS

We now state a short time existence and uniqueness result of the modified
Mullins-Sekerka flow starting from a smooth hypersurface, proved by Escher
and Nishiura in [12]. It deals with the flow in the whole space R", but it is
straightforward to adapt the same arguments to our case when the ambient is
the flat torus T".

Given a smooth set F' C T™ and a tubular neighborhood N, of 9F, as in
formula (1.37), for any M € (0,e/2) (recall the discussion at the beginning of
Section 1.3 about our notion of “closedness” of sets), we denote by ¢},(F), the
class of all smooth sets E C F U N, such that Vol(EAF) < M and

OF = {z+¢Yg(x)vp(x): z € OF}, (2.5)

for some ¢ € C*°(JF), with HwEHCl(aF) < M (hence, OE C N.). For every

k € N and a € (0,1), we also denote by (’:’;\f(F) the collection of sets E €
¢} (F) such that [[{g||cra@r) < M.

Theorem 2.5 (Short time existence and uniqueness). Let F' C T™ be a smooth set
and N a tubular neighborhood of OF, as in formula (1.37), Then, for every o € (0,1)
and M € (0,e/2) small enough, there exists T = T(F,M,«) > 0 such that if
Ey € Qﬁ?\’f‘(F ) there exists a unique smooth modified Mullins—Sekerka flow with
parameter v > 0, starting from Ey, in the time interval [0,T).

In the next chapter we will show that for special “initial” sets, the flow exists
for all times and we will study its long time behavior.

2.2 TECHNICAL LEMMAS

In this section we prove some technical lemmas necessary for the proof of the
global existence result. In the following, in order to simplify the notation, for
a smooth set £y C T" we will write v, for vg,, 0,, in place of &,Et and wy for
the function wg, € H*(T") uniquely defined by problem (2.1). Moreover, we
will also denote with v; the smooth potential function vg, associated to E; by
formula (1.3).

We start with the following lemma holding in all dimensions.

Lemma 2.6 (Energy identities). Let E; C T" be a modified Mullins—Sekerka flow as
in Definition (2.2). Then, the following identities hold:

d
GIE) =~ [ Vi, (26)
']I'TL
and
d 1 , 1 . ) )
73 \Vwy|® de = —I1g, ([0y,w]) + 5 (Ovwi + Opwy ) [y, we]” dpse
']I‘n 8Et

(2.7)
where I1g, is the quadratic form defined in formula (1.31).

Proof. Let 1y the smooth family of maps describing the flow as in formula (2.4).
By formula (1.12), where X is the smooth (velocity) vector field X; = % =
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2.2 TECHNICAL LEMMAS

[0y, wi|vy along OF,, hence X, = X; — (X4, )1y = 0 (as usual v, is the outer nor-
mal unit vector of JE;), following the computation in the proof of Theorem (1.5),
we have

d

£J(Et) = / (Ht + 4’}/Ut)<Xt|Vt> d,U,t = / Wy [8Vtwt] dut = — ]th\2 d.’[‘,
Jon 15) T

Ey

where the last equality follows integrating by parts, as w; is harmonic in
T™ \ OF;. This establishes relation (2.6).
In order to get identity (2.7), we compute

d 1 . 1 n o _ 1 d B
dtQ/Et |th !2dg: = 2/6E‘t |VT Wy |2 <Xt|Vt> d'ut+2/Et @|th |2dLU
1 " -
= 2/ |vrlr wt ’2[8Vtwt] d//t + vatwt th d,U«t
OF: B,
1

— 2/ |Vant_]2[8l,twt] dp + Orwy Oy, wy dpig,(2.8)
6Et aEt

where we interchanged time and space derivatives and we applied the diver-
gence theorem, taking into account that w; is harmonic in E;.
Then, we need to compute J;w; on JE;. We know that

w, = Hy + 4y .
on OF}, hence, (totally) differentiating in time this equality, we get
Oyw; + <VanﬂXt> = O H; + 40 + 47<VTnvt‘Xt> ,
that is,
Owy + [0y, wi| Oy, w; = OHy + 4yOpvy + 4]0y, we] Oy, v
= — [By|*[0y,wi] — N[0y, wi] + 4700y + 47 [0y, wi] Oy, v

where we used computation (1.24).
Therefore from equations (2.8) and (1.26) we get

d1l _ _ _
dt2/ |th |2d$ = _/ Oy wy At[awwt] dpu _/ O, Wy ’Bt’2 [8Vtwt] dyut
Ey OE; OF;

+ 8y / G (2,y) By () (O] () dpie(2) dpn ()
OF; JOFE:

+ 4y Oy, vt Oy wy [0y, W) dpuy
OFE¢

1 n
+ 5 / ’vT wt_’2[8l/twt] dﬂt - / (al/twt_)2[al/twt] dut .
OF,

Ion
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2.2 TECHNICAL LEMMAS

Computing analogously for w;" in E° and adding the two results, we get

d1
s [P = [ 0w sdowlduct [ \BE Dl du
T oF: OFE;

— 8y /@E o G(fC, y) [aytwt](l’) [8yiwt](y) dﬂt(ﬂf)dut(y)
- /815’ v [0 wn]* dp

+/8Et((al/twt+)2 - (thw;>2)[thwt] dﬂt

1 n n o _
—5 (9T R 9 ) o] d

1
= — HEt ([8ytTUt]) + 5 /aE (aytw:_ + &,twt_) [8,,twt]2 d,ut y

where we integrated by parts the very first term of the right hand side, recalled
Definition (1.31) and in the last step we used the identity

|vjrnwt+|2 - |v1r”wt—|2 = (8r/twt+)2 - (8145“)1:_)2 = (thwj + a'/twt_>[81’twt]'

Hence, also equation (2.7) is proved. O

From now on, we restrict ourselves to the three—dimensional case, that is, we will
consider smooth subsets of T with boundaries which then are smooth embedded
(2—dimensional) surfaces.

In the estimates in the following series of lemmas, we will be interested in having
uniform constants for the families Q}\;IQ(F), given a smooth set F' C T" and a tubular
neighborhood N of OF as in formula (1.37), for any M € (0,¢/2) and o € (0,1).
This is guaranteed if the constants in the Sobolev, Gagliardo—Nirenberg interpolation
and Calderén—-Zygmung inequalities, relative to all the smooth hypersurfaces OE
boundaries of the sets E € Qi}\f(F), are uniform, as it is proved in detail in [8].

We remind that in all the inequalities, the constants C may vary from one line to
another.

The next lemma provides some boundary estimates for harmonic functions.

Lemma 2.7 (Boundary estimates for harmonic functions). Let ' C T3 be a
smooth set and E € (‘l}\’f(F). Let f € C*(OF) with zero integral on OF and let
u € H*(T3) be the (distributional) solution of

—Au = f”‘aE

with zero integral on T3. Let u~ = u|g and ut = u|ge and assume that v~ and u™
are of class C up to the boundary OE. Then, for every 1 < p < +oo there exists a
constant C = C(F, M, a,p) > 0, such that:

@) lulleom) < Cllfllzrom)

(ii) 10usu™ I r2(0m) + 100su" I r2(0m) < Cllull i (om)
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2.2 TECHNICAL LEMMAS

(iii) 10vsu™ Lo (or) + 10vsu” lLror) < CllflLe(ar)

(iv) [ullcosory < Cllfllzeom)

forall B € (0, ) with C depending also on 5.

Moreover, if f € H 1(8E), then for every 2 < p < oo there exists a constant
C=C(F,M,«a,p) >0, such that

D/p g, i1/
£l zeom) < C\lfllﬁl aEpll ull ;2o -

Proof. We are not going to underline it every time, but it is easy to check that

all the constants that will appear in the proof will depend with only on F,
M, o and sometimes p, recalling the previous discussion about the “uniform”

inequalities holding for the families of sets € (F).

(i) Recalling Remark 1.13, we have

u(z) = [ G(z,y)f(y) duly).
OB
It is well known that it is always possible to write G(z,y) = h(z —y) + r(x —v)
where h : R — R is smooth away from 0, one-periodic and h(t) = 47r‘ g in
a neighborhood of 0, while » : R — R is smooth and one-periodic. The

d,u( ) there holds

conclusion then follows since for v( faE [z— y\

HUHLP(aE) < Clflzrom)
with C = C(F, M, a,p) > 0.

(ii) We are going to adapt the proof of [22] to the periodic setting. First observe
that since v is harmonic in £ C T we have

div (2(Vulz)Vu — |[Vul*z + uVu) = 0. (2.9)

Moreover, there exist constants r > 0, Cp and N € IN, depending only on F, M,

«, such that we may cover OF with N balls B, (zy), with every x), € F' and

Ci <A{z|vg(x)) < Cy for x € OE N By, (xy) . (2.10)
0

for every that E € ¢} (F).
If then 0 < ¢, < 1is a smooth function with compact support in By, (z) such
that ¢ = 1 in B, (zy) and |Vyg| < C/r, by integrating the function

div (i (2(Vulz)Vu — |Vu|?z + uVu))

in E' and using equality (2.9), we get
/ (Ver| 2 (Vulz) Vu — |Vul*z + uVu) dz
E
= / div(r (2 (Vulz) Vu — |Vul*z + uVu)) dz
E

= / (2g0k<VT?h|x>8VEu — on VU (z|vg) + rudy,u) du,
oF
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hence,

/ <Vg0k|2<VT3u|x>Vu — |Vul’z + uVu) dz — / YUy, u~ dp
E OF

—2/ cpk<Vu|:c>8yEu*du

oF

_ / eV 2 () dp 2 / kO [ alvs) dy
oFE oF

- / kO™ Pl du— / eVl (elv) du.
oF oF

Using the Poincaré inequality on the torus T? (recall that u has zero integral)
and estimate (2.10), this inequality implies

/ 10, ul? du < C/ (u? + |Vul?) du + C'/ (u? +|Vul?) dz
OENB, (zx) oF T3

<C | (u®+|Vul?)du+ C’/ |Vu|*dz.
OF T3

Putting together all the above estimates and repeating the argument on E°, we

get
/(I&,Eu_\z—H&,Euﬂz)d,u,gC/ (u2+!Vu\2)du+C/ Va2 da .
OF OF T3

The thesis then follows by observing that
/ \Vul|? dz = / w(Oypu™ — Oypu™) dp.
T3 OF
(iii) Let us define

Kf(a) = [ (TEG(a.y)ve()) 1) dutw).
We want to show that

K fllzrom) < Cllfllrom)- (2.11)

By the decomposition recalled at the point (i), we have VI'G(z,y) = VI'[h(z —
)] + VE[r(x —y)], where VI [h(z — y)] = — & =%, for |z — y| small enough

A Ja—y[3”
and VI’[r(z — y)] is smooth. Thus, by a standard partition of unity argument
we may localize the estimate and reduce to show that if ¢ € Co*(R?) and
U C R? is a bounded domain setting T = {(2/, p(2)) : 2’ € U} C R3 and

75(a) = [ @=yle(@) o) gu(y)

|z —yl?

for every x € I', where v is the “upper” normal to the graph T, then T'f(z) is
well defined at every = € I and

ITfllzery < Cllfllze(r) -
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In order to show this we observe that we may write

[ oe(@) =) = (Ve(a)|z' —y)
i@ = | G o) — ol 272

where we used the fact that

I ={(z,y):y —e@@)=F@Ey) =0}

fWely'))dy'.

and then that
VE  (=Ve(),1)

IVF] 1+ [Ve()]?

vg =
Therefore,
‘JZ y|1+a
T C
I R e o F R el
Co [ W,

v lat =y

(v, o)l dy’

Thus, inequality (2.11) follows from a standard convolution estimate.
For x € E we have

Vu@) = | VIG(x,y) f(y) duly),

hence, for z € OF there holds
(Vula —tvp(a)|ve(@)) = | (VEG(—ts(@). )] v ) () ).
We claim that

Bypu () = lim (Vu(e — tvg(2))|ve(e)) = K f(z) + % f@),  (212)

t—0+

for every x € OF, then the result follows from inequality (2.11) and this limit,

together with the analogous identity for 9, u™ (z).
To show equality (2.12) we first observe that

/M(Vf’G( )| vey))du(y) =1—Vol(E)  ifz€ E\JE (2.13)
/@EWISG( )| ve(y))du(y) = 1/2 = Vol(E) if z € OE. (2.14)
Indeed, using Definition (1.3), we have
AvE(m):/EA G(z,y) dy — /CAxG

:—2/ <VT3 (z,9)|ve(y)) du(y)
=2Vol(E) — 1 —upg(x),

then,
| (TGl ve)) du(y) = 1/2= Vol(E) + us(z) /2
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which clearly implies equation (2.13). Equality (2.14) instead follows by an
approximation argument, after decomposing the Green function as at the
beginning of the proof of point (i), G(z,y) = h(z —y) +r(x —y), with h(t) =
ﬁlt\ in a neighborhood of 0 and 7 : R — IR a smooth function.

Therefore, we may write, for € OF and t > 0 (remind that v is the outer unit

normal vector, hence x — tvg(z) € E),
(Vu(z —tvg(z))|ve(z)) = /BEWFG(l’ —tvg(x),y)lve(z))(f(y) — f(z)) du(y)

+ f() /B (TG~ trp(a) p)lve(e) = v () o)

+ f(z)(1 = Vol(E)),
(2.15)
by equality (2.13).
Let us now prove that

lim (VIG(x — twp(x),y) | ve(@))(f(y) - f(2)) duly)
t— OF

= [ (VTG0 1)) (o) = F ) ),
observing that since JF is of class C1* then for |t| sufficiently small we have
|z —y —tvg(x)| > %\x—y| forall y € OF. (2.16)
Then, in view of the decomposition of V,G above, it is enough show that

(z —y—tvp(z) |ve(z))

tlir& oE |z —y — tvg(x)[? (F(y) = f(@)) duly)
= [ el ) — o) duto)
OE lz -yl

which follows from the dominated convergence theorem, after observing that
due to the a—Holder continuity of f and to inequality (2.16), the absolute value
of both integrands can be estimated from above by C/|z — y[*>~® for some
constant C' > 0.

Arguing analogously, we also get

lim [ (V260 — (). ) (e) = v ) )
— [ (VEG(a () - ve) du(w).
OF
Then, letting ¢ — 0" in equality (2.15), for every = € OF, we obtain
lim (Va(e — tvp(@)lve(e)) = [ (TEG(@9)lve(@)(Fw) ~ (o) duly)
OF

t—0t
+ /() /8 (VEG ) v(a) = v ) duly)

+ f(z)(1—Vol(E))
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= [ (VTG lv()r )

— f(x) / <VT3 Y)|ve(y)) du(y)

+ f(x)(1— Vol(E))
= Kf(x) + f(x)(Vol(E) = 1/2) + f(x)(1 — Vol(E))
= K (@) + 3/()

where we used equality (2.14), then limit (2.12) holds and the thesis follows.

(iv) Fixed p > 2 and S € (0, p2) as before, due to the properties of the Green’s
function, it is sufficient to establish the statement for the function

ooy = [ S W) gu).

E fﬂf—y|

For z1, ©9 € OF we have

olen) = vle)| < [ 150 o=yl —loa=sil )

oL 21 =yl |22 —y]
In turn, by an elementary inequality, we have

|1 — y[* P + |2y — y|F|
|21 =yl |z2 — ¥l

|21 —y| — |2 — yl|

|ZZ?1 - x2|6 )
lz1 =yl |z2 — 9

<C(B)

thus, by Holder inequality we have

du(y) |z1 — z2|”

1 — 1-8 T9 — 1-8
v(z1) —v(22)| < C(,B)/ \f(y)|“ yI'™7 £z — |7

9E lz1 =yl |r2 —y|
< C'(B)|fll o)1 — 22|,

where we set

C'(B) = 20(5)( sup /M i ! ; du(y)>1/p/,

z1,22€0F _ylﬁp ‘ZQ_y’p
with p’ = p/(p—1).

For the second part of the lemma, we start by observing that

1fllz20m) < CUFIZ o 1F 12 o)

If p > 2 we have, by Gagliardo-Nirenberg interpolation inequalities (see [5,
Theorem 3.70]),

(p—2)/p 2/
£ lLeomy < ClA @) 11T (om)-

Therefore, by combining the two previous inequalities we get that, for p > 2,
there holds

(p—1)/p 1/
1 Le@my < ClF N @m 1Al

Hence, the thesis follows once we show

1 fllz-10m) < Cllullr20m)-
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To this aim, let us fix ¢ € H!(9F) and with a little abuse of notation denote its
harmonic extension to T3 still by ¢. Then, by integrating by parts twice and by
point (ii), we get

/ of dp = —/ pAudp
OF OF

= _/ u[aVE‘P] dp
OF

< ||U||L2(8E)H[8VE‘P]HL2(8E)
<ullr2om) (|‘8VESO+HL2(8E) 100597 I 12(58))
< Cllull2am)llell a1 (aE)-

Therefore,

1 flasom = sup / of du < Cllull 2o,
<1JoE

||‘P||H1(,9E)
and we are done. U

For any smooth set £ C T3, the fractional Sobolev space W*P(9F), usually
obtained via local charts and partitions of unity, has an equivalent definition
considering directly the Gagliardo W*P—seminorm of a function f € LP(OE), for
s € (0,1), as follows

ivewiory = [ [ = LE duorauty)

and setting || fllwsr@ar) = | fllLr@or) + [flwsrop) (see Appendix B). As it is
customary, we set [f]ys(op) = [flws2(9r) and H*(OE) = W**(JE).

Then, it can be shown that for all the sets £ € Qf}\;[a(F), given a smooth set
F C T? and a tubular neighborhood N. of dF as in formula (1.37), for any
M € (0,e/2) and « € (0,1), the constants giving the equivalence between this
norm above and the “standard” norm of W*?(9E) can be chosen to be uniform,
independent of E. Moreover, as for the “usual” (with integer order) Sobolev
spaces, all the constants in the embeddings of the fractional Sobolev spaces
(in particular the ones in the propositions of Appendix B) are also uniform for
this family. This is related to the possibility, due to the closedness in C** and
the graph representation, of “localizing” and using partitions of unity “in a
single common way” for all the smooth hypersurfaces F boundaries of the
sets £ € C}\’f(F), see [8] for details.

Then, we have the following technical lemma.

Lemma 2.8. Let F C T? be a smooth set and E € €y (F). For every 8 € [0,1/2),

there exists a constant C = C(F,M,«, ) such that if f € H%(E?E) and g €
WL4(OF), then

73 0y < Ol oy 190008 + AL 3, e o) V81 0 -
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Proof. We estimate with Holder inequality, noticing that 65/ (1 + B ) < 2, as
B € [0,1/2), hence there exists § > 0 such that (68 +9)/(1+ ) <

163y <2 o 90y +2 [ [ 1P 222000 jfé’)'Zd(x)du(y)

SQ[f] (BE HQHLOO (OF)

f@W)P lg(z) —gly)P0
+C/8E /8E |z — y[38+/2 | — y|3(1-5)=0/2 lg HL°° (o) d1(x)dpi(y)
SQWZ%( HQH%OO(BE)
1 (1+8)/2
o[ 1rwits / g du(@)dp() 9l o
OF |x_y‘ 1+8

/ / A=W o )
oE JoE |$_y,

§2[f]H?( ||9||Loo (OE)

+C(/8E|f(y)|“ﬁdu(y)

ST g oy 90wy + CUI2 o 91 o 192

(1+8)/2 _
) [9]2(1175)

lgll27,
L~ (8E) ﬁA(E)E)

where in the last inequality we applied Proposition B.1 (extended to the frac-
tional Sobolev spaces on OF). Hence the thesis follows noticing that all the
constants C' above depend only on F, M, « and §3, by the previous discussion,
before the lemma. O

As a corollary we have the following estimate.

Lemma 2.9. Let ' C T3 be a smooth set and E € (’:}\f(F). Then, for M small
enough, there holds

2
[Vl 32y < COF ML) (L4 [HIZy )

where H is the mean curvature of OF and the function v, is defined by formula (2.5).

Proof. By a standard localization/partition of unity/straightening argument,
we may reduce ourselves to the case where the function ¢ g is defined in a
disk D C R? and [YEllc1e(py < M. Fixed a smooth cut-off function ¢ with
compact support in D and equal to one on a smaller disk D’ C D, we have (see
Remark A.2)

2
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where the remainder term R(z, v g, Vi) is a smooth Lipschitz function. Then,
using Lemma 2.8 with 8 = 0 and recalling that ||{g[|c1.e(py < M, we estimate

(A, ) < COF, M, @) ( M2V (o0p)]

(D) H% (D)

] o (1 IVYElL=(D)
+ 11 z2om) (1 + YEllw24(D))
+ 1+ pllwasp) ) -

We now use the fact that, by a simple integration by part argument, if u is a
smooth function with compact support in R?, there holds

_ 2
- [V U]H%(]RQ) )

< O(F, M, ) (M2[V2(pvp)] 3
+[H]

(D)

H%(aE)(l + IVYEl L= (D))
+ | Laom) (1 + Ve lw24(D))
+1+ HwEHWQv“(D)>7

then, if M is small enough, we have

(V2 (evn)l g ) < CF M)A+ [H] gy o (1 [Hessvpl ), (217)

)

as

]| L4 0y < C(F, M, ) (2.18)

1F0 3
by Proposition B.2 with ¢ =4, s =1/2and p = 2.

By the Calderén-Zygmund estimates (holding uniformly for every hypersurface
OE, with E € ¢} (F), see [8]),

[Hess gl papy < C(F, M, a)(|[YEelLap) + 1A%El L1 (D)) (2.19)
and the expression of the mean curvature (Remark A.2)

AQ/)E . HeSS¢E(V¢EV¢E)'

VIH[VepP (VI [Vi])?

we obtain

|1AYE|Lapy < 2M|[H| p2om) + M?||[Hess YEllLa(p)
< 2M|Hl|a(o5) + C(F, M, ) M* ([0l s ) + 8¢5 14(1))
hence, possibly choosing a smaller M, we conclude

80sls(p) < CF, M. @)1+ [l 11(om) < C(F M, @)L+ [H]py ).
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again by inequality (2.18).
Thus, by estimate (2.19), we get

[Hess vl s ) < CCF, M) (L1 3 ). (2.20)

and using this inequality in estimate (2.17),

[VQ(SWE)]H%(D) < C(F,M,a)(1+ HHHH%(BE))2’

< OF, M, )L+ |Hll 3 ) )* < OF M) (L HIE, ).

The inequality in the statement of the lemma then easily follows by this in-

equality, estimate (2.20) and [[¢g|c1.«(py < M, with a standard covering argu-
ment. O

We are now ready to prove the last lemma of this section.

Lemma 2.10 (Compactness). Let ' C T3 be a smooth set and E,, C €y (F) a
sequence of smooth sets such that

sup/ |Vwg, |* dz < +o0,
neN JT3

where wg, are the functions associated to E,, by problem (2.1).

Then, if o € (0,1/2) and M is small enough, there exists a smooth set I’ € €} ,(F)
such that, up to a (non relabeled) subsequence, E, — F' in w2p foralll <p <4
(recall the definition of convergence of sets at the beginning of Section 1.3).

Moreover, if

/ |Vwg, [*dz — 0,
T3

then F' is critical for the volume—constrained nonlocal Area functional J and the
convergence E,, — F' is in W22,

Proof. Throughout all the proof we write w,,, H,,, and v,, instead of wg,,, Hsg,,,
and vg,, respectively. Moreover, we denote by w, = ng wy, dxr and we set

Wy, = faEn wy, dpt, and H,, = faEn H,, djip,.
First, we recall that

wy, = H,, +4yv, on 0E, and sup |vnllcre sy < 400, (2.21)
n€N

by standard elliptic estimates. We want to show that

l|wn _wnH2 1 < ||wy _@nHQ 1 . (2.22)

HZ(0E,) H?2 (0FEy)

To this aim, we recall that for every constant a
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then,
d
Gl = alBaop,) = 204008,) =2 | w,die,
OFE,

The above equality vanishes if and only if a = f,, w, dux, hence,
|wn, — Wnll2(5E,) = ggﬂngwn —all20E,)

and inequality (2.22) follows by the definition of || - || (see Appendix B)

H2 (9E,)
and the observation on the Gagliardo seminorms just before Lemma 2.8.

Then, from the trace inequality (see [13]), which holds with a “uniform” constant
C =C(F,M,a), for all the sets E € le\f(F) (see [8]), we obtain

||wn_wn”2 < ||w7z_{‘7n||2

< 2 .
g om,) = C/TS |[Vwy|*de < C < 400 (2.23)

H3 (0E,)
with a constant C' independent of n € IN.
We claim now that

sup |Hy, ”H2 (05x) < +o0. (2.24)

To see this note that by the uniform C1“~bounds on dE,,, we may find a fixed
solid cylinder of the form C' = D x (—L, L), with D C IR? a ball centered at the
origin and functions f,, with

sup || fnllgre(p) < 400, (2.25)
neN

such that 0E, NC = {(2/,z,) € D x (—=L,L) : z,, = fn(a’)} with respect to a
suitable coordinate frame (depending on n € IN).

/D(Hn—ﬁn) da:'—i—ﬁnArea(D):/Ddiv( 1Z|anfn )
Ve x’

oD 1+’v fn‘2

where o is the canonical (standard) measure on the circle 9D.

Hence, recalling the uniform bound (2.25) and the fact that ||H,, — H,, HH2 (65,)

are equibounded thanks to inequalities (2.21) and (2.23), we get that H,, are
also equibounded (by a standard “localization” argument, “uniformly” applied
to all the hypersurfaces 0F,,). Therefore, the claim (2.24) follows.

By applying the Sobolev embedding theorem on each connected component of
OF, we have that

[Holl e 0m,) < CHH"HH%(BEH) <C < +oc0 for all p € [1,4].
for a constant C independent of n € IN.
Now, by means of Calderén-Zygmund estimates, it is possible to show (see [8])
that there exists a constant C' > 0 depending only on F', M, o and p > 1 such
that for every E € Q}\’f(F), there holds

Bl ory < C(1+ [H] 1o o8)) - (2.26)
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Then, if we write

OB, = {y +¢n(y)vr(y) : y € OF},

we have sup,,cn [[¥nllw2ror) < +o0o, for all p € [1,4] (taking into account
Remark A.2). Thus, by the Sobolev compact embedding WP (9F) — CL(9F),
up to a subsequence (not relabeled), there exists a set F’ € @}\}IQ(F) such that

Yn — g in CY*(OF) and v, — vp in CHP(T3)

forall a € (0,1/2) and 3 € (0,1).

From estimate (2.24) and Lemma 2.9 (possibly choosing a smaller M), we have
then that the functions v, are bounded in W%’Z((‘)F). Hence, possibly passing
to another subsequence (again not relabeled), we conclude that E,, — F’ in
W?2P for every p € [1,4), by the Sobolev compact embedding in Proposition B.2
with ¢ € [1,4), s = 1/2 and p = 2 there, applied to Hess ¢,.

If moreover we have
, |Vwy|? dz — 0

then the above arguments yield the existence of A € R and a subsequence (not
relabeled) such that wy, (- +¢n(-)vr(-)) = A in Hz2(OF). In turn,

Hy (- +n (e () = A= dyvpr (- +op (Yo () = H(- +vp ()ve())

in H2(OF), where H is the mean curvature of F’. Hence F" is critical.

To conclude the proof we then only need to show that v,, converge to ) = g
in W32(0F).

Fixed 6 > 0, arguing as in the proof of Lemma 2.9, we reduce ourselves to the
case where the functions 1, are defined on a disk D C R?, are bounded
in W32(D), converge in W?P(D) for all p € [1,4) to ¢ € W32(D) and
V9| Lo (p) < 0. Then, fixed a smooth cut-off function ¢ with compact support
in D and equal to one on a smaller disk D’ C D, we have

A(phn) Alpy) oo _ o2 ViV
2 Vi Vb, VyVy
v (¢¢”)<(1 +Veal2)¥2 (1 |vw\2>3/2>

where R is a smooth Lipschitz function. Then, using Lemma 2.8 with g €
(0,1/2), an argument similar to the one in the proof of Lemma 2.9 shows that

Alpyn)  Aley) }
VIHIVE?  T+[VOR] gt

2 2 B 2 1-8
+ IV (pton) =V (svw)HLﬁ(D)HW#H o) IV iy +
+ [Vz(wbn)]H%(D)llV% — Vil oo (p)

FIVEl, ) 19 = Tl e ) IVl + 92 3)

< (M) (52 (Vo) = V2 (00)] 3 )

=By b = llwam))
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Using Lemma 2.8 again to estimate [A(p),,) — A(cpz/))]H o) with the seminorm

on the left hand side of the previous inequality and arguing again as in the
proof of Lemma 2.9, we finally get
[V2(vn) = V2 (0] 3 ) < CON (N =l

+[1Ha —Hll 3 ) )

_ B
’ﬁ(D) + van ku % (D)

D)

hence,
2 2
(V2 = V2] 1y < COD (Nn =

+ [Hn — H]

B
’ﬁ(D’) + qurbn - V¢|| (D)

H3 (D"
H%(D')) )

from which the conclusion follows, by the first part of the lemma with p =
4/(1+ B) < 4 and a standard covering argument. O
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We are ready to prove the long time existence result. We will follow the proof
in [1], by means of the lemmas proved in the previous chapter. As described
in the introduction, the following theorem shows that a strictly stable critical
set is in a way like the equilibrium configuration of a system at the bottom of
potential well. Indeed we are going to show that under the modified Mullins—
Sekerka flow, a smooth set starting close to a smooth strictly stable critical set,
asymptotically moves back to a translate of such set.

Theorem 3.1. Let E C T"™ be a smooth strictly stable critical set with N, (withe < 1)
a tubular neighbourhood of E, as in formula (1.37). For every a € (0,1/2) there exists
M > 0 such that, if Ey is a smooth set in QZ}\f(E) satisfying Vol(Ey) = Vol(F) and

/ |Vwg, |*de < M
T3

where wy = wg, is the function relative to Ey as in problem (2.1), then the unique
smooth solution E; of the modified Mullins—Sekerka flow (with parameter v > 0)
starting from Ey, given by Theorem 2.5, is defined for all t > 0. Moreover, E; — E + 1
exponentially fast in W°/%2 as t — oo (recall the definition of convergence of sets at
the beginning of Section 1.3), for some n € R3, with the meaning that the functions
Yyt OF 4+ 1 — R representing OE; as “normal graphs” on OE + 1), that is,

OE; = {y + 1/Jn,t(y)VE+n(y) Yy €0F + 77},

satisfy

er],t||w5/2,2(aE+n) < Ce—ﬁt’

for every t € [0, +00), for some positive constants C' and .

Remark 3.2. We already said that the property of a set Ej to belong to @}\f(E)
is a “closedness” in L! of Ey and E, and in C1® of their boundaries. The extra
condition in the theorem on the L?-smallness of the gradient of wy (see the
second part of Lemma 2.10 and its proof) implies that the quantity Ho + 4yvg
on 0L is “close” to be constant, as it is the analogous quantity for the set &/
(or actually for any critical set). Notice that this is a second order condition for
the boundary of Ej, in addition to the first order one Ej € Qﬁ}\;fa(E).

Proof of Theorem 3.1. Throughout the whole proof C' will denote a constant
depending only on E, M and «, whose value may vary from line to line.

Assume that the modified Mullins-Sekerka flow E; is defined for ¢ in the
maximal time interval [0,T(Ep)), where T'(E) € (0, +oo] and let the moving
boundaries JF; be represented as “normal graphs” on OF as

OE; = {y + Y (y)ve(y) : y € OF},
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for some smooth functions ¢, : 0F — R. As before we set v, = vg,, v; = v,
and w; = wg,.

We recall that, by Theorem 2.5, for every F' € QZ?\f(E), the flow is defined in
the time interval [0,T), with T = T(E, M, «a) > 0.

We show the theorem for the smooth sets £y C T? satisfying

Vol(ByAE) < My, iollcne(om) < Mz and / V|2 dz < Ms,
T3

for some positive constants M, Ms, M3, then we get the thesis by setting
M = min{Ml, MQ, Mg}.
For any set F' € €}/ (E) we introduce the following quantity

D(F):/FAECZ(Q:,@E) dx:/Fdde—/EdEda:, (3.1)

where dp, is the signed distance function defined in formula (1.38). We observe
that

Vol(FAE) < C||¢F||L1(8E) < C||¢F”L2(8E)

for a constant C' depending only on E and, as F' C N,
D(F) < / e dz < eVOl(FAE).
FAE

Moreover,

) [¥r(y)l
1¥rliz20m) = 2/8E/0 t dt du(y)

e )
= 2/@}3/0 d(L(y,t),0F) dt du(y)
_» /E (e, 08) JL7 (@) de

< CD(F).

where L : OF x (—¢,e) — N. the smooth diffeomorphism defined in for-
mula (1.40) and JL its Jacobian. As we already said, the constant C' depends
only on E and e. This clearly implies

Vol(FAE) < CllYrl1ap) < Cllvrllizom < C/D(F). (3-2)

Hence, by this discussion, the initial smooth set Ey € €y (E) satisfies D(Ey) <
M < M; (having chosen ¢ < 1).

By rereading the proof of Lemma 2.10, it follows that for M, M3 small
enough, if [[¢r||cre@r) < M2 and

/ |Vwr|? de < Mg,
T3

then
[Vrllw2sop) < wmax{Ms, Ms}), (3:3)
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where s — w(s) is a positive nondecreasing function (defined on R) such that
w(s) — 0 as s — 07. This clearly implies (recalling Remark A.2)

lvellwiser < W (max{Ms, M3}), (3-4)

for a function w’ with the same properties of w. Both w and w’ only depend on
E and a, for M small enough.
We split the proof of the theorem into steps.

Step 1. (Stopping—time) Let T < T(Ey) be the maximal time such that
VOl(EtAE) < 2M1, ”thClv“(aE) < 2M2 and / ‘th|2 dx < 2M3, (35)
T3

forall t € [0,T). Hence,
[¥tllw2s(om) < w(2max{My, M3})

for all ¢ € [0, T’), as in formula (3.3). Note that such a maximal time is clearly
positive, by the hypotheses on Ej.
We claim that by taking M, Ms, M3 small enough, we have T = T'(Ep).

Step 2. (Estimate of the translational component of the flow) We want to see that
there exists a small constant § > 0 such that

nren(i)g H [Oy, wi] — (n| Vt>HL2(8Et) > GH[a’/twt]HB(aEt) forallt € [0,T), (3.6)
where Og is defined by formula (1.35).
If M is small enough, clearly there exists a constant Cy = Co(E,M,a) >
0 such that, for every i € Ig, we have |[{ei|v1)[|r2(9r,) = Co > 0, holding
[{eilve) | L2am) > 0. It is then easy to show that the vector 7; € O realizing
such minimum is unique and satisfies

[Ov,wi] = (e |ve) + g, (3.7)

where g € L?(0E;) is a function L*-orthogonal (with respect to the measure 1
on JF}) to the vector subspace of L?(0E};) spanned by (e;|1), with i € Iz, where
{e1,...,es} is the orthonormal basis of R?® given by Remark 1.16. Moreover,
the inequality

el < Ol 2o, (3-8)

holds, with a constant C' depending only on E, M and «.
We now argue by contradiction, assuming ||g|z2(95,) < 0||[0u, we|| L2(0B:)" First,

by formula (1.5) and the translation invariance of the functional .J, we have

d
0 = %J(Et + ST]t)

- / (Hy -+ dyo) (e | ) dpe = / wi(ne | v2) dps.
s=0 OFE;

t
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It follows that, by multiplying equality (3.7) by w; — w;, with w; = ng wy dx
and integrating over 0F;, we get

/ |th|2d$: —/ wt[auzwt] g
T3 OF;:

:—/ (wi — @) D] dis
OFE:

:—/<w—@mwt
O,
< Ollwe = Bell 2208, || [0 we] || 2 5, -

Note that in the second and the third equality above we have used the fact that
[0y, w¢] and v have zero integral on OE.
By the trace inequality (see [13]), we have

—~ 12 ~ 12 2
[wr = Wil 2 (o,) < ”wt_thH%(aEt) < C/qrs [Vw|” dz, (3.9)

hence, by the previous estimate, we conclude

/11*3 |th|2 dx < CGQH[autwt]HEQ(aEO' (3'10)

Let us denote with f : T3> — R the harmonic extension of (1, | ;) to T3, we
then have

IV fllzz2ersy < Cll{me | Vt>”H%(aEt) < Clmlllvellwrsom,) < OH[awwt]HLZ(aEt)’
(3.11)
where the first inequality comes by standard elliptic estimates (holding with a
constant C' = C(E, M, «a) > 0, see [8] for details), the second is trivial and the
last one follows by inequalities (3.4) and (3.8).
Thus, by equality (3.7) and estimates (3.10) and (3.11), we get

o 1010y = [ Ouvton) o )

By

:/ (Vwy | V) dw
T3

1/2 1/2
< (/ |th|2dx> </ |Vf\2das)
s T3

2
< CQH [thwt]HH(aEt) :

If then 6 > 0 is chosen so small that C6 + 6? < 1 in the last inequality, then
we have a contradiction with equality (3.7) and the fact that [|g[/;2(9g,) <
0| [0, wi]|) - (om,) 38 they imply (by L?-orthogonality) that

2
[l (¢ | Vt)”%?(@Et) > (1- 02)”[8’/twt]HL2(8Et) :

All this argument shows that for such a choice of ¢ condition (3.6) holds.
By Propositions 1.25 and 1.26, there exist positive constants oy and § with the
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following properties: for any set F' € Qf}\;[a(E) such that |[¢r|lyw239p) <, there
holds

[r(0) > oallellzn o)

for all p e ﬁl (8F> such that minneoE ”gp - <’I7 | VF)HLQ(aF) > 0||‘10HL2(8F) and if
E' is critical, Vol(E') = Vol(E) with [|¢[ly2395) < 0, then

E =FE+n (3.12)

for a suitable vector € R3. We then assume that M,, M3 are small enough
such that

w(2max{ Mo, M3}) < §/2 (3.13)
where w is the function introduced in formula (3.3).

Step 3. (The stopping time T is equal to the maximal time T'(Ep)) We show now
that, by taking M, Ma, M3 smaller if needed, we have T = T'(Ep).
By the previous point and the suitable choice of M, M3 made in its final

part, formula (3.6) holds, hence we have

g, ([0y,wi]) = o9]|[Ov,w forallt € [0,T).

2
Wi o)
In turn, by Lemma 2.6 we may estimate

1

d (1 9 2 + - 2
o <2 /T3 [V d$> < *UGH[@wwt]HHl(aEt) + 2/6E (Ovywy” + Ovwy ) [Ov,we]” dpay

t

forevery t <T.
It is now easy to see that
Awy = [0y, wi]pu

then, by point (iii) of Lemma 2.7, we estimate the last term as
/ (8Vtwt+ + 8Vtw;)[al/twt]2dut < C/ (|al/tw;r‘3 + ‘al/tw;|3) dput
8Et 8Et

<C [ o] due.
OFE;

thus, the last estimate in the statement of Lemma 2.7 implies

1/3

H [8I/twt L2 (8Et)

< €]

2/3 P
]HLS(BEt H1(8Et)Hwt_wt||

Therefore, combining the last three estimates, we get
d 2 2 . 2
dt T3 ‘th| de < — 209“ [thwt] HHl(aEt) + CHwt - thLQ(BEt) H [8Vtwt] HHl(BEt)
2
< - O-GH[thwt]HHl(BEt)’ (314)

for every t € [0,T), where in the last inequality we used the trace inequality (3.9)

lwe = Bel|Z2om,) < lwr =@l

< C/ |th]2d:n < QCMg,
(OEy) T3
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possibly choosing a smaller M such that 2CM3 < oy.

This argument clearly says that the quantity [;s |Vw|? dz is nonincreasing
in time, hence, if My, M3 are small enough, the inequality ng |V |?dz <
2Ms3 is preserved during the flow. If we assume by contradiction that 7' <

T(Ep), then it must happen that Vol(EFAE) = 2M; or |[¢g|lc1.eop) = 2Ma.

Before showing that this is not possible, we prove that actually the quantity
Jys [Vw|? dz decreases (non increases) exponentially.
Computing as in the previous step,

/ |th]2 dxr = —/ wy [Oy, we] dpy
T3 OF:
= [ w0 Ougr) d
OF:

< |jwy — @HL?(aEt)H[awwtmp(aEt)

1/2
<c </T \thde) 10u] 2 5,

where we used again the trace inequality (3.9). Then,

2
/T3 |th]2d:1: < CH[al’twt]HL2(6Et) < CH[thwt]”?—Il(aEt)a

and combining this inequality with estimate (3.14), we obtain

d
dt/ |V |* de < —co/ |V, |* de,
T3 s

for every t < T and for a suitable constant ¢y > 0. Integrating this differential
inequality, we get

[ ke e | Gufde < et <Ma Gas)

for every t <T.

Then, we assume that Vol(EzAE) = 2M; or ||[¥7| c1a(op,) = 2Ma. Recalling
formula (3.1) and denoting by X; the velocity field of the flow (see Definition 2.1
and the subsequent discussion), we compute

d d
2 D(E,) = / dEda::/ div(dsX;) dx:/ (X |ve) dyse
dt dt E; FEy OFE:
:/ dp[0y,wi] duy = —/ (Vh|Vwy) dx,
OF, T3

where h denotes the harmonic extension of dg to T?. Note that, by standard
elliptic estimates and the properties of the signed distance function dg, we have

VA 213y < Clldgllcrepr < C = C(E),

then, by the previous equality and formula (3.15), we get

d
- D(Ey) < C|[ V]| pagrs) < C\/Msze=0t/2
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for every t < T. By integrating this differential inequality over [0,T) and
recalling estimate (3.2), we get

VOl(EpAE) < Cllgliaom,) < Cy/D(Ep) < O\ D(Ey) + C/MEs < €Y/,
(3.16)

as D(Ey) < M, provided that M, M3 are chosen suitably small. This shows

that Vol(EFAE) = 2M; cannot happen if we chose C'v/Mj < M;.

By arguing as in Lemma 2.10 (keeping into account inequality (3.5) and for-

mula (3.3)), we can see that the L?-estimate (3.16) implies a W*3-bound on ¢

with a constant going to zero, keeping fixed M5, as fTS |Vw7\2 dx — 0, hence,

by estimate (3.15), as M3 — 0. Then, by Sobolev embeddings, the same holds

for |[vz cre(op,), hence, if M is small enough, we have a contradiction with

17l craory) = 2Ma.

Thus, T = T(E,) and

VOI(EtAE) S 0\4/ M3, HthCLD‘(aEt) S 2M2, / ‘th|2 dﬂ’} S Mge_cot’
"]I‘S
(3.17)
for every t € [0,T(Ep)), by choosing M, My, M3 small enough.
Step 4. (Long time existence) We now show that, by taking M;, Ms, M3 smaller
if needed, we have T'(Fy) = +oo, that is, the flow exists for all times.

We assume by contradiction that T'(Ep) < +oo and we recall that, by esti-
mate (3.14) and the fact that T = T'(Ej), we have

d
ﬁAg ]thP dq:—{—agH[&,twt]Hi{l(aEt) S 0

for all t € [0,T(Ey)). Integrating this differential inequality over the interval
[T(Ey) —T/2,T(Eo) —T/4], where T is given by Theorem 2.5, as we said at
the beginning of the proof, we obtain

T(Eo)—T/4 ) ) )
< —
o’ /T(EO)T/2 H[thwt]HHl(aEt) dt < /TS |va(ED)—%’ dz /11“3 ’va(EO)—%‘ dx

< M3 )
where the last inequality follows from estimate (3.17). Thus, by the mean value
theorem there exists t € (T(Ey) —T/2,T(Ey) — T /4) such that
2 4Ms3
[0, w7] HHl(BEt) < Tog

Note that for any smooth set I C T3, we have vaHcl(Tg) < L, for some
“absolute” constant L and that wy is constant, then, since H'! (0E;) embeds into
LP(OE;) for all p > 1, by Lemma 2.7, we in turn infer that

[He(- +9:(-) v () = Helgoaom)
< Clwg(- + (- ve(-) = weltoaom)
+ Clog(- + (- )vE() = viltoaom + Clor — vE]Coaom)

< C[w{]éoya(aE{) H%”%m(am + CLZH%D{HQcLa(aF) + Cllug - UE||%2(T3)

M3
< CT—U@ + CL?|Ygllgn.a(om) + OVOL(EZAE).
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where [|coe(gp,) and []coa(op) stand for the a-Holder seminorms on dE;
and OF, respectively and remind that v;, vg are the potentials, defined by
formula (1.1), associated to u; = x B~ Xrmys and ug = x, — Xy g+

By means of Schauder estimates (as Calderén-Zygmund inequality implied
estimate (2.26)), it is possible to show (see [8]) that there exists a constant
C > 0 depending only on E, M, @ and p > 1 such that for every F € ¢, (E),
choosing even smaller My, Ms, M3, there holds

|Bllcoaar) < C(1+ [[Hllcoaar)) -

Hence, by the above discussion (and Remark A.2, as before), we can conclude
that E; € (’ﬁ?\’f‘(E). Therefore, the maximal time of existence of the classical
solution starting from F; is at least 7', which means that the flow E; can be
continued beyond T'(Ep), which is a contradiction.

Step 5. (Convergence, up to subsequences, to a translate of E) Let t,, — 400, then,
by estimates (3.17), the sets E}, satisfy the hypotheses of Lemma 2.10, hence,
up to a (not relabeled) subsequence we have that there exists a critical set

E' € Qijl\’f(E) such that F;, — E’ in W32, Due to formulas (3.3) and (3.13)
we also have [¢p|lw2s9p) < 6 and E' = E +n for some (small) n € R?

(equality (3.12)).
Step 6. (Exponential convergence of the full sequence) Consider now

D,(F) = / dist (z,0E +n) dz .
FA(E+n)
The very same calculations performed in Step 3 show that

‘CZDW(Et) < C||th||L2(T3) < C\/ Mge_cot/2

for all t > 0, moreover, by means of the previous step, it follows lim;_, . o Dy, (E;) =
0. In turn, by integrating this differential inequality and writing

OE; = {y + VYot (y)vEy(y) 1y € OE +n},

we get

+oo
Hwnth%Q(aE—i—n) S CD'I](Et) S /t\ C\/ ]\4’36_008/2 dS S C\/ M3€_C()t/2 . (318)

Since by the previous steps |9y t|lw23554y) is bounded, we infer from this
inequality and interpolation estimates that also [|¢,¢|lc1.6 (95 decays expo-
nentially for all 3 € (0,1/3). Then, setting p = ﬁ, we have, by estimates (3.18)
and (3.2) (and standard elliptic estimates),

vt = vE4gllcrsrsy < Cllvr — vEiqllwer sy < Cllur — wpyl Lo (1)

< CVol(EyA(E +n))YP < Cllzbn,tlllL/z’(’amn)

< CMy/*Pecot/ At (3-19)
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for all 5 € (0,1/3). Denoting the average of w; on JE; by w;, as by esti-
mates (3.9) and (3.15) (recalling the argument to show inequality (2.22)), we
have that

e (- Ao (Dveen()) =@l g o S Cllwe =Wl gy o naller @ m)
< COIVwe| 213y

< Cv/ Mge_cot/Q .

It follows, taking into account inequality (3.19), that

H[Ht( AU (e () — Hi] = [Hopiy — ﬁaE-ﬁ-n]HH% — 0 (3.20)

(0E+n)
exponentially fast, as t — 400, where H, and Hy E+n stand for the averages of
H; on 0FE; and of Hpg,, on OF + 7, respectively.
Since Ey — E +n (up to a subsequence) in W32, it is easy to check that
H: — Hopiy| < CllYn.illcr(opy) which decays exponentially, therefore, thanks
to limit (3.20), we have

HHt( e (vEn() - H6E+77HH%(,9E+77)
exponentially fast.
The conclusion then follows arguing as at the end of Step 4. O



RELATED RESULTS AND RESEARCH DIRECTIONS

In this final chapter we give an overview of the “Neumann” case for the
modified Mullins-Sekerka flow and we discuss the classification of the strictly
stable sets. We also present the Ohta—Kawasaki functional and the link between
its minimizers and the W?2?-local minimality result, Theorem 1.19. We then
conclude with some possible research directions.

4.1 A BRIEF OVERVIEW OF THE NEUMANN CASE

Let Q be a smooth bounded open subset of R"”. As before we consider the
nonlocal Area functional

In(E) = Ao(0F) + 7/ Vopl?dz,
Q

for every £ C 2 with 0E N 02 = J, where v > 0 is a real parameter and v is
the potential defined as follows, similarly to problem (1.3),

—Avg =ug—m in
aU—E =0 on 0f?
Ovg

/vde:O
Q

with m = fQ updr, up = X,
As in formula (1.5), we have

[ vest iz = [ | Gapusyus) dedy.

~ Xa\g and vg the outer unit normal to E.

where G is the (distributional) solution of

-0, G(z,y) =0y — ﬁ(ﬂ) for every z €

(V.G(z,y)lvp(x)) =0 for every = € 9%
/ G(z,y)dx =0
Q

for every y € Q.

Note that, unlike the “periodic” case (wWhen the ambient is the torus T"), the
functional Jy is not translation invariant, therefore several arguments simplify.
The calculus of the first and second variations of Jy, under a volume constraint,
is exactly the same as for J, then we say that a smooth set £ C Q, with
OE N 0N = O, is a critical set, if it satisfies the Euler-Lagrange equation

H+4yvg = A on OF,
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4.1 A BRIEF OVERVIEW OF THE NEUMANN CASE

for a constant A € IR, instead, since Jy is not translation invariant, the spaces
T(OF), T+(OE), and the decomposition (1.33) are no longer needed and,
defining the same quadratic form Ilg as in formula (1.31), we say that a smooth
critical set E is strictly stable if

[g(p) >0  forall p € H'(JE)\ {0}.

We say that £/ C () is a local minimizer if there exists a 6 > 0 such that

IN(F) = IN(E),

forall F C Q, 0FNoQ = O, Vol(F) = Vol(F) and Vol(EAF) < §. Then, as
in the periodic case, we have a local minimality result with respect to small
W?2P—perturbations. Precisely, the following counterpart to Theorem 1.19 holds

(see [23]).

Theorem 4.1. Let p > max{2,n — 1} and E C Q a smooth strictly stable critical set
for the nonlocal Area functional Jy (under a volume constraint) with N, a tubular
neighbourhood of E as in formula (1.37). Then there exist constants 6, C' > 0 such that

In(F) > Jn(E) + C[Vol(EAF))?,

for all smooth sets F C T™ such that Vol(F) = Vol(E), Vol(FAE) < §, 0F C N.
and

OF ={y+¢(y)ve(y) : y € OF},

for a smooth v with ||y |ly2poE) < 0.

As a consequence, E is a W*P-local minimizer of Jy (as defined above). Moreover, if
F is W2P—close enough to E and Jn(F) = Jy(E), then F = E, that is, E is locally
the unique W2P-local minimizer.

Sketch of the proof. Following the line of proof of Theorem 1.19, since the func-
tional is not translation invariant we do not need Lemma 1.24 and inequal-
ity (1.69), proved in Step 2 of the proof of Theorem 1.19, simplifies to

. =~ m
inf{T1r(p) : ¢ € H'(OF) . |elmor = 1} = 5,

where my is the constant defined in formula (1.68). The proof of this inequality
then goes exactly as there.

Coming to Step 3 of the proof of Theorem 1.19, we do not need inequality (1.72),
thus we do not need to replace F' by a suitable translated set F' — 7. Instead,
we only need to observe that inequality (1.76) is still satisfied and the rest of
the proof remains unchanged. O

The short time existence and uniqueness result 2.5, proved in [12] in any
dimensions, holds also in the “Neumann” case for the modified Mullins—
Sekerka flow with parameter v > 0, obtained (as in Definition 2.2) by letting
the outer normal velocity V; of the moving boundaries given by

V; = [0,,wy] on dE; forallt € [0,7T),
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where v = vg, and w; = wg, is the unique solution in H'(2) of the problem

WE, = H—|—4’72}Et on aEt,

with vg, the potential defined above and, as before, [0,,w] is the jump of the
outer normal derivative of wg, on 0F;.
Then, we conclude by stating the following analogue of Theorem 3.1.

Theorem 4.2. Let  be an open smooth subset of R and let E C 2 be a smooth strictly
stable critical set with OE N 0S) = O and N, (with € < 1) a tubular neighborhood of
OF, as in formula (1.37). Then, for every « € (0,1/2) there exists M > 0 such that,
if Eq is a smooth set in €y (E) satisfying Vol(Ey) = Vol(E) and

/ \Vwg, |*de < M
Q

where wy = wg, is the function relative to Ey as in problem (2.1) (with ) in place
of T3\ OFE), then, the unique smooth solution E; to the Mullins—Sekerka flow (with
parameter v > 0) starting from Ey, given by Theorem 2.5, is defined for all t > 0.
Moreover, E; — E in W>/22 exponentially fast as t — oo (recall the definition of
convergence of sets at the beginning of Section 1.3), for some n € R3, with the meaning
that the functions 1, ; : OE — R representing OE; as “normal graphs” on OF, that is,

OF; = {y + ¥n(y)vEsq(y) : y € OF},

satisfy

[4n,¢ HW5/2,2(3E) < Ce ™,

for every t € [0, +00), for some positive constants C' and 3.

The proof of this result is similar to the one of Theorem 3.1 and actually it
is simpler since we do not need the argument used in Step 2 of such proof,
where we controlled the translational component of the flow. Note also that
in the statement of Lemma 1.25, in this case, inequality (1.79) holds for all
¢ € H'(OF). Finally, observe that under the hypotheses of Proposition 1.26 we
may actually conclude that E’ = F, that is, there are no other critical sets close
to E.

The assumption that OE does not touch the boundary of {2 may seem restric-
tive, however we remark that in two and three dimensions there are examples
of strictly stable critical sets which consist of either a single or multiple “almost
spherical” sets well contained in ). The precise conditions on the parameters m,
v and Vol(Q2) under which these strictly stable sets exist are given in [36, 37, 38].
Other examples of local minimizers well contained in (2 are given in [7].

4.2 THE CLASSIFICATION OF THE STABLE CRITICAL SETS

We are going to discuss the class of sets to which Theorem 3.1 can be applied.
In the three-dimensional case, for the Area functional (that is v = 0), the stable
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critical sets in T? has been fully classified in [39]. Indeed, it has been proved
that the stable critical sets are balls, cylinders, gyroids or lamellae.

Figure 1: From left to right: balls, cylinders, gyroids and lamellae.

It is easy to see that balls, cylinders and lamellae are actually also strictly stable,
while the strict stability of gyroids holds only in some cases (see [18, 19, 40]).

For the case v > 0 a complete classification of the stable periodic structures
is still missing. However, it has been shown that lamellar configuration are
strictly stable if the number of interfaces is larger then some minimum value
k(v), where k(v) — +oo as v — +oo (see [6]).

It is worth to mention what is shown in [2] about the minimizers configura-
tions. They proved that if a horizontal strip L is the unique global minimizer
of the Area functional in T", then it is also the unique global minimizer of the
nonlocal functional J under a volume constraint, provided that v is sufficiently
small. Precisely, the following result holds.

Theorem 4.3. Assume that L C T™ is the unique, up to rigid motions, global
minimizer of the Area functional, under a volume constraint. Then the same set is also
the unique global minimizer of the nonlocal Area functional (1.4), provided that -y > 0
is sufficiently small.

Moreover, in the two—-dimensional case, in [21] it has been proved that if the
volume parameter m satisfies m < 1 —2/m, then the lamellae are the unique
global minimizers of the Area functional in T? (under a volume constraint).
Hence, by Theorem 4.3, for small v > 0, any set realizing

min {.ATg(@E) —{—fy/ \Vog(z)|*dz : E CT? Vol(E) = m;—l}
T2

is a lamella.

In the three-dimensional case, the global minimality of lamellae has been
shown in [20] for the case m = 0 (that is, among the sets £ C T3 with
Vol(E) = 1/2). Moreover, in [2], the authors proved that this conclusion still
holds for m sufficiently close to 0. As before, from Theorem 4.3 we then have
the following result.

Theorem 4.4. Let n=3. There exists mg > 0 and vy > 0 such that for |m| < mg and
v < o, any solution of

1
min {.ATs(@E) +’y/ \Vog(z)[*dx : E C T3 Vol(E) = m;—}
T2

is a lamella.
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We conclude mentioning that in [2] it is shown that lamellae with multiple
strips are local minimizers of the functional J, if the number of strips is large
enough.

4.3 THE OHTA—KAWASAKI FUNCTIONAL

The Ohta—Kawasaki functional, first proposed in the modeling of microphase
separation for diblock copolymer melts in [33], is defined as follows,

E-(u) :E/Q |Vu|? dx + i/g(uQ —1)%dx (4.1)
9 [ [ Gl le) = m)(aly) = m) dady,

where u is any function in H'(Q2), m = f,udz, G is the Green’s function of
—Ain Q and v > 0 is a fixed parameter.

We recall that, as proved in [2], the W2P—]ocal minimality for the functional
J (Theorem 1.19) implies its L'~local minimality (see Remark 1.21). Moreover,
it is well known that the functionals £. I'-converge in L' to the nonlocal Area
functional J (see [29] and see [28] for the definition and the properties of the
I'-convergence). We then state a result that links the local minimizers of the
functional J with the local minimizers of the Ohta—Kawasaki functional (4.1).
Fixed m € (—1,1), we say that a function u € H!(T") is an isolated local
minimizer for the functionals &, with prescribed volume m, if an wdzr = m and
there exists a constant § > 0 such that

E(u) < E(w) for all w € H'(T™) with wdr =m
T

and 0 < Tnelﬁzngu —w(-+ 7)1 ny < 0.

The T'—convergence and the L!-local minimality discussed above then imply
the following theorem.

Theorem 4.5. Let E C T" be a strictly stable critical set for the functional J and
UR = Xp — Xyn\ g Then, there exists g > 0 and a family ., with € < eq, of local
minimizers of - with prescribed volume m = [, uda, such that ue — win L*(T")
as e — 0.

An analogous result holds in the “Neumann” case.

4.4 SOME RESEARCH LINES

It would be very interesting and challenging trying to generalize all the results
to arbitrary dimension, larger than three. Moreover, as we said in the previous
section, the complete classification of the sets to which the global existence and
stability result can be applied, is still missing.
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Another possible line of research is the study (in every dimension) of the “sin-

gular perturbations” of the flow, that is, adding to the nonlocal Area functional
an extra “energy” term, such as

/ HP da, / BPdy, o e / VFBI dp,
or oF oFE

where ¢ is a small positive parameter.

This perturbation should regularize the evolutions arising from considering
the gradient flows of the perturbed functionals, giving better global existence
properties (in particular, when the dimension is larger than three), while
keeping the models still interesting for the applications to physical phenomena.
Moreover, from the mathematics point of view, it would be interesting to
analyze the behavior of the solutions of the perturbed flows and to determine
under which hypotheses they converge to the solutions of the original flow,
when the parameter € > 0 of the singular perturbation converges to zero.
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GEOMETRY OF HYPERSURFACES

In this appendix we introduce some basic notations and facts about hypersur-
faces in Euclidean spaces, possible references are [16, 26, 34].

The main objects we will consider are (n — 1)-dimensional, complete hy-
persurfaces immersed in R", that is, pairs (M,1) where M is an (n —1)-
dimensional, smooth manifold with empty boundary and ¢ : M — R" is a
smooth immersion (the rank of the differential dv is equal to n everywhere on
M).

The manifold M gets in a natural way a metric tensor g turning it into a
Riemannian manifold (M, g) by pulling back the standard scalar product of R”
with the immersion map .

Taking local coordinates around p € M, we have local bases of T,M and
T, M, respectively given by vectors {B%i} and 1—forms {dx;}.

We will denote the vectors on M by X = X!, which means X = X ia%i'
the 1—forms by w = wj, that is, w = w;dr; and a general mixed tensor by
T = T;j;l’“, where the indices refer to the local basis.

Sometimes we will consider tensors along M viewing it as a submanifold
of R™ via the map 1), in such case we will use the Greek indices to denote the
components of the tensors in the canonical basis {e,} of R, for instance, given
a vector field X along M, not necessarily tangent, we will have X = X“e,.

The metric g of M extended to tensors is given by

9(T,8) = Girsy - Girsp 97 . g7 TG R SI
where g;; is the matrix of the coefficients of g in local coordinates and ¢¥ is its
inverse matrix. Clearly, the norm of a tensor is then

T = /9(T,T).

The scalar product of R" will be denoted by (- | -). As the metric g is obtained
by pulling it back via v, we have
9
&cj .

e o, 0 9 \_ /%
i _g<8gci73x]‘> = (dl/) <‘>) (8%7835]') - <8:Ui

The canonical measure induced by the metric g is given in a coordinate
chart by 1 = VG £™ where G = det(g;;) and " ! is the standard Lebesgue
measure of R"L.

The induced covariant derivative on (M, g) of a vector field X and of a
1—form w are respectively given by

VX' = o +T4X5, Vi

. &ui
- 6a:j

k
- rjiwk )
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where the Christoffel symbols F; ;. are expressed by the formula,

PV I
jk — 29 8$j gkl 6.’Ekg]l 8xlgjk .

The covariant derivative VT of a general tensor T = T;llj’l’“ will be denoted by

VSTE;Z’“ = (VT)’;JI“EZ (we recall that such extension of the covariant derivative
is uniquely defined on the full tensor algebra by imposing the Leibniz rule and
the commutativity with any metric contraction).
V™T will stand for the m~th iterated covariant derivative of 7'

The gradient V f of a function and the divergence div X of a tangent vector

tield X at a point p € M are defined respectively by

9(Vf(p)v) =dfp(v)  VveT,M

and

divX = trVX = V; X' = aaXi + T8 Xk
Xg

The Laplacian AT of a tensor T' is given by
AT = ¢"V,;V,T.

If X is a smooth vector field with compact support on M, as OM = O, the
following divergence theorem holds

/ divXdu=0, (A.1)
M

for every tangent vector field X on M which clearly implies, in particular,

/MAfduzo

for every smooth function f : M — R with compact support.

Since 7 is locally an embedding in R", at every point p € M we can define
up to a sign a unit normal vector v(p). Locally, we can always choose v in order
that it is smooth.
If the hypersurface M is compact and embedded, that is, the map v is one-to-
one, the inside of M is easily defined and we will consider v to be the outer
pointing unit normal vector at every point of M. In this case the vector field
v: M — R" is globally smooth.

The second fundamental form B = h;; of M is the symmetric 2—form defined

as follows,
hiyi = —(v 8%{)
v 8%8:}53

and the mean curvature H is the trace of B, that is H = ¢% hij. Despite its name,
H is the sum of the eigenvalues of the second fundamental form, not their
average mean (some few authors actually define H/n as the mean curvature).
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Remark A.1. Notice that since the unit normal v is defined up to a sign, the
same is true for B and H. Instead, the vector valued second fundamental form
hijv, which is a 2-form with values in IR", and the mean curvature vector Hv are
uniquely defined.

The linear map W), : T,M — T,M given by W,,(v) = h}(p)v? 5% is called the
Weingarten operator and its eigenvalues \; < --- < \,, the principal curvatures at

the point p € M. Itis easy toseethat H = \; +---+ A, and |B|> = A2 + - + \2.

Remark A.z2. If the hypersurface M C R" is locally the graph of a function
f:R"! 5 R, thatis, ¢(z) = (=, f(z)), we have

(Vfa_l)
gij = 0ij + fifi, VZiﬁ%—Wf]?
Hess;; f

hij = ——2t
VI VR

Af _Hessf(Vf,Vf):div< v )
VIHIVIE (VI+[VEP)? VI+IVIP

where f; = 9;f and Hessf is the Hessian of the function f.

If the hypersurface M C R is locally the zero set of a smooth function
f:R" - R, with Vf # 0 on such level set, we have

_AF _ Hessf(Vf,Vf) 3 <Vf>
=197 VP Wivr)

The following Gauss-Weingarten relations will be fundamental,

PU__ Ly 00
8.%',‘81‘j S 8mk

Ox;j = g 0xg

W g2 (A.2)

— hiv,
Actually, they express the fact that VM = VR" + By, We recall that considering
M locally as a regular submanifold of R", we have VY = (VE‘}:?)M where
the sign M denotes the projection on the tangent space to M and Y is a local
extension of the field Y in a local neighborhood © C R™ of ¢ (M).

Notice that, by these relations, it follows

P 00
81’1‘8.%']' g 6a:k

AyY = gijv?j¢ =g < > = gijhiju = Hv.

Moreover, we will also need the following symmetry property of the covariant
derivative of B, called Codazzi equations,

Vihji = Vjhit, = Vihij . (A.3)
Finally, we have the formula

Av =VH - |B|*v, (A.g)
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indeed, computing in normal coordinates at a point + € M, by the above
Gauss—-Weingarten relations, we have

- 2
Av :gm(&’z@yxj B ngi)
:gij(fzni(hﬂglsgfs)
2

0x;0x,

g P g
=gV ;hjg" % + 97 hig"
S

ij s aw
=gV hi;g' gy
S

=VH - |B|?v,

- gijhjlglshisy

since all Ffj and a%i ¢’* are zero at z € M and we used Codazzi equations (A.3).
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In this appendix we introduce the basic facts and properties of the fractional
Sobolev spaces, mainly following [32], other classical books on the subject are [3,

9, 41].

Let Q2 be an open subset of R™. For any real s > 0 and for any p € [1, +00),
we want to define the fractional Sobolev spaces W*P(Q2). In the literature, this
spaces are also called Aronszajn, Gagliardo or Slobodeckij spaces, by the names of
the ones who introduced them, almost simultaneously in [4], [15] and [42]).

Fixing the fractional order s in (0,1), for any p € [1, +00), we define W*P(Q)
as follows,

WHP(Q) = {u e ILP(Q) : M e LP(Q x Q)}
o —y|» "

which is an intermediate Banach space between L?(2) and W1?((2), endowed
with the natural norm

Ju(z) —u(m)l N
p
fulbwesioy = ([ 1 des [ [ EZ0E gy}

where the term
[u(x) — u(y)? )”p
Ulypys,pro) = —~ 7 dxd
(el </Q o lz—ylrter Y

is the so—called Gagliardo W*P—seminorm of w.
It is worth noticing that, as in the classical case with s integer, the space TV
is continuously embedded in W*? when s < ¢/, as next result points out.

Proposition B.1. Let p € [1,+00) and 0 < s < s’ < 1. Let Q2 be an open subset of
R™ and w : 2 — R be a measurable function. Then,

[ulwsw(0) < Clulyyvn(a), [ullwsr () < Cllullys(o) -
for some suitable positive constant C' = C'(n, s, s', p). In particular,
LP(Q) = WOP(Q) C W5P(Q) C W5P(0Q).
Moreover, if @ C R™ has a smooth boundary, for every s € (0,1), we have
[ulwsr@) < ClIVUll e (@), [ullwsr(a) < Cllullwrea),

and
WP (Q) C WhHP(Q) .
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We define the fractional critical exponent associated to p,

np
n— Sp

pT=p"(n,s) =
(as when s € IN), then the following embedding result holds.

Proposition B.2. Let s € (0,1) and p € [1,4+00) such that sp < n. Let §Q be
an open subset of R™ with smooth boundary. Then, there exists a positive constant
C = C(n,p,s,Q) such that, for any u € W*P(Q), we have

[ullLago) < Cllullwsra),

for any q € [p, p*], that is, the space WP () is continuosly embedded in L1(2) for
any q € [p,p*]. Such embedding is compact if q € [p, p*).

If, in addition, Q2 is bounded, then the space W*P (), is continuously embedded in
L1(Q) for any q € [1, p*] and such embedding is compact if ¢ € [1, p*).

When s > 1 and it is not an integer we write s = m + o, where m is an
integer and o € (0, 1), the space W*P(Q2) consists of those equivalence classes
of functions u € W™ () whose distributional derivatives D*u, with || = m,
belong to W*(Q2), namely

WP(Q) = {u € W™P(Q) : D*u € WP(Q) for any « such that |a| = m}

which is a Banach space with the norm

1/p
fulbwesisy = (Tl + 3 100l

laf=m

If s is an integer, the space W*? () is defined as usual.
The following proposition extends Proposition B.1.

Proposition B.3. Let p € [1,400) and 0 < s < s’ Let Q be an open subset of R"
with smooth boundary, then W*"P(Q) is continuosly embedded in W*P(Q).

As in the classical case with s integer, any function in the fractional Sobolev
space W*P(IR") can be approximated by a sequence of smooth functions with
compact support. It means, denoting with W;* () the closure of C2°(Q2) in the
norm |||y s (q), that

Wy (R") = W*P(R")
but WP(Q) # W' (Q) for a general Q@ C R™. Furthermore, the same inclu-
sions stated in Propositions B.1 and B.3 also hold for the spaces W;” ().

For s < 0 and p € (1, +00), we define W*P(Q) as the dual space of W, *?(Q)
where 1/p+1/q = 1.

Remark B.4. Finally, it is worth mentioning that the fractional Sobolev spaces
play an important role in the trace theory. For instance, for any p € (1, +00),
assuming that the open set {2 C IR" is sufficiently smooth, the space of the traces
Tu on 99 of functions u in W1?(Q) is characterized by [ Tullw1-1/pp ) < 00

(see [14]).
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