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1. THE RIESZ-MARKOV REPRESENTATION THEOREM

We want to give a short proof of the following Riesz—Markov representation theorem in the case
of a compact metric space (see, for example, the book of Rudin [4] for the more general case),
based on Carathéodory extension theorem and the theorem of Fubini-Tonelli. It clearly applies
to compact subset of R”, for instance.

Theorem 1.1 (Riesz-Markov representation theorem). Let (X,d) be a compact metric space and let O
be a positive linear functional on C(X), the vector space of the continuous functions. Then, there exists a
unique regular Borel measure u on X such that

o) = [ rau.
X
for every f € C(X), where “regular” means that for every E € 9, there holds
UW(E)=inf{u(G) |GDE,Ge Band G open} =sup{u(K) | K CE, K € #and K compact}. (1.1)
Proof. Given two functions u,v € C(X) with u < v, we define
Ryv={(x1)Julx) <t<v(x)} CX xR

and we let Z be the family of all these sets.
If ® is a positive linear functional on C(X), we define the set function p : Z — [0, +) as

P (Ruy) = P(v —u).
It is easy to see that this is a good definition, as if Ry, ,, = Ry, , we must have v;(x) —u;(x) =
va(x) —uz(x) for every x € X, hence vy —u; = v, —up and
P(Ruyy,) =P(vi —ur) = ®(v2—u2) = p(Ruy p,)-
We want to see that p is a 6—finite premeasure on %, meaning that:

o Z is a semiring, that is, a family containing the empty set, closed under finite intersection
and such that for any pair of sets A,B € %, the difference A \ B can be written as a finite
disjoint union of sets in Z.

e For every countable family of disjoint sets R, € # such that U,_; R, € Z, we have

p <n01Rn> = }gp(&),

that is, p is c—additive.
o There exists a countable family of sets R, € # such that X xR =J,_; R, and p(R,) < -0,
forevery n € N.

The fact that % is closed under finite intersections follows by the formula (with a little abuse of
notation) Ry, v; N Ruy vy = Rinax{uy uo} min{v, v,}» While letting M = max{|u; |, [uz], [v1], [v2]}, there holds

Ru1 V1 \Ruz,l'z = Ru1 V1 m %Ruz,szul V1 m (RfM.,uz U RVz.M) = (Ru1 V1 m R*M,uz) U (Ru1 V1 U RVz,M))
where the unions are disjoint, showing that Z is a semiring.

We clearly have @ € #Z and X X R = ez Run+1, With p(Ryn+1) = ®(1), hence we only have to
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show the c-additivity of p.
If R, is the disjoint union of R, v, for n € N, it must be

v(x) —u(x) = ), (va(x) —un(x)),

ngk

n=1

for every x € X and being this series with positive terms, the continuous functions f; = YX_, (v, —
u,) converge monotonically to f = v —u which is also continuous. Hence, by Dini’s theorem, this
convergence is uniform and being ® continuous (which is easily checked), we conclude

k k o
D(Ruy) = (v —u) = lgrgofl’(n);l( “un)) = Jim 3. @) fim z Plges) = 3 p(Rir)

Then, by the Carathéodory extension theorem (see [2, Theorem 1.53] and also [1], for instance),
p can be uniquely extended to a positive measure v on the c-algebra .4” generated by %#. We
define the measure y on X as

W(E) = v(E x[0,1]),
for every set E C X belonging to the c—algebra
M={ECX|Ex][0,1] € AN}.

Notice that .# contains every closed set C C X, indeed considering the continuous function f(x) =
1 —min{dc(x),1} and setting R, = Ry s € 4", we have that C x [0, 1] = ey Rs. Hence, .# contains
the Borel o—algebra % of X.

We now see that for every function f € C(X), we have

a(f) = [ fan. (1.2)
Indeed, it is easy to see that the measure v on X xR satisfies
V(E xI) = p(E) L (1)

for every E € % and I an interval of R, where £ ! is the Lebesgue measure, so v = x £ L
For every nonnegative continuous function f in C(X), we then have

@(f)zv(Ro,f):/XXﬂg[o,f dv—/ Zjo po (1 x L) /z (0,£(x)) ds(x /fdu,

by Fubini-Tonelli theorem. The equality (1.2) then follows for a general function f € C(X), de-
composing it into its positive and negative parts, by the linearity of ®. Notice that, it also follows
that the measure p is the “projection” of v on the first factor of X x R.

The regularity of u is actually Theorem G, Section 52, Chapter X in the book of Halmos [1], we

give a sketch of the argument. The family & of Borel sets E such that (1.1) holds is easily seen to
be a o-algebra. Then, every zero—set E of X can be clearly approximated from inside, moreover,
it is intersection of open set in %, indeed if E = f~1(0), we have E = ey f ' (—1/n,1/n), hence
E € &. This shows that & = #.
About the uniqueness of u, by the regularity property, it is sufficient to show it only on the
compact subsets of X in #: assume that u;(K) = u,(K) for all compact K C X, whenever u; and
U are measures for which the theorem holds. So, fixing K € % and € > 0, there exists an open set
G € # such that G DO K with (V) < ux(K) + ¢, then, by Urysohn lemma, we have a continuous
function f : X — [0,1] such that f =1 on K and f =0 on €G, hence

/deul /fdm )=/deuz</X7Ccduz=uz(G)<uz(K)+8

Thus, p;(K) < u2(K) by the arbitrariness of € > 0 and if we interchange the roles of y; and u», the
opposite inequality is obtained, hence the uniqueness of i is proved and we are done. O

The above line works analogously if the metric space X is only locally compact and the positive
linear functional @ is only defined on C.(X). Hence, we have the Riesz-Markov representation
theorem in R".
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Remark 1.2. In order to get the “classical version” of the theorem in a general locally compact
Hausdorff space (the one in [4], for instance), there is a “missing point” in the proof, due the fact
that possibly not every closed set is the zero—set of a continuous function (in a metric space we
got this by means of the function f(x) = 1 —min{dc(x),1}), hence the measure u obtained by the
above argument is only defined on the so—called Baire c—algebra of X, which is a (possibly proper)
subfamily of the Borel c-algebra (an example is given by the so—called uncountable Fort space [5,
Example 24]). Nevertheless, in the case of a locally compact Hausdorff space, with some effort,
it is anyway possible to extend the measure u to a regular Borel measure on the whole Borel
o-algebra (see [1, Theorem D, Section 54, Chapter X] and [3]), getting the conclusion.
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