UNA BREVE DIMOSTRAZIONE DEL TEOREMA DI RAPPRESENTAZIONE DI RIESZ-MARKOV

PIETRO MAJER AND CARLO MANTEGAZZA

1. IL TEOREMA DI RAPPRESENTAZIONE DI RIESZ-MARKOV

Vogliamo fornire una breve dimostrazione del seguente *teorema di rappresentazione di Riesz–Markov* nel caso di uno spazio metrico compatto (si veda, ad esempio, il libro di Rudin [4] per il caso più generale), basata sul teorema di estensione di Carathéodory e sul teorema di Fubini–Tonelli. Si applica chiaramente a sottoinsiemi compatti di \mathbb{R}^n , per esempio.

Teorema 1.1 (Teorema di rappresentazione di Riesz–Markov). Sia (X,d) uno spazio metrico compatto e sia Φ un funzionale lineare positivo su C(X), lo spazio vettoriale delle funzioni continue. Allora, esiste un'unica misura di Borel regolare μ su X tale che

$$\Phi(f) = \int_X f d\mu,$$

per ogni $f \in C(X)$, dove "regolare" significa che per ogni $E \in \mathcal{B}$, vale

$$\mu(E) = \inf\{\mu(G) \mid G \supseteq E, G \in \mathscr{B} \ e \ G \ aperto\} = \sup\{\mu(K) \mid K \subseteq E, K \in \mathscr{B} \ e \ K \ compatto\}. \tag{1.1}$$

Proof. Date due funzioni $u, v \in C(X)$ con $u \leq v$, definiamo

$$R_{u,v} = \{(x,t) \mid u(x) \leq t < v(x)\} \subseteq X \times \mathbb{R}$$

e sia $\mathcal R$ la famiglia di tutti questi insiemi.

Se Φ è un funzionale lineare positivo su C(X), definiamo la funzione d'insieme $\rho: \mathscr{R} \to [0, +\infty)$ come

$$\rho(R_{u,v}) = \Phi(v - u).$$

È facile vedere che questa è una buona definizione, poiché se $R_{u_1,v_1}=R_{u_2,v_2}$ deve essere $v_1(x)-u_1(x)=v_2(x)-u_2(x)$ per ogni $x\in X$, quindi $v_1-u_1=v_2-u_2$ e

$$\rho(R_{u_1,v_1}) = \Phi(v_1 - u_1) = \Phi(v_2 - u_2) = \rho(R_{u_2,v_2}).$$

Vogliamo vedere che ρ è una *pre-misura* σ -finita su \mathcal{R} , nel senso che:

- \mathcal{R} è un *semi-anello*, cioè una famiglia che contiene l'insieme vuoto, chiusa per intersezione finita e tale che per ogni coppia di insiemi $A, B \in \mathcal{R}$, la differenza $A \setminus B$ può essere scritta come un'unione finita disgiunta di insiemi in \mathcal{R} .
- Per ogni famiglia numerabile di insiemi disgiunti $R_n \in \mathcal{R}$ tali che $\bigcup_{n=1}^{\infty} R_n \in \mathcal{R}$, abbiamo

$$\rho\bigg(\bigcup_{n=1}^{\infty}R_n\bigg)=\sum_{n=1}^{\infty}\rho(R_n),$$

cioè, ρ è σ -additiva.

• Esiste una famiglia numerabile di insiemi $R_n \in \mathcal{R}$ tali che $X \times \mathbb{R} = \bigcup_{n=1}^{\infty} R_n$ e $\rho(R_n) < +\infty$, per ogni $n \in \mathbb{N}$.

Il fatto che \mathscr{R} sia chiuso rispetto alle intersezioni finite segue dalla formula (con un piccolo abuso di notazione) $R_{u_1,v_1} \cap R_{u_2,v_2} = R_{\max\{u_1,u_2\},\min\{v_1,v_2\}}$, mentre, posto $M = \max\{|u_1|,|u_2|,|v_1|,|v_2|\}$, vale

$$R_{u_1,v_1} \setminus R_{u_2,v_2} = R_{u_1,v_1} \cap \mathscr{C}R_{u_2,v_2}R_{u_1,v_1} \cap (R_{-M,u_2} \cup R_{v_2,M}) = (R_{u_1,v_1} \cap R_{-M,u_2}) \cup (R_{u_1,v_1} \cup R_{v_2,M}),$$

dove le unioni sono disgiunte, mostrando che \mathcal{R} è un semi-anello.

Abbiamo chiaramente $\emptyset \in \mathcal{R}$ e $X \times \mathbb{R} = \bigcup_{n \in \mathbb{Z}} R_{n,n+1}$, con $\rho(R_{n,n+1}) = \Phi(1)$, quindi dobbiamo solo

Date: October 4, 2025.

dimostrare la σ -additività di ρ .

Se $R_{u,v}$ è l'unione disgiunta di R_{u_n,v_n} per $n \in \mathbb{N}$, deve essere

$$v(x) - u(x) = \sum_{n=1}^{\infty} (v_n(x) - u_n(x)),$$

per ogni $x \in X$ e, essendo questa una serie a termini positivi, le funzioni continue $f_k = \sum_{n=1}^k (v_n - u_n)$ convergono monotonamente a f = v - u che è anch'essa continua. Quindi, per il teorema di Dini, questa convergenza è uniforme e, essendo Φ continuo (cosa facilmente verificabile), concludiamo

$$\rho(R_{u,v}) = \Phi(v-u) = \lim_{k \to \infty} \Phi\left(\sum_{n=1}^k (v_n - u_n)\right) = \lim_{k \to \infty} \sum_{n=1}^k \Phi(v_n - u_n) = \lim_{k \to \infty} \sum_{n=1}^k \rho(R_{u_n,v_n}) = \sum_{n=1}^\infty \rho(R_{u_n,v_n}).$$

Allora, per il *teorema di estensione di Carathéodory* (si veda [2, Teorema 1.53] e anche [1], per esempio), ρ può essere estesa in modo unico a una misura positiva ν sulla σ –algebra $\mathcal N$ generata da $\mathcal R$. Definiamo la misura μ su X come

$$\mu(E) = \nu(E \times [0,1]),$$

per ogni insieme $E \subseteq X$ appartenente alla σ -algebra

$$\mathcal{M} = \{ E \subseteq X \mid E \times [0, 1] \in \mathcal{N} \}$$

Notiamo che \mathcal{M} contiene ogni insieme chiuso $C \subseteq X$, infatti considerando la funzione continua $f(x) = 1 - \min\{d_C(x), 1\}$ e ponendo $R_n = R_{0,f^n} \in \mathcal{N}$, abbiamo che $C \times [0,1] = \bigcap_{n \in \mathbb{N}} R_n$. Quindi, \mathcal{M} contiene la σ -algebra di Borel \mathcal{B} di X.

Ora vediamo che per ogni funzione $f \in C(X)$, abbiamo

$$\Phi(f) = \int_{X} f \, d\mu. \tag{1.2}$$

Infatti, è facile vedere che la misura v su $X \times \mathbb{R}$ soddisfa

$$v(E \times I) = u(E) \mathcal{L}^1(I)$$

per ogni $E \in \mathcal{B}$ e I un intervallo di \mathbb{R} , dove \mathcal{L}^1 è la misura di Lebesgue, quindi $v = \mu \times \mathcal{L}^1$. Per ogni funzione continua non negativa f in C(X), abbiamo allora

$$\Phi(f) = \mathbf{v}(R_{0,f}) = \int_{X \times \mathbb{R}} \chi_{[0,f(x)]}(t) d\mathbf{v} = \int_{X \times \mathbb{R}} \chi_{[0,f(x)]}(t) d(\mu \times \mathscr{L}^1) = \int_X \mathscr{L}^1(0,f(x)) d\mu(x) = \int_X f d\mu,$$

per il teorema di Fubini–Tonelli. L'uguaglianza (1.2) segue quindi per una funzione generale $f \in C(X)$, scomponendola nelle sue parti positiva e negativa, per la linearità di Φ. Si noti che ne segue anche che la misura μ è la "proiezione" di ν sul primo fattore di $X \times \mathbb{R}$.

La regolarità di μ è in realtà il Teorema G, Sezione 52, Capitolo X nel libro di Halmos [1], forniamo uno schema dell'argomento. La famiglia $\mathscr E$ degli insiemi di Borel E per cui vale (1.1) è facilmente vista essere una σ -algebra. Allora, ogni insieme di zeri E di X può essere chiaramente approssimato dall'interno, inoltre, è intersezione di insiemi aperti in $\mathscr B$, infatti se $E = f^{-1}(0)$, abbiamo $E = \bigcap_{n \in \mathbb N} f^{-1}(-1/n, 1/n)$, quindi $E \in \mathscr E$. Questo mostra che $\mathscr E = \mathscr B$.

Per quanto riguarda l'unicità di μ , per la proprietà di regolarità, è sufficiente dimostrarla solo sui sottoinsiemi compatti di X in \mathscr{B} : supponiamo che $\mu_1(K) = \mu_2(K)$ per tutti i compatti $K \subseteq X$, ogni volta che μ_1 e μ_2 sono misure per cui vale il teorema. Quindi, fissando $K \in \mathscr{B}$ e $\varepsilon > 0$, esiste un insieme aperto $G \in \mathscr{B}$ tale che $G \supseteq K$ con $\mu_2(V) < \mu_2(K) + \varepsilon$, allora, per il lemma di Urysohn, abbiamo una funzione continua $f: X \to [0,1]$ tale che f=1 su K e f=0 su $\mathscr{C}G$, quindi

$$\mu_1(K) = \int_X \mathcal{X}_K d\mu_1 \leqslant \int_X f d\mu_1 = \Phi(f) = \int_X f d\mu_2 \leqslant \int_X \mathcal{X}_G d\mu_2 = \mu_2(G) < \mu_2(K) + \varepsilon.$$

Quindi, $\mu_1(K) \le \mu_2(K)$ per l'arbitrarietà di $\varepsilon > 0$ e se scambiamo i ruoli di μ_1 e μ_2 , otteniamo la disuguaglianza opposta, quindi l'unicità di μ è dimostrata e abbiamo finito.

La linea sopra funziona analogamente se lo spazio metrico X è solo *localmente compatto* e il funzionale lineare positivo Φ è definito solo su $C_c(X)$. Quindi, abbiamo il teorema di rappresentazione di Riesz–Markov in \mathbb{R}^n .

Osservazione 1.2. Per ottenere la "versione classica" del teorema in uno spazio di Hausdorff localmente compatto generale (quella in [4], per esempio), c'è un "punto mancante" nella dimostrazione, dovuto al fatto che possibilmente non ogni insieme chiuso è l'insieme di zeri di una funzione continua (in uno spazio metrico abbiamo ottenuto questo mediante la funzione $f(x) = 1 - \min\{d_C(x), 1\}$), quindi la misura μ ottenuta con l'argomento sopra è definita solo sulla cosiddetta σ -algebra di Baire di X, che è una (possibilmente propria) sottofamiglia della σ -algebra di Borel (un esempio è dato dal cosiddetto *spazio di Fort non numerabile* [5, Esempio 24]). Tuttavia, nel caso di uno spazio di Hausdorff localmente compatto, con qualche sforzo, è comunque possibile estendere la misura μ a una misura di Borel regolare sull'intera σ -algebra di Borel (si veda [1, Theorem D, Section 54, Chapter X] and [3]) e ottenere la conclusione.

REFERENCES

- 1. P. R. Halmos, Measure theory, D. Van Nostrand Co., Inc., 1950.
- 2. A. Klenke, Probability theory. A comprehensive course, third ed., Universitext, Springer, 2020.
- 3. P. Majer and C. Mantegazza, A quick proof of the Riesz-Markov-Kakutani representation theorem, https://cvgmt.sns.it/HomePages/cm, 2025.
- 4. W. Rudin, Real and complex analysis, third ed., McGraw-Hill, 1987.
- 5. L. A. Steen and J. A. Seebach Jr., Counterexamples in topology, Holt, Rinehart and Winston, Inc., 1970.

(Pietro Majer) DIPARTIMENTO DI MATEMATICA, UNIVERSITÀ DI PISA, ITALIA *Email address*, P. Majer: pietro.majer@unipi.it

(Carlo Mantegazza) DIPARTIMENTO DI MATEMATICA E APPLICAZIONI "RENATO CACCIOPPOLI", UNIVERSITÀ DI NAPOLI FEDERICO II & SCUOLA SUPERIORE MERIDIONALE, NAPOLI, ITALIA Email address, C. Mantegazza: carlo.mantegazza@unina.it

