A QUICK PROOF OF THE RIESZ-MARKOV-KAKUTANI REPRESENTATION
THEOREM

PIETRO MAJER AND CARLO MANTEGAZZA

ABSTRACT. We give a quick and elementary proof of the Riesz-Markov—Kakutani representation
theorem for compact metric spaces, based on the Carathéodory extension theorem and inspired by
the theorem of Fubini-Tonelli. We also provide a road to reach the full theorem, i.e. for compact
Hausdorff spaces, breaking the proof into two independent parts. This also pin—points the different
nature of the two steps in the construction.

1. INTRODUCTION

The by now classical fundamental Riesz—Markov—Kakutani representation theorem (RMK) for pos-
itive linear functionals on the space of the continuous functions on a compact space, is the fol-
lowing.'

Theorem 1.1 (RMK representation theorem). Let X be a compact Hausdorff space and let ® be a
positive linear functional on C(X). Then, there exists a unique regular Borel measure u on X such that

o) = [ s,
for every f € C(X).

This theorem was first stated and proved in 1909 by Frygies Riesz in the case of a compact in-
terval [a,b]. Then, other proofs and extensions were given, in particular by Helly, Radon, Hilde-
brandt and Shoenberg, culminating with the contribution of Stefan Banach in 1937, who showed
the theorem for compact metric spaces. As we shall see, this extension does not require sub-
stantially different ideas and techniques with respect of the case of an interval. In comparison,
the comprehension of the general case of non—metrizable spaces turns out to have another level
of difficulty and requires a deeper insight into some topological-measurable facts. In 1939 An-
drey Markov Jr. obtained the first results in this direction and in 1941 Shizuo Kakutani proved
the full representation theorem for compact Hausdorff spaces.

Nowadays, the RMK theorem is a milestone at the crossing between topology and measure
theory and it is a fundamental tool in several branches of analysis and probability. However, de-
spite its importance in modern mathematics, it appears that it has not yet completely entered the
“basic package” of notions a student must know. Although several textbooks provided very clear
expositions, starting already from the fifties (see e.g. Halmos’ treatise [2], or Rudin’s book [4]), as
far as we know;, still very few undergraduate programs cover this topic.

The main aim of this note is to give a short and elementary proof of the RMK Theorem 1.1 for
the case of compact metric spaces based on Carathéodory extension theorem” (see [3, Theorem 1.53]
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! Following Halmos [2], the theorem is also usually stated in the slightly more general setting of the space C.(X) of
continuous functions with compact support on a locally compact Hausdorff space X. Moreover, the same name is usually
given also to the important consequence that the dual space of C(X) is isomorphic to the space of the regular Borel signed
measures on X.

2To illustrate the relevance of the general case of compact Hausdorff spaces, recall that every Banach space E isomet-
rically embeds into C(X), for a suitable compact space X. Then, the RMK theorem in principle allows to represent the
dual of every Banach space by means of (signed) measures on X (and even isometrically, by taking a quotient).

3 Carathéodory extension theorem has not, of course, a quick proof, but it is completely elementary, relying only on
suprema, infima and basic operations of set theory. Moreover, it fits naturally at the beginning of every elementary course

1



2 PIETRO MAJER AND CARLO MANTEGAZZA

and also [2], for instance) and clearly inspired by the Fubini—Tonelli theorem. Moreover, with the
same line, we will also show it for open subsets of R".

Our analysis is based on a version of RMK for general topological spaces (actually, even only
for sets, see Remark 2.6). Then, adding topological assumptions, we “gradually” get the above
versions of RMK theorem.

2. THE RMK REPRESENTATION THEOREM

We are going to employ the Carathéodory construction of a measure and the following (ver-
sion of) Carathéodory extension theorem (see [3, Theorem 1.53] and also [2], for instance).

Theorem 2.1 (Carathéodory extension theorem). Let p : Z — [0,+o0) be a c-additive set—function
defined on a semiring Z C & (X). Then p extends to a positive measure on the o—algebra generated by
. Moreover, if p is c—finite, the extension is unique.

For a general topological space X, given u,v € C.(X) with u < v, we define
Ryy={(x1)ulx) <t <vx)} CXxR

and we let # be the family of all these sets.
If ® is a positive linear functional on C,(X), we define the set function p.: Z — [0, +e0) as

P(Ruy) = D(v—u).

It is easy to see that this is a good definition, as if R, ,, =R
hence

1y,v, We must have vy —uy = vy — u?,

p(Rul)vl) = (D(Vl — ul) = <I>(vz — uz) = p(Ruz,Vz)'
Also notice that p is invariant under translations along the R—factor, that is,
P(R+c) =p(R),
foreveryRe # and c € R.
We want to see that p-is a premeasure on %, meaning that:

o Z is a semiring, that is, a family containing the empty set, closed under finite intersection
and such that for any pair of sets A,B € #, the difference A\ B can be written as a finite
disjoint union of sets in Z.

e For every countable family of disjoint sets R, € # such that U, _; R, € Z, we have

p(UR.) = ¥ pik)
n=1 n=1
that is, p is o—additive.
We have that @ € %, since Ro g = I, while the formulas
Ry vy MV Ruy vy = R(“1/\V2)V(M2/\V1)-,V1/\V2

Ru|,v1 \Ruz,vz = Rul/\uz,vl/\uz URul\/vz.vl\/vz

show that Z is a semiring. Thus, we only have to check the o-additivity of p.
If R, is the disjoint union of R,, ,, for n € N, then for every € X, the interval [u(x),v(x)) is the
disjoint union of the intervals [u,(x),v,(x)), so by the o-additivity of the Lebesgue measure

w>wm—immww»

Since this is a series with nonnegative terms, the continuous functions f; = Zﬁ: 1 (vn —uy,) con-
verge monotonically to f = v —u, a continuous function with compact support K. Then, K clearly

on abstract measure theory, as an useful tool to construct e.g. the Lebesgue measure, the Borel measures on R, the product
measures, etc.

4 Note however that Ry, v, = Ru,,v, can occur for u; # up and vy # v;, e.g. whenever u; = v| # uy = v.
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contains all the supports of f;, hence, by Dini’s theorem, this convergence is uniform on K. Since
0<s/r—fisVvr=nlf —fk||i<,/?< and @ is a positive functional, we have
2

0<@(f — fi) < |If — fil Yz @(V/F— ),

s0 ®(f) — ®(f), as k — o0 and we conclude

k k k oo

p(Ruy) =®(v—u) = lim <1>< Y - un)> =1lim ) ®(vy—uy) = lim Y p(Ry,0,) =Y P(Ruyuy)-
ke n=1 ke, 2 ke, 3 n=1

Thus, by the Carathéodory extension theorem 2.1 p can be uniquely extended to a positive measure

v on the o-algebra .4” generated by %, which is invariant under translations along the R—factor,

as p. Then, we define the measure y on X as

K(E) = v(E x[0,1)),
for every set E C X belonging to the c—algebra
M ={ECX|Ex]0,1)e AN}

Considering f € C.(X) and letting E = {x € X | f(x) # 0}, we have ey R, = E %X [0,1), where R, =
Ry minnlf),1} € Z € &, hence the o-algebra .# contains every openset £ C X which is the non-
zero—set of a real valued continuous function with compact support. We recall that the Baire o—
algebra Be of a topological space X is the one generated by the counterimages of the open sets via
the real valued continuous functions on X, so it is clearly contained in the Borel c—algebra B¢ of
X. A measure u is then called Baire measure if it is defined on %« which is the minimal c-algebra
such that all the continuous functions are measurable. Then, .# contains the c—algebra %« . C
P generated by this family of special open subsets of X, which actually coincides with the -
algebra generated by all the counterimages of the open sets of R via the continuous functions
with compact support. Indeed, %Be. must contain all the zero-sets {f = 0} of all f € C.(X) (by
complement) and if an interval (a,b) does not contain zero, we have

£ (a,b) ={x € X | (f(x)) # 0}

where g : R — R is any continuous function which is positive exactly on (a,b) (notice that the
support of go f is contained in the support of f, hence go f € C.(X)). If instead (a,b) contains
zero, we clearly have

£ @b) =7 (@,0)uf O U f(0,b),
so our claim is proved and %e. is the minimal c—algebra such that all the functions in C.(X) are
measurable.
Moreover, by the R-translation invariance of v, it is easy to see that

V(E X 1) = p(E).2" (1)

for every E € B, and L an interval of R, where £ is the Lebesgue measure.
We now show that for every function f € C.(X), we have

@ﬂzﬂﬂW- (2.1)

Indeed, for every nonnegative function f in C.(X), we have a sequence of %« .—measurable non-
negative simple functions s, = ):f;l 0y, iX g, ; monotonically converging to f, then (for every n € N,
the sets E,, ; € B are mutually disjoint, for i =1,...,k,)

kn kn
(D(f) = V(RO.f) = lim ZV(En.i X [07an,i)) = lim O‘n.i.u(En‘i) = lim / Sn d.u = / fd‘LL,
' i=1 ' el ey X

n—yoo

by the monotone convergence theorem. The equality (2.1) then clearly follows for a general func-
tion f € C.(X), by decomposing it into its positive and negative parts, by the linearity of ®.

Hence, we have the following measure—theoretic—only version of the RMK theorem, without any
topological assumption.
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Theorem 2.2. Let X be a topological space and let ® be a positive linear functional on C.(X). Then, there
exists a positive measure | on Be . such that

¢ﬁzéﬁm

for every f € Ce(X).

2.1. Uniqueness and regularity.
G is an open non-zero-set of any function f € C.(X), then for every u satisfying the conclusion
of this theorem, there holds

= sup [ minfalf|. 1} dis = sup ®(mino|.1}).
ne

hence, on the family ¢ of such open sets, the measure u is univocally determined. Let .# be the
minimal family containing ¢, closed under monotone increasing countable unions and difference
of two sets when one is included in the other. Then, if we have-another measure n on %z,
representing the functional ® as above and we consider o7 = {E € Bz | N(E) = u(E)}, this family
shares the same properties and contains ¢, hence .# C <7, by the minimality of .%.

It is then easy to see that if we show that for every A,B € .%, also ANB.€ .7, it follows that #
contains the o-ring generated by ¢. Hence, u is uniquely determined on such c-ring.

This can be shown as follows: let A € ¢4 and define

Fa={Be F|ANBe F} CF

then, also .#, is closed for monotone increasing countable union, contains ¢ (being closed for
finite intersection) and if B,C € % are such that B D C, we have AN (B\C) = (ANB)\ (ANC) € #
asANB CANC, hence B\ C € .%,. It follows that #, contains .%, by minimality, thus %4 = .Z.

If now A € # is a general set, we have the same conclusion %, = .%, since we just showed that
% C Z4 and this proves that .# is closed under finite intersections.

We notice that a natural condition assuring that the o-ring generated by ¢ coincides with the
whole o-algebra %« (also generated by ), hence implying that the measure u in Theorem 2.2
is unique, is the existence of a countable family of functions f; € C.(X) such that the family of
open sets {|f,| # 0} covers all X.

We now turn our attention to the regularity properties of .

We define the families &/ C PBe. of the countable unions of open sets in ¢ and % C Be, of
the closed and compact sets of X in 9Bz, noticing that every K = {x € X | | f(x)| > 1/n}, for any
f€C:(X)and n € Nbelongs to %" (these are closed sets in %« contained in the compact support
of f, hence compact).

Then, we consider the family & of the sets E € 9B« such that

WE)=inf{u(G)|GDEand Ge &/} =sup{u(K) | K CEand K € ¥}

and we notice that for every G = {|f| # 0} € ¢ open non-zero—set of a function f € C.(X), being
the countable union of the sets {x € X | |f(x)| > 1/n} € ¢, it clearly belongs to &, hence 4 C &.
Let E, € & all with finite measure and let E = | J;_; E,. Then, for every € > 0 and n € N, we have
K, € /# and G, € o with K, CE, C G,, such that u(G,) < u(E,)+¢/2" and u(K,) > u(E,) —€/2".
Hence, F =, 1Ky, CE CU,_; G, =G and if u(E) < oo,

=H(0Gn\OEn)+u(E)<u(U(G \E) iu (Ga\En) +W(E) < +u(E)+¢
n=1 n=1

n=1

=

while,

8

(UE \UK)+u <u(UENK) +1(F) < ¥ (B \K) +1(F) < +u(F) +e

n=1 n=1
Then, since

u(F):u(U ) —nggr;u(UKn),

n=1 n=1
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there exists m € N such that
(k) <p(UK)+e,

n=1
hence, setting K = (/| K,, we have p(F) < p(K) + € and u(E) < u(K) +2e.
Then, since it is easy to see that G € o/ and K € %, we conclude that E € &.
If u(E) = +oo, then U(G) = +o0 and clearly the same holds for every other open set containing
E, moreover, by the estimates above, u(F) = 4 also, hence, by the same argument, for every
M >0, we can find K € ¢ such that u(K) > M. Thus, also in this case E € &.
If at least one of the sets E, € & has infinite measure, then u(E) = +co, again every open set
containing E has infinite measure and there is K € % contained in E, with measure large as we
want. All this shows that the family & is closed under countable union.
Assume now that A,B € & and A D B. If A has finite measure, the same holds for B, then let
KCACGandH CACU withK,H € ¢ such that u(A) < u(K)+eand u(B) > u(H)+¢, GU € &
such that u(A) > u(G) —€ and u(B) > u(U) — €. Then, since
A\BC (A\K)U(K\U)U(U\B),

we have

H(A\B) < (AN K) + (K \U)+ (U \ B) < u(K \U) + 2,
where K\ U € Be. is closed and compact, hence belonging to 7.
Analogously,

G\H C (G\A)U(A\B)U(B\H)

and we have

W(G\H) < p(G\A)+ 1A\ B)+ w(B\ H) < n(A\B) +2¢,
with G\ H € $Ba. open, hence belonging to <7
This shows that A \ B belongs to & in this case. The other cases, with 11(A) = 4o are analogous.
Thus, we conclude that the family & is closed under countable unions and difference of two sets
when one is included in the other, moreover, it contains ¢. Then, by arguing as above for the
uniqueness, & contains the 6—ring generated by ¢.

Proposition 2.3. Any measure satisfying the conclusion of Theorem 2.2 is uniquely determined on the
o-ring generated by the family G C RBa . of the non—zero—open sets of the functions in C.(X). Moreover,
it is regular, meaning that

UW(E)=inf{u(G) | G D E and G € Be open} = sup{u(K) | K C E and K € Be closed and compact},

for every E in such c—ring.
If there exists a countable family of functions fi. € C.(X) such that the family of open sets {|f,| # 0} covers
all X, these properties hold for the whole c—algebra Be..

If X is compact, we have C(X). = C(X) and Bea. = B, hence we have the following conclu-
sion.

Theorem 2.4. Let X be a compact space and let ® be a positive linear functional on C(X). Then, there
exists a unique positive Baire measure (L on X such that

o) = [ sdu,
for every f € C(X). Moreover, . is finite and regular, that is,
UW(E)=1inf{u(G) | G D E and G € B open} = sup{u(K) | K C E and K € Be compact},
for every E € Be.

It is easy to see that in a metric space the zero—sets coincide with the whole family of the closed
sets, then also the o—-algebras %« and %Be¢ coincide, hence Baire and Borel measures are the same,
as we said in the introduction. Thus, all the previous discussion about the uniqueness and the
regularity simplifies considerably (several steps are trivial and can be skipped) and we have a
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quick proof of the following theorem, or more in general, of the RMK theorem in any compact
space such that B« = %o (for instance, any perfectly normal Hausdorff space — see [1, Chapter VII,
Section 4]). A compact subset of R" is clearly a special case.

Theorem 2.5. Let (X,d) be a compact metric space and let ® be a positive linear functional on C(X).
Then, there exists a unique finite reqular positive Borel measure pu on X such that

o) = [ sdu,
for every f € C(X).

However, dealing with the “classical version” Theorem 1.1, a general compact Hausdorff space
is normal but unfortunately, not necessarily perfectly normal, hence it could happen that %« #
%o, as in the example in the Appendix. Then, one may ask whether with our construction,
the Carathéodory measurable sets already include the Borel c-algebra. In general the answer
is negative: there are Baire measures on compact Hausdorff spaces whose induced o-algebra of
Carathéodory measurable sets coincides with the Baire o-algebra itself and this latter is strictly
contained in the Borel c—-algebra (see the example in the Appendix). Thus, neither a completion,
nor a Carathéodory extension, produce any proper extension. Contrary to the first step, from
the functional to a measure on Baire sets, which can be performed in an abstract measure setting
(see the following remark, where such point of view is pushed even further), such extension of
the measure from Baire to Borel sets, is actually topological in nature. In the next section we will
show that in such case of a general compact Hausdorff space, we are able to extend the above
Baire measure u to a regular Borel measure (theorem 3.1, thus getting Theorem 1.1. This can
be done also if the space is only locally compact but not compact (asfor instance in the book of
Rudin [4]), but the arguments are quite more technical (ultimately, due to the possible lack of the
o—finiteness of the premeasure p and of the measures v and u).

Remark 2.6. We mention that with the very same proof, following it step by step, one can obtain
a very abstract version of the representation theorem, called Daniell-Stone theorem.

Definition 2.7. A linear functional ® on a vector space V of real-valued functions on a set X
satisfies the Denjoy condition if it is positive and, for every sequence of nonnegative functions fj
in V that converges monotonically to zero at each point, we have ®(f;) — 0.

Theorem 2.8 (Daniell-Stone theorem). If ® satisfies the Denjoy condition on a lattice and vector space
V of real-valued functions, then there exists a unique measure on the o—ring generated by V that represents
@ by integration.

We conclude this section with the case of an open set of R” (which is a locally compact Haus-
dorff and 6—compact space), because of its clear relevance. As it is easy to see that B, = Ba =
PBe, ' we do not need to deal with the Baire-Borel extension of the measure and we have im-
mediately the following conclusion (the same holds for every perfectly normal and c—compact
Hausdorff space).

Theorem 2.9. Let Q be an open subset of R" and let ® be a positive linear functional on C.(Q2). Then,
there exists a unique regular Borel measure 1 on Q such that

o(f) = [ fau.

for every f € Cc(Q).

Also in this very special case, several of the above arguments can be simplified and we have
an easy and direct proof, very suitable for undergraduate courses.

3. EXTENSION OF BAIRE MEASURES

The following is actually Theorem D in Section 54, Chapter X of the book of Halmos [2], we
give here a direct proof for the reader’s convenience.
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Theorem 3.1. Let X be a compact Hausdorff topological space and let u a regqular Baire measure on X.
Then, there exists a unique regular positive Borel measure v on X that extends .

If G C X is open, we define
p(G) =sup{(K) | K C G, K € B and K compact}
and we notice that, by the regularity of u, if G belongs to B, we have p(G) = (G). Moreover,
if G| C G,, then p(Gl) < p(Gz).
Then, for every E C X, we set
v*(E) =inf{p(G) | G 2 E and G open},

noticing that if G is open, u*(G) = p(G), by the monotonicity property of p above.
We let .# be family of subsets E of X such that for every € > 0 there exist a compact K and an
open G with K C E C G and v*(G\K) < €. In such case, we set V(E) = v*(E). It clearly follows
immediately that:
e Vv*is a monotone set function bounded above.
o If E € .# then E€ € ./, as in general, for K C E C G there holds G¢ C E° C K€ and
VI(K\G®) = Vv (K°NG) =v*(G\K).
o By the regularity of the Baire measure i, every open set G € %« belongs to .# and v(G) =
1 (G). Then, by the previous point, also every compact K € B« belongs to .#, moreover,
v(K) = u(K), again by the regularity of u.
We want to show that:
A is a o—algebra containing the open sets of X.
Vv is a measure on .Z.
v coincides with it on Be.
v is a regular Borel measure.

We argue by steps.

(1) Open and compact sets belong to ./ .
If G is open, there exists a sequence of compactsets K; C G, K; € B with

lim u(K;) = limv (K) = p(G) = v(G).
i—yo0 i—o0
If we consider v*(G\ K;) and we suppose that

Vi(G\Ki) 0,
eventually passing to a subsequence, we can assume that v*(G\ K;) > € > 0, for every i € N. Then,
beingevery G\ K; open, p(G\ K;) > € for every i € N and there exists a compact set H; C G\ K; in
PBe with [(H;) > €, hence K; UH; is a compact set in B« such that K; UH; C G and there holds
Vi(G) >V (KiUH;) = p(K; UH;) = u(Ki) + u(H;) = p(Ki) +& = p(G) +e=V(G) +¢,

(being H; and K; disjoint and u a measure on %« ) which is a contradiction.
Hence, v*(G\ K;) — 0, showing that G € .#. It follows that also every compact K belongs to .Z.
Moreover, it is clear that if E is open or compact, then

V(E)=inf{v(G) | G D E and G open} = sup{Vv(K) | K C E and K compact},

by the monotonicity of v and what we said above.
Finally, if K is compact and G is an open set containing K, by considering a continuous function
“separating” the compact K and G¢, we have an open set G’ C G, still containing K and clearly
satisfying

v(G'\K) < v(G\K).
This implies that if K is compact,

v(K)=inf{v(G) | G2 K, G € B and G open}.

(2) v is o—subadditive on A .
If A and B are open, we let K be a compact in %« contained in AUB and we consider a partition of
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unity f,g associated to the two open sets A and Bsuch that f+g=1onK, thenKy ={f >1/2} CA
and Kp = {g > 1/2} C B are a couple of compact sets in B« such that K C K4 UKp. Hence, as p is
a measure on %B«, we have

p(K) < u(Ks UKp) < p(Ka) + 1 (Kp) < V(A) +Vv(B)
and taking the supremum on K we conclude

V(AUB) =p(AUB) < v(A)+ v(B).

Then, if G; are open sets and G = | G;, for every K compact in % with K C G, the family G;
covers K, hence a finite subfamily G, ...,G;, covers K and we have

Im

=

utk) = vk <v( U 6,) < § via) < £ viG
k=1 =

— i=1

Taking the supremum on K, we have

that is, the function v is o—subadditive on open sets.

Then, if A; € .# and A = |JZ| A; € .#, the fact that v is c—subadditive follows easily by approx-
imating every A; from outside with open sets up to &/2/, applying the above conclusion and
sending € — 0.

(3) A is an algebra.
Since we already know that .# is closed by taking complement, we-only have to show that it
is closed for finite unions. If A,B € ., then there exist compact K4,Kp and open G4,Gp with
Ky CAC Gy, Kp CBC Gpand v(Gy \Ky) <&, V(Gy \Ks) < €. We have (notice that all the sets
involved are open)

v((GaUGE)\ (K4 UKp)) < v((Ga\Ks)U(Gp\Kp)) < v(Ga \Ks)+ v(Gp\ Kp) < 2¢,
where we applied the previous point (2). Hence, AU B belong to ./ .
4)IfE € A, then v(E) =sup{v(K) | K C E and K compact}.
By point (2), if G is open, K compact with K C A'C G and v(G \ K) < &, there holds

V(A) < v(G) < v(K)+Vv(G\K) < Vv(K)+e

and this clearly implies the claim.
(5) v is-o—additive on . .
We already showed the o—subadditivity of v at point (2).

IfA; € # and A = U2 Ai € 4, we can assume that the sets A; are disjoint. Then, if v is (finitely)
superadditive, we have

k k
v(A) > (UA,~> =) v(4a)
i=1 i=1
and sending k — o, we have the c-additivity, by the previous oc—subadditivity conclusion.
Thus, we have only to show that for two disjoint sets A,B € .#, there holds
V(AUB) = v(A) + v(B).

For every couple of (disjoint) compact sets K4 C A and Kp C B, being X normal, we can “separate”
them with a couple of disjoint open sets U O K4 and V O Kp in B«. Moreover, by point (1) we
have an open set G4p 2 Ks UKp, belonging to % with v(Gap) < V(K4 UKp) + €. Hence,

V(AUB) >Vv(KyUKp) > V(GAB) — &= u(GAB) —&2> [.L((GABﬂU) U (GABﬁV)) —&
=U(GapNU)+ U(GapNV)—€=V(GapNU)+ v(GagNV)—€ > Vv(Ky)+Vv(Kg) — €

and the conclusion follows by sending £ — 0 and then taking the supremum on the compact K4
and Kp, by point (4).
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(6) A is a c—algebra, hence v is a reqular Borel measure on .# extending L.

Let A; € # and A = U2, A; and as before, by point (3), we can assume that the sets A; are disjoint.
Then we have compact K; and open G; with K; C A; C G; and v(G; \ K;) < g/2!.

By the additivity and being v finite, it must be Y7 | v(K;) < 4o, hence there exists n € N such that
Y211 V(Ki) < €. It follows that (by the o—subadditivity)

=

v( D Gl-) < i v(G;) = Z v(GI\K)+Vv(K;) <e+ i £/2" < 2e.

i=n+1 i=n+1 i=n+1 i=n+1
Then, if we consider the open set G = J;—; G; 2 A and the compact set K = /| K; C A, there holds

V(G\K) = V(U G,‘\UK,‘) < V<U(Gi\Ki) ] U Gi> < ZV(Gi\Ki) + Z V(Gi) < 3¢,
=1 =l i=1 i=nt1 i=1 i=n+1
showing that A € .# and we are done.
The regularity of v is given by point (4), while that v and u coincide on %« follows by the
regularity of both measures and by the fact that they coincide on the compact sets in %« (keeping
also into account their monotonicity).

APPENDIX A. AN EXAMPLE OF A COMPACT HAUSDORFF SPACE WITH Be # FBo

Let X =Y U{eo} be the one—point compactification of an uncountable set ¥ endowed with the
discrete topology. This space is Hausdorff and compact, it is called uncountable Fort space and
gives an example of a completely normal, but not perfectly normal space (see [1, Chapter VII,
Section 4] and [5, Example 24]).

Every subset of Y is open and the compact subsets of Y are the finite subsets. Then, the open
sets of X are all the subsets of ¥ C X, plus all the cofinite subsets containing <, hence the Gs
subsets are all the subsets of ¥, plus all the cocountable subsets. The closed sets of X are the
union of e with any subset of ¥ plus the finite subsets of ¥ and the F; subsets are the union of
with any subset of Y plus any countable set.

It follows that the family of the open and closed subsets of X is the whole power set of X, which
then coincides with the Borel c-algebra %8¢ of X. As a consequence, every function f : X — R is
Borel.

If f: X — Ris continuous, it must be constant equal to f(e0) on X with the exception of at most
a countable set x; such that f(x;) — f(c0). Hence, the counterimages of the open sets of R are the
countable subsets of Y and all the unions of « with the cofinite subsets of Y. Then, the zero-sets
of X are the unions of e with any cocountable subset of Y and the finite subsets of Y.

The union of these two families is given by:

e the countable subsets of Y

e the unions of « with the cofinite subsets of Y

¢ the unions of e with any cocountable subset of Y
e the finite subsets of Y

that is, by the family containing all the countable subsets of ¥ and the unions of « with any
cocountable subset of Y.

This family is clearly closed for complement and any countable union of its sets still belongs to
the family if they are all of the first or of the second type, while if at least one is of the second
type, such union is also of second type.

Hence, this family is the Baire c-algebra %« of X which is clearly smaller that %¢, as it does not
contain {eo}.
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