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1 The Lalescu sequence

iy =" (n+1)! —/n!

is called Lalescu sequence after the Romanian mathematician Traian Lalescu (1882 — 1929,
see [5]) who proposed it in [1], asking about its convergence. Possibly due to its indubitable
elegance, on one hand and its not so straightforward analysis, on the other, it attracted var-
ious authors, who discussed its properties and generalizations (we underline the evident
connection with Stirling’s formula and Euler’s Gamma function).

The following sequence

We review some basic facts.
If we suppose that the sequence converges, considering the two sequences V/n! and 1, by
means of the Stolz—Cesaro theorem, we have

. n+1 _ — V
nlgr.}o Vin+1)! —Vn nlgr.}o—n 1/e,

by the well-known limit v/n!/n —1/e.
Alternatively, still assuming that the sequence a,, converges to some limit, we have that the
sequence given by its arithmetic means
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converges to the same limit. So we conclude
n n+1 1 =1
lim "3/ (n + 1)1 — Vol = Tim Sy SV EDIZL
n—00 n— 00 n n— o0 n

Thus, the tricky part is actually showing that the Lalescu sequence converges. This can
be shown by means of Stirling’s formula [4]: we rewrite the sequence as

n+1/(n + 1). B \H/’,T!: W(elog(n+1)!/(n+1)—logn!/n _ 1)

and examine the exponent of e:

log(n+1)! logn! mnlog(n+1)—logn!
n+1  n n(n+1)
nlog(n+ 1) 4+ nlogn — nlogn — nlog v/n!
nn+1)
nlog(1+1/n) +nlog(n//n!)
nn+1)
_ log(1+1/n) +log(n//n!)
B (n+1) '

Then, since 1/ /n! — e, we have that such exponent is equal to
1/(n+1)+o0(1/n).
If we consider that, by Stirling’s formula,
Vnl ~n/e,

we get

W(elog(n—i-l)!/(n—i—l)—logn!/n _ 1) ~ nn—{/_el + 0(1) —~1/e.

An alternative line, without the use of Stirling’s formula, goes as follows: we rewrite the

Sequence as
n | n+1 1 |
1) — it = Y0 < Vint+1) —1>n
n Vvn!

and we observe that

(V) = () = () = () T e

Yl nlntl n!

which implies



Then,

"/ (n+1)! "
n+1 4 v 7’1! W o 1 n+1\/ (n + 1)!
\V/(n+ 1) —vn! = . log(1+ | ——————1
n Vi 1)) Vn!

log <1 +
. n+1 /(n+1)! B 1

nt Vnt -log<—‘n+1 (n+1)!>”_>1
log (1 + (”H' (! 1>> Vnt
Vn!

Vln'
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for n — co. Indeed, the first factor tends to 1/e, while the second and third go to 1, by the
limits (1.2) and (1.1), respectively.

Another “natural” way to show the convergence of the sequence would be to prove that
it is bounded and monotone. The boundedness from below is actually easy: the sequence a,
is positive, for every n € IN. Indeed, when above we expressed the sequence as

n+l/(n + 1). N W: W(elog(n-i-l)!/(n+1)—logn!/n \ 1),

we have seen that the exponent of e is given by

log(n+1)! logn! log(l+1/n)+log(n/ V/n!)
n+1 no (n+1)
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that is positive, since 1+ 1/n and n/3/n! are both greater than 1, hence the positivity of a,.
Unfortunately, the monotonicity, that is, the fact that a, is decresing (as one could expect), is
not present in literature, up to our knowledge and it turns out being absolutely non trivial.

Our contribution to the study of the Lalescu sequence is then to show such monotonicity,
first eventually (from some n € IN on, which'is clearly sufficient for the convergence) and
then fully (for every n € IN).

As we will see in the next section, our analysis requires a more refined version of Stir-
ling’s formula than the “standard” one (a “higher order” expansion of n!, formula (2.3)) and
quite precise estimates from above and below on n! (formula (2.8)). Moreover, to obtain the
full monotonicity, some numerical check is also needed in order to deal with the “small”
values of n € N.

Let us say that we think that what follows can be seen as an interesting (and tough)
problem for undergraduate students (as the second author) about dealing with orders of
infinitesimals by means of Taylor expansions and estimates.

2 Decreasing monotonicity

We set ¢, = v/n!. Clearly, for every n € IN, we have ¢, > 0.

To see that the sequence
ap ="/ (n+1)! — Vn!

is decreasing, we are going to prove equivalently that

£n+2 En
+ < 2. 2.1
£n+1 €n+1 ( )
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Defining

14
1 Vl-‘rl
08~
the inequality (2.1) can then be written as
exp(xy41) +exp(—x,) =2exp (xn+127—xn) cosh (M%W) <2. (2.2)

2.1 Eventual monotonicity

We are going to use the following “extended” Stirling’s formula (see [4]),

(2 (1+ e+ e +o(H))

( ) < +%+28515n2+0(7112>)' (2.3)

o
o

Then,

tlogn—1+ 2108 (1 et — 10 (i)
o8n w08\ " " 1an 2882 T O\n2) )

Expanding in Taylor series up to 0(1/n3), we obtain

log(27tn
logt, = g(Zn )

logn  log(2m) 1 1 1
log by =logn =1 = =+ =%~ T 12w~ 3e0mt T (ﬁ)
logn  log(2m) 1 1
Slogn A e T T (ﬁ)
Hence,
ol log(n+1) log(2m) 1 1
Xa=log = = =log(n +1) =1+ =0 =3y * 50+ 1) 12(n+1)2+0(n3)

Clogn 41— logn log(2m) 1 +o(l>

2n 2n 12n? n3
B nlog(1+1/n) —logn  log(2m) 2n+1 1
—log(1+1/m) + 2n(n+1) 2n(n+1) 12n2(n+1 (n3)
y log(1+1/n)  logn  log(2m) 1
Slog(I+1/m)+ = ) 2t 1)  2n(n+1) n+1 +of 3)
1 logn log(2r) 1 1

n 2n(n+1) 2n(mn+1) 2n2  2n(n+1)

+ L ! — ! +0<l>
3nd  6n2(n+1) 4n?2(n+1) n3
1 logn log(2r) 7 n 0(&) .

“n 2n(n+1) 2n(n+1) 12nd n3




So we have

P 1 log(n+1) log(2m) B 7
YT 2+ 1) (n+2) 2+ 1D)(n+2) 12(n+1)3
1 logn log(2m) 7 1
n ' 2n(n+1)  2n(n+1) + 12n3 + (ﬁ)
_ 1 _ nlog(n+1) — (n+2)logn log(2m) L 0(1)
n(n+1) 2n(n+1)(n+2) (n—|—1) n+2) X
_ 1 _nlog(l—l—l/n)—Zlogn log ( 1 )
n(n+1) 2n(n+1)(n+2) n3
_ 1 logn 1  log(2m) 1
N (n—|—1)+ n3 2w T T +O<n3)
B logn 1 | log(2m) 1
=t gt (i)
. logn 1+ 2log(27) (i)
N n2 n3 2n3 n3)’

For the sum x,,.1 + x, we expand in Taylor series up to the term 1~2.

o — 1 . log(n+1) log(27)
T T T T 2+ ) (n+2)  2(n+1)(n+2)
1 logn log(27) (l)
n 2n(n+1) 2n(n+1) 2

_ 2n+1  nlog(n+1)+(n+2)logn  log(2m) +0(1)
nn+1) 2n(n+1)(n+2) nn+1)
2n+1  log[n(n+1)] log(2m) +o(l)
n(n+1) 2n(n+1) n(n+1) n?
2 log[n(n+1)] 1+log(2m) 1
“n 2n(n+1) n? +0(7)

n2

It follows, expanding up to o(1/n%),

2 (2 logn(n+1)] 1 +10g (27)
(1 4 20)" = <n 2n(n+1)
4 logln(n+1)] 4(1+10g(27‘[)) o i)
 n? n2(n+1) n3 3
4 logn  4(1+log(2m)) 1
_ﬁ_4 nd n3 +O(n3)'



Developing then in Taylor series formula (2.2), we obtain

2exp (73{”“ _ x”) cosh (736"“ + x”)

2 2<1+x"“22x”+...>(1+;(w 2+--->
21 g P R ()
(3G - ()
~2(1- g+ B 4 EZBCU L L))

1 logn 1+log(2m) 1
(1+2n2 218 213 +O<n3)

which is clearly smaller than 2, for large n € IN.

Therefore, the Lalescu sequence is eventually decreasing, by formula (2.2).

2.2 Full monotonicity
We will use the following “standard” inequalities
x —x*/2 <log(1+x) < x
x=x2/2+x3/3—x*/4< log(1+4 x) <x — x2/2+x%/3,
1
—x<—<1— 2
1 x\1+x\1 X+ x°,

which are valid for x > 0.

Furthermore,

1 1
and coshx <

X
< -
i S 1—x2/27

(2.4)
(2.5)

(2.6)

2.7)

for x € (—1,1). The second inequality above can be shown by comparing the Taylor series

which converge uniformly in the interval [—1,1],

s} 2n 0 2n
X 1 X
coshx = Z and

= (2n)! 1—x2/2:§)27'

noticing that 2" < (2n)!, for every n € IN.
From the following estimates due to Robbins [2],

27n (g)neﬁ <n!'<V2mn (g)neﬁ ,
holding for every n € IN, it follows that

log(27tn) 1 <logl, < log(27tn)

m +10gn—1+m\ Og m +10gn—1—|—
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Thus,

lyiq log(n+1)  log(2m) 1
= < -
X =log=y = Slogln+1) =14 = =y + 50 1) T o+ 172
logn log(2m) 1
~logn+1- 2n 2n (12n+1)n
B nlog(1+1/n) —logn  log(2m) 23n+ 12
=log(1+1/n) + 20+ 1) m(n+1)  12(12n + 1)(n +1)°n
log(1+1/n) logn log(27) 23n +12

=log(1+1/n)+

2n+1)  2n(n+1) 2n(n+1) 12(02n+1)(n+1)2n"
Then, applying the inequality at the right side of formula (2.5) to log(1 + 1/n), we have
1 logn log(2m) 23n + 12 1 1

n gﬁ C2n(n+1) 2n(n+1) 12(12n+1)(n+1)2n 212 y 2n(n+1)
1 1 1
T 4n?(n +1) + 6n3(n+1)
1 logn log(27) 23n +12 1
n 2n(n+1) 2n(n+1) 12(12n+1)(n+1)2n 2n2(n+1)
1 5
Tt 12n3(n+1)
1 logn  log(2m) 23n+12 5 n 11
n 2n(n+1) 2nn+1) 12(12n+1)(n+1)°n  12n3  12n3(n+1)
1 logn log(27) 23n + 12 5 11
S— - - - - + ,
n 2nn+1) 2n(n+1) 12(12n+1)(n+1)?n 1203  12n*

1 1
1213 (n+1) S
By the inequality at the left side of formula (2.6), we have

where in the last step, we estimated

23 - 23
2 2 7 1
i (1 13 )

~ 144n3 12n  6n%2  12n8
23 1
144n3  2n4’
for every n > 2, therefore

1 I log(2 23 1 5 11
n 2n(n+1) 2n(n+1) 144n3>  2n* 12n3  12n
1 logn log(27) 83 3

<—— — — —. 2.9
n 2n(n+1) 2n(n+1) 144n3 T o 29)

Furthermore, it is easily seen that, when n > 3, this inequality implies the “simpler” inequal-
ity
1 logn log(27)

n 2n(n+1) 2n(n+1)’ (210)

Xn X
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which will be useful later.
Similarly, using the left inequalities in formulas (2.4) and (2.5) on log(1+ 1/n), we have

lyiq nlog(l+1/n) —logn log(27 25n + 13
Xn =log=p = > log(1+1/n) + g(2n(n +)1) 5 Zn(gn(+ 1)) T 120120+ 13)(n + )2
1 logn  log(2m) 1 n 1 B 25n +13 4 1
“n 2n(n+1) 2n(n+1) 2n2 2n(n+1) 12(12n+13)(n+1)n2  4n2(n+1)
1 1
TEHE
1 logn  log(27m) 25n +13 B 3 X 11
n 2nn+1) 2n(n+1) 12(12n+13)(n+1)n> 4n?2(mn+1) 3n3 4n*
1 logn log(2r) 25n +13 - n 11
“n 2n(n+1) 2mn(n+1) 12(12n+13)(n+1)n2 4n3  3nd  4nt
1 logn log(27) 25n +13 5 1
“n 2n(n+1) 2n(n+ 1)~ 12(12n +13)(n+1)n2 1213 ~ 4n*

where, in the penultimate step, we estimated m < 4%.

Since clearly

25n +13 25 13
12(12n + 13) (n + 1)n2 ~ 144n3 T Taant
we have
1 logn log(27) 25 13 5 1
x7’l 2 - - - - - i a
n 2n(n+1) 2n(n+1) 144n3> 144n* 1203 4nt
1 logn  log(2m) 8 49 2.11)
n 2n(n+1) 2n(n+1) 144n3 144n*’ '
which implies the “simpler” inequality
X, 3 1 logn  log(2m) 1 (2.12)

n 2n(n+1) 2n(n+1) nd’

for each n > 1, which we will use later.

Let us therefore estimate the difference x,,1 — x,, from above with the inequalities (2.9)
and (2.11):

S log(n+1)  log(2m) B 83 n 3
TSI T 2+ )(n+2) 2(n+1)(n+2) 144(n+1)° @ 2(n+ 1)
_1_{_ logn n log(27) n 85 n 49
n 2n(n+1) 2n(n+1) 144n3  144n*
1 nlog(n+1) — (n+2)logn log(2m)
< — —
n(n+1) 2n(n+1)(n+2) n(n+1)(n+2)
85(1+3n+3n?) +2n° 49 N 3
144n3(n +1)3 144n* ~ 2n*
1 nlog(1+1/n) —2logn n log(2m) n 1
n? 2n(n+1)(n+2) n3 n3
85(1 + 3n + 3n?) 2 265

443 (n 1 1)° | 144n® T T4dnt’



where in the last step we used —ﬁ = —% + m < —% + %
Since 1 4 31 + 312 < 4n?, for n > 4, we have
R log(1+1/n) logn n log(2m)
Tl TS T 2(n+1)(n+2) nn+1)(n+2) n3
340 146 265
144n(n+1)3 12 T 14

1 log(1+1/n)  logn log(2m)
< -
n? 2n+1)(n+2) n3 n3
340 n 146 n 265
144n*  144n3 = 144n*
1 log(1+1/n)  logn  log(2m) n 146 n 605
n2 2n+1)(n+2) n3 n3 144n3 ~ 144n*

+

and applying the left inequality in formula (2.4) to log(1 + 1/n), we conclude

e 1 1 n 1 logn A log(2m) n 146 n 605
LTS T2 T o+ 1) (n+2) | 4n?(n+1)(n+2) nd n3 14473 " 144n*"
11 3 1 logn log(2m) 146 , 605
S oon2 2m8  2nt  4nt n3 n3 144n3 ~ 144n*"
1 logn 74/144 +log(2m) 5
=2 e 3 T
n n n n

S W W 7= S S W N
2n(n+1)(n+2) 23 U 23 (n+1)(n+2) S 2m3 ' 2nt”
Instead, using the inequalities (2.10) and (2.12) to estimate x,, 11 — x,, from below, we have

for n > 4, where we used —

S 1 log(n+1)  log(27) 1
T T2 T2+ D(n+r2) 2+ D)m+2)  (n+1)3
1 logn log(2)

n + 2n(n+1)  2n(n+1)
_ 1 _nlog(n+1)=(n+2)logn 1 log(2)
on(n+1) 2n(n+1)(n+2) (n+1)3  nn+1)(n+2)
B 1 log(1+1/n) logn 1 log(2m)
S TR ) 2+ 042 T hir )42 H1P  ant)(n+2)
S _ 1 1 n logn 4 log(2m)
o2 2n(n+1)(n+2) nn+1)(n+2) nn+1)(n+2)

for every n € IN.
Therefore, for n > 4, we conclude

1 1 logn 74/144 +log(2m 5
R L +log) L 3 213)

Furthermore, noticing that the term on the right is certainly negative for n > 4, we have in

such case 1
(xn41 — xn)z < pre (2.14)



Let us now estimate the sum x,,1 + x, using the inequality (2.10):

1 log(n +1) log(27) 1 logn log(27)
n+1 2mn+1)(n+2) 2mn+1)(n+2)  n 2nn+1) 2n(n+1)
_ 2n+1  nlog(n+1)+ (n+2)logn  log(2m)

Cn(n+1) 2n(n+1)(n+2) n(n+2)
_ 2n+4+1  logn(n+1)] log(2m) log(n +1)
“n(n+1)  2n(n+1)  n(n+2)  n(n+1)(n+2)

Xn+1 + Xn <

and applying inequalities

L2 1y 1y 2 11 a2 1,2
nn+1) n n2)\1+1/n) “n n?2 m3 - n* " n n?2 nd
log[n(n +1)] logn logn logn

2 2 -
2n(n+1) nn+1) n? n3

1 1 1
727_7
nn+1) =~ n>2 nd

1 1 2

>

nn+2)~ n2 ud

(where in the first one we used the inequality at the left side of formula (2.6)), we obtain

7

2 logn 1+log(27 logn « 24+ 2log(27 log(n+1
Xn+1 + Xn < - g2 - %< ) + % + 3g< ) + g( 3 )
n n n n n n

Then, considering the inequality

logn + 2+ 2log(2m) +1log(n +1) < 1%,

from which it obviously follows

logn = 2+2log(2m)  log(n+1) 1
<
ol 3 LI = 16n2
and which holds for n > 271 (keeping in mind the concavity of the left-hand side and check-
ing numerically), we conclude

2 logn 15/16 +log(2m
0< ¥y + 1, < 2 — 1081 15/16+ log(2)
n n n

<

SN

, (2.15)

for every n > 271.
For n > 271, both y = (¥#,—") and z = (x”%ﬂ") are smaller than 1, so we can use the
inequalities in formula (2.7) and evaluate

2
Xn+1 — Xn — V< 1 o y < 2
WP(:2)—4?\1_y—1+y+1_y\1+y+y,
being y < 0 and
X1 + X 1 2 A 2 4
snrl DR < — s o=
cosh( 5 ) coshz\l_zz/2 1+2+4(1_22/2)\1+2+2,



being z2 < 1. Therefore, for the inequalities (2.13), (2.14) and (2.15), we get
4

2 (S (552 < 47 (1)

_, (1 n xn+12— n (xn+12— Xn )2) <1 n %(xn+12+ xn)2 N %(xnﬂ; xn>4>

1 logn 74/144 + log(27't) 5 1
s2 <1 mt + 2n3 Tt na
14 1 1 logn 15/16+10g(27t)) 1
2 n n? 2n? 2nt
1 logn 74/144 4+ log(2mr) = 11
=2 (1 w2 T o T 23 T
L 1 15/16+log(2m) +logn , (16logn +15+ 1610g(27))* L1
2n2 2n3 2048n4 2nt
logn 74/144 4+ log(2mr) = 11
=2 (1 + 5 + o
L. 1 15/16+log(2m) +logn  (16logn +15+ 16log(27))” + 1024
22 2n3 2048n* '

It is easy to show that

(161ogn +15 + 16log(27))* + 1024 _ 1
2048n4 = 32n3
for n > 304, hence

2exp (L= ) gooh (K1)

2 2
1 logn 74/144 +log(2m) 1 ~ 14/16 + log(27) + logn
<21 - — el
< TR N 2n3 4) < 2n3
1 logn 76/144 + log(2m) 1 logn 14/16 + log(27)
< _ _
s2 (1 o2+ X 2n3 152~ 28 2n3 ’
for n > 396, since then 4114 N ; 4 3- We therefore finally conclude that for n > 396, we have

(after a straightforward computation)

2exp <xn+12— xn) cosh (Xn+12+ xn> <2<1 B 142475713 B ﬁ logn/2 + 101/5;38 + 10g(27‘[)/2>
2logn +76/144 + log(27) logn + 14/16 + log(27)
2n3 2n3
2<1_ 25 1 logn/2—|—101/288+10g(27'[)/2>
144n3  4n* nd
<2,

since, by a numerical check, there holds

25 i+ logn/2+101/288 4 log(2m)/2 <0
144  4n n?

11



for each n > 3.

All previous estimates being valid for n > 396, for such n € IN the sequence is decreasing.
By numerically checking the decreasing for n =1,...,396, we then obtain that the Lalescu se-
quence is always decreasing, remembering formula (2.2).

To numerically check the decreasing for n =1, ...,396, we used the following code for the
Julia — Version 1.10.4 programming language, with the Interval Arithmetic.jl package [3]:

using IntervalArithmetic

function rootfactorial (n)
I = @interval (1)
exp = @interval(l) / @interval (n)
for j = 1:n
I = I » @interval (j) "exp
end
return I
end

function lalescu (n)
return rootfactorial (n+l) - rootfactorial (n)

end

setdisplay (:full)

for k = 1:400
println("a_S$ (k) = S(lalescu(k))")
if ! (precedes(lalescu(k), lalescu(k-1)))

@error ("lalescu(Sk) 1s not guaranteed to be smaller
than lalescu (S (k-1))")
end
end
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ence of University of Pisa for helping us with the numerical analysis part.
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