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Two funda,mental results in Riemannian geometly are the Laplacian
and Hessian comparison theorems fo'r the distance firnction. They
are directly related to the volume comparisou theorem and a spmial case of
the Rauch comparison theorem. The Hesian comparison theorem may also
be used to pro,ue the Toponogov triangle comparisoa theorem.

t Laplacian comparison theorem.
The idea of comparison theorenrs is to compare a.geometric quantity on a
Riemannian manifold with the corresponding quautity on a model space.
Typicatly, in Riernannian geometry, model spac6 harie constant sectional
currrature.

T'lneorem 6.1 (Laplacian comparison). Il (M",g) i* o complete Rie-
mannian rmni,told uith Rc ) (n - L) K, wherc K e R, arul if p e, Mn, then
for any s € Mtu wherv dr(ù ,i,s amooth,, we haae

^ ., \ t b - :!f cot, ({Rd"@))..,,,rT, o

a4(,)s{ {È_ , _ irK:o
' I f" - 1) fficotr, (r/iFla, f")) ir K < o.

(6.1)

On the whole manifold,, the Laplacian compari,son th,eorem hokls in tÌle
setr*,e of dàatributiorw.



In general, we say that A/ S F in the sense of distributioons if for any
nonnegative C* function p an Mn witb compact support, we harae

' I 1ueapsI Fpdrr.
JM* JMn

Form Theorem 6.1 we cao derive the follouring
Corollary 6.1. $ K ( A, then

A4sW+(rz-t)\m (6.2)

ùn the sense of d,istributions. In particular, os abaue, if (M", g) is a com,plete

Riemannian manilokl utith RicT 0, then for any p € M"
n-t

dp
(6.3)

in the sewe of d,ì,stri,butions

Remark. Estimate (6.1) is sharp as cafl be seen from considering space
form.s of constant curvature -K. If K ; 0, then (6.3) is sharp since on
Euclidean Bpace A lrl : it'.

2 Volume comparison theorem.
A consequence of the Laplacian comparison theorem is the fo[owing

Theorem 6.2 (Bishop volume comparison). Il (M^,g) b a complcte
Rùemannian monifold uith Re > (n - L) K, wherc K € IR, then for any
p € Mn, the aolume ro,tio

Vol (B (p, r))
Voty (B (px,r))

is a noninerymg finzction of r, wh,erc ?x is a point in the n-dimerwional
si,mply connectd space fonn of corwtant curvatute K and, Voly denotes the
uolume in the spore tonn. In porticular

V ol {B (p, 
")) S V ol x (B (px, r))

for all r > 0. Gtuen p'and, r ) 0, eryd,ity hold,s in (6.1) i,f and only if
B (p,r) is isornetri,c to B (px,r).

(6.4)



In the case of nonnegative Ricci currmture we harae the following
Comllary 6.2. If {M",g) is a complete Riernannian manifold wùth

Ri,c )- 0, thgn for any p € M", the aolume mt* WP ùs a nonincreasi,ng

function of r. Since hm,-,6 ryÙ : b)n, we haae ydry#{)) { wn far all
r > 0, wherc wn is the uolwne of the Euelidean unit n-ball.

Oue of the many useful *onsoquences of this is the following characteri-
zation of Euclidean space.

Corollary 6.3. (Volume characterization of tr). If (M",g) is a com'
plete noncompact Riemannian monilold with Rc2 A and àf far some p E M"

.. Vot (B (p,r)\
llm 

-- 
: Uns

f+É f'"

then (M",9) i,s isomctric ta Euclid'u,n sryce.
Praof By the BishopGromov volume comp[arison theorem, we actually

6** I14(1{rd) 
= a,,, for all r > 0. The result now follows from the equality

case. QED
The BishopGromov volume comparison theorem has been generaliz«l to

the rrel,rative volusre mmparison theorem. Let (M",g) be a eomplete
Riemannian manifold and p e M". Given a measurable subset I of the unit
sphere S['-' c TeM a$d0 < r ( R ( oo, define the annular-type regron:

,41- (o) ,: [, € Mn , ' S d-(*,p) 1R k there e:rists'""it-ipd.f."ryl ìnr,R\P) '- 
l& 

E rvr geodesicTfromz(0): pton satisfying/(0) € I I
c B (p,n) \B {p,r) .

Note that if f = Sfi-l, then 4, h) : B (p,R) \B (p,r).Given K e IR and
a point px in the n dimensional simply connected space form of constant
curvature K,let, Al,x@ò denote the corresponding set in the space form.

Theorem 8.8. Strypose that {M",g) is a compl,ete Riemannian manifold
u)ùth R;c(ù>("-1)K. It 0Sri>R(,S,r(s( S andif ICS*-t tsa
measurable subset, .then

Vot (A!,s(p\) r' Vot (Al,o@))

V,t;W;6» = Y,i,,@1p"))'

Taking r : s:0 and f : SX*l yields Theorem 6.2. In particular, taking
the limit as J? -+ 0 givee (6.4).



As a consequence, we harre the following result of Yau about the volume
grourth of a complete noncompact manifold with nonnegatirrc Ricci curvature.

Comllary 6.4 (Rc ) 0 has at least linear volume growth). Let (M",g)
be a complete noncnnxpect Riemannian mani,told with nonnegotùrc Ricei cur-
aahse. For any poi.nt p €. IW, therc erists a corwtant C > 0 such that, for
any r 2.7

Vot(B(p,t)) 2Cr.
Proof, I.et r e M" be a point with d(r,p) = r Z 2. By the Bishop

Gromov relative vohrme comparison theorem, we have

Yot (B (x,r + t\) * Vot (?,(*,r - L))

VoI(B (r,r - 1))

-(r+1)"-("-l\" -C(n)
= -- q" -1y-- - -;-'

Since B(p,l) C B(x,r.+1)\Bi",r- 1) andB (x,r -l) CB(p,2r- 1) by
,1(6.5) we have

We have proved the corollary for r ) 3. Clearly it is then true for r 2 1 (or
any other positive constant). . QED

3 Hessian comparison theorem.
The following roughly says that the larger the curvature, the smaller the
Heesian of the distance function.

Propoeition 6.L (Hessian comparison theore*General version). Let
i : 1,2. Let (Mi,gi) be'mmplete Ri.emannian n-manifolds, let 7i: [0,.tr] -,
Mf bu geoilesics pamm,etrizd by arc length such that y d,oes not i,netrsext
the cut locus ol ?d (0) , and let da z: d,(., r; (0)). Il for dl t e,ff,, Ll we have

for all unit uectors V e Tr4trMi papendiaular to \r(t), tken

vz d4 (x1,x1) s v2d,2 1x2, x21

(6.5)

x* (v,^ i, (r)) z Kn (r, n ?, (r))



for alt Xr €Ttr{t)M{ perpend,ieulw to 1o{t) urd t € (0, r].
Follcwing theorem is the special case of the atiove result, namely compar-

ing to constant currnnture spaces.
Theonim 6.4 (I{essian comparison theorem -*pmial case). Let {W,g)

be a complete Riemannian manilold with Sect 7 K. For any point, p e M
the d,i*tance function r (r) :- d(*,p) satdefies

I
ViV ir : hii S iin" ?\ soi

at all points ùhere r is smooth (i.e. away frvm p and the cut loctrc). On att
of M the aboue inery,ali,ty hold,s in the sense of supprt fanctiorus,

4 Mean ralue inequalities.
The foltuwing mean value inequality, which follows from the Laplaciao cor
parison theorem, has an application in the pqoof of the splitting theorem.

Pmposition 6.1 (Itde"n value inequality for Ric I 0). I/ {M",9) ie a
enmplete Riemannian m,anitokl wùth Ric 7 0 anil tl I S 0 is a Lipschitz
tanction wtth Af 2 A in the sense of diatri,butions (subharmoni,c), then tor
o,ny n e M" and, A< r < inj (r)

/(c) s # Lo,,,tor,
wherv wn is the uolume of the anit triclidwn n-ball,

Proof. By the divergence theorem, we have

o s + lrr,,,ràfdrr 
: luur*,r##r*,-rr

where dO := d1L n... Adsn-t.Since $S { 0 from U : *togJ S {.t
and / S 0, we harre



/(s) S ldp.

QED
In the case where the sectional cunature is bounded from above, we have
Pxiposition 8,2 (Mean rnalue inequality f* Sed S IJ).' Suryose thù

(M",g) is a complete Riemarm,ion mandfold wilh Sed(g) S II in a balt
B (r,r) wherc r <inj(g). tl f e C* (M*) ,,.r sublwntwnic, i.e., f A/ Z 0,
and cl / > 0 mt Mn, then

/(c) s 6fu l^,,rror,
wherc Vr(r) is the oolume of a ball of rvdrhw r in the emnplete eimply un-
nected ma,nifold of constarÉ aentionnl ewruohne H.

vrhere we used d§ * \r@ùdg. Since lim"-o 7k fss@,r\ f b : r*rìf @,) ,

iqtegràting tho abqre irequatity wer [0, s] yiet* -rr,

Y1l
8"-'f (*\ s ru!- lurr,,"rf*.

Ietegrating thb again, &w over [0,r] implies

tI
wnro JB@,r)


