
Corrections and additions for 2nd Edition of Riemannian

Geometry

I’d like to thank Victor Alvarez, Gil Cavalcanti, Or Hershkovits, Mayer
Amitai Landau, Ciprian Manolescu, Jiayin Pan, Jake Solomon, Fred Wilhelm
for finding several mistakes in my book.

1216 : Replace section 3.4. with the following more general exposition. I have
now also added an elementary article about warped products on the webpage.
It covers the issues addresses here in an even more elegant fashion.

In the rotationally symmetric examples we haven’t discussed what happens
when '(t) = 0. In the revolution case, the curve clearly needs to have a vertical
tangent in order to look smooth. To be specific, assume that we have dt2 +
'2(t)d✓2, ' : [0, b) ! [0,1), where '(0) = 0 and '(t) > 0 for t > 0. All other
situations can be translated or reflected into this position.

More generally we wish to consider metrics on I ⇥ Sn�1 of the type dt2 +
'2(t)ds2n�1

, where ds2n�1

is the canonical metric on Sn�1(1) ⇢ Rn. These are
the rotationally symmetric metrics. If we assume that ' (0) = 0 and ' (t) > 0
for t > 0 we want to check that the metric extends smoothly near t = 0 to give
a smooth metric on Rn. The natural coordinate change to make is

x = tz

where x 2 Rn and t > 0 and z 2 Sn�1(1) ⇢ Rn. Thus

ds2n�1

=

nX

i=1

�
dzi
�
2

,

Keeping in mind that the constraint
X�

zi
�
2

= 1

implies the relationship X
zidzi = 0

between the restriction of the differentials to Sn�1(1).
The standard metric on Rn can now be written as
X�

dxi
�
2

=
X�

zidt+ tdzi
�
2

=
X�

zi
�
2

dt2 + t2
�
dzi
�
2

+ (tdt)
�
zidzi

�
+
�
zidzi

�
(tdt)

= dt2 + t2ds2n�1

when switching to polar coordinates.
In the general situation we have to do this calculation in reverse and check

that the expression becomes smooth at the origin corresponding to xi = 0. So
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we have to calculate dt and dzi in terms of xi. In fact we only need to observe
that

2tdt = 2
X

xidxi,

dt =
1

t

X
xidxi

and then from our knowledge of the Euclidean metric that

ds2n�1

=

P�
dxi
�
2 � dt2

t2

This gives us

dt2 + '2(t)ds2n�1

= dt2 + '2(t)

P�
dxi
�
2 � dt2

t2

=

✓
1� '2(t)

t2

◆
dt2 +

'2(t)

t2

X�
dxi
�
2

=

✓
1

t2
� '2(t)

t4

◆⇣X
xidxi

⌘
2

+
'2(t)

t2

X�
dxi
�
2

Thus we have to ensure that the functions
'2(t)

t2
and

✓
1

t2
� '2(t)

t4

◆

are smooth, keeping in mind that t =

qP
(xi)

2 is not differentiable at the ori-
gin. Assuming that ' (0) = 0 is necessary for the first function to be continuous
at t = 0, while we have to additionally assume that '̇ (0) = 1 for the second
function to be continuous. Next we note that if

' (t) = t+

1X

k=1

akt
2k+1

then the two functions reduce to

'2(t)

t2
=

 
1 +

1X

k=1

akt
2k

!
2

and

1

t2
� '2(t)

t4
=

1

t2
�
 
1

t
+

1X

k=1

akt
2k�1

!
2

=
2

t

1X

k=1

akt
2k�1 +

 1X

k=1

akt
2k�1

!
2

= 2

1X

k=1

akt
2k�2 +

 1X

k=1

akt
2k�1

!
2
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Showing that they are smooth.
These conditions are all satisfied by the metrics dt2 + sn2k(t)ds

2

n�1

, where
t 2 [0,1) when k  0 and t 2 [0, ⇡p

k
] for k > 0.

It is possible to show that in general the two functions are smooth iff
'(even)(0) = 0 and '̇(0) = 1, but will only need to use the real analytic case we
established.

2314 : “extend” should be “extent”
23

9

: (LX�ij) should be (LX�ij) dx
idxj

25
5

: [X,Y ] should be [Y, Z].
28

15

: (Y, Z) should be (X,Y )
314: �ij,k should be �ij,l

334 : �k
ij should be �l

ij

3313 : rY rX should be rY rXZ
3614 : Z should be V.
402 : Replace the calculation of div (Ric) by

2div (Ric) = 2 (n� 1) div (f · I)
= 2 (n� 1) df + 2 (n� 1) fdiv (I)

= 2 (n� 1) df

40
15

: Replace calculation by

dscal (W ) |p = DW scal

=
X

(rWR) (Ei, Ej , Ej , Ei)

=
X�

rEjR
�
(Ei,W,Ej , Ei)

�
X

(rEiR) (Ej ,W,Ej , Ei)

= 2
X�

rEjR
�
(Ei,W,Ej , Ei)

= 2
X�

rEjR
�
(Ej , Ei, Ei,W )

= 2
X

rEj (R (Ej , Ei, Ei,W ))

= 2
X

rEjg (Ric (Ej) ,W )

= 2
X

g
��
rEjRic

�
(W ) , Ej

�

= 2div (Ric) (W ) (p) .

455 : In view of how the exterior derivative is defined in the appendix it is
worth mentioning that Theorem 4 can be stated more succinctly as follows:

R (X,Y ) @r =
�
drS

�
(X,Y ) .

9212 : Should be

h � k (v
1

, v
2

, v
3

, v
4

) = h (v
1

, v
4

) k (v
2

, v
3

) + h (v
2

, v
3

) k (v
1

, v
4

)

�h (v
1

, v
3

) k (v
2

, v
4

) + h (v
2

, v
4

) k (v
1

, v
3

)
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9216 : Should be

R =
scal

2n (n� 1)
g � g + 1

n� 2

✓
Ric� scal

n
g

◆
� g +W

118
8

: Replace �̇v(0) = v with �̇v(a) = v.
118

4

: Replace � by �v and �̇ (0) with �̇v (0)
124

17

: Lemma 10 can also be proven by showing that |dr|  1 (with equality
only on vectors proportional to rr) and then noting

`(�) =

ˆ b

0

|�̇|dt

�
ˆ b

0

|dr (�̇)| dt

�

�����

ˆ b

0

d (r � �) dt

�����

= |r(q)� r(p)| .

134
14

: Instead of the sentence: "A careful....proved" Insert: Note that in
coordinates this can be written as

g
�
xi@i, v

j@j
�
= �ijx

ivj

Since
dr (v) = �ijx

ivj

we note that this can only be true if rr = @r = xi@i, which is our version of
the Gauss lemma.

136
8

: The proof of Theorem 15 should be simplified as follows:
Proof. We use polar coordinates around p 2 M and the asymptotic behavior of
gr and Hessr near p that was just established. We shall also use the fundamental
equations

L@rg = 2Hessr

(L@rHessr) (X,Y )�Hess2r (X,Y ) = �R (X, @r, @r, Y ) .

that were introduced in chapter 2.
Our assumption that the curvature is constant implies that the second equa-

tion becomes
L@rHessr �Hess2r = �kgr.

We wish to show that

g = dr2 + gr = dr2 + sn2k (r) ds
2

n�1

,

Hessr =
sn0k (r)

snk (r)
gr.
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This is almost automatic as the right hand sides both have the same initial
conditions as g and Hessr as we approach p and also simultaneously solve the
two equations

L@rg = 2Hessr,

L@rHessr �Hess2r = �kgr.

13919: ...intergral curves for r... should be ...integral curves for @r ...
14720: The last = in the display is incorrect. Use the law of cosines to find

cos\ (v, w).
149: Exercise 1: Assume that (M, g) has the property that all unit speed

geodesics........
1676: There is a sign mistake in the last line of the displayed inequality:

(d(p, � (t))
2 � (d(p, � (0))

2

+ 2g (rf
0,p, �̇ (0)) · t+ t2

(d(p, � (0))
2

+ (d(� (0) , � (t))
2

+2 (d(p, � (0)) (d(� (0) , � (t)) cos\ (rf
0,p, �̇ (0))

17813: The display should read

inj (M) � ⇡p
K

or inj (M) =
1

2
(length of shortest closed geodesic)

187 : Much in Chapter 7 has been completely revised. Look at the link to
Bochner-Lichnerowicz-Weitzenböck Formulas.

204: Index mistakes in Lemma 27. The claim is that

�k�1 = (�1)
(k+1)(n�k)+1 ⇤ dn�k⇤

And the proof is
If !

1

2 ⌦k(M), !
2

2 ⌦k�1(M), then

(�k�1!
1

,!
2

) = (!
1

, dk�1!
2

)

= (�1)
k(n�k)

(⇤ ⇤ !
1

, dk�1!
2

)

= (�1)
k(n�k)

ˆ
M

⇤!
1

^ dk�1!
2

= (�1)n�k+k(n�k)

ˆ
M

dn�1(⇤!
1

^ !
2

)

�(�1)n�k+k(n�k)

ˆ
M
(dn�k ⇤ !

1

) ^ !
2

= �(�1)n�k+k(n�k)

ˆ
M
(dn�k ⇤ !

1

) ^ !
2

= (�1)(n�k)(k+1)+1(⇤dn�k ⇤ !
1

,!
2

).

2412: More precisely: Fix (�)
0

⇢ Isop ⇢ Fix (�)
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256
7

: The display should be

R (v, w) = lim
t!0

I � Pt

t

26220: replace “closed” by “exact”.
275

10

: Change the proof of Theorem 63 to be
Proof. First observe that for k > 0 there is nothing to prove, as we know that
b
1

= 0 from Myers’ theorem. Suppose we have chosen a covering M̄ of M with
torsion-free Abelian Galois group of deck transformations � = h�

1

, . . . , �b1i such
that for some x 2 M̄ we have

d (x, �i (x))  2diam (M) ,

d (x, � (x)) > diam (M) , � 6= 1.

Then we clearly have that all of the balls B
⇣
� (x) , diam(M)

2

⌘
are disjoint. Now

set
Ir = {� 2 � : � = l

1

· �
1

+ · · ·+ lb1 · �b1 , |l1| , ..., |lb1 |  r} .

Note that for � 2 Ir we have

B

✓
� (x) ,

diam (M)

2

◆
⇢ B

✓
x, r · 2diam (M) +

diam (M)

2

◆
.

All of these balls are disjoint and have the same volume, as � acts isometrically.
We can therefore use the relative volume comparison theorem to conclude that
the cardinality of Ir is bounded from above by

volB
⇣
x, r · 2diam (M) + diam(M)

2

⌘

volB
⇣
x, diam(M)

2

⌘ 
v
⇣
n, k, r · 2diam (M) + diam(M)

2

⌘

v
⇣
n, k, diam(M)

2

⌘ .

This shows that

b
1

 |I
1

|


v
⇣
n, k, 2diam (M) + diam(M)

2

⌘

v
⇣
n, k, diam(M)

2

⌘ ,

which gives us a general bound for b
1

. To get a more refined bound we have to
use Ir for larger r. If r is an integer, then

|Ir| = (2r + 1)
b1 .
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The upper bound for |Ir| can be reduced to

v
⇣
n, k, b

1

· r · 2diam (M) + diam(M)

2

⌘

v
⇣
n, k, diam(M)

2

⌘ 
v
�
n, k,

�
b
1

· r · 2 + 1

2

�
D
�

v
�
n, k, D

2

�

=

´ (b1·r·2+ 1
2 )D

0

✓
sinh(

p
�kt)p

�k

◆n�1

dt

´ 1
2D
0

✓
sinh(

p
�kt)p

�k

◆n�1

dt

=

´ (b1·r·2+ 1
2 )D

p
�k

0

sinhn�1 (t) dt´ 1
2D

p
�k

0

sinhn�1 (t) dt

= 2n
✓
b
1

· r · 2 + 1

2

◆n

+ · · ·  (b
1

· 5 · r)n ,

where in the last step we assume that D
p
�k is very small relative to r. By

taking logarithms this is equivalent to

b
1

log (2r + 1)  n log (b
1

· 5 · r) , or

or

b
1

n
 log (b

1

· 5 · r)
log (2r + 1)

 log (5b
1

) + log r

log 2 + log r

=

log(5b1)
log r + 1
log 2

log r + 1

 log (5b
1

)

log r
+ 1

If b
1

� n+ 1, this is not possible when r = (6b
1

)
n
. Thus select r = (6b

1

)
n and

the assume D
p
�k is small enough that

´ (b1·r·2+ 1
2 )D

p
�k

0

sinhn�1 (t) dt´ 1
2D

p
�k

0

sinhn�1 (t) dt
 (b

1

· 5 · r)n

in order to force b
1

 n.
299

11

: Should be
CapX (") � CapY ("+ 4�)

30916: In the definition of pointed Cm,↵ convergence we also need to have
that Fi (p) = pi.

308: In the definition of Cm,↵norms on Riemannian manifolds condition n4
should be deleted as it complicates several formulas and is not strictly necessary.
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As stated, it also invalidates Proposition 45. It could be replaced by a different
type of estimate. However, n2 and n3 actually imply that

��'�1

s � 't

��
Cm+1,↵  C (n, r,Q)

The only place where n4 becomes important is in the proof of Theorem 72. There
it is used to conclude that the limit space has smooth transition functions and
thus is a smooth manifold (bottom of page 313 and top of 314.) That fact is
in fact automatic as a classic Theorem of Calabi and Hartman shows that an
isometry between Hölder continuous Riemannian metrics is C1. The transition
functions are as it stands bi-Lipschitz with respect to the Euclidean metrics,
but also Riemannian isometries if we use the metric coefficients in the respective
coordinates. These exist using the arguments in the second paragraph on page
314.

311
5

: “...any segment from x
1

to x
2

....” should be “...any segment from ' (x
1

)
to ' (x

2

)....”
312

7

: Should be “As long as " < �....”
3253: Should be |Ric|  ri⇤
3635�10 Replace with: ...To see this consider

B (x,R/10) ⇢ B (p,R/5) ⇢ B (x.R/2) ⇢ B (p,R)

Since B (p,R) is assumed to be incompressible it follows that B (x,R/2) does
not deformation retract onto B (x,R/10) . Otherwise,

rank (H⇤ (B (x,R/10) ! B (x.R/2)))

= rank (H⇤ (B (p,R/5) ! B (x.R/2)))

� rank (H⇤ (B (p,R/5) ! B (p.R)))

This would imply that contB (p,R)  contB (x,R/2) and thus contradict in-
compressibility of B (p,R) . We can now......

3807 : Change Xn to Xp on right hand side.
The appendix on de Rham cohomology has been reworked. You can find

a corrected version by going to my essay on manifold theory. The only mis-
takes where some confusion on the degrees of cohomology groups when proving
Poincaré duality. Nevertheless I felt that many things should be reworked and
hopefully clarified.
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