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Take again the Jacobi fields ¥; of 3.96. From 3.67, we have the asymptotic
expansion

3
Yi(t) = ¢E; %R(c’, E)< + oft).
The claimed result follows from the asymptotic expansion of J{u,t}. To get

that expansion, we use the following lemmas.
3.99 Lemma. Let A(t) be a differentiable map from I C R into GI,R. Then

(det A)' = (det A)tr{A™1A").

The proof is left to the reader.

3.100 Lemma. For any symmetric bilinear form ¢ on R?

/ $lv,v}dv = %voi{S“”E)tr(qﬁ).

Sn—1

Proof. Just diagonalize ¢ with respect to an orthonormal basis.w
Remarks. i) As a by-product of this proof, we get the asymptotic expansion

(exp}, ) (1) = (1= 2 Ric(u,w) + of] ¥ [*))veuer

ii) A more general asymptotic expansion has been given by A. Gray (cf. [Gy]).
The existence of such an expansion is not unexpected in view of the following
result of Elie Cartan (see [B-G-M] for a proof in the spirit of this book, using
Jacobi fields) : the coefficients of the Taylor expansion at 0 of exp?, g are
universal polynomials in the curvature tensor and its covariant derivatives.

3.H.5 Volume estimates

The proof of 3.98 suggests that suitable curvature assumptions could give
volume estimates. Denote by V*(r) the volume of a ball of radius = in the
complete simply connected Riemannian manifold with constant curvature k.
The following comparison theorem is due to Bishop (case i)) and Gunther
{case ii}).

3.101 Theorem (Bishop-Gunther). Let (M,g) be a complete Riemannian
manifold, and B,,(r) be a ball which does not meet the cut-locus of m.

i) If there is a constant a such that Ric > (n — 1)ag, then

vol{ B (r)) < V4(r).
ii) If there is a constant b such that K < b, then

vol{ By (r} > V().
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Proof. Take a geodesic ¢(t) = exp,, tu from m, and an orthonormal basis
{u,e2,...,e,} of the tangent space at m. Take also, as in the proof of Myers’
theorem for example, the parallel vector fields E; (with 2 < ¢ < n) along ¢
such that F;{0) = ¢;(0). Suppose that -

0<r<p(u).
For such an r, there exists a unique Jacobi field ¥ such that
Y/(0)=0 and Y](r}= Er).

Indeed, since T, exp,, is an isomorphism from the tangent space at m onto
the tangent space at ¢(r), this Jacobi field is given by .

Yir(t) = Ttu €Xpyy, -tv,
where v is the unique tangent vector at m such that
Ty exp,, Tv == Ey(r).

Now, ‘
J{u,t) = Ct* " det (YT (t),---, YT(t)),

where C;t o= det (Y'3(0), - - ,Y';(G)) .
For given u, set f{t) = J{u,t).
3.102 Lemma. Denoting by I the index form of energy, we have

f’(T‘) - § T 3T ___(nml)‘
o) ~§I(Y2,Y,) E—

Proof of the lemma. First remark that

| det(Yy,..Y7) |= (det g(Y7, YT ))!/2.

In other words, denoting this last determinant by D(t), we have
ffi _ D n-l
0y 2D(ty ¢

For t == r, the matrix [g(Y,-‘",YJ-‘")] is just the unit matrix, and lemma 3.99
shows that

D(ry=2) g((¥7),Y7).
i=2

On the other hand, by the same argument as in 3.76, the second variation
formula 3.34, when applied to a Jacobi field Y, gives

[Y,Y) = f (1Y’ 2 —R(Y, <Y, <)) ds = [g(¥,Y")]5-
g

The claimed formula is now straightforward. =
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3.103 Lemma. Ifc: [a,b]l -+ M is ¢ minimizing geodesic, Y is a Jacobi field
and X is a vector field along ¢ with the same values as Y at the ends, then
X, X)y> I(Y,Y).

Proof of the lemma. Since X — Y vanishes at the ends, we have

HX Y, X~Y)=0
because ¢ is minimizing, On the other hand we have
IY,Y)=[g(Y\ V)2 and I{X,Y)=[g(Y', X)}-

Therefore J{X - Y, X —Y) = I{X,X)— I{Y,Y) and the result follows.»

End of the proof of the theorem. i) We shall apply the above lemma to
Y7 and to the vector field X given by

t .
x10 = 2w,
where
s{ty=sinvat if a>0
s{ty=t if a=0
s{t) =sinhv~at if a<0.
Lemma 3.103 gives
STHYr Y < ZI(Xr X7
i=2 i=2

The right member of this inequality is just
j:.. S(t) ? (( 1) R- ( 7 ’})d + - (Xr Xr)r { )
J ) n — 1)a — Rie(c, c'})ds ;g l-,k( Y.

The assumption made on the curvature yields that the integral is negative.
Then, using lemma 3.102 and the definition of X, we see that

];,((:)) < (n - 1)(Vacotanyar ffj) it a>0

fiir) g
f{ ) <0 if a=0
0 < (n-1)(vacotanhy=ar~ 1) if a<o.
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In any case, if f,(r) denotes the function J{u,r) for the “model space” with
constant curvature a (recall that J does not depend on u in that case), we

have
frir) o falr)
fry ~ fa(r)

By integrating, we get f(r) < fu.(r), and the claimed inequality follows from
a further integration, using 3.97.=

ii) Denoting by Y one of the Jacobi fields Y, we have (cf. the proof of lemma
3.102)

L

WY (), Y (1)) = f (g(Y",Y') — R(Y, &Y, ))ds
g

> [ (@(Y",Y') - bg(Y, Y))ds
1]

Write
=Yy (E()
i
On the simply connected manifold with constant curvature b, take a geodesic

& of length r, and define vector fields E; along & in the same way as the vectors
FE;. Set

= SV OE.
fen2
Then
J(7e-evp) [‘y' b Y P)dt = 17, 7).
0 0

Lemma 3.103, when applied to the simply connected manifold with constant
curvature b, gives

IYT,Y7) 2 I(XT, XD),

where X7 (t) = :J(-:%E (t) is the Jacobi field which takes-at the ends of & the
same values as Y], Using lemma 3.102, we see that

( ) f »{1)
fir) fa(r)

and the claim follows by integration. =




3.} Curvature and growth of the fundamental group 173

3.I Curvature and growth of the fundamental group

3.1.1 Growth of finite type groups

Let I" be a group of finite type, and S = {ay, ..., ax} be a system of generators
of I'. Any element s of I" can be written as

§ = Ha;: {'ri € Z)1

3

with possible repetitions of the generators ay,. Such a representation is called
a word with respect to the generators, and the integer

ZM‘!

is by definition the length of that word. For any positive ihteger s, the number
of elements of I" which can be represented by words whose length is not greater
than s will be denoted by ¢¢(s).

3.104 Exercise. i} Show that if I' is the free Abelian group generated by the

" w0352

In particular, ¢g(s) = O(s*).
it} Show that if I' is the free group generated by the a;, then

by« KL=

In view of these examples, we are lead to introduce the following definitions.

3.105 Definitions. i) A group I' of finite type is said to have exponential
growth if for any system of generators S there is a constant a > 0 such that
ps(s) 2 exp(as).

ii) I' is said to have polynomial growth of degree < n if for any system of
generators S there is an a > 0 such that ¢g(s) < as™

iii} I" is said to have polynomial growth of degree n if the growth is polynomial
of degree < n without being of degree < n — 1.

It is not difficult to show (cf. [VCN] for instance, and [Wo 2] for more details)
that I" has exponential, or polynomial growth of degree n, as soon as the
above properties hold for some system of generators.

3.106 Theorem {Milnor-Wolf, cf. {Mi3] and {Wo2]). Let (M, g) be a complete
Riemannian manifold with nonnegative Ricei curvature. Then any subgroup of
ni (M) with finite type has polynomial growth whose degree is at most dimM .
The same property holds for m) (M) if M is compact.
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Proof. The fundamental group acts isometrically on the universal Rieman-
nian cover (M,3). Take a € M. From the very definition of covering maps,

we can find r > 0 such that the balls B{~(a),r) are pairwise disjoint. Take a
finite system S of generators of the subgroup we consider, and set )

L =maxd{a,v(a)), wmes

Now, if v € %1 {M) can be represented as a word of length not greater than s
with respect to the +;, clearly

d(a,v(a)) < Ls.
Taking all such 's, we obtain ¢g(s) disjoint balls B{-y{a},r), such that
B{¥{a),r) < B{a,Ls +r).

Therefore
vol{ B{a, Ls + r})

95(8) = —(Bla.r))

in view of Bishop’s theorem 3.101. .

The last claim is straightforward, since the fundamental group of a compact
manifold has finite type (see [My]).w

3.107 Example. Take the Heisenberg group {cf. 2.90 bis) H, and the subgroup
Hz of H obtained by taking integer parameters. It can be proved (cf. [Wo 3]}
that Hg has polynomial growth of degree 4. Therefore, the compact manifold
H/Hy carries no metric with nonnegative Ricci curvature.

< Cp (LS +r)”

3.1.2 Growth of the fundamental group of compact manifolds with
negative curvature

First recall some standard properties of the action of m;{M) on the universal
covering M. First of all, if M is compact, there exists a compact K of M
whose translated y{K'} cover M.

3.108 Proposition. The covering {(v(K)),y € m (M), is locally finite.
Proof. Equip M with a Riemannian metric, and take the universal Rieman-
nian covering (]Q{ ,g) of (M, g). Let d be the distance which is given by §. As
a consequence of the Lebesgue property for the compact K, there exists some
r > 0 such that, for any ball B of radius r whose center lies in K, the balls
+¥(B) are pairwise disjoint when ~ goes through = {M).

Now, we are going to show that for any z in M, the ball B(z, 5} only meets
a finite number of v{K). Since the +'s are isometries, we can suppose that
lies in K. Suppose there exists a sequence ~y, of distinct elements of [", and a
sequence ¥y, of points of K, such that for any n

Tnultn) € Blz, g) .
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After taking a subsequence if necessary, we can suppose that y, converges
in K. Let y be the limit. Then, since the +,, are isometries, v,(y) belongs to
B(z,r) for n big enough, a contradiction.m
A direct consequence of this lemma is the following: for a given D > 0, the
set

S = {y € m(M),d(K,v(K)) < D}

is finite. Take D strictly bigger than the diameter § of M.
3.109 Lemma. Toke ¢ € K, and v € (M) such that, for some integer s,

dla, ¥(K)) < (D —8)s+4.

Then v can be written as the product of s elements of S.
Proof. Take y € +(K), a minimizing geodesic ¢ from a to y, and points
Yi,¥2," " ¥s+1 Such that

dla,y1) <d and d{yi,yie1) <{(D-8) for 1<i<s.

Any y; can be written as y{x;}, for some -; in m (M) and some z; in K, and
we can take vy = Id and v;43 = . Then P
i ‘

v = (0 2) (0 ) (1 M )-
On the othef hand

d(zi, 7 (vel2:)) = dlvie1(z), ws) )
is smaller than
Vi1 (21}, Va1 (Tim 1)) + d{ v {Tiz1 )y 1:))-

But this is just d(z_1,x;)+d(yi~1,¥:), which is smaller than D, so that v} v
isin S.
3.110 Theorem (Milnor, cf. [Mi 3]). If (M,g) is a compact manifold with
strictly negative sectional curvature, then n1 (M) has exponential growth.
Proof. Take a system S of generators as in the preceding lemma. This lemma
says that the ball

B(a,(D — &)s + 8)

is covered by ¢g(s) compact sets v{K), so that
vol(Bfa, (D — 8)s + 8) < ¢s{s)vol(K).

On the other hand, if the sectional curvature is smaller than some —b, where
b > 0, theorem 3.101 ii) gives

vol(B(a, (D — 8)s +8) > V(D — 8)s + 8) = ¢, exp({(n ~ 1) Ds).

For s big enough, we get the lower bound we claimed for ¢s(s).
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Theorem (Preissmann, [Pr]): If (M, g) is a Riemannian manifold with strictly
negative curvature, then my(M) does not contain y A

As a consequence of any of the two above theorems (Milnor or Preissmann),
we obtain the following result.

Corollary. The torus T? does not carry metrics wr,th strictly negative curva-

ture.

For a modern version of such results, using the notion of simplicial volume,

see [Gr3].

Remarks. a) As soon as n > 3, there are n-dimensional compact manifold

whose fundamental group has exponential growth and which carry no metric

with negative sectional curvature {cf. [VCN]}.

b) These results can be considered as the prehistory of a Geometric Group

Theory which has known dramatic developments in the nineties of the last

century, and is still very active today. See for instance [G-H] and [Gr6).

3.J Curvature and topology:
some important results

This section is expository, no proofs are given.

3.J.1 Integral formulas

In dimension 2, the Gauss-Bonnet formula says everything about the relations
between curvature and topology. Namely, if (M, g) is a compact Riemannian
surface, its Euler-Poincaré characteristic, that is the alternate sum of Betti

numbers, is given by
=—ﬂfSca£ q)vg———/K dvg

(recall that the topological type of a compact surface, once known whether it
is orientable or not, is entirely given by x{(M}).

In higher dimension, the Gauss-Bonnet formula has been extended by Chern
as follows. Suppose the dimension n is even, and take the 3-th exterior power
of the curvature tensor: we get a field of endomorphisms of APTM, therefore
a scalar field. In that way, we have obtained a polynomial P,(R) of degree
% with respect to the curvature tensor. Then, for some universal constant
¢n {which can be computed by taking the standard sphere) we have (see for

example {Spj,t.V)
x(M)=¢c, | P,(Rv,.
/



