Take again the Jacobi fields Y_i of 3.96. From 3.67, we have the asymptotic expansion

$$Y_i(t) = tE_i - \frac{t^3}{6}R(c', E_i)c' + o(t^3).$$

The claimed result follows from the asymptotic expansion of J(u,t). To get that expansion, we use the following lemmas.

3.99 **Lemma.** Let A(t) be a differentiable map from $I \subseteq \mathbf{R}$ into $Gl_n\mathbf{R}$. Then

$$(\det A)' = (\det A)\operatorname{tr}(A^{-1}A').$$

The proof is left to the reader.

3.100 Lemma. For any symmetric bilinear form ϕ on \mathbb{R}^n

$$\int\limits_{S^{n-1}} \phi(v,v)dv = \frac{1}{n} \operatorname{vol}(S^{n-1}) \operatorname{tr}(\phi).$$

Proof. Just diagonalize ϕ with respect to an orthonormal basis.

Remarks. i) As a by-product of this proof, we get the asymptotic expansion

$$(\exp_m^* v_g)(u) = (1 - \frac{1}{6}Ric(u, u) + o(|u|^2))v_{\text{eucl}}.$$

ii) A more general asymptotic expansion has been given by A. Gray (cf. [Gy]). The existence of such an expansion is not unexpected in view of the following result of Elie Cartan (see [B-G-M] for a proof in the spirit of this book, using Jacobi fields): the coefficients of the Taylor expansion at 0 of $\exp_m^* g$ are universal polynomials in the curvature tensor and its covariant derivatives.

3.H.5 Volume estimates

The proof of 3.98 suggests that suitable curvature assumptions could give volume estimates. Denote by $V^k(r)$ the volume of a ball of radius r in the complete simply connected Riemannian manifold with constant curvature k. The following comparison theorem is due to Bishop (case i)) and Gunther (case ii)).

3.101 **Theorem** (Bishop-Gunther). Let (M, g) be a complete Riemannian manifold, and $B_m(r)$ be a ball which does not meet the cut-locus of m.

i) If there is a constant a such that $Ric \geq (n-1)ag$, then

$$\operatorname{vol}(B_m(r)) \leq V^a(r).$$

ii) If there is a constant b such that $K \leq b$, then

$$\operatorname{vol}(B_m(r) \geq V^b(r).$$

Proof. Take a geodesic $c(t) = \exp_m tu$ from m, and an orthonormal basis $\{u, e_2, ..., e_n\}$ of the tangent space at m. Take also, as in the proof of Myers' theorem for example, the parallel vector fields E_i (with $2 \le i \le n$) along c such that $E_i(0) = e_i(0)$. Suppose that

$$0 \le r \le \rho(u)$$
.

For such an r, there exists a unique Jacobi field Y_i^r such that

$$Y_i^r(0) = 0$$
 and $Y_i^r(r) = E_i(r)$.

Indeed, since $T_{ru} \exp_m$ is an isomorphism from the tangent space at m onto the tangent space at c(r), this Jacobi field is given by

$$Y_i^r(t) = T_{tu} \exp_m \cdot tv$$

where v is the unique tangent vector at m such that

$$T_{ru} \exp_m \cdot rv = E_i(r).$$

Now,

$$J(u,t) = C_r t^{1-n} \det (Y_2^r(t), \dots, Y_n^r(t)),$$

where $C_r^{-1} = \det ({Y'}_2^r(0), \dots, {Y'}_n^r(0)).$

For given u, set f(t) = J(u, t).

3.102 Lemma. Denoting by I the index form of energy, we have

$$\frac{f'(r)}{f(r)} = \sum_{i=2}^{n} I(Y_i^r, Y_i^r) - \frac{(n-1)}{r}.$$

Proof of the lemma. First remark that

$$|\det(Y_2^r,...Y_n^r)| = (\det g(Y_i^r,Y_i^r))^{1/2}.$$

In other words, denoting this last determinant by D(t), we have

$$\frac{f'(t)}{f(t)} = \frac{D'(t)}{2D(t)} - \frac{n-1}{t}.$$

For t=r, the matrix $\left[g(Y_i^r,Y_j^r)\right]$ is just the unit matrix, and lemma 3.99 shows that

$$D'(r) = 2\sum_{i=2}^{n} g((Y_i^r)', Y_i^r).$$

On the other hand, by the same argument as in 3.76, the second variation formula 3.34, when applied to a Jacobi field Y, gives

$$I(Y,Y) = \int_{0}^{r} (|Y'|^{2} - R(Y,c',Y,c')) ds = [g(Y,Y')]_{0}^{r}.$$

The claimed formula is now straightforward.

3.103 **Lemma.** If $c:[a,b] \to M$ is a minimizing geodesic, Y is a Jacobi field and X is a vector field along c with the same values as Y at the ends, then $I(X,X) \ge I(Y,Y)$.

Proof of the lemma. Since X - Y vanishes at the ends, we have

$$I(X-Y,X-Y) \ge 0$$

because c is minimizing. On the other hand we have

$$I(Y,Y) = [g(Y',Y)]_a^b$$
 and $I(X,Y) = [g(Y',X)]_a^b$.

Therefore I(X-Y,X-Y)=I(X,X)-I(Y,Y) and the result follows.

End of the proof of the theorem. i) We shall apply the above lemma to Y_i^r and to the vector field X_i^r given by

$$X_i^r(t) = \frac{s(t)}{s(r)} E_i(t),$$

where

$$s(t) = \sin \sqrt{a}t \quad \text{if} \quad a > 0$$

$$s(t) = t \quad \text{if} \quad a = 0$$

$$s(t) = \sinh \sqrt{-a}t \quad \text{if} \quad a < 0.$$

Lemma 3.103 gives

$$\sum_{i=2}^{n} I(Y_i^r, Y_i^r) \le \sum_{i=2}^{n} I(X_i^r, X_i^r).$$

The right member of this inequality is just

$$\int_{0}^{r} \left(\frac{s(t)}{s(r)}\right)^{2} \left((n-1)a - Ric(c',c')\right) ds + \sum_{i=2}^{n} g\left(X_{i}^{r},(X_{i}^{r})'\right)(r).$$

The assumption made on the curvature yields that the integral is negative. Then, using lemma 3.102 and the definition of X_i^r , we see that

$$\frac{f'(r)}{f(r)} \le (n-1)\left(\sqrt{a}\cot \sqrt{a}r - \frac{1}{r}\right) \quad \text{if} \quad a > 0$$

$$\frac{f'(r)}{f(r)} \le 0 \quad \text{if} \quad a = 0$$

$$\frac{f'(r)}{f(r)} \le (n-1)\left(\sqrt{-a}\cot \sqrt{-a}r - \frac{1}{r}\right) \quad \text{if} \quad a < 0.$$

In any case, if $f_a(r)$ denotes the function J(u,r) for the "model space" with constant curvature a (recall that J does not depend on u in that case), we have

$$\frac{f'(r)}{f(r)} \le \frac{f_a'(r)}{f_a(r)}.$$

By integrating, we get $f(r) \leq f_a(r)$, and the claimed inequality follows from a further integration, using 3.97.

ii) Denoting by Y one of the Jacobi fields Y_i^r , we have (cf. the proof of lemma 3.102)

$$g(Y(r), Y'(r)) = \int_{0}^{r} (g(Y', Y') - R(Y, c', Y, c')) ds$$

$$\geq \int\limits_0^r (g(Y',Y')-bg(Y,Y))ds.$$

Write

$$Y(t) = \sum_{i=2}^{n} y^{i}(t)E_{i}(t).$$

On the simply connected manifold with constant curvature b, take a geodesic \tilde{c} of length r, and define vector fields \tilde{E}_i along \tilde{c} in the same way as the vectors E_i . Set

$$\tilde{Y}(t) = \sum_{i=2}^{n} y^{i}(t)\tilde{E}_{i}(t).$$

Then

$$\int\limits_0^r \left(\mid \tilde{Y}'\mid^2 -b\mid \tilde{Y}\mid^2\right) dt = \int\limits_0^r \left(\mid Y'\mid^2 -b\mid Y\mid^2\right) dt = I(\tilde{Y},\tilde{Y}).$$

Lemma 3.103, when applied to the simply connected manifold with constant curvature b, gives

$$I(\tilde{Y}_i^r, \tilde{Y}_i^r) \ge I(\tilde{X}_i^r, \tilde{X}_i^r),$$

where $\tilde{X}_i^r(t) = \frac{s(t)}{s(r)}\tilde{E}_i(t)$ is the Jacobi field which takes at the ends of \tilde{c} the same values as \tilde{Y}_i^r . Using lemma 3.102, we see that

$$\frac{f'(r)}{f(r)} \ge \frac{f_b'(r)}{f_b(r)},$$

and the claim follows by integration.

3.I Curvature and growth of the fundamental group

3.I.1 Growth of finite type groups

Let Γ be a group of finite type, and $S = \{a_1, ..., a_k\}$ be a system of generators of Γ . Any element s of Γ can be written as

$$s = \prod_i a_{k_i}^{r_i} \quad (r_i \in \mathbf{Z}),$$

with possible repetitions of the generators a_{k_i} . Such a representation is called a *word* with respect to the generators, and the integer

$$\sum_{i} |r_i|$$

is by definition the *length* of that word. For any positive integer s, the number of elements of Γ which can be represented by words whose length is not greater than s will be denoted by $\phi_S(s)$.

3.104 **Exercise.** i) Show that if Γ is the free Abelian group generated by the a_i ,

$$\phi_S(s) = \sum_{i=0}^k 2^i \binom{k}{i} \binom{s}{i}.$$

In particular, $\phi_S(s) = O(s^k)$.

ii) Show that if Γ is the free group generated by the a_i , then

$$\phi_S(s) = \frac{k(2k-1)^s - 1}{k-1}.$$

In view of these examples, we are lead to introduce the following definitions.

3.105 **Definitions.** i) A group Γ of finite type is said to have *exponential* growth if for any system of generators S there is a constant a > 0 such that $\phi_S(s) \ge \exp(as)$.

ii) Γ is said to have polynomial growth of degree $\leq n$ if for any system of generators S there is an a > 0 such that $\phi_S(s) \leq as^n$.

iii) Γ is said to have polynomial growth of degree n if the growth is polynomial of degree $\leq n$ without being of degree $\leq n-1$.

It is not difficult to show (cf. [VCN] for instance, and [Wo 2] for more details) that Γ has exponential, or polynomial growth of degree n, as soon as the above properties hold for *some* system of generators.

3.106 **Theorem** (Milnor-Wolf, cf. [Mi3] and [Wo2]). Let (M,g) be a complete Riemannian manifold with nonnegative Ricci curvature. Then any subgroup of $\pi_1(M)$ with finite type has polynomial growth whose degree is at most dimM. The same property holds for $\pi_1(M)$ if M is compact.

Proof. The fundamental group acts isometrically on the universal Riemannian cover (\tilde{M}, \tilde{g}) . Take $a \in \tilde{M}$. From the very definition of covering maps, we can find r > 0 such that the balls $B(\gamma(a), r)$ are pairwise disjoint. Take a finite system S of generators of the subgroup we consider, and set

$$L = \max d(a, \gamma_i(a)), \quad \gamma_i \in S.$$

Now, if $\gamma \in \pi_1(M)$ can be represented as a word of length not greater than s with respect to the γ_i , clearly

$$d(a, \gamma(a)) \leq Ls.$$

Taking all such γ 's, we obtain $\phi_S(s)$ disjoint balls $B(\gamma(a), r)$, such that

$$B(\gamma(a),r)\subseteq B(a,Ls+r).$$

Therefore

$$\phi_S(s) \le \frac{\operatorname{vol}(B(a, Ls + r))}{\operatorname{vol}(B(a, r))} \le C_M (Ls + r)^n$$

in view of Bishop's theorem 3.101.

The last claim is straightforward, since the fundamental group of a compact manifold has finite type (see [My]).

3.107 Example. Take the Heisenberg group (cf. 2.90 bis) H, and the subgroup $H_{\mathbf{Z}}$ of H obtained by taking integer parameters. It can be proved (cf. [Wo 3]) that $H_{\mathbf{Z}}$ has polynomial growth of degree 4. Therefore, the compact manifold $H/H_{\mathbf{Z}}$ carries no metric with nonnegative Ricci curvature.

3.I.2 Growth of the fundamental group of compact manifolds with negative curvature

First recall some standard properties of the action of $\pi_1(M)$ on the universal covering \tilde{M} . First of all, if M is compact, there exists a compact K of \tilde{M} whose translated $\gamma(K)$ cover \tilde{M} .

3.108 **Proposition.** The covering $(\gamma(K)), \gamma \in \pi_1(M)$, is locally finite.

Proof. Equip M with a Riemannian metric, and take the universal Riemannian covering (\tilde{M}, \tilde{g}) of (M, g). Let d be the distance which is given by \tilde{g} . As a consequence of the Lebesgue property for the compact K, there exists some r > 0 such that, for any ball B of radius r whose center lies in K, the balls $\gamma(B)$ are pairwise disjoint when γ goes through $\pi_1(M)$.

Now, we are going to show that for any x in \tilde{M} , the ball $B(x, \frac{r}{2})$ only meets a finite number of $\gamma(K)$. Since the γ 's are isometries, we can suppose that x lies in K. Suppose there exists a sequence γ_n of distinct elements of Γ , and a sequence y_n of points of K, such that for any n

$$\gamma_n(y_n) \in B(x, \frac{r}{2})$$
.

After taking a subsequence if necessary, we can suppose that y_n converges in K. Let y be the limit. Then, since the γ_n are isometries, $\gamma_n(y)$ belongs to B(x,r) for n big enough, a contradiction.

A direct consequence of this lemma is the following: for a given D > 0, the set

$$S = \{ \gamma \in \pi_1(M), d(K, \gamma(\vec{K})) < D \}$$

is finite. Take D strictly bigger than the diameter δ of \mathcal{M} .

3.109 **Lemma.** Take $a \in K$, and $\gamma \in \pi_1(M)$ such that, for some integer s,

$$d(a, \gamma(K)) \le (D - \delta)s + \delta.$$

Then γ can be written as the product of s elements of S.

Proof. Take $y \in \gamma(K)$, a minimizing geodesic c from a to y, and points y_1, y_2, \dots, y_{s+1} such that

$$d(a, y_1) < \delta$$
 and $d(y_i, y_{i+1}) \le (D - \delta)$ for $1 \le i \le s$.

Any y_i can be written as $\gamma_i(x_i)$, for some γ_i in $\pi_1(M)$ and some x_i in K, and we can take $\gamma_1 = Id$ and $\gamma_{s+1} = \gamma$. Then

$$\gamma = (\gamma_1^{-1}\gamma_2)(\gamma_2^{-1}\gamma_3)...(\gamma_s^{-1}\gamma_{s+1}).$$

On the other hand

$$d(x_i, \gamma_{i-1}^{-1}(\gamma_i(x_i)) = d(\gamma_{i-1}(x_i), y_i)$$

is smaller than

$$d(\gamma_{i-1}(x_i), \gamma_{i-1}(x_{i-1})) + d(\gamma_{i-1}(x_{i-1}), y_i)).$$

But this is just $d(x_{i-1}, x_i) + d(y_{i-1}, y_i)$, which is smaller than D, so that $\gamma_{i-1}^{-1} \gamma_i$ is in S.

3.110 **Theorem** (Milnor, cf. [Mi 3]). If (M,g) is a compact manifold with strictly negative sectional curvature, then $\pi_1(M)$ has exponential growth.

Proof. Take a system S of generators as in the preceding lemma. This lemma says that the ball

$$B(a,(D-\delta)s+\delta)$$

is covered by $\phi_S(s)$ compact sets $\gamma(K)$, so that

$$\operatorname{vol}(B(a, (D - \delta)s + \delta) \le \phi_S(s)\operatorname{vol}(K).$$

On the other hand, if the sectional curvature is smaller than some -b, where b > 0, theorem 3.101 ii) gives

$$vol(B(a,(D-\delta)s+\delta) \ge V^{-b}((D-\delta)s+\delta) \approx c_n \exp((n-1)Ds).$$

For s big enough, we get the lower bound we claimed for $\phi_S(s)$.

Theorem (Preissmann, [Pr]): If (M, g) is a Riemannian manifold with strictly negative curvature, then $\pi_1(M)$ does not contain \mathbb{Z}^2 .

As a consequence of any of the two above theorems (Milnor or Preissmann), we obtain the following result.

Corollary. The torus T^3 does not carry metrics with strictly negative curvature.

For a modern version of such results, using the notion of *simplicial volume*, see [Gr3].

Remarks. a) As soon as $n \geq 3$, there are n-dimensional compact manifold whose fundamental group has exponential growth and which carry no metric with negative sectional curvature (cf. [VCN]).

b) These results can be considered as the prehistory of a *Geometric Group Theory* which has known dramatic developments in the nineties of the last century, and is still very active today. See for instance [G-H] and [Gr6].

3.J Curvature and topology: some important results

This section is expository, no proofs are given.

3.J.1 Integral formulas

In dimension 2, the Gauss-Bonnet formula says everything about the relations between curvature and topology. Namely, if (M,g) is a compact Riemannian surface, its Euler-Poincaré characteristic, that is the alternate sum of Betti numbers, is given by

$$\chi(M) = rac{1}{4\pi}\int\limits_{M} Scal(g)v_g = rac{1}{2\pi}\int\limits_{M} K_g dv_g$$

(recall that the topological type of a compact surface, once known whether it is orientable or not, is entirely given by $\chi(M)$).

In higher dimension, the Gauss-Bonnet formula has been extended by Chern as follows. Suppose the dimension n is even, and take the $\frac{n}{2}$ -th exterior power of the curvature tensor: we get a field of endomorphisms of $\Lambda^n TM$, therefore a scalar field. In that way, we have obtained a polynomial $P_n(R)$ of degree $\frac{n}{2}$ with respect to the curvature tensor. Then, for some universal constant c_n (which can be computed by taking the standard sphere) we have (see for example [Sp],t.V)

$$\chi(M) = c_n \int_M P_n(R) v_g.$$