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Two fundamental results in Riemannian geometry are the Laplacian
and Hessian comparison theorems for the distance function. They
are directly related to the volume comparison theorem and a special case of
the Rauch comparison theorem. The Hessian comparison theorem may also
be used to prove the Toponogov triangle comparison theorem.

1 Laplacian comparison theorem.

The idea of comparison theorems is to compare a geometric quantity on a
Riemannian manifold with the corresponding quantity on a model space.

Typically, in Riemannian geometry, model spaces have constant sectional
“curvature.

Theorem 6.1 (Laplacian comparison). If (M”,g) is a complete Rze—
mannian manifold with Rc > (n — 1) K, where K € R, and if PEe M™, then
for any x € M™ where dy, (z) is smooth, we have

(n - 1) VK cot (\/f{—dp(w)) ifK>0
Ad, (z) < ol ifK=0 (6.1)
| (n—-1)/[K]coth (\m‘(';d,, (x)) if K <0.

On the whole manifold, the Laplacian comparison theorem holds in the
sense of distributions.



In general, we say that Af < F in the sense of distributioons if for any
nonnegative C* function ¢ on M™ with compact support, we have

fApdp < f Fodp.
Mn M7

Form Theorem 6.1 we can derive the following
Corollary 6.1. If K <0, then

Ady < ”;1 +(n-1)VIK]| (6.2)

in the sense of distributions. In particular, as above, if (M™,g) is a complete
Riemannian manifold with Ric > 0, then for any p € M"
n-—1

dp

Ad, < - (6.3)
in the sense of distributions.

Remark. Estimate (6.1) is sharp as can be seen from considering space
forms of constant curvature —K. If K = 0, then (6.3) is sharp since on
Euclidean space A |z| = 3=L.

2 Volume comparison theorem.

A consequence of the Laplacian comparison theorem is the following

Theorem 6.2 (Bishop volume comparison). If (M™g) is a complete
Riemannian manifold with Rc > (n—1) K, where K € R, then for any
p € M™, the volume ratio

Vol (B(p,r))
VOlK (B (pKa T))

s a nonincreasing function of r, where Pk 1s a point in the n-dimensional
simply connected space form of constant curvature K and Voly denotes the
volume in the space form. In particular

Vol (B (p,r)) < Volk (B (px,)) (6.4)

Jor all > 0. Given p and r > 0, equality holds in (6.4) if and only if .
B (p,r) is isometric to B (pk,T). ‘




In the case of nonnegative Ricci curvature we have the following

Corollary 6.2. If (M",g) is a complete Riemannian manifold with
Ric > 0, then for any p € M™, the volume ratio ‘.’2‘.(%@:22 is a nonincreasing
function of r. Since lim,_,g K?.‘,@li’.:_ll = W,, we have K”—&-}ii?ﬁu < wy for all
r > 0, where w, is the volume of the Euclidean unit n-ball.

One of the many useful ¢onsequences of this is the following characteri-
zation of Euclidean space.

Corollary 6.3. (Volume characterlzatlon of R*). If (M™,g) is a com-
plete noncompact Riemannian manifold with Rc > 0 and if for some p € M"

lim Vol (B (p, 7‘))

00 rn

nv

then (M™, g) is isometric to Euclidean space.

Proof. By the Bishop-Gromov volume complarison theorem, we actually
have Y.?.’.(%(Eﬂl = w, for all > 0. The result now follows from the equality
case. QED

The Bishop-Gromov volume comparison theorem has been generalized to
the relative volume comparison theorem. Let (M",g) be a complete
Riemannian manifold and p € M™. Given a measurable subset I" of the unit
sphere S5~ C T,M and 0 < r < R < 00, define the annular-type region:

A (p)=JeeM: " < d(z,p) < R & there exists a unit speed minimal
Wl 55 " geodesic vy from v (0) = p to z satisfying v/ (0) e T

C B(p, R)\B (p;7) .

Note that if I' = S7~1, then AT (p) = B (p, R) \B (p,7). Given K € R and
a point pg in the n-dimensional simply connected space form of constant
curvature K, let AL ; (px) denote the corresponding set in the space form.

Theorem 6.3. Suppose that (M™, g) is a complete Riemannian manifold
with Re(g) > (n —1) K. IfO<r<R<S r<s<Sandif TCSy'isa
measurable subset, then

Vol (APS (r)) < Vol (Af“,R (P))
Volg (ALs (px)) ~ Volx (ALg (pk))

Takingr = s=0andI' = Sp~! yields Theorem 6.2. In particular, taking
the limit as R — 0 gives (6.4).




As a consequence, we have the following result of Yau about the volume
growth of a complete noncompact manifold with nonnegative Ricci curvature.
Corollary 6.4 (Rc > 0 has at least linear volume growth). Let (M™, g)
be a complete noncompact Riemannian manifold with nonnegative Ricci cur-
vature. For any point p € M", there exists a constant C > 0 such that for
anyr>1 - o
Vol (B (p,r)) 2 Cr.
 Proof. Let z € M™ be a point with d(z,p) = r > 2. By the Bishop-
Gromov relative volume comparison theorem, we have

Vol (B (z,r + 1)) — Vol (B (z,r — 1))
Vol (B (z,7 ~ 1))
(r+1)"—(r-1)" _C(n
= (r=1)" il T

Since B (p,1) C B(z,r+1)\B (:z;,r —1).and B(z,r —1) C B(p,2r — 1) by
(6.5) we have g

(6.5)

Vol (B, 1))
C(n) '

We have proved the corollary for r > 3. Clearly it is then true for r > 1 (or
any other positive constant). . QED

Vol (B (p,2r —1)) 2 Vol (B(z,r — 1)) >

3 Hessian comparison theorem.

The following roughly says that the larger the curvature, the smaller the -
Hessian of the distance function. ‘
Proposition 6.1 (Hessian comparison theorem-General version). Let
i=1,2. Let (MP,g;) be complete Riemannian n-manifolds, let ; : [0,L] —»
M} be geodesics parametrized by arc length such that v; does not inetrsect
the cut locus of ;(0), and let d; :== d (-, (0)). If for all t € [0, L] we have

Ko (Vinh ) 2 K (VaA 2 ()
for all unit vectors V; € T,y M perpendicular to v, (t), then
V2dy (X1, X1) < V3dy (X2, X2)

4 - *



Jorall X; €T (t)M perpendicular to v, (t) and t € (0, L.

Following theorem is the special case of the above result, namely compar-
ing to constant curvature spaces.

Theorém 6.4 (Hessian comparison theorem -special case). Let (M",g)
be a complete Riemannian manifold with Sect > K. For any point p € M
the distance function r (z) := d(z,p) satisfies

1 ‘
Vivjf = hy < mHK (r) 9i

at all points where r is smooth (i.e. away from p and the cut locus). On all
of M the above inequality holds in the sense of support functions.

4 Mean value inequalities.

The following mean value inequality, which follows from the Laplacian com-
parison theorem, has an application in the proof of the splitting theorem.

Proposition 6.1 (Mean value inequality for Ric > 0). If (M",g) is a
complete Riemannian manifold with Ric > 0 and if f < 0 is a Lipschitz
function with Af > 0 in the sense of distributions (subharmonic), then for
any £ € M™ and 0 < r < inj (z)

f (Z) fdu,

" JB@r)

where w,, is the volume of the unit Euclidean n-ball.
Proof. By the divergence theorem, we have

0< 2 / Afdu—/ of ¥detlg) 4o
‘ Ba,r) . Jom

- pn-l (z,7) 87’ 7‘"’”1

where d© := df* A ... A ™. Since 222D < 0 from H = £ log J < "=
and f <0, we have «

o</ (af,/det(g a,/det(g)de
8B(z,r) -l

gr r o n—1

d 1
- E; (rn——l »/r';B(:r,r) fda)
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where we used do = y/det (9)d®. Since lim, o 1 [pp(, ) fdo = nwnf (z),
integrating the above inequality over [0, s] yields o

w
3

Wy,

-n-—l __l__ do
51 (@) < /.93@,.,)f :

Integrating this again, now over [0, 7] implies

1

< \
| L S@sgm s
QED ‘ :
In the case where the sectional curvature is bounded from above, we have
Proposition 6.2 (Mean value inequality for Sect < H). Suppose that
(M™,g) is a complete Riemannian manifold with Sect(g) < H in a ball
B (z,r) where r <inj(g). If f.€ C®(M™) is subharmonic, i.e., if Af >0,
and if f>0 on M", then

@) S g /B o fan

where Vi () is the volume of a ball of radius r in the complete simply con-
_nected manifold of constant sectional curvature H.




